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Abstract

Recently, two-phase schemes for removing salt-and-pepper and random-valued impulse
noise are proposed in [6, 7]. The first phase uses decision-based median filters to locate
those pixels which are likely to be corrupted by noise (noise candidates). In the second
phase, these noise candidates are restored using a detail-preserving regularization method
which allows edges and noise-free pixels to be preserved. As shown in [18], this phase
is equivalent to solving a one-dimensional nonlinear equation for each noise candidate.
One can solve these equations by using Newton’s method. However, because of the edge-
preserving term, the domain of convergence of Newton’s method will be very narrow. In
this paper, we determine the initial guesses for these equations such that Newton’s method
will always converge.

Mathematics subject classification: 68U10, 65K10, 65H10
Key words: Impulse noise denoising, Newton’s method, Variational method.

1. Introduction

Impulse noise is caused by malfunctioning pixels in camera sensors, faulty memory locations
in hardware, or transmission in a noisy channel. Some of the pixels in the images could be
corrupted by the impulse noise while the remaining pixels remain unchanged. There are two
types of impulse noise: fixed-valued noise and random-valued noise. For images corrupted by
fixed-valued noise, the noisy pixels can take only some of the values in the dynamic range,
e.g. the maximum and the minimum values in the so-called salt-and-pepper noise model. In
contrast, the noisy pixels in images corrupted by random-valued noise can take any random
values in the dynamic range.

There are many works proposed to clean the noise, see for instance the schemes proposed
in [2, 17, 1, 12, 13, 19, 18, 6, 7]. In particular, decision-based median filters are popular in
removing impulse noise because of their good denoising power and computational efficiency,
see [16, 15, 22, 9, 20, 14]. However, the blurring of details and edges are clearly visible when
the noise level is high. In comparison, the detail-preserving variational method proposed in
[18] used non-smooth data-fitting term along with edge-preserving regularization to restore the
images. The variational method can keep the edges. But when removing noise patches—several
noise pixels connecting each other, the distortion of some uncorrupted image pixels at the edges
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cannot be avoided. To overcome the drawbacks, the two-phase schemes recently proposed in
[6, 7] combine decision-based median filters and the detail-preserving variational method to
clean the noise.

The first phase in the methods proposed in [6, 7] is based on the adaptive median filter [15]
or the adaptive center-weighted median filter [9] to first locate those pixels which are likely to be
corrupted by noise (noise candidates). Because of computational efficiency of median filters, this
phase can be processed in a short time. The second phase is to restore those noise candidates
by variational method given in [18]. It is to minimize the objective functional consisting of
a data-fitting term and an edge-preserving regularization term. It is equivalent to solving a
system of nonlinear equations for those noise candidates. As shown in [18], the root finding can
be done by relaxation, and it results in solving a one-dimensional nonlinear equation for each
noise candidate. The presence of the edge-preserving regularization term introduces difficulties
in solving the equations because the nonlinear functions can have very large derivatives in some
regions. In particular, the convergence domain can be very small if Newton’s method is used. In
this report, we give an algorithm to locate the initial guess such that Newton’s method always
converges.

The outline of this report is as follows. In §2, we review both two-phase denoising schemes
proposed in [6] and [7] for cleaning impulse noises. The initial guess of Newton’s method for
solving nonlinear equations is discussed in §3. Numerical results and conclusions are presented
in §4 and §5 respectively.

2. Review of 2-Phase Denoising Schemes

Let {xij}M,N
i,j=1 be the gray level of a true image x at pixel location (i, j), and [smin, smax] be

the dynamic range of x. Denote y the noisy image. The observed gray level at pixel location
(i, j) is given by

yij =

{
rij , with probability p,
xij , with probability 1 − p,

where p defines the noise level. In salt-and-pepper noise model, rij take either smin or smax,
i.e. rij ∈ {smin, smax}, see [15]. In random-valued noise model, rij ∈ [smin, smax] are random
numbers, see [9].

2.1. Cleaning Salt-and-pepper Noise
A two-phase scheme is proposed in [6] to remove salt-and-pepper noise. The first phase is

to use the adaptive median filter (AMF) [15] to identify the noise candidates. Then the second
phase is to restore those noise candidates by minimizing the objective functional proposed in
[18] which consists of an �1 data-fitting term and an edge-preserving regularization term. The
algorithm is as follows:

Algorithm I.

1. (Noise detection): Apply AMF to the noisy image y to get the noise candidate set N .

2. (Refinement): If the range of the noise is known, we can refine N to NT . For example,

NT = N ∩ {(i, j) : smin ≤ yij ≤ smin + T or smax − T ≤ yij ≤ smax},
where T ≥ 0 is a threshold. Or we can choose T such that

|N T |
M × N

≈ p.

In the case of salt-and-pepper noise we can take T close to zero.
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3. (Restoration): We restore all pixels in NT by minimizing the convex objective functional
Fy:

Fy(x) =
∑

(i,j)∈NT

∣∣xij − yij

∣∣ +
β

2

( ∑
(i,j)∈NT

∑
(m,n)∈Vij

ϕα(xij − xmn)

+
∑

(m,n)∈VNT

∑
(i,j)∈Vmn

⋂ NT

ϕα(ymn − xij)
)
, (1)

where ϕα is an edge-preserving potential function, β is a regularization parameter, Vij de-

notes the four closest neighbors of (i, j) not including (i, j), and VNT =
(⋃

(i,j)∈NT
Vij

)
\NT .

Also we let x̂ij = yij for (i, j) �∈ NT . The minimizer x̂ of (1), which is the restored image,
is found by Algorithm A which will be given later.

As mentioned in [18], in order for the minimization method in Step 3 above to be convergent,
the function ϕα should satisfy (i) ϕα ∈ C1, and (ii) ϕα is strongly convex on any bounded
intervals. Examples of edge-preserving functions ϕα that satisfy these requirements are:

ϕα(t) = |t|α, 1 < α ≤ 2, (2)

ϕα(t) = 1 +
|t|
α

− log
(
1 +

|t|
α

)
, α > 0, (3)

ϕα(t) = log
(

cosh
( t

α

))
, α > 0, (4)

ϕα(t) =
√

α + t2, α > 0, (5)

see [10, 4, 5, 3, 8].

2.2. Cleaning Random-valued Noise
To clean the random-valued noise, an iterative two-phase scheme is proposed in [7]. The first

phase is to use the adaptive center-weighted median filter (ACWMF) [9] to identify the noise
candidates. Then the second phase is to restore those noise candidates by the same variational
method proposed in [7]. These two phases are applied iteratively to the image. The basic idea
of the method is that at the early iterations, we increase the thresholds in ACWMF so that it
will only select pixels that are most likely to be noisy; and then they will be restored by the
variational method. In the later iterations, the thresholds are decreased to include more noise
candidates. The algorithm is as follows:
Algorithm II.

1. Set r = 0. Initialize y(r) to be the observed image y.

2. Apply ACWMF with the thresholds T
(r)
k to the image y(r) to get the noise candidate set

M(r).

3. Let N (r) =
⋃r

l=0 M(l).

4. We restore all pixels in N (r) by minimizing the same objective functional Fy in (1) over
N (r). The corresponding minimizer x̂ will be denoted by y(r+1). Again the minimizer
will be found by Algorithm A given below.

5. If r ≤ rmax, set r = r + 1 and go back to Step 2. Otherwise, output the restored image
x̂ = y(rmax+1).

In Step 2, the thresholds are of the form

T
(r)
k = s · MAD(r) + δk + 20(rmax − r),
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for 0 ≤ k ≤ 3, 0 ≤ r ≤ rmax, and 0 ≤ s ≤ 0.6. Here [δ0, δ1, δ2, δ3] = [40, 25, 10, 5], and the
robust estimate MAD denotes the “median of the absolute deviations from the median”, see
[11, 2], i.e.

MAD(r) = median
{∣∣y(r)

i−u,j−v − ỹ
(r)
ij

∣∣ : −h ≤ u, v ≤ h
}

and

ỹ
(r)
ij = median

{
y
(r)
i−u,j−v : −h ≤ u, v ≤ h

}
,

where (2h + 1) defines the window length. In practice, rmax = 3 is enough for satisfactory
results.

The minimization algorithm in Step 3 of Algorithm I and in Step 4 of Algorithm II is given
in [18]. It is a Jacobi-type relaxation algorithm and works on the residual z = x − y. For
convenience, let P be NT in Step 3 of Algorithm I or N (r) in Step 4 of Algorithm II. We restate
the minimization algorithm in [18] as follows.
Algorithm A. (Minimization Scheme)

1. Initialize z
(0)
ij = 0 for each (i, j) in the noise candidate set P .

2. At each iteration k, do the following for each (i, j) ∈ P :

(a) Calculate
ξ
(k)
ij = β

∑
(m,n)∈Vij

ϕ′
α(yij − zmn − ymn),

where zmn, for (m, n) ∈ Vij , are the latest updates and ϕ′
α is the derivative of ϕα.

(b) If
∣∣ξ(k)

ij

∣∣ ≤ 1, set z
(k)
ij = 0. Otherwise, find z

(k)
ij by solving the nonlinear equation

β
∑

(m,n)∈Vij

ϕ′
α(z(k)

ij + yij − zmn − ymn) = sgn(ξ(k)
ij ). (6)

3. Stop the iteration when

max
i,j

{|z(k+1)
ij − z

(k)
ij |} ≤ τA and

Fy(y + z(k)) − Fy(y + z(k+1))
Fy(y + z(k))

≤ τA,

where τA is some given tolerance.

It was shown in [18] that the solution z
(k)
ij of (6) satisfies

sgn(z(k)
ij ) = −sgn(ξ(k)

ij ), (7)

and that z(k) converges to ẑ = x̂ − y where x̂ is the minimizer for (1).

3. Algorithm for Solving (6)

It is well-known that the edges and details are preserved better if the potential function
ϕα(t) is close to |t|—the celebrated TV norm function developed in [21]. For ϕα in (2), this
means that α should be chosen close to 1. For ϕα in (3)–(5), we should choose α close to 0.
Notice that all ϕ′

α will have a steep increase near zero and that ϕ′′
α will have a large value at

zero—in fact it is infinite for ϕα in (2). The function (6) therefore will have very large slopes
in some regions which makes the minimization difficult. Although Newton’s minimization is
preferable to speed up the convergence, its use is delicate since the convergence domain can be
very narrow. In this section we discuss how to find the initial guess such that Newton’s method
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is guaranteed to converge. We will focus on how to solve (6) when ϕα(t) = |t|α with α > 1.
With some modifications, similar techniques can be applied to other edge-preserving ϕα too.

According to Step 2(b) of Algorithm A, we only need to solve (6) if |ξ(k)
ij | > 1. We first

consider the case where ξ
(k)
ij > 1. When solving (6), zmn+ymn−yij , for (m, n) ∈ Vij , are known

values. Let these values be denoted by dj , for 1 ≤ j ≤ 4, and be arranged in an increasing
order: dj ≤ dj+1. Then (6) can be rewritten as

H(z) ≡ −1 + αβ

4∑
j=1

sgn(z − dj)|z − dj |α−1 = 0. (8)

Since each term inside the summation sign above is a strictly increasing function on R, H(z) is
a strictly increasing function on R. Clearly H(d1) < 0 and limz→∞ H(z) = ∞. Hence (8) has
a unique solution z∗ > d1. By evaluating {H(dj)}4

j=2, we can check that if any one of the dj ,
2 ≤ j ≤ 4, is the root z∗. If not, then z∗ lies in one of the following intervals:

(d1, d2), (d2, d3), (d3, d4), or (d4,∞), (9)

We first consider the case where z∗ is in one of the finite intervals (dj , dj+1). For simplicity,
we give the details only for the case where z∗ ∈ (d2, d3). The other cases can be analyzed
similarly.

Let z∗ ∈ (d2, d3), i.e. H(d2) < 0 and H(d3) > 0. Then we compute H
(

d2+d3
2

)
. Without

loss of generality, let us assume that H
(

d2+d3
2

)
> 0. Our aim is to find an initial guess

z(0) ∈ [d2, (d2 + d3)/2) with H(z(0)) ≤ 0. Unfortunately, we cannot use d2 as the initial guess
as H ′(d2) is undefined. We will prove in Theorem 2 that Newton’s method with z(0) ≡ d2 + ε
can solve (8), where ε > 0 is given below.

Lemma 1. Let

ε ≡
[−H(d2)

4αβ

] 1
α−1

. (10)

Then H(d2 + ε) ≤ 0. As a result, z∗ ∈ [d2 + ε, (d2 + d3)/2).

Proof. First let ε̃ = min{(d3 − d2)/2, ε} > 0. By (8), we have

H(d2 + ε̃) = −1 + αβ
[
(d2 − d1 + ε̃)α−1 + ε̃α−1 − (d3 − d2 − ε̃)α−1 − (d4 − d2 − ε̃)α−1

]
.

For 1 < α ≤ 2, we can easily verify the inequalities:

(c + δ)α−1 ≤ cα−1 + δα−1, for all c, δ ≥ 0,

(c − δ)α−1 ≥ cα−1 − δα−1, for all c ≥ δ ≥ 0.

Since ε̃ ≤ (d3 − d2)/2 < (d3 − d2) ≤ (d4 − d2), we obtain

H(d2 + ε̃) ≤− 1 + αβ
{

(d2 − d1)α−1 + ε̃α−1 + ε̃α−1

− [(d3 − d2)α−1 − ε̃α−1] − [(d4 − d2)α−1 − ε̃α−1]
}

=H(d2) + 4αβε̃α−1.

By (10), we have

H(d2 + ε̃) ≤ H(d2) + 4αβε̃α−1 ≤ H(d2) + 4αβεα−1 = 0.

However, because H((d2+d3)/2) > 0 and H is strictly increasing, we must have ε̃ < (d3−d2)/2.
As a result, ε̃ = ε and H(d2 + ε) ≤ 0.
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Theorem 2. Let z(0) = d2 +ε be the initial guess where ε is defined in (10). Then the sequence
generated by Newton’s method, i.e.

z(n+1) = z(n) − H(z(n))
H ′(z(n))

, (11)

converges to the root z∗ of H(z).

Proof. Consider the Taylor expansion of H(z) at z = z∗. We have

H(z) = H(z∗) + (z − z∗)H ′(z̃) = (z − z∗)H ′(z̃),

where z̃ lies strictly between z and z∗. Hence by (11),

z∗ − z(n+1) =
(

1 − H ′(z̃(n))
H ′(z(n))

)
(z∗ − z(n)), (12)

where z̃(n) lies strictly between z(n) and z∗. We note that d2 < z(0) < z̃(0) < z∗ < (d2 + d3)/2.
We need the following facts to complete the proof:

F1. Clearly from the definition (8), H ′(z) = α(α−1)β
∑4

j=1 |z−dj|α−2 > 0 for all z ∈ (d2, d3).

F2. Since H ′′′(z) = α(α − 1)(α − 2)(α − 3)β
∑4

j=1 |z − dj |α−4 > 0 for all z ∈ (d2, d3), H ′′(z)
is strictly increasing in (d2, d3).

F3. Define W (z) ≡ α(α − 1)β
∑3

j=2 |z − dj |α−2. Clearly W (z) < H ′(z) for all z. Moreover,
W ′(z) < 0 for z ∈ (d2, (d2 + d3)/2). Hence W (z) is a strictly decreasing function in
(d2, (d2 + d3)/2).

We divide the convergence proof in two cases:

(i) H ′′(z∗) ≤ 0: F2 implies that H ′′(z) < 0 in (d2, z
∗). Hence H ′(z) is decreasing in (d2, z

∗).
Therefore, H ′(z̃) ≤ H ′(z) for d2 < z < z̃ < z∗. Together with F1, we have

0 ≤ 1 − H ′(z̃)
H ′(z)

< 1, for all d2 < z < z̃ < z∗.

Therefore, from (12), we have

0 ≤ z∗ − z(n+1) < z∗ − z(n), n = 0, 1, . . . ,

i.e. the sequence {z(n)} converges monotonically to z∗ from the left.

(ii) H ′′(z∗) > 0: For all z ∈ (d2, (d2 + d3)/2), since

|z − d1|α−2 ≤ |z − d2|α−2 and |z − d4|α−2 ≤ |z − d3|α−2,

we have

H ′(z) ≤ 2α(α − 1)β
3∑

j=2

|z − dj |α−2 = 2W (z), for all z ∈ (d2, (d2 + d3)/2).

Here W (z) is defined in F3. Since W (z) is a strictly decreasing function in (d2, (d2+d3)/2)
and W (z) < H ′(z) for all z, we have

H ′(z̃) ≤ 2W (z̃) ≤ 2W (z) < 2H ′(z), for all d2 < z < z̃ < z∗.

Hence ∣∣∣∣1 − H ′(z̃)
H ′(z)

∣∣∣∣ < 1, for all d2 < z < z̃ < z∗.
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Therefore by (12), as long as d2 < z(n) < z∗, we have

|z∗ − z(n+1)| < |z∗ − z(n)|,
i.e. the sequence {z(n)} converges to z∗ as long as z(n) < z∗ for all n.

But what if after some iterations, z(m) > z∗? Since H ′′(z∗) > 0, by F2, we have H ′′(z) > 0
in [z∗, d3). This implies that H ′(z) is increasing in [z∗, d3). As a result, H ′(z̃) ≤ H ′(z)
for all z∗ < z̃ < z. Therefore,

0 ≤ 1 − H ′(z̃)
H ′(z)

< 1, for all z∗ < z̃ < z.

Hence, from (12), we have

0 ≤ z(n+1) − z∗ < z(n) − z∗, n = m, m + 1, . . . ,

i.e. the sequence {z(n)}∞n=m converges monotonically to z∗ from the right.

This finishes the proof for the case when H
(

d2+d3
2

)
> 0. If H

(
d2+d3

2

)
< 0, then we locate

z(0) ∈ ((d2 + d3)/2, d3]. More precisely, z(0) = d3 − ε with ε = [H(d3)/(4αβ)]
1

α−1 . The rest of
the proof will be similar.

The same result holds when z∗ lies in other finite intervals (dj , dj+1), j = 1, 2, 3. If H(d4) <
0, this means z∗ ∈ (d4,∞). Since

H ′′(z) = α(α − 1)(α − 2)β
4∑

j=1

sgn(z − dj)|z − dj |α−3 < 0, for all z ∈ (d4,∞),

we are in a situation similar to case (i) in Theorem 2. In fact, as H ′(z) is strictly decreasing
in (d4,∞), 0 < 1 − H ′(z̃)/H(z) < 1 for all d4 < z < z̃ < z∗. Therefore it suffice to choose an
initial guess z(0) = d4 + ε such that H(z(0)) < 0. (Again we cannot choose z(0) = d4 as H ′(d4)
is undefined.) Similar to Lemma 1, we can choose ε = [−H(d4)/(4αβ)]

1
α−1 . Then one can show

from (12) that 0 ≤ z∗ − z(n+1) < z∗ − z(n), for n = 0, 1, . . ., i.e. {z(n)} converges monotonically
to z∗ from the left.

We remark that since we are considering the case that ξ
(k)
ij > 1, by (7), sgn(z∗) = −sgn(ξ(k)

ij ) =
−1. Hence z∗ < 0. Thus we may not need to check all the intervals in (9) for z∗. In fact, if
d� < 0 < d�+1, then we only have to check the intervals {(dj , dj+1)}�

j=1. This can simplify the
algorithm (see Step 1 in Algorithm B below).

Finally, we turn to the case where ξ
(k)
ij < −1. The nonlinear equation in (8) becomes:

1 + αβ

4∑
j=1

sgn(z − dj)|z − dj |α−1 = 0,

where the left-hand-side function is still a strictly increasing function in z, and that z∗ > 0 by
(7). The convergence proof is almost the same with minor modifications.

We summarize the results into the following algorithm. It works for both ξ
(k)
ij > 1 and

ξ
(k)
ij < 1.

Algorithm B. (Newton’s Solver for Solving (6))

1. Check the signs of H(dj), 1 ≤ j ≤ 4. (One may not need to check all four points by
taking into account the sign of z∗ using (7).)
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2. If H(d1) > 0 or H(d4) < 0, let

z(0) =

⎧⎪⎪⎪⎨⎪⎪⎪⎩
d1 −

{
H(d1)
4αβ

} 1
α−1

, if H(d1) > 0,

d4 +
{
−H(d4)

4αβ

} 1
α−1

, if H(d4) < 0.

3. Else locate the interval (dj , dj+1) which contains the root z∗, and let

z(0) =

⎧⎪⎪⎪⎨⎪⎪⎪⎩
dj+1 −

{
H(dj+1)

4αβ

} 1
α−1

, if H

(
dj + dj+1

2

)
< 0,

dj +
{
−H(dj)

4αβ

} 1
α−1

, if H

(
dj + dj+1

2

)
> 0.

4. Apply Newton’s method to obtain z∗ up to a given tolerance τB.

4. Numerical Results

In this section, we stimulate the restoration of the 256-by-256 gray scale image Lena cor-
rupted by 50% salt-and-pepper noise and 40% random-valued impulse noise with dynamic range
[0, 255], see Figure 1. Here the salt noise (i.e. smax) and the pepper noise (i.e. smin) are of equal
probability and the random-valued noise are uniformly distributed in the dynamic range. We
clean the salt-and-pepper noise by Algorithm I with threshold T = 5 and the random-valued
noise by Algorithm II with s = 0.1. In both algorithms, we use windows of size 9-by-9 for noise
detection.

Figure 1: (Left) The original Lena image. (Middle) The noisy image corrupted with 50%
salt-and-pepper noise. (Right) The noisy image corrupted with 40% random-valued noise.

We test our Newton’s method with different magnitudes of α and choose β = 2 for all
settings. The tolerances in Algorithms A and B are chosen to be τA = (smax−smin)×10−4 and
τB = 5× 10−4 respectively. In Table 1, we give, for different values of α, the maximum number
of inner iterations (i.e. maximum number of Newton’s iterations in Step 4 of Algorithm B),
and the total number of outer iterations (i.e. maximum k in Algorithm A).

From the table, we see that around 5 to 9 iterations are sufficient for Newton’s method to
converge. The smaller α is, the more iterations |t|α requires. But in practice, there will be stair-
case effects in the restored image if α is too small. To restore the best image, 1.25 ≤ α ≤ 1.40
is sufficient. We give the restored images in Figure 2. We see that the noise are successfully
suppressed while the edges and details are well preserved.
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Table 1: The number of iterations in restoring noisy image corrupted by (left) salt-and-pepper
noise and (right) random-valued noise.

α inner iterations outer iterations
1.3 5 117
1.2 6 201
1.1 9 290

α inner iterations outer iterations
1.3 5 319
1.2 6 512
1.1 9 1208

Figure 2: (Left) Restoration from image corrupted by salt-and-pepper noise using α = 1.3 and
β = 2.5. (Right) Restoration from image corrupted by random-valued noise using α = 1.3 and
β = 2.3.

5. Conclusions

In this report, we first give an overview of denoising schemes for cleaning salt-and-pepper
and random-valued impulse noise. Experimental results show that the images are restored sat-
isfactory even at very high noise level. Then we present an algorithm for solving the variational
equations resulting from the denoising schemes. It is the essential step in the restoration pro-
cess. To overcome the difficulty in finding the convergence domain, we have derived a formula
for the initial guess; and proved that with it, Newton’s method is guaranteed to converge.
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