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CONVERGENCE OF NEWTON’S METHOD
AND INVERSE FUNCTION THEOREM

IN BANACH SPACE

WANG XINGHUA

Abstract. Under the hypothesis that the derivative satisfies some kind of
weak Lipschitz condition, a proper condition which makes Newton’s method
converge, and an exact estimate for the radius of the ball of the inverse function
theorem are given in a Banach space. Also, the relevant results on premises of
Kantorovich and Smale types are improved in this paper.

We continue to discuss the problem of convergence in the Newton method

xn+1 = xn − f ′(xn)−1f(xn), n = 0, 1, · · · ,(0.1)

to solve an operator equation f which maps from some domain D in a real or
complex Banach space X to another Banach space Y,

f(x) = 0.(0.2)

Now we come back to the problem which we bypassed in [1].
We always assume that f ′(x0)−1 exists and f ′(x0)−1f ′ satisfies some kind of

Lipschitz condition similar to that of [1] in some open ball B(x0, r) ⊂ D with
center x0 and radius r (or some closed ball B(x0, r) ⊂ D) in order to study the
convergence of Newton’s method and the domain of the local inverse function of f
at x0.

1. The domain of the inverse function

The inverse function theorem asserts that there is an inverse function f−1
x0

defined
on some open ball B(f(x0), ε) ⊂ Y with the property that

f−1
x0

(f(x0)) = x0,

f(f−1
x0

(y)) = y, ∀y ∈ B(f(x0), ε),

and f−1
x0

is differentiable. Now we study the exact lower bound estimate of the
radius of this ball.

For this reason, we assume that f has a continuous derivative in the ball B(x0, r),
f ′(x0)−1 exists and f ′(x0)−1f ′ satisfies the center Lipschitz condition with the L
average, ∥∥f ′(x0)−1f ′(x)− I

∥∥ ≤ ∫ ρ(x)

0

L(u)du, ∀x ∈ B(x0, r),(1.1)
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where ρ(x) = ‖x− x0‖ and L is a positive integrable function in the interval (0, r).
By Banach’s theorem, when r0 ≤ r, for all x ∈ B(x0, r0), f ′(x)−1 exists and∥∥f ′(x)−1f ′(x0)

∥∥ ≤ 1

1−
∫ ρ(x)

0

L(u)du

,(1.2)

where r0 satisfies ∫ r0

0

L(u)du = 1.(1.3)

Theorem 1.1. Suppose that r ≥ r0 and b =
∫ r0

0
L(u)udu. Then under the hypoth-

esis of condition (1.1), we have

B(f(x0), b/‖f ′(x0)−1‖) ⊂ f(B(x0, r0)),(1.4)

and in the open ball on the left, f−1
x0

exists and is differentiable. Moreover, the
radius of the ball is the best possible.

Lemma 1.2. Let

h(t) = β − t +
∫ t

0

L(u)(t− u)du, 0 ≤ t ≤ R,(1.5)

where R satisfies

1
R

∫ R

0

L(u)(R− u)du = 1.(1.6)

Then when 0 < β < b, h is decreasing monotonically in [0, r0], while it is increasing
monotonically in [r0, R] and

h(β) > 0, h(r0) = β − b < 0, h(R) = β > 0.

Moreover, h has a unique zero in each interval, denoted by r1 and r2. They satisfy

β < r1 <
r0

b
β < r0 < r2 < R.(1.7)

Proof. It is obvious by the sign of h′(t) = −1 +
∫ t

0
L(u)du that h(t) is piecewise

monotone. By the positivity of L, we see that ϕ(t) := 1
t

∫ t

0 L(u)(t−u)du is increasing
monotonically with respect to t. In fact, for 0 < t1 < t2,

ϕ(t2)− ϕ(t1) =
∫ t2

t1

L(u)du−
(

1
t2

∫ t2

t1

+
(

1
t2
− 1

t1

)∫ t1

0

)
L(u)udu

≥
∫ t2

t1

L(u)du−
∫ t2

t1

L(u)du−
(

1
t2
− 1

t1

)∫ t1

0

L(u)udu

=
(

1
t1
− 1

t2

)∫ t1

0

L(u)udu > 0.

Thus we have

β < r1 = h(r1) + r1 = β + ϕ(r1)r1 < β + ϕ(r0)r1

= β +
1
r0

∫ r0

0

L(u)(r0 − u)du · r1 = β + r1 − b

r0
r1.
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By this lemma, Theorem 1.1 implies a more precise proposition, as follows. For
this purpose, we assume the inequality (1.1) can be extended to the boundary, i.e.

∥∥f ′(x0)−1f ′(x)− I
∥∥ ≤ ∫ ρ(x)

0

L(u)du, ∀x ∈ B(x0, r).(1.1′)

Proposition 1.3. Suppose that r ≥ r1 and 0 < β < b =
∫ r0

0 L(u)udu, where r1 is
determined by Lemma 1.2 . Then, under the hypothesis of the condition (1.1′),

B(f(x0), β/‖f ′(x0)−1‖) ⊂ f(B(x0, r1)),(1.8)

and in the closed ball on the left, f−1
x0

exists, is differentiable, and its derivative
(f−1

x0
)′(y) = f ′(x)−1 at y = f(x) satisfies (1.2). Moreover, as a closed ball of the

image, the radius r1 is as small as possible.

Proof. Arbitrarily choosing

y ∈ B(f(x0), β/‖f ′(x0)−1‖),(1.9)

we consider two sequences {xn} ⊂ X and {tn} ⊂ R, respectively given by

xn+1 = xn − f ′(x0)−1(f(xn)− y), n = 0, 1, · · · ,(1.10)

and

tn+1 = tn + h(tn), t0 = 0, n = 0, 1, · · · .(1.11)

First, by the fact that h(t) + t increases monotonically with respect to t and
t0 = 0 < t1 = β < r1, we inductively find that {tn} increases monotonically and is
less than r1. Thus {tn} converges to r1.

Then, by induction, for all n we will prove that

‖xn+1 − xn‖ ≤ tn+1 − tn.(1.12)

By (1.9) and (1.7),

‖x1 − x0‖ ≤ ‖f ′(x0)−1‖ · ‖f(x0)− y‖ ≤ β = t1 − t0.

This means (1.12) is true for n = 0. Suppose that (1.12) is valid until some n− 1.
For 0 ≤ τ ≤ 1, let

xn−1+τ = xn−1 + τ(xn − xn−1),

tn−1+τ = tn−1 + τ(tn − tn−1).
(1.13)

We have

‖xn−1+τ − x0‖ ≤ ‖x1 − x0‖+ · · ·+ ‖xn−1 − xn−2‖+ τ‖xn − xn−1‖
≤ (t1 − t0) + · · ·+ (tn−1 − tn−2) + τ(tn − tn−1)
= tn−1+τ < r1 ≤ r.

Thus, by virtue of the equality

xn+1 − xn = −f ′(x0)−1(f(xn)− f(xn−1)− f ′(x0)(xn − xn−1))

= −
∫ 1

0

(
f ′(x0)−1f ′(xn−1+τ )− I

)
(xn − xn−1)dτ

License or copyright restrictions may apply to redistribution; see https://www.ams.org/journal-terms-of-use



172 WANG XINGHUA

and (1.1), we obtain

‖xn+1 − xn‖ ≤
∫ 1

0

∥∥f ′(x0)−1f ′(xn−1+τ )− I
∥∥ ‖xn − xn−1‖dτ

≤
∫ 1

0

∫ ρ(xn−1+τ)

0

L(u)du‖xn − xn−1‖dτ

≤
∫ 1

0

∫ tn−1+τ

0

L(u)du(tn − tn−1)dτ

=
∫ tn

0

L(u)(tn − u)du−
∫ tn−1

0

L(u)(tn−1 − u)du

= tn+1 − tn.

This indicates that (1.12) is valid for all n.
The inequality (1.12) above shows that the sequence {xn} is self-convergent and

so is convergent. Taking the limit on both sides in (1.10), we see that x = lim xn

satisfies

f(x) = y.(1.14)

Also, since ‖xn − x0‖ ≤ r1, we have

x = f−1
x0

(y) ∈ B(x0, r1).(1.15)

For this reason we have to prove x satifying (1.14) is unique in the closed ball.
This will be given togather with the proof of the next proposition. Finally, the
differentiablity of the inverse function follows by (1.2).

Remark. Except for the differentiablity of the inverse function, the proposition is
also true for β = b.

Besides Proposition 1.3, we have the following proprosition, which is called the
branch separation theorem

Proposition 1.4. Suppose that r1 ≤ r < r2 and 0 < β < b, where r1, r2 and b are
determined by Lemma 1.2 and Theorem 1.1. Then, under the condition (1.1′),

B(f(x0), β/‖f ′(x0)−1‖)
⋂

f(B(x0, r) \ B(x0, r1)) = ∅.(1.16)

Proof. Arbitrarily choose

y ∈ B(f(x0), β/‖f ′(x0)−1‖), x′0 ∈ B(x0, r).(1.17)

Let

x′n+1 = x′n − f ′(x0)−1(f(x′n)− y), n = 0, 1, · · · ,(1.18)

t′n+1 = t′n + h(t′n), t′0 = ‖x′0 − x0‖, n = 0, 1, · · · .(1.19)

Since

x′n+1 − xn+1 = −
∫ 1

0

(
f ′(x0)−1f ′(xn + τ(x′n − xn))− I

)
(x′n − xn)dτ,

(1.20)

we can prove that

‖x′n − xn‖ ≤ t′n − tn, n = 0, 1, · · · .(1.21)

Hence, {x′n} is also convergent to x = limxn. Therefore, there is only one x ∈
B(x0, r1) in the open ball B(x0, r) that satisfies (1.14).
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Remark. The proof of Propositions 1.3 and 1.4 may be viewed as the proof of the
existence and uniqueness theorems about the solution of the equation f(x) = y,
and the premise (1.9) and (1.17) can be replaced by

‖f ′(x0)−1(f(x0)− y)‖ ≤ β.(1.22)

Hence, setting y = 0 and β = ‖f ′(x0)−1f(x0)‖, we have

Theorem 1.5. Let β = ‖f ′(x0)−1f(x0)‖ ≤ b. Assume that r1 ≤ r < r2 if β < b,
or r = r1 if β = b, where r1, r2 and b are determined by Lemma 1.2 and Theorem
1.1. Then, under the conditions (1.1′), the equation (0.2) has a unique solution

x∗ ∈ B(x0 − f ′(x0)−1f(x0), r1 − β) ⊂ B(x0, r1)(1.23)

in the closed ball B(x0, r).

2. Further discussion of Lipschitz conditions

In the ball B(x0, r), the Lipschitz condition with the constant L is

‖f(x)− f(x′)‖ ≤ L‖x− x′‖,(2.1)

where x, x′ ∈ B(x0, r). If (2.1) is only true for all x ∈ B(x0, r) and x′ = x0, then
it is called the center Lipschitz condition in [1]; if (2.1) is valid for all x′ ∈ B(x0, r)
and for all x = x0 + τ(x′ − x0) (0 ≤ τ ≤ 1), then it is called the radius Lipschitz
condition. Now, if (2.1) is valid for all x ∈ B(x0, r) and for all x′ ∈ B(x, r − ρ(x)),
then we call it the center Lipschitz condition in the inscribed sphere. For a constant
or positive integrable function L, among all Lipschitz conditions with the constant
L or the average of L, there is an implication relation � as follows:

Lipschitz condition in a ball
� the center Lipschitz condition in the inscribed sphere
� the radius Lipschitz condition
� the center Lipschitz condition.

Custom is the only reason why we give the names of different Lipschitz conditions.
It is not necessary in essence; see Theorems 6.3 and 6.4 in [1]. Sometimes, however,
we have to pay attention to such accustomed thinking because it determines the
development of the literature.

3. Convergence of Newton’s method

Suppose that f has a continuous derivative in the closed ball B(x0, r), f ′(x0)−1

exists and f ′(x0)−1f ′ satisfies the center Lipschitz condition in the inscribed sphere
with the average of L,∥∥f ′(x0)−1(f ′(x) − f ′(x′))

∥∥ ≤ ∫ ρ(xx′)

ρ(x)

L(u)du,

∀x ∈ B(x0, r), ∀x′ ∈ ρmB(x, r − ρ(x)),

(3.1)

where ρ(x) = ||x − x0||, ρ(xx′) = ρ(x) + ‖x′ − x‖ ≤ r, and L is a positive nonde-
creasing function in [0, r]. Under this hypothesis, the conditions (1.1) and (1.1′) are
of course satisfied, and thus Theorems 1.1 and 1.5, Propositions 1.3 and 1.4 hold.
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Theorem 3.1. Assume that β = ||f ′(x0)−1f(x0)|| ≤ b and r ≥ r1, where b and r1

are determined by Theorem 1.1 and Lemma 1.2. Then, under the condition (3.1),
Newton’s method (0.1) is defined for all n and converges to a solution x∗ of equation
(0.2),

x∗ ∈ B(x1, r1 − β) ⊂ B(x0, r1).(3.2)

Moreover, for all n ≥ n0 ≥ 0, the best possible error bounds

‖x∗ − xn‖ ≤ (r1 − tn)
(‖x∗ − xn0‖

r1 − tn0

)2n−n0

(3.3)

and

2‖xn+1 − xn‖
1 +

√
1 + 4

r1 − tn+1

(r1 − tn)2
(tn+1 − tn)

≤ ‖x∗ − xn‖ ≤ (r1 − tn)
(‖xn0+1 − xn0‖

tn0+1 − tn0

)2n−n0

(3.4)

are valid with

tn+1 = tn − h(tn)
h′(tn)

, t0 = 0, n = 0, 1, · · · .(3.5)

In order to prove Theorem 3.1, we need

Proposition 3.2. Under the assumptions of Theorem 3.1, for any natural number
n ≥ 1, we have

||xn − xn−1|| ≤ tn − tn−1,(3.6)

||f ′(x0)−1f(xn)|| ≤ h(tn)
( ||xn − xn−1||

tn − tn−1

)2

,(3.7)

||f ′(x0)−1f(xn)||
||f ′(x0)−1f(xn−1)|| ≤

h(tn)
h(tn−1)

· ||xn − xn−1||
tn − tn−1

,(3.8)

and

||xn+1 − xn|| ≤ (tn+1 − tn)
( ||xn − xn−1||

tn − tn−1

)2

.(3.9)

Proof. By the hypotheses, (3.6) is true for n = 1. Now assume that it holds for
some n ≥ 1. Then

xn ∈ B(x∗, tn) ⊂ B(x∗, r1).(3.10)

Since
f(xn) = f(xn)− f(xn−1)− f ′(xn−1)(xn − xn−1)

=
∫ 1

0

(f ′(xn−1+τ )− f ′(xn−1))(xn − xn−1)dτ,

where
xn−1+τ = xn−1 + τ(xn − xn−1), 0 ≤ τ ≤ 1,

we obtain

||f ′(x0)−1f(xn)|| ≤
∫ 1

0

||f ′(x0)−1(f ′(xn−1+τ )− f ′(xn−1))|| · ||(xn − xn−1)||dτ.
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By the hypothesis (3.1), we have

||f ′(x0)−1f(xn)|| ≤
∫ 1

0

∫ ρ(xn−1xn−1+τ )

ρ(xn−1)

L(u)du||xn − xn−1||dτ

=
∫ ||xn−xn−1||

0

L(||xn−1 − x0||+ u)(||xn − xn−1|| − u)du.

Since L is a nondecreasing function, ϕ(t) := 1
t2

∫ t

0
L(ρ+u)(t−u)du is nondecreasing

with respect to t in [0, r − ρ]. In fact, when 0 < t1 < t2 ≤ r − ρ, we have

ϕ(t2)− ϕ(t1) =
(

1
t21
− 1

t22

)∫ t1
2

0

(
L

(
ρ +

t1
2

+ u

)
− L

(
ρ +

t1
2
− u

))
udu

+
(t2 − t1)2

2t22t1

∫ t1

0

(L(ρ + t1)− L(ρ + u))du

+
1
t22

∫ t2

t1

(L(ρ + u)− L(ρ + t1))(t2 − u)du ≥ 0.

Hence

||f ′(x0)−1f(xn)||

≤ 1
‖xn − xn−1‖2

∫ ‖xn−xn−1‖

0

L(‖xn−1 − x0‖+ u)(‖xn − xn−1‖ − u)du

· ‖xn − xn−1‖2

≤ 1
(tn − tn−1)2

∫ tn−tn−1

0

L(tn−1 + u)(tn − tn−1 − u)du‖xn − xn−1‖2

= h(tn)
(‖xn − xn−1‖

tn − tn−1

)2

,

where we have used the inductive hypothesis (3.6). Therefore, (3.7) holds for all n,
which makes (3.6) hold.

Since

||xn − xn−1|| ≤ ||f ′(xn−1)−1f ′(x0)|| · ||f ′(x0)−1f(xn−1)||,(3.11)

we obtain

||f ′(x0)−1f(xn)||
||f ′(x0)−1f(xn−1)|| ≤ h(tn)

||xn − xn−1||
(tn − tn−1)2

||f ′(xn−1)−1f ′(x0)||.
(3.12)

By (1.2) and (1.5) we have

||f ′(xn−1)−1f ′(x0)|| ≤ 1

1−
∫ ||xn−1−x0||

0

L(u)du

≤ − 1
h′(tn−1)

.

(3.13)

Combining (3.12) and (3.13) and using (3.5), we get that (3.8) is also true if (3.6)
is true for some n.

Increasing n to n+1 in (3.11) and (3.13) and applying (3.7) and (3.13) to (3.11),
we get (3.9).

So (3.6) can be continued, and (3.6)-(3.9) hold for all n ≥ 1.
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Proof of Theorem 3.1. Obviously, {tn} is convergent to r1 monotonically. There-
fore, the sequence {xn} ⊂ B(x0, r1) converges. Also by (1.1), ‖f ′(xn)‖ is bounded
uniformly. So from

f(xn) + f ′(xn)(xn+1 − xn) = 0(3.14)

we get limxn = x∗.
Finally, by (3.1) and

en := f ′(x0)−1(f(x∗)− f(xn)− f ′(xn)(x∗ − xn))

=
∫ 1

0

f ′(x0)−1(f ′(zτ )− f ′(xn))(x∗ − xn)dτ,

zτ := xn + τ(x∗ − xn)

we obtain

‖en‖ ≤
∫ 1

0

∫ ρ(xnzτ )

ρ(xn)

L(u)du‖x∗ − xn‖dτ

=
∫ ‖x∗−xn‖

0

L(‖xn − x0‖+ u)(‖x∗ − xn‖ − u)du.

Since 1
t2

∫ t

0
L(ρ + u)(t− u)du is nondecreasing with respect to t, we have

‖en‖ ≤ 1
‖x∗ − xn‖2

∫ ‖x∗−xn‖

0

L(‖xn − x0‖+ u)(‖x∗ − xn‖ − u)du

· ‖x∗ − xn‖2

≤ 1
(r1 − tn)2

∫ r1−tn

0

L(tn + u)(r1 − tn − u)du‖x∗ − xn‖2

=
∫ r1

tn

L(u)(r1 − u)du

(‖x∗ − xn‖
r1 − tn

)2

.

Therefore,

‖x∗ − xn+1‖ ≤ ‖f ′(xn)−1f ′(x0)‖ · ‖en‖

≤

∫ r1

tn

L(u)(r1 − u)du

1−
∫ tn

0

L(u)du

(‖x∗ − xn‖
r1 − tn

)2

.

By the induction method, (3.3) follows.
By (3.9), for all i ≥ 0 and n ≥ n0 ≥ 0, we have

‖xn+i+1 − xn+i‖ ≤ (tn+i+1 − tn+i)
(‖xn0+1 − xn0‖

tn0+1 − tn0

)2n−n0

.

Summing for all i ≥ 0 results in the upper bound (3.4). It follows from (3.3) that

‖xn+1 − xn‖ ≤ ‖x∗ − xn‖+ ‖x∗ − xn+1‖ ≤ ‖x∗ − xn‖+
r1 − tn+1

(r1 − tn)2
‖x∗ − xn‖2.

Then, using Gragg and Tapia [3], we obtain the proof of the lower bound (3.4).
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4. Under the premise of a Kantorovich type

About the convergence of Newton’s method, the main point of Kantorovich [2]
type premise is to make

h(t) = β − t +
1
2
Lt2, 0 ≤ t ≤ R,(4.1)

become a majorizing function. For this reason, as ||x − x0|| + ||x′ − x|| ≤ r, it is
sufficient to assume that

‖f ′(x0)−1(f ′(x)− f ′(x′))‖ ≤ L‖x− x′‖,(4.2)

for a positive constant L. As

λ = Lβ ≤ 1
2
,(4.3)

corresponding to (1.7), the zeros of h

r1

r2

}
=

1∓√
1− 2λ

L
(4.4)

satisfy

β ≤ r1 ≤ 2β ≤ 1
L
≤ r2 ≤ 2

L
,(4.5)

because r0 = 1/L, R = 2/L, b = 1/(2L) in this case. So Theorems 1.1 and 1.5,
Propositions 1.3 and 1.4 all have concrete forms. The concretization of Theorem
3.1 requires that the solution of the sequence (3.4) has a closed form

tn =
1− q2n−1

1− q2n r1, n = 0, 1, · · · ,(4.6)

where

q =
1−√

1− 2λ

1 +
√

1− 2λ
.(4.7)

(4.6) is independently given by [3]–[5].
For instance, the concrete forms of Theorems 1.1, 1.5 and 3.1 are, respectively,

Theorem 4.1. Let L be a positive constant. Assume that f satisfies the condition

||f ′(x0)−1f ′(x) − I|| ≤ L||x− x0||, ∀x ∈ B(x0, 1/L).(4.8)

Then f−1
x0

exists and is differentiable in the open ball

B(f(x0), 1/(2L||f ′(x0)−1||)) ⊂ f(B(x0, 1/L)).(4.9)

Moreover, the radius of this ball (the left in (4.9)) is the best possible.

Theorem 4.2. Let L be a positive constant, β = ||f ′(x0)−1f(x0)|| and λ = Lβ ≤
1
2 . Assume that f satisfies the condition

||f ′(x0)−1f ′(x) − I || ≤ L||x− x0||, ∀x ∈ B(x0, r),(4.10)

where r1 ≤ r < r2 if λ < 1
2 , or r = r1 if λ = 1

2 , while r1 and r2 are determined
by (4.4). Then the equation (0.2) has a unique solution x∗ satisfying (1.23) in the
closed ball B(x0, r).
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Theorem 4.3. Let L be a positive constant, β = ||f ′(x0)−1f(x0)|| and λ = Lβ ≤
1
2 . Assume that f satisfies the condition (4.2). Then Newton’s method (0.1) is well
defined for all n and converges to the solution x∗ satisfying (3.2) of the equation
(0.2). Moreover, for all n ≥ 0, the best possible error bounds

‖x∗ − xn‖ ≤ q2n−1∑2n−1
i=0 qi

‖x∗ − x0‖ ≤ q2n−1∑2n−1−1
i=0 q2i

‖x1 − x0‖(4.11)

and

2‖xn+1 − xn‖
1 +

√
1 + 4q2n/(1 + q2n)2

≤ ‖x∗ − xn‖ ≤ q

β

2n−1−1∑
i=0

q2i‖xn − xn−1‖2

≤ q2n−1‖xn − xn−1‖

(4.12)

are valid with (4.7).

Remark. It is a posterior estimation to use ||xn − xn−1|| to estimate ||x∗ − xn||.
The posterior estimation in (4.12) can be obtained by setting n0 = n− 1 in (3.4).
In the hypothesis of Kantorovich’s type, more precise posterior estimations were
studied by Potra [6] and Potra & Ptak [7].

5. Under a premise of Smale type

Under the hypotheses that f is analytic and satisfies∥∥∥f ′(x0)−1f (n)(x0)
∥∥∥ ≤ n!γn−1, n ≥ 2,(5.1)

Smale [8] studied the convergence and error estimation of Newton’s iteration. Wang
and Han [9] (also see [10], [11]) completely improved Smale’s results by introducing
a majorizing function

h(t) = β − t +
γt2

1− γt
, 0 ≤ t ≤ R.(5.2)

When γ‖x− x0‖ < 1, it is easy to derive from (5.1) that∥∥∥f ′(x0)−1f
′′
(x)
∥∥∥ ≤ h′′(||x− x0||) =

2γ

(1− γ||x− x0||)3
(see Lemma 3 in [12] or Lemma 3.5 in [13]). Hence, conditions (1.1) and (3.1) are
satisfied for the function L defined by

L(u) =
2γ

(1− γu)3
.(5.3)

Furthermore, for this L, the function h given in (1.5) coincides with the one in
(5.2).

As α = γβ ≤ 3− 2
√

2, corresponding to (1.7), the zeros of h

r1

r2

}
=

1 + α∓√(1 + α)2 − 8α

4γ
(5.4)

satisfy

β ≤ r1 ≤ (1 +
1√
2
)β ≤ (1− 1√

2
)
1
γ
≤ r2 ≤ 1

2γ
,(5.5)
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because r0 = (1 − 1√
2
) 1

γ , R = 1
2γ , b = (3 − 2

√
2) 1

γ in this case. So Theorems 1.1
and 1.5, Propositions 1.3 and 1.4 all have concrete forms. The concretization of
Theorem 3.1 requires that the solution of the sequence (3.4) has a closed form

tn =
1− q2n−1

1− q2n−1η
r1, n = 0, 1, · · · ,(5.6)

where

q =
1− α−√(1 + α)2 − 8α

1− α +
√

(1 + α)2 − 8α
, η =

1 + α−√(1 + α)2 − 8α

1 + α +
√

(1 + α)2 − 8α
.(5.7)

For instance, the concrete forms of Theorems 1.1, 1.5 and 3.1 are, respectively,

Theorem 5.1. Let γ be a positive constant. Assume that f satisfies the condition

‖f ′(x0)−1f ′(x) − I‖ ≤ 1
(1− γ‖x− x0‖)2 − 1,

∀x ∈ B(x0, (1− 1√
2
)/γ).

(5.8)

Then f−1
x0

exists and is differentiable in the open ball

B(f(x0), (3− 2
√

2)/(γ||f ′(x0)−1||)) ⊂ f(B(x0, (1− 1√
2
)/γ)).(5.9)

Moreover, the radius of this ball (the left in (5.9)) is the best possible.

Theorem 5.2. Let γ be a positive constant, β = ||f ′(x0)−1f(x0)|| and α = βγ ≤
3− 2

√
2. Assume that f satisfies the condition

‖f ′(x0)−1f ′(x) − I‖ ≤ 1
(1− γ‖x− x0‖)2 − 1, ∀x ∈ B(x0, r),

(5.10)

where r1 ≤ r < r2 if α < 3 − 2
√

2, or r = r1 if α = 3 − 2
√

2, while r1 and r2 are
determined by (5.4). Then the equation (0.2) has a unique solution x∗ satisfying
(1.23) in the closed ball B(x0, r).

Theorem 5.3. Let γ be a positive constant, β = ||f ′(x0)−1f(x0)|| and α = βγ ≤
3− 2

√
2. Assume that f satisfies the condition

‖f ′(x0)−1(f ′(x)− f ′(x′))‖ ≤ 1
(1− γ‖x− x0‖ − γ‖x′ − x‖)2 −

1
(1− γ‖x− x0‖)2 ,

‖x− x0‖+ ‖x′ − x‖ ≤ r.

(5.11)

Then Newton’s method (0.1) is well defined for all n and converges to the solution
x∗ satisfying (3.2) of the equation (0.2). Moreover, for all n ≥ 0, the best possible
error bounds

‖x∗ − xn‖ ≤ 1− η

1− q2n−1η
q2n−1‖x∗ − x0‖

≤ 1− η2

(1 + α)(1 − q2n−1η)
q2n−1‖x1 − x0‖

(5.12)
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and

2‖xn+1 − xn‖

1 +

√
1 + 4q2n (1 − q2n

)(1− q2n−1η)
(1− q2n+1−1η)2

≤ ‖x∗ − xn‖ ≤ q(1− q2n−1η)
r1(1− η)

(
1− q2n−1−1η

1− q2n−1

)2

‖xn − xn−1‖2

≤ q2n−1 1− q2n−1−1η

1− q2n−1 ‖xn − xn−1‖

(5.13)

are valid with (5.7).

The results above can be made more general by replacing (5.3). Now we take

L(u) =
2cγ

(1− γu)3
,(5.3′)

where c is a positive number. In this case the majorizing function is

h(t) = β − t +
cγt2

1− γt
,(5.2′)

and its zeros are

r1

r2

}
=

1 + α∓√(1 + α)2 − 4(1 + c)α
2(1 + c)γ

.(5.4′)

They satisfy

β ≤ r1 ≤ (1 +
√

c

c + 1
)β ≤ (1−

√
c

c + 1
)
1
γ
≤ r2 ≤ 1

(c + 1)γ
,(5.5′)

because r0 = (1−
√

c
c+1 ) 1

γ , R = 1
(c+1)γ , b = (1+2c−2

√
c(c + 1)) 1

γ . Hence, we have

Theorem 5.3′. Let γ and c be positive constants, β = ||f ′(x0)−1f(x0)|| and α =
βγ ≤ 1 + 2c− 2

√
c(c + 1). Assume that f satisfies the condition

‖f ′(x0)−1(f ′(x)− f ′(x′))‖ ≤ c

(1− γ‖x− x0‖ − γ‖x′ − x‖)2 −
c

(1− γ‖x− x0‖)2 ,

||x− x0||+ ||x′ − x|| ≤ r.

(5.11′)

Then Newton’s method (0.1) is well defined for all n and converges to the solution
x∗ satisfying (3.2) of the equation (0.2). Moreover, for all n ≥ 0, the best possible
error bounds (5.12) and (5.13) are valid with

q =
1− α−√(1 + α)2 − 4(1 + c)α
1− α +

√
(1 + α)2 − 4(1 + c)α

, η =
1 + α−√(1 + α)2 − 4(1 + c)α
1 + α +

√
(1 + α)2 − 4(1 + c)α

.

(5.7′)
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6. Under the premise of analyticity

We come back to the analytic premise about f , to see what stronger conclusion
can be obtained. When f is assumed to be analytic in the ball B(x0, r), f can be
expanded to a convergent power series

f(x) =
∞∑

n=0

1
n!

f (n)(x0)(x − x0)n.(6.1)

If we suppose ∥∥∥f ′(x0)−1f (n)(x0)
∥∥∥ ≤ γn, n ≥ 2,(6.2)

and write

g(t) =
∞∑

n=2

γn

n!
tn,(6.3)

where the sequence γn satisfies

lim sup n

√
γn

n!
≤ 1

r
,(6.4)

then f ′(x0)−1f ′ satisfies the Lipschitz condition about g′′ in B(x0, r). Thus, The-
orem 1.1 asserts that f−1

x0
exists in B(f(x0), b/‖f ′(x0)−1‖) and is analytic, where

b =
∫ r0

0

g′′(u)udu = r0 − g(r0),(6.5)

and r0 satisfies ∫ r0

0

g′′(u)du = g′(r0) = 1.(6.6)

So, we have

Theorem 6.1. Assume that f is analytic in the ball B(x0, r) and r ≥ r0. If

‖y − f(x0)‖ <
b

‖f ′(x0)−1‖ ,(6.7)

then the Euler series

x = x0 +
∞∑

n=1

1
n!

(
d

dy

)n

f−1
x0

(y)y=f(x0)(y − f(x0))n(6.8)

converges, and the constant b in the right of (6.7), which is determined by (6.5), is
the best possible.

When X = Y = C, we have

Theorem 6.2. Assume that f and F are analytic in the open ball B(x0, r) ⊂ C
and r ≥ r0. Then the convergence radius, R(F ◦ f−1

x0
), of the Lagrange series

F (f−1
x0

(y))

= F (x0) +
∞∑

n=1

1
n!

(
d

dx

)n−1(
F ′(x)

(
x− x0

f(x)− f(x0)

)n)
x=x0

(y − f(x0))n

(6.9)
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has an exact lower bound

R(F ◦ f−1
x0

) ≥ b|f ′(x0)|.(6.10)

It is a very technical thing to choose the sequence {γn} or the function g such
that it can give a bound of the different Taylor coefficients of f and be convenient to
give the values of the parameters b and r0 in Theorems 6.1 and 6.2. In this paper we
propose to choose a different generating function G of the unit sequence {1, 1, · · · }
with the positive constants γ and c, and then the function g can be obtained by

g(t) =
c

G′(0)γ
{G(γt)−G′(0)γt−G(0)} .

Example 1 (Exponential type). Taking G(t) = et as the exponential generating
function of the unit sequence, we have

g(t) =
c

γ
(eγt − γt− 1).

Under the condition

||f ′(x0)−1f (n)(x0)|| ≤ cγn−1, n ≥ 2,

we obtain that

γr0 = ln
c + 1

c
,

γb = (c + 1) ln
c + 1

c
− 1.

Especially, as c = 1, we have

γr0 = ln 2 = 0.69314 · · · ,
γb = ln 4− 1 = 0.38629 · · · .

Theorem 6.1 with the values above has been obtained in [14] by the method of
taking the exponential generating function of the number of Schröder system as
the majorizing sequence.

Example 2 (Binomial type). Taking G(t) = 1 + sign(m){(1 − t)−m − 1} as the
binomial generating function of the unit sequence, where m > −1 and m 6= 0 is a
real number, we have

g(t) =
c

mγ

{
(1− γt)−m −mγt− 1

}
.

Under the condition

||f ′(x0)−1f (n)(x0)|| ≤ c(m + 1)(m + 2) · · · (m + n− 1)γn−1, n ≥ 2,

we obtain that

γr0 = 1−
(

c

c + 1

) 1
m+1

,

γb = 1 + c
m + 1

m

(
1−

(
c + 1

c

) m
m+1

)
.

Especially, as m = 1 and c = 1, we have

γr0 = 1− 1√
2

= 0.29289 · · · ,
γb = 3− 2

√
2 = 0.17157 · · · .
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Theorem 6.1 with the values above has been obtained in [13] by the method of
taking the normal generating function of the number of blankets added to n letters
as the majorizing sequence.

Also, as m = 1
2 , c = 1, we have

γr0 = 1− 3

√
1
4

= 0.37003 · · · ,

γb = 4− 3 3
√

2 = 0.22023 · · · .

As m = − 1
2 , c = 1, we have

γr0 =
3
4
,

γb = 1
2 .

The required condition of these simple numbers is not complicated, i.e.

||f ′(x0)−1f (n)(x0)|| ≤ (2n− 3)!!
2n−1

γn−1, n ≥ 2,

Example 3 (The first logarithmic type). Taking G(t) = 1 − ln (1− t) as the first
logarithmic generating function of the unit sequence, we have

g(t) =
c

γ
ln

1
1− γt

− ct.

Under the condition

||f ′(x0)−1f (n)(x0)|| ≤ c(n− 1)!γn−1, n ≥ 2,

we obtain that

γr0 =
1

c + 1
,

γb = 1− c ln
c + 1

c
.

Especially, as c = 1, we have

γr0 =
1
2
,

γb = 1− ln 2 = 0.30685 · · · .

Example 4 (The second logarithmic type). Taking G(t) = 1+2t+(1−t) ln(1− t)
as the second logarithmic generating function of the unit sequence, we have

g(t) =
c

γ
(1 − γt) ln (1 − γt) + c t.

Under the condition

||f ′(x0)−1f (n)(x0)|| ≤ c(n− 2)!γn−1, n ≥ 2,

we obtain that
γr0 = 1− e−

1
c ,

γb = 1− c + ce−
1
c .

Especially, as c = 1, we have

γr0 = 1− 1
e

= 0.63212 · · · ,

γb =
1
e

= 0.36787 · · · .

License or copyright restrictions may apply to redistribution; see https://www.ams.org/journal-terms-of-use



184 WANG XINGHUA

7. Applications to Smale’s α-theory

We continue the discussion of Chapter 7 in [1]. It is well known that Smale [8]
first used the criterion

α(f, x0) = γ||f ′(x0)−1f(x0)||(7.1)

to judge x0 is an approximate zero of Newton’s iteration of f , where

γ = sup
n≥2

∥∥∥∥ 1
n!

f ′(x0)−1f (n)(x0)
∥∥∥∥ 1

n−1

.(7.2)

Definition 7.1. Suppose x0 ∈ D is such that Newton’s iteration (0.1) is well
defined for f : D ⊂ X → Y and satisfies

e(xn) ≤
(

1
2

)2n−1

e(xn−1),

for all positive integers n, where e(xn) denotes some measurement of the approxi-
mation degree between xn and x∗. Then x0 is said to be an approximate zero of f
in the sense of e(xn).

The approximate zero defined in [8] was introduced in the sense of ||xn+1−xn||,
while the second kind of approximate zero is defined in the sense of ||x∗−xn||. Now
a more reasonable definition for the second kind was introduced in [15]. We find
that it is not necessary to introduce the definition of an approximate zero in the
sense of ||f ′(x0)−1f(xn)||.

In fact, similarly to Theorem 7.2 in [1], by Theorem 5.3′ we have

Theorem 7.2. Let γ, c and q be positive numbers, 0 < q < 1. Assume that f
satisfies the condition

||f ′(x0)−1(f ′(x) − f ′(x′))||
≤ c

(1 − γ||x− x0|| − γ||x′ − x||)2 −
c

(1− γ||x− x0||)2 ,

γ||x− x0||+ γ||x′ − x|| ≤ 1−
√

c

c + 1
.

(7.3)

Then, as

α ≤ 2q + c(1 + q)2 − (1 + q)
√

c2(1 + q)2 + 4cq

2q
(7.4)

for all natural numbers n ≥ 1, it follows that

||xn − x∗|| ≤ q2n−1 ||xn−1 − x∗||,(7.5)

||xn+1 − xn|| ≤ q2n−1 ||xn − xn−1||,(7.6)

and

||f ′(x0)−1f(xn)|| ≤ q2n−1 ||f ′(x0)−1f(xn−1)||,(7.7)

where x∗ satisfies f(x∗) = 0.
Especially, as

α(f, x0) ≤ 4 + 9c− 3
√

c(9c + 8)
4

,(7.4a)
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x0 is an approximate zero of f in any sense of ‖x∗ − xn‖, ‖xn+1 − xn‖ or
‖f ′(x0)−1f(xn)‖.
Proof. The representation in the inequality (7.4) at the right side can be obtained
from (5.7′) by representing q by α. Hence, under the hyposethis of (7.4), by Theo-
rem 5.3′ and Proposition 3.2, we have

||xn − x∗|| ≤ r1 − tn
r1 − tn−1

||xn−1 − x∗||,

||xn+1 − xn|| ≤ tn+1 − tn
tn − tn−1

||xn − xn−1||
and

||f ′(x0)−1f(xn)|| ≤ h(tn)
h(tn−1)

||f ′(x0)−1f(xn−1)||.
Thus, Theorem 7.2 follows from the following lemma.

Lemma 7.3. For (5.2′), (5.4′) and (5.7′), if α = βγ ≤ 1 = 2c− 2
√

c(c + 1), then

r1 − tn
r1 − tn−1

=
1− q2n−1−1η

1− q2n−1η
q2n−1 ≤ q2n−1

,(7.8)

tn+1 − tn
tn − tn−1

=
1− q2n

1− q2n−1 ·
1− q2n−1−1η

1 − q2n+1−1η
q2n−1 ≤ q2n−1

(7.9)

and

h(tn)
h(tn−1)

=
1− c

(
1

(1−γtn)2 − 1
)

1− c
(

1
(1−γtn−1)2

− 1
) · tn+1 − tn

tn − tn−1
≤ q2n−1

.(7.10)

Proof. As (5.2) becomes (5.2′), the representation (5.6) about r1 − tn remains true
provided that r1 and r2, q and η are determined by (5.4′) and (5.7′). Hence, (7.8)-
(7.10) follow immediately.

Finally, similarly to Colloray 7.3 in [1], we have

Corollary 7.4. Let γ be a posiitve number. Assume that f ′(x0)−1 exists, f is
analytic in B(x0, 1/γ), and for some q ∈ (0, 1)∥∥∥∥ 1

n!
f ′(x0)−1f (n)(x0)

∥∥∥∥ ≤ (1− q

1 + q

)2

γn−1, n ≥ 2.(7.11)

Then, as

α(f, x0) ≤ q,(7.12)

(7.5) holds.
Especially, as ∥∥∥∥ 1

n!
f ′(x0)−1f (n)(x0)

∥∥∥∥ ≤ γn−1

9
, n ≥ 2,(7.11a)

and

α(f, x0) ≤ 1
2

(7.12a)

x0 is an approximate zero of Newton’s iteration of f .
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