
MATHEMATICS OF COMPUTATION, VOLUME 34, NUMBER 150
APRIL 1980, PAGES 425-440

Convergence of Multi-Grid Iterations
Applied to Difference Equations

By Wolfgang Hackbusch

Abstract.   Convergence proofs for the multi-grid iteration are known for the case of fi-

nite element equations and for the case of some difference schemes discretizing bound-

ary value problems in a rectangular region.   In the present paper we give criteria of

convergence that apply to general difference schemes for boundary value problems in

Lipschitzian regions.   Furthermore, convergence is proved for the multi-grid algorithm

with Gauss-Seidel's iteration as smoothing procedure.

1.   Introduction.   Systems of linear equations arising from boundary value prob-
lems can be solved very fast by the multi-grid iteration (cf. [l]-[6], [9], [11]).  Al-
though, the multi-grid algorithms are applied successfully to a general class of problems,
the proofs of convergence are restricted to a very special class of problems.  In the
case of special finite element equations for boundary value problems with smooth
boundaries proofs of convergence are given by Astrachancev [1] and Nicolaides [9].
In [6] the author established general criteria and proved the convergence for general
finite element problems.

The second important class of problems are systems of difference equations dis-
cretizing boundary value problems.  The model problem of Poisson's equation in a rec-
tangle (and similar problems) can be analyzed easily by means of Fourier transforma-
tion (cf. Fedorenko [4] ).  In the case of certain difference schemes for problems with
variable coefficients and a rectangular region, Bachvalov [2] and Wesseling [11] proved
the convergence of the multi-grid iteration.   But two gaps are still to be filled.  Con-
vergence proofs are missing for the case of nonrectangular regions. Moreover, all proofs
cited above require a special smoothing procedure (cf. Section 4) related to the
Jacobi iteration.   In practice smoothing by the Gauss-Seidel iteration is preferred (cf.
[3], [5]).   This paper contains general criteria that apply to difference schemes in
general regions and to smoothing by Gauss-Seidel.

In Section 2 we describe the multi-grid algorithm very briefly.  For further com-
ments we refer, for instance, to [6].  As pointed out in [6] the convergence can be
concluded from an 'approximation property' and a 'smoothing property'. The first one
is studied in Section 3.  A criterion is proved and its assumptions are verified in the
case of a very general difference scheme.   It turns out that the crux of the assumptions
is a certain regularity condition (3.6b) that is proved in [7] for the case of Dirichlet
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426 WOLFGANG HACKBUSCH

boundary values.  The smoothing property is investigated in Section 4, in particular,
for the case of Gauss-Seidel's iteration as smoothing procedure.

2.   Multi-Grid Iteration.   Let

(2.1) *o>*i>-■•>*,>•••  >0
be a sequence of grid sizes.  / is called the 'level number'.  The discretization of the
continuous problem (boundary value problem)

(2.2) Lu=f
with step size h¡ is denoted by

(2.3) £/"/ = //      C>0).
The solution u¡ of (2.3), as well as the right-hand side f¡, belongs to a finite-dimen-
sional vector space V¡.

The system (2.3) of linear equations is to be solved by the multi-grid algorithm
described below.   It uses auxiliary equations of the form Lmum = gm for m = 0, 1,
...,/- 1.  The connection of grid functions of different levels is given by a prolon-
gation

Pi,i-v   rç-i —^1
and a restriction

ri-ur vi~*Vi-i-
Since a detailed explanation of the multi-grid algorithm is contained in [5], [6], we
give only a brief description by means of a program.

procedure mgm(l, u, /):   integer /; array u, f;
if / = 0 then u := Lq l * f0 else
begin integer /; array u, d;

for / := 1 step 1 until vdo u := G¡(u, /):
d :— r,_ j ,  * (L, * u - /); v := 0;
for/ := 1 step 1 until y do mgm(l - 1, v, d);
u := u -•pl !_ j * v

end;

The meaning of the parameters is the following.   / > 0 is the actual level number. fG
Vj is the right-hand side to the problem in consideration (e.g., /= f¡ in case of (2.3)).
u has an arbitrary input value uy* G V¡ (i:   number of iterations). The procedure mgm
computes the next iterate u = u$'+1' as output.  The procedure depends on the posi-
tive numbers v (number of iterations of the smoothing procedure G¡) and y (number
of mgm iterations per level).  The smoothing procedure is of the form

(2-4) G,(v,, fi) = G,v, + H,f,   (v,, f, e V,) with G, + H^, = I.
The convergence of the multi-grid algorithm depends on the choice of v, y, on the
coarsest step size hQ and on the maximal ratio sup{h¡_x/h¡:  I > 1} <°°. Usually,the
last ratio is constant, e.g. equal to 2.  In the following y - 2 is fixed (for y = 1 com-
pare [6, Corollary 3.8]).
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CONVERGENCE OF MULTI-GRID ITERATIONS 427

We say that the multi-grid iteration 'converges' if it converges for a suitable
choice of hQ and v; more precisely if the iteration matrix Ml = M¡(v, h0,h1, . . . ,h¿)
[defined by u\'+l^ - u¡ = M,(u\** - u¡), ul = Lf1^] satisfies

(2.5) ||Af,l|<C(»)<l    fotvmln<p<Pu„(hl\l>l,

where C(v) —* 0 as v —► °° and vmax(h) —► °° as h —> 0.  The matrix norm || ■ || is
associated with some suitable vector norm on V¡.

We recall the following result of [6].   Here and in the sequel C denotes a generic
constant independent of /.

Proposition 1. Let \\-\\x and || • ||2 be two suitable (not necessarily different)
norms on V{ (I > 0) and define the matrix norms \\A ||. ;- (/, / = 1,2) of A : V, —* Vm
by sup-[||v4ü|L-/ll t»H/ -  0 j= v & V¡}.  Assume the smoothing property

(2.6) \\hGX,i < coW*   f°r aB ¡>0,l<v< vm!lx(hx)

with C0(v) —> 0 (v -> »), vmax(h) —»«.(/!-> 0), and G, from (2.4) for suitable
a > 0. Assume the approximation property

(2.7) 117," » - pu_ xL;_\r¡_ x ßx>2 < Ch*_ j    for alll>\

with a from (2.6).  Furthermore, the estimates

(2-8)        cllw/_,||2<||pu_1u,_1||2<C||u/_1||2   forallv,_xe V,_1,l>l,

(2-9) BGi%.a<C   foralll<v<umax(hx),l>0,

(2-10) h, < A,_, < Ch¡   for alll>\

are required.   Then the multi-grid iteration with 7 = 2 converges:  (2.5) holds with

INI =11-112,2-
3.   The Approximation Property.
3.1.  A Criterion Implying the Approximation Property.   Assume

(3.1a) rl-uVu-i=il-i+8l-i       (Z>1),

where Sz_j is small enough in the following sense:

(3.1b) H£r-\Wi-uVlli,2<cA?-i     0>i).
r\_ j ¡ is a suitable restriction involved in (3.3) given below.  If L¡ is the stiffness matrix
of a finite element method, (3.1a) holds with 5¡_x = 0 (cf. [6]).  8¡_x vanishes, too,
if L¡_x is defined as in [5].

Moreover, we need the estimate

(3.2) u¿r-V/-i,/¿/ii2,2<c   c>i)
and the existence of some linear mapping r\_ x ¡ :   V¡ —•■ V¡_ x (I > 1) with

(3.3) W-Pu-lrl-lßLT\,2<C^-l    (1>V-
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428 WOLFGANG HACKBUSCH

a involved in (3.1b) and (3.3) is the exponent from (2.6).

Lemma 1.   Assume that there are norms \\ ■ ||0 and \\ • ||3 on V¡ such that

(3.4a) 117,,-1||0>2 < C,    \\L-! ||, 3 < C,    ||¿,||2 0 < C   (l> 0).

Then (3.1a, b), (3.2), and (3.3) follow from (3.4b, c, d):

(3.4b) ll'/-i,/»o,o<C>    Ur',-i,ih,3<C      9>0.

(3.4c) \\&,-ih,o<C*!-i    ('>!)>

(3.4d) M-Pkl-lr'l-ij3,2<CK-i    (/>!)•

(3.4d) describes the approximation of grid functions of V¡ by P/,/_i P/_i :   For
all u, e V¡ there is u^j g V¡_x (namely r¡_x ¡v,) with ||u, -p, ¡_xv,_x\\2 <
g7î"_ i ||u;||3.   If a > 0, || • ||3 must define a finer topology than || • ||2.

In Proposition 1 the approximation property (2.7) may be replaced by (3.1)—(3.3):

Criterion 1.   (2.8), (3.1a, b), (3.2), and (3.3) imply the approximation property
(2.7). By Lemma 1 also (2.8) and (3.4a-d) are sufficient.

Proof.   Since [7 - P/f/_,¿/~ V/-i/M,i-i = ~ Pi,i-\LT-ibi-i °y (31a)>lt
follows that

"¿r1 -p/,i-i¿r-V/-i./iii.2= iiu-Pu-i^r-V/-!,/^]^-1!!!^

= II [7 - ph,_ xL-\ r,_ xlL,] [I - ph,_ ,!•;_, ,]/,- »

~ Pl,I-l^l-l°l-iri-l,lLl     Hi,2

<o + np/,/-iii2,2ii¿r-1i'-/-iAii2,2}ii[/-Pz,í-i'-;-i,/]¿r1ii1)2

+ llp/,/_1ll2)2ll7,r_115/_1r;_1;/L/-1||1)2.

Hence, (2.8), (3.1b), and (3.3) yield (2.7).    D
Using //_! j[7 - Llpll_xLjJlrl_x ¡] = - 5¡_xLJ[}xrl_x ¡, we obtain a similar

result:

Criterion 2. Assume (3.1a),

(2-8*) ll'/-i,/ll,,i<C      (/>!),

(3.ib*) n¿r1p;,/_15z_1i;-_i1ii1>2<c/if_1   (/>i),

<3-2*) iiV/,/-i¿r-iiii,i <c   (/>d.
(3.3*) ll¿rV-Pu-lr/-i,l>lli,2<C/rf_1       (/>1),
/or a suitable linear mappingp\¡_x:   V¡_x —> V¡.   Then (2.7) follows.

3.2. Application of the Criterion. In the following we verify the conditions of
Criterion 1 for the following example.

Example. Let L¡ (I > 0) be an elliptic difference operator of order 2m, i.e. the
discretization of an elliptic differential operator of order 2m.  Let H^be the space of
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CONVERGENCE OF MULTI-GRID ITERATIONS 429

all complex-valued grid functions defined on the cf-dimensional grid Í2(ft¿) =
{x G Í2 C Rd: x/h, G Zd } endowed with the norm

liil. = (h/2Tif¡2 1 +h~ ¿ sin2^)  S'2     ¿Z     u(x)eixVH
j=i J       *en(/i)

l«l_, = sup) (h/2n)d £      u(x)v(x)
xsn(h) /k- O^veH*

)L2(l-n,n]<l)

(S > 0),

(s > 0, ft = A,)

(denoted by I • I, 0 in [7]) corresponding to the norm of the Sobolev space H^ii) if
s + 1/2 i= integer.  We define the associated matrix norms by

\A\st = sup{\Au\t/\u\s: 0*«efio}.

0, ||-||3 of Lemma 1) byChoose a, \\-\\x, and || • ||2 (and
a = 0+d',    I

(3.5) 'm-d >

11-Ii0 = ri_M_0', 11 113 - 1 im+e
for some 0, 0' G [0, m] with a = 0 + 0' > 0.  The condition a > 0 will be important
in Section 4.

The estimate

(3.6a) l¿/l* +m, i3-m < C(i>)       (/>0,ÍGR)

holds if the coefficients of the difference scheme L¡ are sufficiently smooth (cf. Lemma
7).   In [7] we proved

I/-1! < C

(     } for all / > 0, d e [-e0, e0] (ö0,0; £ [O, Vi), 0O + 0O > 0)

under very weak assumptions.  The main requirements are stability of Ll with respect
to l2 = Hq and ellipticity of L¡.   It suffices that the underlying region £1 is Lipschitzian.
The assumption on the smoothness of the coefficients is very weak, too.  (3.6b) holds
even for some schemes with irregular discretizations near the boundary.   Symmetry of
positive definiteness of L¡ are not required.

At first we discuss the estimates (3.4a—d) of Lemma 1.
Note 1.  (3.5) and (3.6a, b) imply the estimates (3.4a) of Lemma 1 ifO < 8 <

60 and0<6' <e'0.

m

For the discussion of (3.4b, d) we restrict our considerations to the case of
= 1.   Let hl_x/hl G Z and define pf¡_x by

d_

(pZ,_xu) (x) = FI   max{0, 1 - \x¡ - yj\/hl_x }       (x G Sl(hj),ye flíA,.,)),
/=i

where u G V¡_ x is the unit vector with u(y) = 1, u(z) = 0 for z j= y.  p°¡_ x is an
example of an interpolation of order 2.   Furthermore, define r°_x ¡ as the mapping ad-
joint to pfj_ j :   (u, P°i^xv) = (r°_, jU, v), where (v, w) = hdzZxen{n)v(x)w(x) with
h = h¡ or h¡_ j, respectively.  In the usual case of d = 2 and h¡_ x = 2h¡, the mappings
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Pu-1 and r<¡-1 i become

u(x)    iíx e Çl(h,_ x),

, i [«(* + e,h¡) + u(x - e.h.,)]    iîx+ efh, G Sl(h,_ x)
(p,V !«)(*) =    4 or x - e-ft, G ftíft^j),

i     21     «C* + {-]fe\hi + (-0^2^)    otherwise,
/,fc=l,2

(r,lMM)W = *"(*) +1    Z    «(* + ("l)Ví)
/. fe= 1, 2

+ 7Â      Z      «(* + (-l)^iA, + (-l)S^/).
/,fc=l,2

where e, (/ = 1, 2) are the unit vectors (1, 0), (0, 1).  Note that u(y) = 0 if y €
«(A,)-

/Voie 2. Let m = 1. pf^, and r°_, ; defined above satisfy (3.7a, b):

(3.7a) Ip2i_iU,.<C       l'f_iAt<C   foralll>l,\s\<2,
(3.7b)  |7 - p°,_ xr¡>_ , ,(A/ < Ch]z\   for all I > 1, -2 < f < s < 2, s - t < 2.

Corollary 1 to Note 2.   Assume m = 1 and (3.5) and set r\_x , = rf_x ¡.
Then (2.8) and the estimates (3.4b, d) of Lemma 1 hold for p¡ ¡_x = P/0;-] w/r/z
a = 0 + 0' > 0. Moreover, (2.8) a«d (3.4d) remain valid if the coefficients of pl,_,
an<7 p,0^ j di/Têr by 0(hj +d) and/or if the coefficients ofpu_, a«d p°,_, differ by
0(1) ai points near the boundary (i.e., distance(x, 3Í2) < Ch¡). Similarly, (3.4b) re-
mains true if the coefficients of r¡_ x ¡ and rf_ x ¡ differ by 0(h '+ max<e -e )) 0r by
0(1) near the boundary.

Example.  p¡ ¡_x and rJ_l ¡ defined in [5, Eq. (3.4)] satisfy (3.7a, b).

Corollary 2 to Note 2.   Generalizations to m > 1 are obvious.  p° ¡_   must
be defined by interpolation of order > m.

Note that this requirement is weaker than the requirement "order of interpolation
>2m" of Brandt [3, p. 377].

Since L¡ and L¡_ x should be consistent discretizations of the same differential
operator (2.2), the difference ô,_j = r¡_x ¡Llpll_x - L¡_x is expected to consist of
terms of the following form:

*i-i= Z Z  r>^dyißS.tl_l(x,h)^\
0,0'eZ",lpl + l0'l<2»i + l   7~eZa

™p{\dy,ß,ß',,-i(x.h)\:  x G Í2(«), / > 1} <Ch»,

(1 if 1/31+ \ß'\=2m + 1,1/31, \ß'\<m + 1,

I 0+0'    if\ß\ + \ß'\<2m,\ß\,\ß'\<m,
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CONVERGENCE OF MULTI-GRID ITERATIONS 431

where ß, ß', and y are multi-indices with \ß\ = ßx + • • • + ßd, dß = d\l • • • d0/,
(djU)(x) = [u(x) - u(x - e¡h]lh,  (T^u)(x) = u(x + y h), h = h,_x (cf. [7]).  The
definition of 9 and T makes sense since u(x) is extended by zero outside U(h).  (3.8b)
may be replaced by other conditions involving Holder continuity of dy ^ ^ /_,(', h).

Example.    Consider the differential operator L — - (a(xx)ux )     -

(b(x2)ux )x .  Discretize (aux )x   by L\u - - h~2 [-a+u+ + (a+ + a~)u - a~u~]

with u - u(x), h* = u(xx ± h,x2), a* =   a(xx ± h/2).  Similarly, L)1 is the discretization
of the second term of L.  L¡ is the sum L\ + 7,J' with ft = ftr  Let p¡ ¡_ x = p° ¡_ x
and r,_, , = r/°-i,/ as defined above.  Then §J_j = r¡_x ¡L1lpll_x - ¿J_, becomes

7^ [a(xx - h/2) - Ka(xx - 3A/4) - fc^x, - ft/4)] 9!

+ TxT2d2 [-h2(a(xx - ft/4) + a(xx - 3ft/4))/16] 92

+ r292 [-h(a(xx + 3A/4) + a(xx + ft/4) - a(xx - ft/4) - a(xx - 3ft/4))/16] 9j,

where (Tjt/Xx) = m(Xj + ft, x2), (r2u)(x) = u(xx, x2 + ft) and ft = A/_i.  The
brackets contain the coefficients of (3.8a).   Obviously, (3.8b) holds if a( ■ ) is Holder
continuous with exponent 0 + 0 ' = a < 1.   If a( ■ ) has Lipschitz continuous deriva-
tives, (3.8b) holds with 0 = 0'= 1.

Note 3.  Let a and the norms be chosen according to (3.5).  (3.8a, b) implies
the estimate (3.4c) of Lemma 1.   (3.4c) holds even if8¡_x contains a further term of
order 0(hj}™) at points near the boundary.

Proof.   Use |9^|0 <C|w|m+e if \ß\<m +0 andft|9^l0 <Cfte|u|m+0 if
w+0<|/?| = H! + l.   For perturbations near the boundary apply the following
lemma (cf. [7] ).    D

Lemma 2.   7,er Í2(ft) have 'property C defined in [1]. Assume that the sub-
set T(h) C £2(ft) satisfy distance (x, hZd\Çl(h)) < Chfor some C * C(h) and all x G
T(ft), that means, all points of V(h) have a distance less than Ch from the boundary.
Define the restriction y by (yu) (x) = u(x) if x G T(ft), (yu)(x) = 0 otherwise.   Then
\y\st<C'h*-ttsveiid.

A sufficient condition for 'property C is that £2 is Lipschitzian.
From Notes 1 -3, Lemma 1 and Criterion 1 one concludes that the approximation

property (2.7) holds for a very general class of difference schemes L¡.
Example (Application to the Shortley-Weiler scheme).  Discretize — Au = /(in a

Lipschitz region Í2 C R2), u = g (on 912) by the Shortley-Weiler scheme L¡ (cf. [5],
[8, p. 203ff.]).  In [7, Note 2.3] we proved (3.6b) with 0O = 0, 0O > 0.  But note
that (3.6a) is not valid since the diagonal D¡ of the matrix L¡ can be arbitrarily large.
Nevertheless, (hJD,)-^, and L,(h2D,)~l: He0 + m —» H^"m are uniformly bounded.

Define    0'= 0, P¡l_x =P°U_X, r¡_ul= iÇ-lMW*' rl-i.l =
(hf_1D¡_x)~lr^_x ¡ (or define p¡¡_x and rlx ¡ as in [5]).  Then (3.1a, b), (3.2),
and (3.3) are fulfilled.   For a proof modify Lemma 1:   Split rl_xlLl into rs¡_í t ■
[(h2Dl)~lLl] and hl_xr'l_x, into [&¡_x(hj_xDl_x)~i] ■ rf_% ¡.  Thus, we have shown
the approximation property (2.7) with a = 0 > 0 by means of Criterion 1.
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4.   Criteria Implying the Smoothing Property.
4.1.  Preparing Lemmata.   The following lemma describes a norm equivalent

to \-\s.

Lemma 3.   Let Í2(ft) have 'property C (cf. Lemma 2). Assume L, 0 to be a
positive definite and H"£-elliptic difference operator of order 2m, i.e., L¡ 0 = Lf0 and
\u\2m/C < (Ll0u, u) < C\u\2m, where (u, v) = ridI,x(=nwu(x)v(x).   The fractional
powers of A := (L¡ 0)l^2m^ are well defined.    Then \u\s and \Asu\0 are equivalent:
(1/C')| u\s < IA^Iq < C'\u\s,for -m < x < m.   C' does not depend on h,.

Proof.   Use Lemma 2.1 of [7] and the following lemma.    D

Lemma 4 (Interpolation). Let Hx and H2 be two Hubert spaces.  A:  Hx—+
H2, A,. :  H i —► H¡ and A7l:  H¡ —► 77(. (i = 1, 2) are assumed to be bounded.  Further-
more, let Aj and A2 be positive definite.   Then the inequality

IIA^ApU^^   <C(T2-T)/(T2-T1)c(7-71)/(72-71)

holds for all y G [7 j, 72 ] if it is valid for 7 = 7 j and 7 = 72.

Proof.   Set ^(7) = IIA^AfT||//i_>//2 and note that

Hi)2 = HA2^A1-2^*A^|A/^//2 = p(AÏAA-y'A-y"A*Al)<<>(7'M7")

for all 7', 7" with 7' + 7" = 7 (p:  spectral radius).  Therefore, the estimate follows
by bisection for all 7 = yx + p2~ß(y2 - yx) with v, p G Z, p > 0, 0 < v < 2M.  The
continuity of <p(y) concludes the proof.    D

The preceding lemmata yield the following estimates.

Lemma 5.   The estimates (4, la, b, c) hold with C independent ofhl :

(4.1a)      \A\r^C\A\^^-s\A\^-s^^-^      (-m < s <r < t < m),

(4.1b)   \A\r_r<C\A\^-0r)tt\A\rt[lt      (0<r<t<mor0>r>t>-m),

\A\ < r\A\CLr»-r-s)l{2m)\A\rl(2m)\A\sl(2m)

(4-lc) (r > 0, x > 0, r + x < 2m).

Proof.   By virtue of Lemma 3, \u\s can be replaced with |As«j0.  Hence, \A\r
becomes |AMA~''|0 0.  Applying Lemma 4 with Aj = A2 = A we obtain (4.1a).
(4.1b) follows by choosing Aj = A, A2 = A-1.   For the proof of (4.1c) apply Lemma
3 and (4.1a) with 2m instead of m.  We abbreviate \A\      by a(p, q).   Lemma 4 with
Ax = I, A2 = A yields a(r + x, 0) < Ca(0, 0)1 -fy2m, Of with ß = (r + s)/(2m).
Similarly, a(0, - r - s) < Ca(0, 0)1-"a(0, - 2m)ß follows.  Applying (4.1a) to
A~r-SA instead oí A, one obtains a(r, -s)< Ca(r + s, 0)r/{r+s)a(0, - r - x)î/(r+ï).
Inserting the estimates of a(r + x, 0) and a(0, - r - s) we are led to (4.1c).    D

Smoothing by Gauss-Seidel's iteration is expressed by

(4.2a) G,(v,, f,) = (D, -R,)-1 (S,v, + /J),      G, = (D, - R,y %,
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where

(4.2b) L, = D,-R,-SV

Definition 1.   The splitting (4.2b) is called 2-cyclic (cf. [10, p. 39]) if there are
two distinct subsets Slx(h) and Í22(ft) of £l(h) with £lx(h) U Í22(ft) = £2(ft) such that

D¡ = cOjLjCOj + cj27,/cj2,   R¡ = —w2L¡u>x,   St = —íúxL¡g}2,

where the restrictions co;- are defined by (u>¡u)(x) = u(x) if x G il (h) and (cow)(jc)
= 0 otherwise.

Throughout this section we shall assume

(4.3) Í2(ft) have 'property C (cf. Lemma 2);   a, || • ||j, || • ||2 be defined by (3.5).

Lemma 6.  Let the splitting (4.2b) be 2-cyclic and assume L{ = L* to be positive
definite.   Then \L,Gj/\0>0 < |7);I00A> + 1/2) holds for allv>\.

Proof.   Numbering first the grid points of Slx(h) yields the following block
structure:

'dx    -s
'i

Lfif

0      d\H   "1
0   d2lrd-ls\'—r   <72_,

0   s{[d2lrdxxs]v-x - [d2lrd;

0 0

'•rïj

Hence, \D^ll2LtG]/D^ll2\lfi  = l[°    ° ] l0>0 follows from x* = r with A =
B2v~l(I - B)2 and B = B* = d2il2rdxlsd2112.  It is well known that p(G,) = p(5)
= ||7?|| < 1 (cf. Note 5), where || ■ || denotes the | • |0 0-norm restricted to the last block.

||,4|| = p(A) = supilX2^-^! - X)2\:   X G spectrum of B}

< supiX2"-^ - X)2:   0 < X < 1 } < l/(v + 1/2)2

imphes \Lfif\¿f0 < \D}l2\2tQM\\1'2 < \D,\0t0/(u + 1/2)-    □
4.2.  General Criteria.

Criterion 3.  Assume (4.3), 0 = 0', (3.6a) for d = 0, and

C(i')-»0(I; — ~),     ^max(ft) — oo (A — o),

(4-4b) ICrU... < C  foralll<p< ^max(^), f > 0.

(4.4a)

Then the smoothing property (2.6) holds with C0(v) = C'[C(v)]dI"1.

Proof.   (3.6a) (d = 0) and (4.4b) yield I^Gf !„,,_„ < \Hm,-m^m,m <'C
Hence, (4.1b) (t = m, r = m - d) implies (2.6).    D

The following criterion applies also to the case of 0 =£0':
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Criterion 3*. Assume (4.3), (4.4a) and

l¿rW<C.    ¡¿z*l2m,o<C,   |G/Vo<C,

(4"4b*} tëfl.,<Ç (0<P<vMM(ft1),/>0))

where G¡ = Lfi^J1.   Then the smoothing property (2.6) holds with C0(v) — C' •
C(vfl(2m)[a = 0+0', cf. (3.5)].

Proof.   (4.4b*) implies Lt,z&7l2m,0 = \G\Lt\2mfi < IG/Vo^m.o <C   Since
l¿/*l2m,o = l¿/lo,-2m-also \L,Gf\0t_2m < l¿;l0>_2J&7l0)0 <C holds.  (4.1c)
yields (2.6).    D

First we shall verify the conditions of Criteria 3 and 3* for positive definite
schemes.   In a second step it is shown that additional terms of lower order may be
added. Hence, all difference schemes with a hermitian principle part satisfy the smooth-
ing property.   In a third step we treat perturbations of order 0(hj~2m) located at
points near the boundary.   Such perturbations often arise from special discretizations
at the boundary.

Usually, the function C0(i>) of (2.6) is C/(u + l)a/(2m>.  Therefore, C0(v) —> 0
requires a = 0 + 0' > 0.   The choice of 0 = 0' = 0 is excluded.  The upper bound
vmax(h) of v in (2.6) may be omitted (i.e. fmax = °°) if L¡ is positive definite.  In the
case of other schemes vmayi(h) might become finite (but vmax(h) —> °° as ft —> 0).

4.3.   Case of Positive Definite Difference Schemes.   Throughout this subsection
we assume

(4-5) £/ = ¿*>   2\u\m<(L,u,u)<C\u\m

as in Lemma 3.   The proofs of convergence in [1], [2], [4], [6], [9], [11] require
smoothing by

(4.6) Gfiv¡,f¡) = Vt-C*íh2m(L¡v,-f¿,    G, = 7 - œ,h2mL,.

If the diagonal of L¡ is a multiple of 7, Gl corresponds to a damped Jacobi iteration.
Note 4 (Smoothing by Jacobi Iteration). Assume (4.3), (4.5), (4.6) and 0 <

co, < hj2m/[7,;|0 0.   Then the smoothing property (2.6) holds for all v (^max = °°)
with
(4.7) C0(u) = C/(v + K)a/(2m)      (a = 0 + 0' from (3.5)).

Proof   One may choose L¡ 0 = L¡ in Lemma 3.   Thus, it suffices to estimate
A = A6^mLlGvlA6'-m = Lß(I- oj,hfmL,)v, ß = a/(2m), with respect to |-|0>0.   But
this norm is equal to the spectral radius.   Since the spectrum of 7,; is contained in
[Q.lKutf1»)),

p(A) = supiX^l - co,ft2mX)":   0 < w/ft/2m < 1} < Cf(v + l)ß

proves Note 4.    D
The techniques of the following subsections can be applied to smoothing by

(4.6), too.   But since we are mainly interested in smoothing by Gauss-Seidel's iteration,
henceforward our considerations are restricted to this subject.
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Note 5 (Smoothing by Gauss-Seidel). Assume (4.3), 0 = 0', (4.5). Let G¡ be
defined by (4.2a, b), where the splitting (4.2b) is required to be 2-cyclic. Then the
smoothing property (2.6) holds with C0(v) from (4.7) for all v (vmax(h) = °°).

Proof.   Since (4.2b) is 2-cyclic and L¡ is positive definite, D¡ is positive definite,
too.   Thus, the theorem of Ostrowski (cf. [8, p. 297], [10, p. 77]) applies resulting
in \L¡l2G,vLj~ll2\0t0 < 1 (v > 0).   By Lemma 3 (4.4b) follows.  Lemma 6 implies
(4.4a) with C(v) = C/(y + 1/2) since |£»;|0>0 < ¡7,,|00 < Ch72m results from (4.5)
and |u|m < Chfm\u\0.  (3.6a) with û = 0 holds by virtue of (4.5).  Hence, all con-
ditions of Criterion 3 are satisfied.    D

Example.   Let L¡u = /be the discretization of -div[(a(xx), b(x2))Tgxad u] = $
in £2 and u = 0 on9i2 as in the example of Section 3.1.  (4.5) holds if a(xx), b(x2)
G [e, C] C (0, °°).   Use the 'red-black' ordering of the grid points:   S2j(ft) = [x G
£2(ft):   (Xj + x2)/h even}.   If, in addition, Í2 is a Lipschitz region, all conditions of
Note 5 are satisfied.  The smoothing property holds for all 0 = 0' = a/2 G (0, m].

Note 5 illustrates the application of Criterion 3.   In order to apply Criterion 3*
the following lemmata give conditions implying (4.4b*).

Lemma 7.   The inequalities \L¡\2m 0 < C and I7,*|2m 0 < C hold if the coef-
ficients are sufficiently smooth.  More precisely, the estimates hold if L¡ is a finite
sum of terms of the form

T<tfc(x, h/)rf       (7, 0, ß'eZd, ßj > 0, ß] > 0, \ß\ + \ß-\ < 2m),
where all kth derivatives of c(x, h¡) with respect to x are uniformly Lipschitz continu-
ous on Q.fork= max(|j3|, ||3'|) - 1 [for Ty and bß compare Section 3, (3.8a)].

Proof.   \L,\2m 0 < C requires k > \ß\ - 1.    Since Lf contains
(_ 1)101 + 1(3 W^r^, also k > IjS'l - 1 must hold.    D

Lemma 8.   The estimates \G¡\00 < C, |G,"|0 0 < C are valid for all v > 0 and
/ > 0 if the splitting (4.2b) is 2-cyclic and if one of the following conditions holds:

(4.8a) I, satisfies (4.5),    ID"110 0 < Ch2m,

(4.8b)    Dj = w/ft,"2m7,    L, and Lf are diagonally dominant (cf. [10, p. 23] ),

(4.8c) ID-^R, + S¿\0fi < 1,    1(7?, + ^Vlo.o < »■

Note that I' l0 0 coincides with the usual spectral norm of matrices.
7>oo/.   (a) One verifies that G, = S¡(D¡ - R,)'1.  G," and G\ have the represen-

tations

G? =
0   d\-ls[d2xrd\ls]v-1

0 [d2lrdxlsY
Gf

[sd2lrdxl]v   [sd2irdix\v-'isd7l '7

0 0

(*3*1)
Assume (4.8a) and let B be as in the proof of Lemma 6.   \D}l2GvtD7íl2\\ 0 =
\D7ll2G?D¡l2\l0 = \\B2v +B2v~l\\ <2 shows |Gyi0 0 <N/2|T)r1/2|0i0'|JD/1/2|0i0

< C and IGf |00 < C.
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(b)   Let H • IL be the matrix norm corresponding to the supremum norm.   (4.8b)
implies that the || • IL norm of D7l(R, + S¿) = (R¡ + S¡)D7i and of the adjoint
matrix are bounded by 1.   Hence, (4.8c) holds.

(c)  From (4.8c) it follows that Wd^sW, \\dZlrl Harfj1«, Huff1« < 1 (INI:
spectral norm).  Then the representations of G" and G" yield |GZ"|0 0, IG^Iq o ^
\/2.    D

We summarize:
Note 6.   Assume (4.3) and (4.5).  Let the coefficients ofL¡ be sufficiently

smooth (cf. Lemma 1).  G¡ is defined by (4.2a), where the splitting (4.2b) is 2-cyclic
with \D7 ' |00 < Ch2m.   Then the smoothing property (2.6) holds for all 0,0' G
[0, m], 0 + 0' = a > 0 with C0(v) from (4.7) and vmax(h) = °°.

Proof.   (4.4a) follows as in Note 5.   Thanks to Lemmata 7, 8 the Criterion 3*
yields (2.6).    D

4.4. Perturbations by Lower Order Terms. In the following we shall assume
that the difference scheme L¡ is the sum L\ + L'¡, where L\ satisfies the smoothing
property (2.6).  We assume a 2-cyclic splitting of L¡ and L\:

L, = Dj — Rj — S,,   L, = D] — R, — S,,

(4.9) G, = (Dl-Rl)-isl, g;-cd;-ä^-%

G¡ = G, - G),    D'¡ = D¡-D¡,   R" =Rj- R¡,   S'/ =S,-S¡.

L1/ is called a lower order term if there is some ß > 0 such that

(4.10) \L'¡ |0 0 <Ch<¡-2m    (ß>0,/>0).

The first criterion apphes if ß > m - max(0, 0').

Criterion 4.   Let L¡ = L\ + L'\ and L\ have 2-cyclic splittings and define G¡
and G\ by (4.9).   Choose the norms by (3.5) and assume

(4.10*)        \Ll\0,e-m <Cftf—9    [or\LÏ\m_9.#<Chf-"-*'\,
(4-11) |7);-1|0,o<Cft2m,   i7,;im>_m<c,

and ß> m - d' [or ß> m - 0, respectively].  Then L¡ has the smoothing property
(2.6) ifL\ has.

For the usual case of m = 1 ß takes the values 1 and 2. Hence, a = 0 + 0' > 0
implies ß > m - 9' or ß > m - 0. (4.10*) holds if L" is a difference scheme of order
< 2m - ß with smooth coefficients (cf. Lemma 7).   Note that (4.10*) implies (4.10).

7>oo/ By (4.10) and (4.11) the estimate l^-1X,"|0f0 <Chf holds. The same
norm of D'f lD"t, D\ ~ 1R'/, and D'f 1S'/ is also of order 0(hß) since the splitting is 2-cy-
clic. Hence, IGj'|00 < Chß is vahd for sufficiently small ft;. The second estimate of
(4.11) implies 17,;¡00 <Ch72m.  Thus, \G¡\00 <C holds, too.  X(v) = G» - G\v
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can be estimated by

TOImH>',o < TOIo.o < c(v, h/):=±(V) |g; |g 0\G'X-¿
M=l\PI

< Z ("jcicftf]"-" = c[(i +ftff-i].
M=i\p/

The further terms of

ii¿/G^ii2il<iLL;G;%;1 + ii;'iOi9_miG/nm_e.>o + ^;iOi0_mix(,)im_e,o

are bounded by

^'l0,e-m<Cftf — e, UPO,-«  «*,-—•, rO?U'-#>'<C».

Since 7,| satisfies (2.6) with C0(i>) and i>max(/0 one obtains Ill/G/V||2jl < A^CqO', h,)
with c0(p, ft) = C'0(v) + ftö'~m +í3Cy + Che'-mc(v, ft).  0' - m + ß > 0 imphes c0(y, 0)
= Co00.  Thus, there exists vmax(h) < %ax(ft) with ^max(0) = °° such that cQ(v, ft)
< C0(i) := 2C'0(v) for all 0 < v < Pmax(A).   In the case of the second inequality of
(4.10*) and ß - m < 0 apply the analogous estimates to G\Lx = T^G,".    D

The following criterion is applicable for all /3 > 0.  On the other hand L\ must
satisfy not only the smoothing property but also the sufficient conditions of Criterion 3*.

Criterion 5.  Let L¡ = L\ + L¡ and L\ have 2-cyclic splittings and define G¡
and G\ by (4.9).  Assume (4.3), (4.10), (4.11), and li,"l2m>0 < C, M\\mfi < C.
Moreover, the estimates (4.4a) and (4.4b*) mwxr ¿>e vafttf for L'¡, G¡, G¡ (instead of
L¡, G¡, G/).  Then the smoothing property (2.6) holds for L{, too.

Proof.   Repeating the proof of Criterion 4 for the special case of 0 = 0' = m
one obtains (4.4a).  The same proof shows (4.4b*) for a suitable choice of vmdiX(h).

Hence Criterion 3* implies (2.6).    D
Note 6 and Criterion 5 establish the following result.
Note 7. Assume (4.3) and C~l\u\2m < Re(7,,u, u) + X0l«lo < C\u\2m for some

real X0 (H™-coerciveness of L¡). L¡ must consist of the terms Tydßc(x, h/)dß de-
scribed in Lemma 1.  Gt is defined by (4.2a), where the splitting (4.2b) is 2-cyclic with
\D71100 < Ch2m.   Then the smoothing property (2.6) holds with C0(v) from (4.7).

Proof.   Define L\ = (L, + Lf)/2 + X07 and 7," = L¡ - L\.   \L'[l0 0 < Cft2"1-1
and IT^Mq.o <Chfm imply \D'-l\00 <C'h2m for sufficiently small ft,.  Hence,
Note 6 shows that (4.4a) and (4.4b*) hold for L\ and G¡.  (2.6) follows by Crite-
rion 5.    D

4.5. Perturbation at the Boundary.   In particular, if special discretizations are
used at points near the boundary, the difference scheme Ll is a sum of a scheme L\
with smooth coefficients as studied in the foregoing section and a further term L'¡
with (L"u)(x) ¥= 0 only at points near the boundary.  The following note shows the
smoothing property for an important class of discretizations.

Atore 8.  Let Ll = L\ + L'¡ and L\ have 2-cyclic splittings with diagonal matrices
D}, D\ and define G¡ and G\ by (4.9). If(L'¡u)(x) =¿ 0 for some u, \x - x'\ < Ch¡
must hold for some x' = v'h¡ i £l(h¡) (cf. Lemma 2). Moreover, (L¡u) (x) and
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(L'tu)(x) must depend only on u(x') with \x' - x\ < Ch¡(x, x' G Í2(ft;)). Assume
that (4.4a) and (4.4b*) hold for L\, G\, and G¡ with C(v) from (4.7) (sufficient condi-
tions are those of Note 1).  Furthermore, (4.3) and (3.6b) with some d G (0, 1/2) are
required for L\ (instead of L/). Let

\D'rl\00<Ch2m,     \R,+S,\00<Ch72m,

(4-12a) i^r^io.o^c, \L'p\-\fi<c.

The inequalities

(4.12b)  0 < £>- 1(R, + S{) <D'7-\R\ + S\),       0 < (R, + S,)D7> < (R¡ + S',)D¡-»

must hold for all entries of the matrices.   Then the smoothing property (2.6) is valid
with the same vmax(h) as for L\.

It is to be emphasized that D¡ is not required to be uniformly bounded.
Proof.   (1) We abbreviate I ' l0 0 by || • ||.   There is y as in Lemma 2 such that

L'/ = ¿'¡y.  (4.4b*) implies ||fl¡|| < Ch72m and ||£j|| < Ch72m.   By virtue of the
Perron-Frobenius theory (cf. [10, p. 26]) \\D7lLl\\ < HT})-1/,)!! < C can be concluded
from (4.12a, b).  Therefore,

I^V^m.O < \D'lDiiLl ~L'l \2m,0 + I^l2m,0 < VP'&% "¿Mm.O  + C

<(||7);i|||£)-1I/|| + ||L;il)l7l2W,o+C<C'

yields the first inequality of (4.13a):

(4.13a) \D'íD71Lt\2m>0<C,       \D¡*Df-lLf\2mt0 <C.

Similarly, the second estimate is proved.
(2) Let dx,d2, r, and x be as in the proof of Lemma 6.  (4.12b) yields 0 <

d~7 1s < d'7~ V, etc.   Hence

(4.13b) 0 < G\ < G\v,    0 < G\ < G¡"      (v > 0)

follows.  The Perron-Frobenius theory shows \\G?\\ < \\G¡V\\.  By \\D,GJ/\\ <
||x|| (1 + ||r6?-1||)IIG;I'-1|| < Ch72m [cf. (4.12a), (4.4b*)] and \\D'rlH < Ch2m we
obtain the first estimate of (4.13c):

(4.13c)       W'rXDfi;]i<C,    WG'/Dfi'r'lKC      (l<P<»max(kt)).

The proof of the second one is similar.
(3) (4.13a) and (4.13b) imply

(4.13d)       \Lfif\0t_2m < C,    |7,/G/"|2m,o < C      (Ku< vmax(hx)).
E.g., the first inequahty follows from

\Wf\a,-2m<íLlDrlD?0,-2JD¡-lDtG»\0>0

<|7);*7)/*-17,/*l2m,0ll7);-17)/G/l<C.
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(4) Let 7 be as in Lemma 2.   By (3.6b) \L¡   1 \$_m d + m < C holds for some
0 < i? < 1/2. Lemma 2 proves l7ld + m>0 < Chf + m.  Interpolation of (4.4a) and
(4.4b*) yields \L'tG?\0j9_m < Ch7mJô/(v + l)ß with ß = (m + d)/(2m).  There-
fore,

\\yG^<\y\,+m¡0\L[-1\^mid+m\L'lG¡\^_m <C/(v + l)ß

is valid.   Applying again the Perron-Frobenius theory, we obtain

(4.13e)     UtG/II < C/(v + 1)",   ß = (*i + 0)/(2ifi)      (0 < v < ^„(A,))

from (4.13b).  Now,

(4.130    WL'/C/W < Cft/-2m/(„ + I)",   0 - (m + d)l(2m)      (1< » < vmax(hx))

can be concluded from \\L'¡G¡\\ = WL'/G^ \\yG¡~l\\, since there is y satisfying the
conditions of Lemma 2 with L"lGl = L'¡G¡y.  The second term is estimated in (4.13e).
Split the first term into Lfit - L',G,.   \\L,G,\\ < Ch72m\L,G,\0 _2m < Ch72m
follows "from (4.13d) (v = 1).  (4.4b*) for L¡ and (4.13b) yield \\L¡G,\\ < Ch72m.

(5) Using L\(G\V - G\) = - ZvßZQ ¿JG^C»-'»-1 and G" = G"7, one obtains

m;^;" - Gf)\\< z h¿;g;'íiiiig;'iiii7g/v-'í-iii
M=0

< h72mC' "¿! [(m + I)" V - Air*3] < Ch72ml(v + lf/m.
M=0

This estimate, (4.4a) (for L\), and (4.13f) yield (4.4a) for 7,,:

HijCj-ii < BL;c;y + m^G," - g*)« + ii¿^í"ii < ca,-2«/^ +1)*""

Repeating-the proof of Criterion 3* yields (2.6).    D
Example.   Consider the Shortley-Weller discretization L{ (cf. last example of

Section 3).  L\ is the usual five-point formula.   Hence, (4.4a) and (4.4b*) are fulfilled
with vmAX(h) = °°. (3.6b) holds for all 0O = 6'0 < 1/2.  Also the conditions (4.12a, b)
are satisfied.  Thus, the smoothing property holds for all v (vmax = °°).
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