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CONVERGENCE
OF NONCONFORMING MULTIGRID METHODS

WITHOUT FULL ELLIPTIC REGULARITY

SUSANNE C. BRENNER

Abstract. We consider nonconforming multigrid methods for symmetric pos-
itive definite second and fourth order elliptic boundary value problems which
do not have full elliptic regularity. We prove that there is a bound (< 1)
for the contraction number of the W -cycle algorithm which is independent of
mesh level, provided that the number of smoothing steps is sufficiently large.
We also show that the symmetric variable V -cycle algorithm is an optimal
preconditioner.

1. Introduction

The multigrid theory for conforming finite element methods where the finite ele-
ment spaces on successive grids are nested is now well understood (cf., for example,
the books [42], [46], [10] and the references therein).

However, for certain problems the simplest finite element methods are noncon-
forming or conforming but nonnested. For example, the simplest method for the
stationary Stokes equations uses the Crouzeix-Raviart element (nonconforming),
and the simplest finite element methods for the plate bending problem use the Mor-
ley finite element (nonconforming) or the (reduced) Hsieh-Clough-Tocher macro-
element (conforming but nonnested). Also, some simple nonconforming methods
can overcome the phenomenon of locking in elasticity problems and plate problems
(cf., [5], [37], [28], [67]).

The convergence of multigrid methods for nonconforming elements was studied
in [14]–[18], [20], [21], [23], [49], [9], [43], [50], [62], [63], [52], [55], [64], [65], [68]
and [60]. The convergence of the multigrid method for macro-elements was studied
in [66]. The results for the nonconforming or conforming but nonnested multigrid
methods can also be obtained from the more abstract theory of Bramble, Pasciak
and Xu (cf., [13]) once their “regularity and approximation” assumption is verified
for each concrete problem. The results in all the papers (except [65]; see below)
cited above for nonconforming and macro elements have been obtained under the
condition that the underlying boundary value problem has full elliptic regularity.
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26 SUSANNE C. BRENNER

In this paper we study the convergence of multigrid methods for nonconforming
finite elements without assuming full elliptic regularity. We follow the methodology
of Bank and Dupont in [6], where the convergence of conforming, nested W -cycle
multigrid methods is established without full elliptic regularity. The two key ingre-
dients in their approach are: (i) the equivalence between mesh-dependent norms
and fractional order Sobolev norms on the finite element space, and (ii) a duality
argument involving fractional order Sobolev spaces. Since the nonconforming fi-
nite element space may not be a subspace of the fractional order Sobolev space,
there are no straightforward generalizations of (i) and (ii) to the nonconforming
case. We overcome this difficulty by relating the nonconforming finite element to a
conforming finite element.

The idea of using conforming “relatives” in the treatment of nonconforming
finite elements was first used in the context of additive Schwarz preconditioners for
nonconforming finite elements (cf., [22], [24], [25]). Let (K,P ,N ) and (K, P̃ , Ñ ) be
two finite elements (cf., [30], [27]), where K is the shared element domain, P and
P̃ are the spaces of shape functions, and N and Ñ are the sets of nodal variables.
We say that (K,P ,N ) � (K, P̃, Ñ ) if P ⊆ P̃ and N ⊆ Ñ , and refer to (K, P̃ , Ñ )
as a “relative” of (K,P ,N ). Let V and Ṽ be the finite element spaces on the
same triangulation associated with (K,P ,N ) and (K, P̃, Ñ ) respectively. Then
we say that V � Ṽ if (K,P ,N ) � (K, P̃ , Ñ ). Our idea is to find a conforming
finite element space Ṽh for a given nonconforming finite element space Vh such that
Vh � Ṽh. Then we obtain multigrid convergence results for Vh by exploiting its
connection with Ṽh. In the theory we do not require that the Ṽh on successive grids
be nested. Therefore, by applying the theory to Vh = Ṽh, we also have multigrid
convergence results for conforming but nonnested finite element methods.

After the completion of the first draft of this paper, we learned that W -cycle
convergence in the (nonconforming) energy norm without full elliptic regularity
was obtained in [65] by a different technique. However, one of the assumptions
(Assumption A.4) in [65] concerns a discretization error estimate for nonconforming
finite elements which is not in the literature and was not proved in [65]. It turns
out that this estimate follows from our theory (cf., the remark after Theorem 3.8).
Thus the estimate from our approach combined with the theory in [65] would give
another complete proof of the W -cycle convergence in the (nonconforming) energy
norm.

The rest of the paper is organized as follows. In Section 2 we set up the notation
and assumptions of an abstract framework for our finite element multigrid analysis
which is applicable to both second and fourth order problems. Preliminary esti-
mates are established in Section 3. In Section 4 we obtain the convergence of the
k-th level W -cycle algorithm and the full multigrid W -cycle method in both the
(nonconforming) energy norm and a lower order norm. In particular we show that
the contraction number of the k-th level W -cycle algorithm is bounded away from
1 uniformly when the number of smoothing steps is sufficiently large. For fourth
order problems, the convergence in the lower order norm and the connection to
the conforming relative result in a better pointwise convergence rate for the non-
conforming method. We also prove that the symmetric variable V -cycle multigrid
algorithm is an optimal preconditioner. Applications of our theory to second and
fourth order problems are given in Sections 5 and 6.
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CONVERGENCE OF NONCONFORMING MULTIGRID METHODS 27

For future reference, we state the W–cycle and variable V –cycle algorithms here.
Let V1, V2, . . . be finite-dimensional vector spaces, and let Ak : Vk −→ Vk, Ik

k−1 :
Vk−1 −→ Vk and Ik−1

k : Vk −→ Vk−1. The equation to be solved is

Akz = g.(1.1)

The W -cycle multigrid algorithm. Let m1 and m2 be two nonnegative integers.
The W -cycle multigrid algorithm with initial guess z0 yields WMG(k, z0, g) as an
approximate solution to the equation (1.1).

For k = 1, WMG(1, z0, g) is the solution obtained from a direct method. In other
words,

WMG(1, z0, g) = A−1
1 g.

For k > 1, WMG(k, z0, g) is defined recursively in three steps.
• Pre-smoothing. Let zl ∈ Vk (1 ≤ l ≤ m1) be defined recursively by the

equations

zl = zl−1 +
1

Λk

(
g −Akzl−1

)
, 1 ≤ l ≤ m1,(1.2)

where Λk dominates the spectral radius of Ak.
• Correction. Let g := Ik−1

k (g − Akzm1). Let qi ∈ Vk−1 (0 ≤ i ≤ 2) be defined
recursively by

q0 = 0, and(1.3)

qi = WMG(k − 1, qi−1, g), i = 1, 2.

Let zm1+1 = zm1 + Ik
k−1q2.

• Post-smoothing. Let zl ∈ Vk (m1+2 ≤ l ≤ m1+m2+1) be defined recursively
by the equations

zl = zl−1 +
1

Λk

(
g −Akzl−1

)
, m1 + 2 ≤ l ≤ m1 + m2 + 1.(1.4)

Then WMG(k, z0, g) = zm1+m2+1.

The symmetric variable V -cycle algorithm. Let mj (j = 2, . . . , k) be positive
integers which are chosen so that β0mj ≤ mj−1 ≤ β1mj for j = 3, . . . , k, and
1 < β0 ≤ β1. The symmetric variable V -cycle multigrid algorithm with initial
guess z0 yields VMG(k, z0, g) as an approximate solution to the equation (1.1).

For k = 1, VMG(1, z0, g) is the solution obtained from a direct method. In other
words,

VMG(1, z0, g) = A−1
1 g.

For k > 1, VMG(k, z0, g) is defined recursively in three steps.
• Pre-smoothing. Let zl ∈ Vk (1 ≤ l ≤ mk) be defined recursively by the

equations

zl = zl−1 +
1

Λk

(
g −Akzl−1

)
, 1 ≤ l ≤ mk,(1.5)

where Λk dominates the spectral radius of Ak.
• Correction. Let g := Ik−1

k (g −Akzmk
), and

q = VMG(k − 1, 0, g).(1.6)

Let zmk+1 = zmk
+ Ik

k−1q.
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28 SUSANNE C. BRENNER

• Post-smoothing. Let zl ∈ Vk (mk + 2 ≤ l ≤ 2mk + 1) be defined recursively
by the equations

zl = zl−1 +
1

Λk

(
g − Akzl−1

)
, mk + 2 ≤ l ≤ 2mk + 1,(1.7)

Then VMG(k, z0, g) = z2mk+1.

2. An abstract framework

In this section we set up an abstract framework for our finite element multigrid
analysis, which will be carried out in Sections 3 and 4 under the assumptions
stated here. Throughout this paper, ` = 1 (second order problems) or 2 (fourth
order problems), and α ∈ (0, 1]. The case α = 1 corresponds to the case of full
elliptic regularity.

We begin with the continuous problem. Let V be a Hilbert space and a(·, ·) be
a symmetric bilinear form on V which is bounded and coercive:

|a(v1, v2)| . ‖v1‖V ‖v2‖V ∀ v1, v2 ∈ V,(B)

a(v, v) & ‖v‖2
V ∀ v ∈ V.(C)

In order to avoid the proliferation of constants, we adopt the notation ., & and ≈.
The statement F . G (or G & F ) means that F is bounded by G multiplied by a
constant which is independent of mesh sizes. The statement F ≈ G means F . G
and G . F .

Let F ∈ V ′. The continuous problem is to find u ∈ V such that

a(u, v) = F (v) ∀ v ∈ V.(2.1)

There exists a unique solution of (2.1) by (B), (C) and the Riesz Representation
Theorem.

We assume that there exist two other Hilbert spaces Z and W such that

Z ↪→ V ↪→ W,(R-1)

‖u‖Z . ‖F‖W ′ ,(R-2)

where F ∈ W ′ and u is the solution to (2.1).
Moreover, we assume the spaces Z and W are related by the following duality

estimate.

|a(ζ, v)| . ‖ζ‖Z‖v‖W ∀ ζ ∈ Z, v ∈ V.(D)

Remark. In applications V is a subspace of H`(Ω), W is a subspace of H`−α(Ω),
and Z is a subspace of H`+α(Ω). The elliptic regularity for (2.1) is then given by
(R-1) and (R-2).

Next we describe the finite element spaces. Let V1, V2, . . . and Ṽ1, Ṽ2, . . . be two
sequences of finite-dimensional vector spaces with corresponding mesh parameters
h1, h2, . . . . We assume that there exist positive constants C1 and C2, independent
of the mesh sizes, such that

C1hk−1 ≤ hk ≤ C2hk−1 and 0 < C1 ≤ C2 < 1.(M)

We assume that the spaces Vk and Ṽk are connected to the spaces of the contin-
uous problem through the following relations:

Ṽk ⊆ V (i.e., Ṽk is conforming),(C-1)
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and there exists a Hilbert space X such that

W ↪→ X and Vk, Ṽk ⊆ X for k ≥ 1,(C-2)

W = [X, V ]1−(α/`),(C-3)

where [X, V ]1−(α/`) denotes the interpolation space obtained from X and V by the
complex method of interpolation (cf., [7], [61], [44]). When α = 1 = `, we interpret
[X, V ]0 to be the space X .

Remark. Note that we do not assume Ṽk−1 ⊆ Ṽk, i.e., Ṽk is conforming but not
necessarily nested, and the space Vk can be nonconforming and hence nonnested.
However, they are all inside the space X , which is just L2(Ω) in applications.

Let V0 = {0}. We assume that, for each positive integer k, there exists a sym-
metric positive definite bilinear form ak(·, ·) on Vk−1 + Vk + V such that ak(·, ·)
reduces to a(·, ·) on V and ak−1(·, ·) on Vk−1. The (possibly nonconforming) energy
norm ‖ · ‖k on Vk−1 + Vk + V is then defined to be

‖v‖k = [ak(v, v)]1/2.(2.2)

It follows from the boundedness and coercivity conditions (B) and (C) that

‖v‖V ≈ ‖v‖k ∀ v ∈ V.(2.3)

Furthermore, we assume the following inverse estimate holds for k ≥ 1:

‖v‖k . h−`
k ‖v‖X ∀ v ∈ Vk−1 + Vk + Ṽk.(I)

We assume there exists an interpolation operator Πk : V −→ Vk which satisfies
the following interpolation estimates for k ≥ 1:

‖Πkv − v‖X + h`
k‖Πkv‖k . h`

k‖v‖V ∀ v ∈ V,(Π-1)

‖ζ −Πkζ‖X + h`
k‖ζ −Πkζ‖k . h`+α

k ‖ζ‖Z ∀ ζ ∈ Z.(Π-2)

The spaces Vk and Ṽk are connected by the operators Ek : Vk −→ Ṽk and
Fk : Ṽk −→ Vk which satisfy the following:

‖Ekv − v‖X . h`
k‖v‖k ∀ v ∈ Vk,(E)

‖EkΠkζ − ζ‖X + h`
k‖EkΠkζ − ζ‖V . h`+α

k ‖ζ‖Z ∀ ζ ∈ Z,(EΠ)

‖Fkṽ − ṽ‖X . h`
k‖ṽ‖V ∀ ṽ ∈ Ṽk,(F)

FkEkv = v ∀ v ∈ Vk.(FE)

Remark. In applications the constructions and analyses of Ek and Fk rely on the
relation Vk � Ṽk.

Let ζ ∈ Z and ζk ∈ Vk be related by

a(ζ, Ekv) = ak(ζk, v) ∀ v ∈ Vk.(2.4)

We assume that

|ak(ζ − ζk, v)| . hα
k ‖ζ‖Z ‖v‖k ∀ v ∈ Vk, ζ ∈ Z,(N-1)

|ak(ζ − ζk, Πkξ)| . h2α
k ‖ζ‖Z ‖ξ‖Z ∀ ζ, ξ ∈ Z.(N-2)
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Remark. In applications the estimates (N-1) and (N-2) are obtained by modifying
standard estimates for nonconforming finite element methods.

So far the relations between the spaces Vk have not been specified. Now we con-
nect Vk−1 and Vk by the coarse-to-fine intergrid transfer operator Ik

k−1 : Vk−1 −→
Vk. We assume that the following estimates on Ik

k−1 hold:

‖Ik
k−1v − v‖X . h`

k‖v‖k−1 ∀ v ∈ Vk−1,(I-1)

‖Ik
k−1Πk−1ζ −Πkζ‖X . h`+α

k ‖ζ‖Z ∀ ζ ∈ Z.(I-2)

We also assume that Vk is equipped with the inner product (·, ·)k such that

(v, v)k ≈ (v, v)X ∀ v ∈ Vk.(P)

We can then define Ak : Vk −→ Vk by

(Akv1, v2)k = ak(v1, v2) ∀ v1, v2 ∈ Vk.(2.5)

By our assumptions on ak(·, ·), Ak is a linear symmetric positive definite operator.
It follows from (I), (P) and (2.5) that

ρ(Ak) ≤ C∗h
−2`
k ,(2.6)

where C∗ > 0 is independent of k. The number Λk in (1.2), (1.4), (1.5) and (1.7)
is then defined by Λk = C∗h

−2`
k .

Finally, the fine-to-coarse intergrid transfer operator Ik−1
k : Vk −→ Vk−1 is

defined by

(Ik−1
k v1, v2)k−1 = (v1, I

k
k−1v2)k ∀ v1 ∈ Vk and v2 ∈ Vk−1.(2.7)

For the convergence analysis we also need the operator P k−1
k : Vk −→ Vk−1

defined by

ak−1(P k−1
k v1, v2) = ak(v1, I

k
k−1v2) ∀ v1 ∈ Vk and v2 ∈ Vk−1.(2.8)

It is easy to see from (2.5), (2.7) and (2.8) that the operators Ak, Ak−1, Ik−1
k and

P k−1
k are related by

Ak−1P
k−1
k = Ik−1

k Ak.(2.9)

3. Preliminary estimates

In this section we derive some estimates in preparation for the convergence anal-
ysis in the next section.

Lemma 3.1. The following estimates hold:

‖Ekv‖V . ‖v‖k and ‖Ekv‖X . ‖v‖X ∀ v ∈ Vk,(3.1)

‖Fkṽ‖k . ‖ṽ‖V and ‖Fkṽ‖X . ‖ṽ‖X ∀ v ∈ Ṽk,(3.2)

‖Ik
k−1v‖k . ‖v‖k−1 and ‖Ik

k−1v‖X . ‖v‖X ∀ v ∈ Vk−1.(3.3)

Proof. Using (I), (2.3) and (E) we have

‖Ekv‖V . ‖Ekv − v‖k + ‖v‖k . h−`
k ‖Ekv − v‖X + ‖v‖k . ‖v‖k,

‖Ekv‖X . ‖Ekv − v‖X + ‖v‖X . h`
k‖v‖k + ‖v‖X . ‖v‖X .

The estimates (3.2)–(3.3) are similarly established by using (I), (F) and (I-1).
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Lemma 3.2. The following estimates hold:

‖EkΠkζ − ζ‖W . h2α
k ‖ζ‖Z ∀ ζ ∈ Z,(3.4)

‖EkΠkv − v‖X + h`
k‖EkΠkv‖V . h`

k‖v‖V ∀ v ∈ V.(3.5)

Proof. The estimate (3.4) follows immediately from (C-3), (EΠ) and interpolation
(cf., [7], [61]). The estimate (3.5) is obtained from (Π-1), (E) and (3.1) as follows:

‖EkΠkv − v‖X + h`
k‖EkΠkv‖V

. ‖Ek(Πkv − v)‖X + ‖Ekv − v‖X + h`
k‖v‖V

. ‖Πkv − v‖X + h`
k‖v‖V . h`

k‖v‖V .

(3.6)

For the convergence analysis, we need the following mesh-dependent norms on Vk:

|||v|||2s,k = (As/`
k v, v)k ∀ v ∈ Vk.(3.7)

The spaces (Vk, ||| · |||k,s) form a Hilbert scale (cf., [44]).
From (2.2), (2.5), (2.6), (3.7), (P) and the Cauchy-Schwarz inequality, we have

|||v|||0,k =
√

(v, v)k ≈ ‖v‖X ∀ v ∈ Vk,(3.8)

|||v|||`,k = ‖v‖k ∀ v ∈ Vk,(3.9)

|||v|||s,k . ht−s
k |||v|||t,k ∀ v ∈ Vk and t < s,(3.10)

|ak(v1, v2)| ≤ |||v1|||`+t,k|||v2|||`−t,k ∀ v1, v2 ∈ Vk, t ∈ R.(3.11)

Lemma 3.3. The following estimates hold:

|||Ik
k−1v|||s,k . |||v|||s,k−1 ∀ 0 ≤ s ≤ `, v ∈ Vk−1,(3.12)

|||P k−1
k v|||t,k−1 . |||v|||t,k ∀ ` ≤ t ≤ 2`, v ∈ Vk,(3.13)

|||Ik
k−1Πk−1ζ −Πkζ|||`−α,k . h2α

k ‖ζ‖Z ∀ ζ ∈ Z.(3.14)

Proof. The estimate (3.12) follows from (3.3), (3.8), (3.9) and interpolation (cf.,
[44]). The estimate (3.13) then follows from (2.8), (3.12) and duality.

From (I-2), (3.8), and (3.10) we have

|||Ik
k−1Πk−1ζ −Πkζ|||0,k . h`+α

k ‖ζ‖Z ∀ ζ ∈ Z,(3.15)

|||Ik
k−1Πk−1ζ −Πkζ|||`,k . hα

k ‖ζ‖Z ∀ ζ ∈ Z.(3.16)

The estimate (3.14) follows from (3.15), (3.16) and interpolation.

Lemma 3.4. We have the following equivalence of norms:

|||v|||`−α,k ≈ ‖Ekv‖W ∀ v ∈ Vk.(3.17)

Proof. From (C-3), (3.1), (3.8) and (3.9), we obtain by interpolation that

‖Ekv‖W . |||v|||`−α,k ∀ v ∈ Vk.(3.18)

Let Qk : X −→ Ṽk be the orthogonal projection with respect to the inner product
of X . Then from (I), (FE), (Π-1), (3.2), (3.5), (3.8) and (3.9) we have

|||FkQkv|||0,k . ‖FkQkv‖X . ‖Qkv‖X . ‖v‖X ∀ v ∈ X,(3.19)

|||FkQkv|||`,k . |||FkQk(v − EkΠkv)|||`,k + |||Πkv|||`,k(3.20)

. h−`
k ‖v − EkΠkv‖X + ‖v‖V . ‖v‖V ∀ v ∈ V.
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We find by (C-3), (3.19), (3.20) and interpolation that

|||FkQkv|||`−α,k . ‖v‖W ∀ v ∈ W.(3.21)

In particular, we have by (FE) and (3.21) that

|||v|||`−α,k = |||FkQkEkv|||`−α,k . ‖Ekv‖W ∀ v ∈ Vk.(3.22)

Theorem 3.5. Let ζ ∈ Z and ζk ∈ Vk be related by (2.4). Then the following
estimates hold:

‖ζ − ζk‖k . hα
k ‖ζ‖Z ,(3.23)

|||Πkζ − ζk|||`−α,k . h2α
k ‖ζ‖Z .(3.24)

Proof. We have the following estimate for nonconforming methods (cf., [27]):

‖ζ − ζk‖k ≤ inf
v∈Vk

‖ζ − v‖k + sup
v∈Vk\{0}

|ak(ζ − ζk, v)|
‖v‖k

.(3.25)

The estimate (3.23) follows from (N-1), (Π-2) and (3.25).
By (3.17) and duality we have

|||Πkζ − ζk|||`−α,k ≈ ‖Ek(Πkζ − ζk)‖W = sup
φ∈W ′\{0}

∣∣φ(
Ek(Πkζ − ζk)

)∣∣
‖φ‖W ′

.(3.26)

Let φ ∈ W ′ be arbitrary. We define ξ ∈ Z and ξk ∈ Vk by the following equations:

a(ξ, v) = φ(v) ∀ v ∈ V,(3.27)

ak(ξk, v) = φ(Ekv) ∀ v ∈ Vk.(3.28)

From (R-2) we have

‖ξ‖Z . ‖φ‖W ′ .(3.29)

Using (2.4), (3.27) and (3.28), we have

φ
(
Ek(Πkζ − ζk)

)
= a(ξ, EkΠkζ − ζ) + ak(ξk, ζ − ζk) + ak(ξ − ξk, ζ).(3.30)

The terms on the right-hand side of (3.30) can be estimated as follows.
Using (D) and (3.4), we have

|a(ξ, EkΠkζ − ζ)| . ‖ξ‖Z ‖EkΠkζ − ζ‖W . h2α
k ‖ξ‖Z ‖ζ‖Z .(3.31)

It follows from (Π-2), (N-2) and (3.23) that

|ak(ξk, ζ − ζk)| . |ak(ξk −Πkξ, ζ − ζk)|+ |ak(Πkξ, ζ − ζk)|
. h2α

k ‖ξ‖Z ‖ζ‖Z .
(3.32)

Similarly, we have

|ak(ξ − ξk, ζ)| . h2α
k ‖ξ‖Z ‖ζ‖Z .(3.33)

The estimate (3.24) now follows by combining (3.26) and (3.29)–(3.33).

The following corollary is an immediate consequence of (Π-2), (EΠ), (3.1), (3.4),
(3.17), (3.23) and (3.24).

Corollary 3.6. Let ζ ∈ Z and ζk ∈ Vk be related by (2.4). Then the following
estimates hold:

‖ζ − Ekζk‖V . hα
k‖ζ‖Z and ‖ζ − Ekζk‖W . h2α

k ‖ζ‖Z .
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Remark. Let ζ ∈ Z and ζk ∈ Vk be the solutions of the continuous problem a(ζ, v) =
φ(v) ∀ v ∈ V and the discrete problem ak(ζk, v) = φ(Ekv) ∀ v ∈ Vk. Because of
the presence of the operator Ek, the discrete problem is well-posed for φ in some
negative order Sobolev spaces even though Vk is nonconforming. Theorem 3.5 and
Corollary 3.6 give the discretization error estimates for these new nonconforming
finite element methods.

Lemma 3.7. Let ζ ∈ Z, and let ζk ∈ Vk and ζk−1 ∈ Vk−1 be defined by

ak(ζk, v) = a(ζ, Ekv) ∀ v ∈ Vk,(3.34)

ak−1(ζk−1, v) = a(ζ, Ek−1v) ∀ v ∈ Vk−1.(3.35)

Then the following estimate holds:

|||ζk−1 − P k−1
k ζk|||`−α,k−1 . h2α

k ‖ζ‖Z .(3.36)

Proof. Again, by (3.17) and duality we have

|||ζk−1 − P k−1
k ζk|||`−α,k−1 ≈ ‖Ek−1(ζk−1 − P k−1

k ζk)‖W(3.37)

= sup
φ∈W ′\{0}

∣∣φ(
Ek−1(ζk−1 − P k−1

k ζk)
)∣∣

‖φ‖W ′
.

Let ξ ∈ Z, ξk ∈ Vk and ξk−1 ∈ Vk−1 be defined by

a(ξ, v) = φ(v) ∀ v ∈ V,(3.38)

ak(ξk, v) = φ(Ekv) ∀ v ∈ Vk,(3.39)

ak−1(ξk−1, v) = φ(Ek−1v) ∀ v ∈ Vk−1.(3.40)

Again, the estimate (3.29) holds. Using (D), (2.8), (3.34), (3.35) and (3.40), we
find that ∣∣φ(

Ek−1(ζk−1 − P k−1
k ζk)

)∣∣(3.41)

=
∣∣ak−1(ζk−1 − P k−1

k ζk, ξk−1)
∣∣

=
∣∣ak−1(ζk−1, ξk−1)− ak(ζk, Ik

k−1ξk−1)
∣∣

=
∣∣a(ζ, Ek−1ξk−1 − EkIk

k−1ξk−1)
∣∣

. ‖ζ‖Z‖Ek−1ξk−1 − EkIk
k−1ξk−1‖W .

On the other hand, by (M), (3.4), (3.12), (3.14), (3.17), (3.38)–(3.40) and The-
orem 3.5, we have

‖Ek−1ξk−1 − EkIk
k−1ξk−1‖W

. ‖Ek−1(ξk−1 −Πk−1ξ)‖W + ‖Ek−1Πk−1ξ − ξ‖W

+ ‖ξ − EkΠkξ‖W + ‖Ek(Πkξ − Ik
k−1Πk−1ξ)‖W

+ ‖EkIk
k−1(Πk−1ξ − ξk−1)‖W . h2α

k ‖ξ‖Z.

(3.42)

The lemma now follows from (3.29) and (3.37)–(3.42).

Finally we derive within our abstract framework the discretization error esti-
mates for the standard (nonconforming) discretization.

Theorem 3.8. Let F ∈ X ′, u ∈ Z, and uk ∈ Vk be such that

a(u, v) = F (v) ∀ v ∈ V,(3.43)

ak(uk, v) = F (v) ∀ v ∈ Vk.(3.44)
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Then the following estimates hold:

‖u− uk‖k . hα
k‖u‖Z + h`

k‖F‖X′ ,(3.45)

|||Πku− uk|||`−α,k . h2α
k ‖u‖Z + h`+α

k ‖F‖X′ .(3.46)

Proof. Let u′k ∈ Vk satisfy

ak(u′k, v) = F (Ekv) ∀ v ∈ Vk.(3.47)

Theorem 3.5 implies that

‖u− u′k‖k . hα
k‖u‖Z,(3.48)

|||Πku− u′k|||`−α,k . h2α
k ‖u‖Z.(3.49)

From duality we have

‖uk − u′k‖k = sup
v∈Vk\{0}

|ak(uk − u′k, v)|
‖v‖k

.(3.50)

Using (E), (3.44) and (3.47), we obtain

|ak(uk − u′k, v)| = |F (v − Ekv)| . h`
k‖F‖X′‖v‖k.(3.51)

Combining (3.50) and (3.51), we have

‖uk − u′k‖k . h`
k‖F‖X′ .(3.52)

The estimate (3.45) follows from (3.48) and (3.52).
By (3.17) and duality, we have

|||u′k − uk|||`−α,k ≈ ‖Ek(u′k − uk)‖W = sup
φ∈W ′\{0}

∣∣φ(
Ek(u′k − uk)

)∣∣
‖φ‖W ′

.(3.53)

Let ξ ∈ Z and ξk ∈ Vk satisfy (3.27), (3.28) and (3.29). It follows that

φ
(
Ek(u′k − uk)

)
= ak(ξk −Πkξ, u′k − uk) + ak(Πkξ, u′k − uk).(3.54)

From (Π-2) and (3.52) we have

|ak(ξk −Πkξ, u′k − uk)| . h`+α
k ‖F‖X′‖ξ‖Z .(3.55)

On the other hand, from (Π-2), (EΠ), (3.44) and (3.47) we obtain

|ak(Πkξ, u′k − uk)| = |F (EkΠkξ −Πkξ)|(3.56)

≤ ‖F‖X′
(
‖EkΠkξ − ξ‖X + ‖ξ −Πkξ‖X

)
. h`+α

k ‖F‖X′‖ξ‖Z .

Combining (3.29) and (3.53)–(3.56), we have

|||u′k − uk|||`−α,k . h`+α
k ‖F‖X′ .(3.57)

The estimate (3.46) follows from (3.49) and (3.57).

Remark. The estimate (3.45) is the Assumption A4 in [65].

The following corollary is an immediate consequence of (Π-2), (EΠ), (3.1), (3.4),
(3.17), (3.45) and (3.46).
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Corollary 3.9. Let F , u and uk be as in Theorem 3.8. Then the following esti-
mates hold:

‖u− Ekuk‖V . hα
k‖u‖Z + h`

k‖F‖X′,

‖u− Ekuk‖W . h2α
k ‖u‖Z + h`+α

k ‖F‖X′.

4. Convergence analysis

In this section we establish the convergence results for the multigrid algorithms.
First we investigate the convergence of the W -cycle algorithm. Following the
methodology in [6], we start with the convergence analysis of the two-grid algo-
rithm, where we assume that the residual equation is solved exactly on the coarser
grid, i.e., the q2 in the correction step is replaced by

q = A−1
k−1g.(4.1)

Let z be the exact solution of (1.1), and let ei = z − zi for i = 0, . . . , m, where
m = m1 + m2 + 1. In order to relate the final error em to the initial error e0, we
introduce the operator Rk defined by

Rk = I − 1
Λk

Ak.(4.2)

From the pre-smoothing step (1.2) and the post-smoothing step (1.4), we have

ej = Rkej−1, j = 1, 2, . . . , m1, m1 + 2, . . .m.(4.3)

Since Λk dominates the spectral radius of Ak, it is easy to see that

|||Rkv|||s,k ≤ |||v|||s,k ∀ v ∈ Vk, s ∈ R.(4.4)

From (2.9), the correction step of the two-grid algorithm, and (4.1), we have

em1+1 = em1 − Ik
k−1q = em1 − Ik

k−1A
−1
k−1I

k−1
k Akem1 = (I − Ik

k−1P
k−1
k )em1 .(4.5)

It follows from (4.3) and (4.5) that

em = Rm2
k (I − Ik

k−1P
k−1
k )Rm1

k e0.(4.6)

Lemma 4.1. We have the following smoothing property:

|||Rn
kv|||s,k . h−β

k [max(1, n)]−β/(2`) |||v|||s−β,k

for any s ∈ R, β ≥ 0, n = 0, 1, 2, . . . .
(4.7)

Proof. For n ≥ 1, the proof of (4.7) is standard (cf., [6]). For n = 0, the estimate
follows from (3.10).

The following estimate on the operator I − Ik
k−1P

k−1
k is the crux of the conver-

gence analysis.

Lemma 4.2. We have the following approximation property:

|||(I − Ik
k−1P

k−1
k )v|||`−α,k . h2α

k |||v|||`+α,k ∀ v ∈ Vk.(4.8)

Proof. From (3.17) and duality we have

|||(I − Ik
k−1P

k−1
k )v|||`−α,k ≈ sup

φ∈W ′\{0}

∣∣φ(
Ek(I − Ik

k−1P
k−1
k )v

)∣∣
‖φ‖W ′

.(4.9)
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Let φ ∈ W ′ be arbitrary. We define ζ ∈ Z, ζk ∈ Vk and ζk−1 ∈ Vk−1 by

a(ζ, v) = φ(v) ∀ v ∈ V,(4.10)

ak(ζk, v) = φ(Ekv) ∀ v ∈ Vk ,(4.11)

ak−1(ζk−1, v) = φ(Ek−1v) ∀ v ∈ Vk−1 .(4.12)

From (R-2), we have

‖ζ‖Z . ‖φ‖W ′ .(4.13)

Using (2.8) and (4.11), we find

φ
(
Ek(I − Ik

k−1P
k−1
k )v

)
(4.14)

= ak(ζk, (I − Ik
k−1P

k−1
k )v)

= ak(ζk, v)− ak−1(P k−1
k ζk, P k−1

k v)

= ak(ζk − Ik
k−1ζk−1, v) + ak−1(ζk−1 − P k−1

k ζk, P k−1
k v).

We can estimate the two terms on the last line of (4.14) by using (M), (3.11)–
(3.14), (4.10)–(4.12), Theorem 3.5 and Lemma 3.7 as follows:

|ak(ζk − Ik
k−1ζk−1, v)|(4.15)

. |||ζk − Ik
k−1ζk−1|||`−α,k |||v|||`+α,k

.
(
|||ζk −Πkζ|||`−α,k + |||Ik

k−1Πk−1ζ −Πkζ|||`−α,k

+ |||Ik
k−1(Πk−1ζ − ζk−1)|||`−α,k

)
|||v|||`+α,k

. h2α
k ‖ζ‖Z |||v|||`+α,k ,

|ak−1(ζk−1 − P k−1
k ζk, P k−1

k v)|(4.16)

. |||ζk−1 − P k−1
k ζk|||`−α,k−1 |||P k−1

k v|||`+α,k−1

. h2α
k ‖ζ‖Z |||v|||`+α,k .

The estimate (4.8) now follows from (4.9) and (4.13)–(4.16).

Theorem 4.3 (Convergence of the two-grid algorithm). For m1 + m2 sufficiently
large, the two-grid algorithm is a contraction in the ‖ · ‖k norm, with contraction
number uniformly bounded away from 1. For m1 sufficiently large, the two-grid
algorithm is also a contraction in the ||| · |||`−α,k norm, and the contraction number
is uniformly bounded away from 1.

Proof. Since the final error em is related to the initial error e0 by (4.6), we have by
(3.9), (4.7) and (4.8) that

‖em‖k = |||Rm2
k (I − Ik

k−1P
k−1
k )Rm1

k e0|||`,k(4.17)

. h−α
k [max(1, m2)]−α/(2`) |||(I − Ik

k−1P
k−1
k )Rm1

k e0|||`−α,k

. hα
k [max(1, m2)]−α/(2`) |||Rm1

k e0|||`+α,k

. [max(1, m2)]−α/(2`) [max(1, m1)]−α/(2`) ‖e0‖k .
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Similarly, we have by (4.4), (4.7) and (4.8) that

|||em|||`−α,k = |||Rm2
k (I − Ik

k−1P
k−1
k )Rm1

k e0|||`−α,k(4.18)

≤ |||(I − Ik
k−1P

k−1
k )Rm1

k e0|||`−α,k

. h2α
k |||Rm1

k e0|||`+α,k

. [max(1, m1)]−α/`|||em|||`−α,k .

The theorem follows from (4.17) and (4.18).

Remark. The estimate in (4.18) seems to indicate that a one-sided algorithm with
only pre-smoothing may be more efficient for convergence in the ||| · |||`−α,k norm.

The next theorem follows from (3.12), Theorem 4.3 and a standard perturbation
argument (cf., [6]).

Theorem 4.4 (Convergence of the W -cycle multigrid algorithm). For m1 + m2

sufficiently large, the W -cycle multigrid algorithm is a contraction in the ‖ · ‖k

norm, with contraction number uniformly bounded away from 1. For m1 suffi-
ciently large, the W -cycle algorithm is also a contraction in the ||| · |||`−α,k norm,
and the contraction number is uniformly bounded away from 1.

Let F ∈ X ′, u ∈ Z and uk ∈ Vk be such that (3.43) and (3.44) hold. We can
find an approximate solution for (3.44) by the following full multigrid method.

The full multigrid W -cycle algorithm. For k = 1, the approximate solution
û1 ∈ V1 is obtained by a direct method.

For k > 1, the approximate solution ûk ∈ Vk is obtained recursively from

uk,0 = Ik
k−1ûk−1

uk,j = WMG(k, uk,j−1, fk), 1 ≤ j ≤ r,(4.19)
ûk = uk,r,

where r is a positive integer independent of k and fk ∈ Vk is defined by

(fk, v)k = F (v) ∀ v ∈ Vk .

Theorem 4.5. Let F ∈ X ′, u ∈ Z and uk ∈ Vk be such that (3.43) and (3.44) hold.
Let m1 + m2 (resp., m1) be sufficiently large so that the W -cycle algorithms are
contractions in the ‖·‖k (resp., |||·|||`−α,k) norms with contraction numbers uniformly
bounded away from 1. Then, for r sufficiently large, the following estimates hold for
the approximate solutions ûk (k = 1, 2, . . . ) obtained by the full multigrid algorithm:

‖uk − ûk‖k . hα
k‖u‖Z + h`

k‖F‖X′ ,(4.20)

|||uk − ûk|||`−α,k . h2α
k ‖u‖Z + h`+α

k ‖F‖X′ .(4.21)
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Proof. By (M), (Π-2), (3.3), (3.9), (3.12), (3.14), (3.16), (3.45) and Theorem 3.8
we have

‖uk − Ik
k−1uk−1‖k ≤ ‖uk −Πku‖k + ‖Πku− Ik

k−1Πk−1u‖k(4.22)

+ ‖Ik
k−1(Πk−1u− uk−1)‖k

. hα
k‖u‖Z + h`

k‖F‖X′ ,

|||uk − Ik
k−1uk−1|||`−α,k ≤ |||uk −Πku|||`−α,k + |||Πku− Ik

k−1Πk−1u|||`−α,k(4.23)

+ |||Ik
k−1(Πk−1u− uk−1)|||`−α,k

. h2α
k ‖u‖Z + h`+α

k ‖F‖X′.

Let k > 1. By (4.19) and the assumption on the W -cycle algorithm, there exists
a positive δ such that δ < 1 and

‖uk − ûk‖k ≤ δr‖uk − Ik
k−1ûk−1‖k for k = 1, 2, . . . ,(4.24)

|||uk − ûk|||`−α,k ≤ δr|||uk − Ik
k−1ûk−1|||`−α,k for k = 1, 2, . . . .(4.25)

Combining (3.3), (4.22) and (4.24), we obtain

‖uk − ûk‖k ≤ δr
[
‖uk − Ik

k−1uk−1‖k + ‖Ik
k−1(uk−1 − ûk−1)‖k

]
(4.26)

≤ δrC′ [(hα
k ‖u‖Z + h`

k‖F‖X′
)

+ ‖uk−1 − ûk−1‖k

]
,

where C ′ is independent of k.
Similarly, using (3.12), (4.23) and (4.25), we obtain

|||uk − ûk|||`−α,k ≤ δrC′′ [(h2α
k ‖u‖Z + h`+α

k ‖F‖X′
)

+ |||uk−1 − ûk−1|||`−α,k

]
,(4.27)

where C ′′ is independent of k.
Since 0 < α ≤ `, it follows from (M) and iterations of (4.26) and (4.27) that

‖uk − ûk‖k ≤

 k∑
j=1

(
C′δr

C`
1

)j
(

hα
k‖u‖Z + h`

k‖F‖X′
)
,(4.28)

|||uk − ûk|||`−α,k ≤

 k∑
j=1

(
C ′′δr

C`+α
1

)j
(

h2α
k ‖u‖Z + h`+α

k ‖F‖X′
)
.(4.29)

The estimates (4.20) and (4.21) follow from (4.28) and (4.29) for r sufficiently
large.

The following corollary is an immediate consequence of (3.1), (3.17), Theo-
rem 3.8, Corollary 3.9 and Theorem 4.5.

Corollary 4.6. The following estimates hold under the assumptions of Theorem
4.5:

‖u− ûk‖k + ‖u− Ekûk‖V . hα
k‖u‖Z + h`

k‖F‖X′,(4.30)

|||Πku− ûk|||`−α,k + ‖u− Ekûk‖W . h2α
k ‖u‖Z + h`+α

k ‖F‖X′ .(4.31)

Remark. For fourth order problems, pointwise convergence of ûk follows from (4.31)
and the Sobolev inequality (cf., the remark after Example 6.1).
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Next we consider the symmetric variable V -cycle algorithm as a preconditioner.
Let Bk : Vk −→ Vk be defined by

Bkg = VMG(k, 0, g).

It can be shown by mathematical induction that Bk is a linear symmetric positive
definite operator with respect to (·, ·)k (cf., Theorem 4.5 in [10]). Therefore BkAk

is symmetric positive definite with respect to ak(·, ·). Our goal is to estimate the
condition number of BkAk with respect to the energy norm ‖·‖k induced by ak(·, ·).

The following lemma furnishes the crucial “regularity and approximation” esti-
mate in the Bramble-Pasciak-Xu theory for the symmetric variable V -cycle multi-
grid preconditioner.

Lemma 4.7. The following estimate holds:

|ak((I − Ik
k−1P

k−1
k )v, v)| .

(
(Akv, Akv)k

λk

)α/`

(ak(v, v))1−(α/`),(4.32)

for all v ∈ Vk, where λk (= ρ(Ak)) is the largest eigenvalue of Ak.

Proof. Let v ∈ Vk be arbitrary. Using (3.7), (3.11) and (4.8), we have

|ak((I − Ik
k−1P

k−1
k )v, v)| . |||(I − Ik

k−1P
k−1
k )v|||`−α,k |||v|||`+α,k(4.33)

. h2α
k |||v|||2`+α,k = h2α

k (A1+(α/`)
k v, v)k.

Hölder’s inequality implies that

(A1+(α/`)
k v, v)k ≤ (Akv, Akv)α/`

k (Akv, v)1−(α/`)
k .(4.34)

The estimate (4.32) follows from (4.33), (4.34) and (2.6).

We can now simply apply the Bramble-Pasciak-Xu theory ([10], [12], [13]) to obtain
the following theorem.

Theorem 4.8. The condition number of BkAk with respect to the energy norm
‖ · ‖k is bounded by a positive constant which is independent of the mesh parameter
k.

5. Applications to a model second order problem

In this section we apply our theory to the Poisson equation with homogeneous
Dirichlet boundary condition. Let Ω be a polygonal domain in R2 and f ∈ L2(Ω).
Consider the following boundary value problem:

−∆u = f in Ω and u = 0 on ∂Ω.(5.1)

Let V = H1
0 (Ω), and let a(·, ·) on V ×V be defined by a(v1, v2) =

∫
Ω∇v1 ·∇v2 dx.

Conditions (B) and (C) follow from the Cauchy-Schwarz inequality and the Poincaré
inequality (cf., [48]), respectively.

The weak formulation of (5.1) is to find u ∈ V such that

a(u, v) =
∫

Ω

fv dx ∀ v ∈ V.(5.2)
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By the elliptic regularity theory for non-smooth domains (cf., [36], [39], [40],
[41]), there exists α ∈ (1

2 , 1] such that for f ∈ H−1+α(Ω), the solution u of (5.2)
belongs to H1+α(Ω) and

‖u‖H1+α(Ω) . ‖f‖H−1+α(Ω).(5.3)

Let Z = H1+α(Ω) ∩H1
0 (Ω) and W = H1−α

0 (Ω) (= H1−α(Ω) since 1−α < 1/2).
Clearly, (R-1) holds and (R-2) follows from (5.3).

Let X = L2(Ω). From interpolation of Sobolev spaces (cf., [61] and [57]) we have

Z = [H1
0 (Ω), H2(Ω) ∩H1

0 (Ω)]α,(5.4)

and W = [L2(Ω), H1
0 (Ω)]1−α. In particular, the condition (C-3) holds.

The Laplacian ∆ is a bounded linear operator from H2(Ω) to L2(Ω), and from
H1(Ω) to H−1(Ω). Therefore by interpolation (cf., [61]) we have

‖∆ζ‖H−1+α(Ω) . ‖ζ‖H1+α(Ω) ∀ ζ ∈ H1+α(Ω).(5.5)

Let ζ ∈ Z and v ∈ V . There exists a sequence φn ∈ C∞
0 (Ω) (the space of

C∞ functions with compact supports in Ω) which converges to v ∈ V . Since
H1

0 (Ω) ↪→ H1−α
0 (Ω), the sequence φn also converges to v ∈ H1−α

0 (Ω). Therefore,
we have

a(ζ, v) = lim
n→∞

∫
Ω

∇ζ · ∇φn dx = lim
n→∞

(−∆ζ, φn) = (−∆ζ, v) ,(5.6)

where (·, ·) denotes the canonical duality bilinear form between H−1+α(Ω) and
H1−α

0 (Ω). The duality estimate (D) now follows from (5.5) and (5.6).
We now consider finite element multigrid methods for (5.2).

Example 5.1. Let {Tk} be a sequence of quasi-uniform triangulations (cf., [30],
[27]) of Ω. For simplicity we may assume that Tk+1 is obtained by connecting the
midpoints of the edges of the triangles in Tk. Therefore, (M) holds for C1 = C2 =
1/2.

Let V ∗
k = {v ∈ L2(Ω) : v|T is linear for all T ∈ Tk, v is continuous at the

midpoints of interelement boundaries} be the P1 nonconforming finite element space
associated with Tk (cf., [35]), and let Ṽ ∗

k = {v ∈ H1(Ω) : v|T is quadratic for all
T ∈ Tk} be the P2 conforming finite element space associated with Tk. The space
Vk (resp., Ṽk) is the subspace of V ∗

k (resp., Ṽ ∗
k ) whose members vanish at the

boundary nodes. Note that Vk � Ṽk and the conditions (C-1) and (C-2) clearly
hold. The finite element space V ∗

k is equipped with the inner product (·, ·)k defined
by (v1, v2)k = h2

k

∑
m v1(m)v2(m), where the summation is taken over all the

midpoints in the triangulation Tk. The equivalence of (v, v)k and (v, v)L2(Ω) is
standard. Hence (P) holds.

Let ak(·, ·) be defined by ak(v1, v2) =
∑

T∈Tk

∫
T ∇v1 · ∇v2 dx. Then (I) is a

standard inverse estimate (cf., [30], [27]). The discrete problem for (5.2) is to find
uk ∈ Vk such that

ak(uk, v) =
∫

Ω

fv dx ∀ v ∈ Vk.(5.7)

The interpolation operator Πk : V −→ Vk is defined by

(Πkv)(m) =
1
|e|

∫
e

v ds,(5.8)
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where m is the midpoint of the edge e. Note that

(Πkζ)
∣∣
T

= ζ
∣∣
T

if ζ
∣∣
T

is linear.(5.9)

The following estimate can be found in [35]:

‖ζ −Πkζ‖L2(T ) + hk|ζ −Πkζ|H1(T ) . hβ
k |ζ|Hβ (T ), β = 1, 2,(5.10)

for all T ∈ Tk and ζ ∈ Hβ(Ω) ∩ H1
0 (Ω). The estimate (Π-1) follows from (5.10)

with β = 1, and the estimate (Π-2) follows from (Π-1), (5.4), (5.10) with β = 2 and
interpolation.

The operators Ek : Vk −→ Ṽk and Fk : Ṽk −→ Vk are defined by{
(Ekv)(m) = v(m) for all internal midpoints m ∈ Tk,
(Ekv)(p) = average of vi(p) for all internal vertices p ∈ Tk,

where vi = v|Ti and Ti ∈ Tk contains p as a vertex, and

(Fk ṽ)(m) = ṽ(m) for all midpoints m ∈ Tk.(5.12)

Note that Fk is well-defined because Vk � Ṽk.
The relation (FE) is trivial, and the estimates (E) and (F) can be found in

[24]. For the proof of (EΠ), it is convenient (because we can ignore the boundary
conditions) to introduce the operator E∗

k : V ∗
k −→ Ṽ ∗

k which is defined by the same
formula in (5.11) for all midpoints and vertices of Tk. Note that for v ∈ Vk, we
have E∗

kv = Ekv except at the vertices on ∂Ω.
Let T ∈ Tk, and let ST be the interior of the union of the closures of all the

triangles in Tk neighboring T . We have the following estimate for E∗
k (cf., [24]).

‖E∗
kv − v‖2

L2(T ) . h2
T

∑
K∈ST

|v|2H1(K) ∀ v ∈ V ∗
k .(5.13)

It follows from (5.13) and a standard inverse estimate that

‖E∗v‖L2(T ) . ‖v‖L2(ST ) ∀ v ∈ V ∗
k .(5.14)

The definition of E∗
k also implies that

(E∗
kη)

∣∣
T

= η if η
∣∣
ST

is linear.(5.15)

Let T ∈ Tk. Let φ be an arbitrary linear function on ST and φ̃ ∈ H2(Ω) be an
extension of φ. For any ζ ∈ H2(Ω) ∩ H1

0 (Ω), it follows from (5.9), (5.10), (5.14)
and (5.15) that

‖E∗
kΠkζ − ζ‖L2(T ) ≤ ‖E∗

kΠk(ζ − φ̃)‖L2(T ) + ‖ζ − φ̃‖L2(T ) . ‖ζ − φ‖L2(ST ).(5.16)

Since φ is an arbitrary linear function on ST , it follows from (5.16) and the Bramble-
Hilbert lemma (cf., [11]) that

‖E∗
kΠkζ − ζ‖L2(T ) . h2

T |ζ|H2(ST ).(5.17)

Summing (5.17) over all the triangles T ∈ Tk, we have

‖E∗
kΠkζ − ζ‖L2(Ω) . h2

k|ζ|H2(Ω) ∀ ζ ∈ H2(Ω) ∩H1
0 (Ω).(5.18)
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Since EkΠkζ and E∗
kΠkζ differ only at the vertices along ∂Ω, we have

‖EkΠkζ − E∗
kΠkζ‖2

L2(Ω) . h2
k

∑
p∈∂Ω

∑
T ∈ Tk

T̄ 3 p

[(Πkζ)
∣∣
T
(p)]2(5.19)

. h2
k

∑
p∈∂Ω

∑
T ∈ Tk

T̄ 3 p

[(Πkζ)
∣∣
T
(p)− ζ(p)]2

. h4
k|ζ|2H2(Ω)

by (5.10). It follows from (5.18) and (5.19) that

‖EkΠkζ − ζ‖L2(Ω) . h2
k|ζ|H2(Ω) ∀ ζ ∈ H2(Ω) ∩H1

0 (Ω).(5.20)

By (5.10), (5.20) and standard inverse estimates, we have

‖EkΠkζ − ζ‖H1(Ω) . h−1
k ‖EkΠkζ −Πkζ‖L2(Ω) + ‖Πkζ − ζ‖k(5.21)

. hk|ζ|H2(Ω) ∀ ζ ∈ H2(Ω) ∩H1
0 (Ω).

On the other hand, using (E), (I) and (Π-1), we have

‖EkΠkζ − ζ‖L2(Ω) + hk‖EkΠkζ − ζ‖H1(Ω)(5.22)

. ‖EkΠkζ −Πkζ‖L2(Ω) + ‖Πkζ − ζ‖L2(Ω)

+ hk

(
‖EkΠkζ −Πkζ‖k + ‖Πkζ − ζ‖k

)
. hk ‖ζ‖H1(Ω) ∀ ζ ∈ H1

0 (Ω).

The estimate (EΠ) now follows from (5.4), (5.20), (5.21), (5.22) and interpolation.
Next we verify the assumptions (N-1) and (N-2). Let ζ ∈ H2(Ω) ∩H1

0 (Ω), and
let ζk ∈ Vk be related to ζ through (2.4). Let v ∈ Vk + V , then Green’s formula
implies that

ak(ζ, v) = −
∑

T∈Tk

∫
T

(∆ζ)v dx +
∑

e

∫
e

∂ζ

∂n
[v] ds,(5.23)

where [v] denotes the jump of v (in the direction of n) across the edge e, and the
second summation is taken over all the edges of Tk.

Since Ekv ∈ H1
0 (Ω), it follows from (2.4) and (5.23) that

ak(ζk, v) = −
∑

T∈Tk

∫
T

(∆ζ)Ekv dx ∀ v ∈ Vk.(5.24)

By subtracting (5.24) from (5.23), we obtain

ak(ζ − ζk, v) = −
∑

T∈Tk

∫
T

(∆ζ)(v − Ekv) dx +
∑

e

∫
e

∂ζ

∂n
[v] ds ∀ v ∈ Vk.(5.25)

Using the Cauchy-Schwarz inequality and (E), we have∣∣∣∣∣ ∑
T∈Tk

∫
T

(∆ζ)(v − Ekv) dx

∣∣∣∣∣ . hk ‖ζ‖H2(Ω)‖v‖k ∀ v ∈ Vk.(5.26)
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Since v is continuous at the midpoints, a standard argument (cf., [35]) shows that∣∣∣∣∣∑
e

∫
e

∂ζ

∂n
[v] ds

∣∣∣∣∣ . hk ‖ζ‖H2(Ω) ‖v‖k ∀ v ∈ Vk.(5.27)

Combining (5.25)–(5.27), we have

|ak(ζ − ζk, v)| . hk ‖ζ‖H2(Ω) ‖v‖k ∀ v ∈ Vk.(5.28)

Assume now that ζ ∈ H1
0 (Ω). By (2.4) and (3.1) we have

ak(ζk, ζk) = a(ζ, Ekζk) ≤ ‖ζ‖H1(Ω)‖Ekζk‖H1(Ω) . ‖ζ‖H1(Ω)‖ζk‖k.(5.29)

It follows from (5.29) that

‖ζk‖k . ‖ζ‖H1(Ω),(5.30)

which then implies

|ak(ζ − ζk, v)| ≤ ‖ζ − ζk‖k ‖v‖k . ‖ζ‖H1(Ω) ‖v‖k ∀ v ∈ Vk.(5.31)

The estimate (N-1) follows from (5.4), (5.28), (5.31) and interpolation.
From (5.25) we obtain

ak(ζ − ζk, Πkξ) = −
∑

T∈Tk

∫
T

(∆ζ)(Πkξ − EkΠkξ) dx +
∑

e

∫
e

∂ζ

∂n
[Πkξ] ds(5.32)

for ζ, ξ ∈ H2(Ω) ∩H1
0 (Ω).

It follows from the Cauchy-Schwarz inequality, (5.10) and (5.20) that∣∣∣∣∣ ∑
T∈Tk

∫
T

(∆ζ)(Πkξ − EkΠkξ) dx

∣∣∣∣∣ . h2
k ‖ζ‖H2(Ω)‖ξ‖H2(Ω).(5.33)

Since Πkξ is continuous at the midpoints, we have by a standard argument (cf.,
[35]) ∣∣∣∣∣∑

e

∫
e

∂ζ

∂n
[Πkξ] ds

∣∣∣∣∣ =

∣∣∣∣∣∑
e

∫
e

∂ζ

∂n
[Πkξ − ξ] ds

∣∣∣∣∣ . h2
k ‖ζ‖H2(Ω)‖ξ‖H2(Ω).(5.34)

Combining (5.32)–(5.34), we obtain

|ak(ζ − ζk, Πkξ)| . h2
k ‖ζ‖H2(Ω)‖ξ‖H2(Ω) ∀ ξ, ζ ∈ H2(Ω) ∩H1

0 (Ω).(5.35)

On the other hand, for ζ, ξ ∈ H1
0 (Ω), we get the following trivial estimate by

using (5.10) and (5.30):

|ak(ζ − ζk, Πkξ)| ≤ ‖ζ − ζk‖k‖Πkξ‖k . ‖ζ‖H1(Ω) ‖ξ‖H1(Ω).(5.36)

The estimate (N-2) follows from (5.4), (5.35), (5.36) and (bilinear) interpolation
(cf., [7]).

Finally, we define the intergrid transfer operator Ik
k−1. Let m be a midpoint of

an edge of a triangle in Tk. If m ∈ ∂Ω, then (Ik
k−1v)(m) = 0. If m lies in the

interior of a triangle in Tk−1, then (Ik
k−1v)(m) = v(m). Otherwise if m lies on

the common edge of two adjacent triangles T1 and T2 in Tk−1, then (Ik
k−1v)(m) =

1
2

[
v|T1(m)+v|T2(m)

]
. The proof of the estimate (I-1) can be found in [14] and [18].

Let ζ ∈ H2(Ω) ∩H1
0 (Ω). A slight modification of the arguments in [14] and [18]

(where the nodal interpolation operator was used) gives

‖Ik
k−1Πk−1ζ −Πkζ‖L2(Ω) . h2

k ‖ζ‖H2(Ω).(5.37)
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For ζ ∈ H1
0 (Ω), using (M), (Π-1) and (I-1) we have the estimate

‖Ik
k−1Πk−1ζ −Πkζ‖L2(Ω)

. ‖Ik
k−1Πk−1ζ −Πk−1ζ‖L2(Ω)

+ ‖Πk−1ζ − ζ‖L2(Ω) + ‖ζ −Πkζ‖L2(Ω)

. hk‖ζ‖H1(Ω).

(5.38)

The estimate (I-2) now follows from (5.4), (5.37), (5.38) and interpolation.
We have verified all of the assumptions in Section 2 for this example. Therefore

the results in Section 4 are applicable to the multigrid algorithms for (5.7).

In the next example, we omit the technical details since they can be carried out
along the same lines as in Example 5.1.

Example 5.2. In this example, we assume that the sides of the polygonal domain
Ω are parallel to the coordinate axes. Let {Tk} be a sequence of quasi-uniform
“triangulations” of Ω consisting of rectangles. For simplicity we may assume that
Tk+1 is obtained by connecting midpoints of the opposite sides of the rectangles in
Tk.

Let Vk = {v : v
∣∣
R
∈ 〈1, x1, x2, x

2
1−x2

2〉 ∀R ∈ Tk, v is continuous at the midpoints
of the interelement boundaries and vanishes at the midpoints on ∂Ω} be the non-
conforming “rotated” bilinear element (cf., [52]), and Ṽk = {v ∈ H1

0 (Ω) : v
∣∣
R

is
biquadratic for all R ∈ Tk} be the conforming Q2 finite element space. Note that
Vk � Ṽk. The inner product for Vk is defined by (v1, v2)k = h2

k

∑
m v1(m)v2(m),

where the summation is taken over all internal midpoints m of the triangulation
Tk.

Let ak(·, ·) be defined by ak(v1, v2) =
∑

R∈Tk

∫
R∇v1 · ∇v2 dx. The discrete

problem is again given by (5.7).
The interpolation operator Πk : V −→ Vk is defined by the same formula in

(5.8), and the estimate (5.10) remains valid (cf., [52]).
The operator Ek : Vk −→ Ṽk is defined by (Ekv)(m) = v(m) for all internal

midpoints m ∈ Tk, (Ekv)(c) = v(c) for all centroids c ∈ Tk, and (Ekv)(p) =
average of vi(p) for all internal vertices p ∈ Tk, where vi = v

∣∣
Ri

and Ri ∈ Tk

contains p as a vertex.
The operator Fk : Ṽk −→ Vk is defined by the same formula in (5.12), and the

intergrid transfer operator is defined by averaging as in Example 5.1.
All the assumptions in Section 2 can be verified for this example by the same

arguments used in Example 5.1. Hence the results in Section 4 are applicable to
the multigrid methods for (5.7) using the “rotated” Q1 finite elements.

Remark. The nonconforming P1 and “rotated” Q1 finite elements are equivalent to
the lowest order triangular and rectangular Raviart-Thomas mixed finite elements
(cf., [53], [4], [2]). There are multigrid methods for (5.1) using the lowest order
Raviart-Thomas elements (cf., [19], [2]) which are based on the multigrid methods
for the nonconforming elements. The results in Section 4 are therefore applicable
to these multigrid algorithms for the lowest order Raviart-Thomas finite elements.

6. Applications to a model fourth order problem

In this section we apply our theory to the biharmonic equation with homogeneous
Dirichlet boundary conditions. Let Ω be a bounded polygonal domain in R2 and
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f ∈ L2(Ω). Consider the following boundary value problem.

∆2u = f in Ω and u =
∂u

∂n
= 0 on ∂Ω.(6.1)

Let V = H2
0 (Ω), and let a(·, ·) on V be defined by either

a(v, w) =
∑

i,j=1,2

∫
Ω

vxixj wxixj dx

or

a(v, w) =
∫

Ω

[
∆v∆w + (1 − σ)

(
2vx1x2wx1x2 − vx1x1wx2x2 − vx2x2wx1x1

)]
dx,

where σ is the Poisson ratio and 0 < σ < 1
2 . For either choice of the variational

form a(·, ·), conditions (B) and (C) follow from the Cauchy-Schwarz inequality and
the generalized Poincaré inequality (cf., [48]), respectively.

The weak formulation of (6.1) is to find u ∈ V such that

a(u, v) =
∫

Ω

fv dx ∀ v ∈ V.(6.2)

By the elliptic regularity theory for non-smooth domains (cf., [36], [39], [40],
[41]), there exists α ∈ (1

2 , 1] such that for f ∈ H−2+α(Ω), the solution u of (6.2)
belongs to H2+α(Ω) and

‖u‖H2+α(Ω) . ‖f‖H−2+α(Ω).(6.3)

Let Z = H2+α(Ω) ∩ H2
0 (Ω) and W = H2−α

0 (Ω). Clearly, (R-1) holds. Since
W ′ = H−2+α(Ω), the estimate (R-2) follows from (6.3).

Let X = L2(Ω). By the interpolation of Sobolev spaces (cf., [61], [57]), we have

Z = [H2
0 (Ω), H3(Ω) ∩H2

0 (Ω)]α,(6.4)

and W = [L2(Ω), H2
0 (Ω)]1−α/2. In particular, the condition (C-3) holds.

The biharmonic operator ∆2 is a bounded linear operator from H3(Ω) to H−1(Ω),
and from H2(Ω) to H−2(Ω). Therefore by interpolation we have

‖∆2ζ‖H−2+α(Ω) . ‖ζ‖H2+α(Ω) ∀ ζ ∈ H2+α(Ω).(6.5)

As in the case of the Poisson equation (cf., Section 5), the duality estimate (D)
follows from (6.5) and a density argument.

We now consider finite element multigrid methods for (6.2). In the following
examples, {Tk}∞k=1 is a sequence of quasi-uniform triangulations of Ω. For simplicity
we assume that Tk+1 is obtained by connecting the midpoints of the edges of the
triangles in Tk. Let T ∈ Tk. We denote by ST the interior of the union of the
closures of the triangles in Tk neighboring T .

Example 6.1. Let V ∗
k = {v ∈ L2(Ω) : v

∣∣
T

is quadratic, v is continuous at the
vertices and ∂v/∂n is continuous at the midpoints of interelement boundaries}
be the Morley finite element space associated with Tk (cf., [47]), and let Ṽ ∗

k be
the Hsieh-Clough-Tocher macro element space associated with Tk (cf., [34]). A
function ṽ ∈ Ṽ ∗

k is C1 on Ω̄, and its restriction to each T ∈ Tk is piecewise cubic
on the three triangles formed by the centroid and the vertices of T . The space
Vk (resp., Ṽk) is the subspace of V ∗

k (resp., Ṽ ∗
k ) whose members have zero nodal

values along ∂Ω. Note that Vk � Ṽk. The inner product for V ∗
k is defined by
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(v, w)k = h2
k

∑
p v(p)w(p)+h4

k

∑
m

∂v
∂n (m)∂w

∂n (m), where the summations are taken
over all vertices p and midpoints m in Tk.

The symmetric positive definite bilinear form ak(·, ·) is defined by either

ak(v, w) =
∑

T∈Tk

∑
i,j=1,2

∫
T

vxixj wxixj dx

or

ak(v, w) =
∑

T∈Tk

∫
T

[
∆v∆w + (1− σ)

×
(
2vx1x2wx1x2 − vx1x1wx2x2 − vx2x2wx1x1

)]
dx.

The discrete problem for (6.2) is to find uk ∈ Vk such that

ak(uk, v) =
∫

Ω

fv dx ∀v ∈ Vk.(6.6)

Clearly, (M), (C-1), (C-2), (I) and (P) are satisfied.
The interpolation operator Πk : V −→ Vk is defined by

(Πkv)(p) = v(p) and
∂(Πkv)

∂n
(m) =

1
|e|

∫
e

∂v

∂n
ds,(6.7)

where p and m range over the internal vertices and midpoints of Tk, and m is the
midpoint of the edge e. Note that

(Πkζ)
∣∣
T

= ζ
∣∣
T

if ζ
∣∣
T

is quadratic.(6.8)

The following interpolation estimates are established by the standard techniques
for almost affine family of finite elements (cf., [30]).

‖ζ −Πkζ‖L2(T ) + hk|ζ −Πkζ|H1(T )

+ h2
k|ζ −Πkζ|H2(T ) . hβ

k |ζ|Hβ (T ), β = 2, 3,
(6.9)

for all T ∈ Tk and ζ ∈ Hβ(Ω) ∩ H2
0 (Ω). The estimate (Π-1) follows from (6.9)

with β = 2, and the estimate (Π-2) follows from (Π-1), (6.4), (6.9) with β = 3 and
interpolation. From (6.9) with β = 3 we also have( ∑

T∈Tk

|ζ −Πkζ|2H1(T )

)1/2 . h2
k‖ζ‖H3(Ω) ∀ ζ ∈ H3(Ω) ∩H2

0 (Ω).(6.10)

Let p and m be the internal vertices and midpoints of Tk. The operators Ek :
Vk −→ Ṽk and Fk : Ṽk −→ Vk are defined by

(Ekv)(p) = v(p),

∂(Ekv)
∂n

(m) =
∂v

∂n
(m),(6.11)

[∂β(Ekv)](p) = average of (∂βvi)(p), |β| = 1,

where vi = v|Ti and Ti contains p as a vertex, and

(Fkṽ)(p) = ṽ(p) and
∂(Fk ṽ)

∂n
(m) =

∂ṽ

∂n
(m) .(6.12)

Note that Fk is well–defined because Vk � Ṽk. Clearly the relation (FE) holds, and
(F) follows from a simple element by element calculation.
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Let E∗
k : V ∗

k −→ Ṽ ∗
k be defined by the same formulas in (6.11) for all vertices

and midpoints of Tk. A straightforward computation (cf., the similar computation
in [24] where the Argyris element was used instead of the Hsieh-Clough-Tocher
element) yields

‖E∗
kv − v‖2

L2(T ) . h4
k

∑
K∈ST

|v|2H2(K) ∀ v ∈ V ∗
k .(6.13)

Moreover,

(E∗
kη)

∣∣
T

= η if η
∣∣
ST

is quadratic.(6.14)

It follows that

‖E∗
kv − v‖2

L2(Ω) . h4
k

∑
T∈Tk

|v|2H2(T ) ∀ v ∈ V ∗
k .(6.15)

Let v ∈ Vk. Since Ekv and E∗
kv differ only by their first order derivatives at the

vertices along ∂Ω, we have

‖Ekv − E∗
kv‖2

L2(Ω) . h6
k

∑′‖∇2v‖2
L∞(T ) . h4

k‖v‖2
k ∀ v ∈ Vk,(6.16)

where the summation
∑′ in (6.16) is taken over the triangles in Tk neighboring ∂Ω.

The estimate (E) follows from (6.15) and (6.16). A standard inverse estimate
then yields ( ∑

T∈Tk

|Ekv − v|2H1(T )

)1/2 . hk‖v‖k ∀ v ∈ Vk.(6.17)

Using (6.8), (6.9), (6.13), (6.14) and the Bramble-Hilbert lemma as in Example
5.1, we obtain

‖E∗
kΠkζ − ζ‖L2(Ω) . h3

k|ζ|H3(Ω) ∀ ζ ∈ H3(Ω) ∩H2
0 (Ω).(6.18)

Since EkΠkζ and E∗
kΠkζ differ only by their first order derivatives at the vertices

along ∂Ω, we have, by (6.9),

‖EkΠkζ − E∗
kΠkζ‖2

L2(Ω) . h4
k

∑
p∈∂Ω

∑
T∈Tk

T̄3p

∣∣∣∇(Πkζ)
∣∣
T

∣∣∣2(p)

. h4
k

∑
p∈∂Ω

∑
T∈Tk

T̄3p

∣∣∣∇(Πkζ)
∣∣
T
−∇ζ

∣∣∣2(p)(6.19)

. h6
k|ζ|2H3(Ω) ∀ ζ ∈ H3(Ω) ∩H2

0 (Ω).

It follows from (6.18) and (6.19) that

‖EkΠkζ − ζ‖L2(Ω) . h3
k|ζ|H3(Ω) ∀ ζ ∈ H3(Ω) ∩H2

0 (Ω).(6.20)

By (6.9), (6.20) and standard inverse estimates, we have

‖EkΠkζ − ζ‖H2(Ω) . h−2
k ‖EkΠkζ −Πkζ‖L2(Ω) + ‖Πkζ − ζ‖H2(Ω)(6.21)

. hk|ζ|H3(Ω) ∀ ζ ∈ H3(Ω) ∩H2
0 (Ω).

By (I), (E) and (Π-1) we also have the trivial estimate

‖EkΠkζ − ζ‖L2(Ω) + h2
k‖EkΠkζ − ζ‖H2(Ω) . h2

k‖ζ‖H2(Ω) ∀ ζ ∈ H2
0 (Ω).(6.22)

The estimate (EΠ) follows from (6.4), (6.20), (6.21), (6.22) and interpolation.

License or copyright restrictions may apply to redistribution; see https://www.ams.org/journal-terms-of-use



48 SUSANNE C. BRENNER

Next we turn to the assumptions (N-1) and (N-2). Let ζ ∈ H3(Ω) ∩H2
0 (Ω) and

ζk ∈ Vk be related to ζ through (2.4). Let v ∈ Vk +V ; then by the Green’s formula
(cf., [59]) we have

ak(ζ, v) = −
∑

T∈Tk

∫
T

∇(∆ζ) · ∇v dx +
∑

e

∫
e

(
G1(ζ)[vx1 ] + G2(ζ)[vx2 ]

)
ds,(6.23)

where G1(ζ) and G2(ζ) are combinations of second order derivatives of ζ, [vx1 ] and
[vx2 ] denote the jumps of vx1 and vx2 across the edge e, and the second summation
is taken over all edges e of Tk.

Since Ekv ∈ H2
0 (Ω), it follows from (2.4) and (6.23) that

ak(ζk, v) = −
∑

T∈Tk

∫
T

∇(∆ζ) · ∇(Ekv) dx.(6.24)

By subtracting (6.24) from (6.23) we obtain

ak(ζ − ζk, v) =−
∑

T∈Tk

∫
T

∇(∆ζ) · ∇(v − Ekv) dx(6.25)

+
∑

e

∫
e

(
G1(ζ)[vx1 ] + G2(ζ)[vx2 ]

)
ds ∀ v ∈ Vk.

By the Cauchy-Schwarz inequality and (6.17) we have∣∣∣∣∣ ∑
T∈Tk

∫
T

∇(∆ζ) · ∇(v − Ekv) dx

∣∣∣∣∣ . hk‖ζ‖H3(Ω) ‖v‖k ∀ v ∈ Vk.(6.26)

Since vx1 and vx2 are continuous at the midpoints, we have, by a standard argument
for nonconforming finite elements,∣∣∣∣∣∑

e

∫
e

(
G1(ζ)[vx1 ] + G2(ζ)[vx2 ]

)
ds

∣∣∣∣∣ . hk‖ζ‖H3(Ω) ‖v‖k ∀ v ∈ Vk.(6.27)

Combining (6.25)–(6.27), we obtain

|ak(ζ − ζk, v)| . hk‖ζ‖H3(Ω) ‖v‖k ∀ v ∈ Vk.(6.28)

Let ζ ∈ H2
0 (Ω). Then we have the obvious estimate

‖ζk‖k . ‖ζ‖H2(Ω),(6.29)

which implies that

|ak(ζ − ζk, v)| . ‖ζ − ζk‖k‖v‖k . ‖ζ‖H2(Ω)‖v‖k ∀ v ∈ Vk.(6.30)

The estimate (N-1) now follows from (6.4), (6.28), (6.30) and interpolation.
By (6.9) and (6.20) we have

‖EkΠkξ −Πkξ‖L2(Ω) . ‖EkΠkξ − ξ‖L2(Ω) + ‖ξ −Πkξ‖L2(Ω)(6.31)

. h3
k‖ξ‖H3(Ω) ∀ ξ ∈ H3(Ω) ∩H2

0 (Ω).

A standard inverse estimate then implies that( ∑
T∈Tk

|EkΠkξ −Πkξ|2H1(T )

)1/2 . h2
k ‖ξ‖H3(Ω) ∀ ξ ∈ H3(Ω) ∩H2

0 (Ω).(6.32)
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It follows from (6.25) that

ak(ζ − ζk, Πkξ) = −
∑

T∈Tk

∫
T

∇(∆ζ) · ∇(Πkξ − EkΠkξ) dx(6.33)

+
∑

e

∫
e

(
G1(ζ)[(Πkξ)x1 ] + G2(ζ)[(Πkξ)x2 ]

)
ds

for ζ, ξ ∈ H3(Ω) ∩H2
0 (Ω).

By the Cauchy-Schwarz inequality and (6.32) we have∣∣∣∣∣ ∑
T∈Tk

∫
T

∇(∆ζ) · ∇(Πkξ − EkΠkξ) dx

∣∣∣∣∣ . h2
k‖ζ‖H3(Ω) ‖ξ‖H3(Ω)(6.34)

for ζ, ξ ∈ H3(Ω) ∩H2
0 (Ω).

A standard argument for nonconforming finite elements shows that∣∣∣∣∣∑
e

∫
e

(
G1(ζ)[(Πkξ)x1 ] + G2(ζ)[(Πkξ)x2 ]

)
ds

∣∣∣∣∣
.

∣∣∣∣∣∑
e

∫
e

(
G1(ζ)[(Πkξ)x1 − ξx1 ] + G2(ζ)[(Πkξ)x2 − ξx2 ]

)
ds

∣∣∣∣∣(6.35)

. h2
k‖ζ‖H3(Ω) ‖ξ‖H3(Ω) ∀ ζ, ξ ∈ H3(Ω) ∩H2

0 (Ω).

Combining (6.33)–(6.35), we obtain

|ak(ζ − ζk, Πkξ)| . h2
k‖ζ‖H3(Ω) ‖ξ‖H3(Ω) ∀ ζ, ξ ∈ H3(Ω) ∩H2

0 (Ω).(6.36)

On the other hand, for ζ, ξ ∈ H2
0 (Ω), the estimates (6.9) and (6.29) imply that

|ak(ζ − ζk, Πkξ)| . ‖ζ‖H2(Ω)‖ξ‖H2(Ω).(6.37)

The estimate (N-2) now follows from (6.4), (6.36), (6.37) and (bilinear) interpola-
tion.

The intergrid transfer operator Ik
k−1 : Vk−1 −→ Vk is defined by averaging as

follows. Let p be a vertex of Tk inside Ω. If p is also a vertex of Tk−1, then
(Ik

k−1v)(p) = v(p). If p is the midpoint of the common edge of two triangles T1 and
T2 ∈ Tk−1, then

(Ik
k−1v)(p) =

1
2
[
v
∣∣
T1

(p) + v
∣∣
T2

(p)
]
.

Let m be a midpoint of an edge e of Tk inside Ω and n be a unit normal of e. If m
is in the interior of a triangle in Tk−1, then

∂(Ik
k−1v)
∂n

(m) =
∂v

∂n
(m).

If m is on the common edge of two triangles T1 and T2 in Tk−1, then

∂(Ik
k−1v)
∂n

(m) =
1
2

[
∂v|T1

∂n
(m) +

∂v|T2

∂n
(m)

]
.

The estimate (I-1) follows immediately from the estimates in [16], and the estimate
(I-2) follows from the estimates in [16] and interpolation, as in Example 5.1.

Since all of the assumptions of our theory hold for this example, the results in
Section 4 are applicable to the multigrid methods for (6.6).
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Remark. For 1/2 < α < 1, the estimate (4.31) and the Sobolev inequality (cf., [61])
imply that

sup
x∈Ω̄

∣∣u(x)− [Ekûk](x)
∣∣ . h2α

k ‖u‖H2+α(Ω) + h2+α
k ‖f‖L2(Ω).

Since Ekv and v coincide at the vertices, we have

max
p

|u(p)− ûk(p)| . h2α
k ‖u‖H2+α(Ω) + h2+α

k ‖f‖L2(Ω),

where the summation is taken over all the vertices of Tk.
In the case α = 1, we have, for any 0 < β < 1,

max
p

|u(p)− ûk(p)| ≤ Cβ

[
h2β

k ‖u‖H2+β(Ω) + h2+β
k ‖f‖L2(Ω)

]
.

Remark. The symmetric variable V -cycle preconditioner for the Morley finite ele-
ment method can also be used to precondition the Argyris finite element method
(cf., [3], [26]).

Remark. The results in Example 6.1 are also valid for the Adini element (cf., [1],
[29], [45]) and the incomplete biquadratic element (cf., [58]), which are connected
to the Bogner-Fox-Schmit element (cf., [8]) and the Fraeijs de Veubeke-Sander
quadrilateral element (cf., [54], [38], [32]), respectively.

Example 6.2. Let Vk = Ṽk ⊆ H2
0 (Ω) be the Hsieh-Clough-Tocher or the reduced

Hsieh-Clough-Tocher macro finite element space associated with Tk (cf., [34], [31],
[51]), and let ak(·, ·) = a(·, ·) on Vk. The discrete problem for (6.2) is to find uk ∈ Vk

such that

a(uk, v) =
∫

Ω

fv dx ∀ v ∈ Vk.(6.39)

There exists an interpolation operator Πk : V −→ Vk such that

‖ζ −Πkζ‖L2(T ) + h2
k|ζ −Πkζ|H2(T ) . hβ

k |ζ|Hβ (ST ), β = 2, 3,(6.40)

and

(Πkζ)
∣∣
T

= ζ
∣∣
T

if ζ
∣∣
ST

is quadratic.(6.41)

The estimates (Π-1) and (Π-2) follow from (6.40). The operator Πk can be con-
structed by using the techniques in [33] and [56]. For the Hsieh-Clough-Tocher
element, we can also take Πk to be the composition of the interpolation opera-
tor for the Morley element defined in (6.7) and the connection operator defined in
(6.11).

Let Ek = Fk = identity map on Vk. The estimates (E), (EΠ), (F), (FE), (N-1)
and (N-2) are then completely trivial. We can take Ik

k−1 : Vk−1 −→ Vk to be the
nodal interpolation operator. Then (I-1) is a standard interpolation error estimate.
Moreover, we have

(Ik
k−1v)

∣∣
T

= v
∣∣
T

if v
∣∣
T

is quadratic.(6.42)

The estimates (Π-1) and (I-1) imply that

‖Ik
k−1Πk−1ζ −Πkζ‖L2(Ω) . h2

k ‖ζ‖H2(Ω) ∀ ζ ∈ H2
0 (Ω).(6.43)
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Using (6.41), (6.42) and the Bramble-Hilbert lemma, we obtain (cf., the proof of
(6.20))

‖Ik
k−1Πk−1ζ −Πkζ‖L2(Ω) . h3

k ‖ζ‖H3(Ω) ∀ ζ ∈ H3(Ω) ∩H2
0 (Ω).(6.44)

The estimate (I-2) follows from (6.4), (6.43), (6.44) and interpolation.
Therefore the results from Section 4 can be applied to these macro element

methods.

References

1. A. Adini and R.W. Clough, Analysis of plate bending by the finite element method, NSF
Report G. 7337 (1961).

2. T. Arbogast and Z. Chen, On the implementation of mixed methods as nonconforming meth-
ods for second order elliptic problems, Math. Comp. 64 (1995), 943–972.

3. J.H. Argyris, I. Fried and D.W. Scharpf, The TUBA family of plate elements for the matrix
displacement method, Aero. J. Roy. Aero. Soc. 72 (1968), 701–709.

4. D.N. Arnold and F. Brezzi, Mixed and nonconforming finite element methods: implementa-
tion, postprocessing and error estimates, R.A.I.R.O Modél. Math. Anal. Numér. 19 (1985),
7–32. MR 87g:65126

5. D.N. Arnold and R.S. Falk, A uniformly accurate finite element method for the Reissner-
Mindlin plate, SIAM J. Numer. Anal. 21 (1990), 281-312. MR 91c:65068

6. R.E. Bank and T.F. Dupont, An optimal order process for solving finite element equations,
Math. Comp. 36 (1981), 35–51. MR 82b:65113
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