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Department of Computer Science
West Lafayette, IN 47907

CSD TR 596
May 15, 1986

ABSTRACT

This paper presents a new class of collocation methods using cubic splines for solving elliptic partial
differential equations (PDES). The error bounds obtained for these methods are optimal. The methods are
formulated and a convergence analysis is carried out for a broad class of elliptic PDEs. Experimental
results confirm the optimal convergence and indicate that these methods are computationally more efficient
than methods based on either collacation with Hermite cubics or on Galerkin with cobic splines.



1, INTRODUCTION

We consider the formulation and analysis of a method for approximating the solution u{x,y) of the

elliptic linear partial differential equation

Lu =oDu + BD,Dyu +¥D2u + 8D, u + eDu +{u=—f in Q=[ab]x[e.d] (LD

subject to homogeneous Dirichlet or Nenmann boundary conditions

Bu =0 on 9Q= bovndary of Q (1.2)
where Bu is u, D, u or D, u. Throughout it is assumed that the coefficients a.B,y satisfy the ellipticity con-
dition B? — 4ay < 0. “

The method considered in this paper involves the determination of the bicubic spline piecewise poly-
nomial u 4(xy) over the partition A of Q. The spline u, is chosen to satisfy exactly the boundary condi-
tions and an operator equation L’u, = —f at the interior grid points of A, where L” is a high order perturba-
tion of L plus additional spline end conditions. An implementation of the method exists in ELLPACK
[Rice 85] for equation (1.1) and mixed homogeneous boundary conditions. The method of collocation at
nodal points based on Iensor product of cubic splines was first analyzed independently in [Cave 72 and
[Ito 72] for Helmholiz elliptic PDEs with Dirichlet boundary conditions on a square. Second order conver-
gence of the method was proved. The formulation of this methed for more general elliptic PDEs was con-
sidered in [Ito 72] without deriving any error estimates. In [Amo 84] the nodal collocation method using
the tensor product of smoothest splines of arbitrary odd order is analyzed for a certain class of elliptic
PDEs. The results indicate the failure of this method to preduce an optimal order approximation for the
solution of (1.1),(1.2). Optimal order of convergence is obtained in various Sobolev spaces with order
greater or equal to the order of the operator. In [Fyfe 69],[Arch 73],[Cave 72],[Dani 75],[Rubi 76],[Arch
77] variants of the nodal cubic spline collocation are studied yielding O (&%) discrete and semidiscrete
approximations 10 one dimensional elliptic and parabolic equations. In these studies the collocation
approximation is required to satisfy a perturbed differential equation and boundary conditions within
O (k. These high order perturbations are derived through an accurate spline interpolant of the true solu-

tion ang its derivatives. This idea was first introduced in [Fyfe 69] and the method was formulaied as a
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deferred correction type. Applying the same idea, an O (h*) line cubic spline collocation method was intro-
duced in [Rome 79] for the Poisson equation and in [Hous 84], [Vava 85) for larger classes of problems.

The iterative solution of the resulting linear equations is studied extensively in [Hous 84] and [Vava 85).

2, HIGH ORDER INTERPOLATION RELATIONS

In this section we derive a high order perturbation L’ of L based on various interpolation results for
cubic splines. Throughout we denote by A, = {x, =a +Mh,; k=0 10 N with h, = (b—a)/N} and
Ay s{yy=c+1ih;1=0wM with b, =(d—c)/M} the uniform pariitions of [a,b] and [c,d]. Then
A=A, x A, is the induced uniform partition of Q. The nodal points (x;, y;) of A -arc b-roken into three
sets, for later use as follows: €3, = points interior to , Qp = points of 3K but not comer points, Q. =
comer points of A. Throughout, we denote by S, = Py M C? ([ab]) the space of one-dimensional
cubic splines with respect 1o a partition 7, of {a,b] and by §{% , the subspace of S, = Whose elements
satisfy the boundary conditons (1.2).

We define S{3 to be the space of the two-dimensional splines associated with A and which satisfy
exactly the boundary conditions (1.2). We can construct a basis for § 3(?3 by' forming the tensor product of
basis elements of the onc-dimensional splines S§%, and 8{%,. If n, = {, =a + ik, i =—1 10 n+l,

h = (b—a)in} is a uniform partition of [a,b] then the basis functions {lf,—} for §; x, can be chosen so that
Bi(ty)= V6, B;()=23, B (u)= Uk B () =- wh2,
B{(4) = 142h) and B[(yy) =-1/(2k).
In the case of Dirichlet boundary conditions the basis functions B; of the subspace 42 can be
defined in terms ofﬁj's by
By(x) = Bofx) — 4B_y(x), By(x)=FB(x) - B(x),

Bi(x)=HB;(x), i =2,..., N2 @.1
By_y(x) = By_y(x) — Byy(x) and By = By(x) — 4By (x).

Similarly, for Neumann boundary conditions, the basis functions for § ﬂ_ can be defined by
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Bo(x) = Bo(x), By(x)=E_(x) + B\(x),
Bi(x)=B;(x), i=2,..., N2, By_(x) = By (x) + By (x) and (2.2)
By(x) = By(x) .

Throughout we adopt the following representation of x

N M
uﬂ(x,y) = E Z UI.J B.(I)BJ()’) (23)
i=0 j=0
In order to formulate the spline-collocation method and prove its convergence, we need to derive
some resulls on bicubic spline interpolation. Throughout we denote by S (x +¥) the bicubic spline interpo-

lant of u in § §% snch that

S;J=u;J.ISisN,iSjSM, . 2.4
D25 ;=Dx;, 0<j<M, i=0N, (2.5)
DJS;; =D2uy;, 0si <N, j=0M, 2.6)
DDJS;; =DMy ;, i=0N j=0M, @7

where we use (he notation
Si;=SCy)  and oz =ugy).

Next, we list several useful identities that S satisfies.
Lemma 2.11f u € CYQ), then the following relations hold at the nodes (x; ;) of a uniform partition A

DlS;; =DM ;- (b Dlu; ;112 + 0 (5, (2.82)
D?S;; = Dju; ; — () Dfu; ;112 + O (1)), (2.8b)

The relations (2.8) are direct consequences of the discussion in [Luca 74].
Corollary 2.1 Under the hypotheses of Lemma 2.1, we have

(D28, ;—2DXS; ; + D28; ;)2 = Dfu;; + O(hD (2.9)

Jor 1<i sN-1and0<j<M.

The relation (2.9) is established by a straightforward application of Lemma 2.1, while a similar relation

holds for D;‘u. Similarly, using well known relationships valid for any smooth one-dimensional cubic



-5_
spline [Luca 74] for uniform meshes and Corollary 2.1, it is relatively simple to prove the following.

Lemma 2.2 Jf u € CS(Q), then at the interior nodes (S ) of A we have

(DI8; 15 + 10D2S; ; + D254 )12 = D2uy ; + O (B, (2.10a)
(DS; jo1 + 10D]S; ; + D28, ;)12 =D2u; ; + O (b)), (2.10b)
D:Siy=Deuyy+ Oy, DySi;=Dyu; + 0D (2.10¢c)

By Taylor's expansion, it can be shown that D/uy; =2Du; - Dfuy; + O(h2) and
Dluy; =2Dtuy; — Diuy o; + O(h2) for 1< j <M. Similar relations hold for DJu; g and Dy,

for1 £i <N, These together with (2.9) imply the following result.

Corollary 2.2 If u € C¥(Q), then at the boundary nodes (Qy ) of A we have

(14D2§o; — 5DS\; +4D2S2; — D284; W12 =Dy + O( k') (2.11a)
(14D2Sy; — 5D Sy_1; + 4D Sy _5; — D XSy.a; V12 =Dy i tOo(RY) (2.11b)
(14D,7§; 0~ SDJS; | + 4D7S; 5~ D,’S: 3 12 = D} o + O (b} ) 2.11c)
(14D7S; 31 — 5D)S; sy + AD2S; pt_2 = DJSi ygy Y12= Dy + O (1)) (2.11d)

It is worth noticing that the relations (2.8) to (2.11) are independent of the spline end conditions. The fol-
lowing results will be used later to develop discretization error bounds for a class of two-dimensional ellip-

tic boundary value problems.
Lemma 2.3ffu € CYQ), then we have

() D,D,S;; =D;Dyu; ; + O (h') + O(h) (2.122)
() DfD} S;; =DED)u;; + O+ O™, 2<k+1<4 (2.12b)

at each node of A, and, with h = max(h,, h,),

(i) |1DDJ(-S$)1.=0G" "), 0<kJ <2 (2.12¢)
The relations (2.12) can be derived from the discussion in [Carl 73] with minor modifications. Using the
relations of Lemmas 2.1 to 2.3 and the corresponding corollaries we can prove the following result on

which the formulation of the spline-collocation method is based.
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Theorem 2.1 Suppose u € C5Q), 0., 8,7. 5,6, L e CIQLf € CUQ)and h = max(h, ). Then

LS;;=—f;; +O(?, for 0Si <N,0<j<M, | (2.13)
and

L'S;; =—fi;+ 0%, for (x; V) E &, (2.14)
where the functions 0, B, .8 ,& and { are evaluated at the associated points and the operator L' (a high
order pertwbation of L) is given symbolically at the point {x; Y;). by the stencil S.1. Furthermore at boun-

dary nodes Qg the following relations hold for each type of boundary conditions:

Case of Dirichlet conditions at x = x,

’ 1
L’So; =15 (14D780;~5D;75, j+4D.2525~D7S 1)+ BD,D, S0 48D, So; =~f o; +0 (h%), (2.152)

Case of Neumann conditions at x = x,

L'Sy; = -%(140330 J—5D8, D28, ;D255 ;) + ¢D, S, (2.15b)
& O} Sy + 1007504078 00} + L So = —f o5 + O (1Y)

Similar relations hold for the other boundary sides.

3. CUBIC SPLINE COLLOCATION METHOD FOR GENERAL ELLIPTIC PDES

In this section we define the cubic spline collocation method for the case of homogeneous boundary
conditions (1.2). Based on the relation (2.14), we define an approximation u, € S}?A to the solution 1 of

(1.1), (1.2) by using the method of collocation such that it satisfies:



/ 5= D55 (2 y5+1) )

%IQDZS(::.-, '.':'J') + 1D35(::;, v;)] -
-F,-DES[:.-..;,!;,'] +6D.8(z;, 5':') + EDUS(“I': y,') . Ti'Dzs(-"Hln!H)
+ﬂD=-DyS(3is yj) + gs(zl-l yj)

\ %D:S(Ii: y:'—l} )

Stencil 8.1. Definition of LS at Q; in terms of the cubic spline interpolant § and its derivatives at the grid
points Q; UK. L°S is defined at boundary nodes by (2.15a) or (2.15b).

(i) the interior collocation equations

[.’.’.’u,1 - (—f)](:m) =0  at the interior grid points ; G

where L’ is defined by S.1,

(ii) the boundary collocation equations

[L’un - (-f) ] gy =0 @ the boundary knots O (3.2

where L” is defined by (2.15a) or (2.15b) depending on the type of boundary conditions (1.2).

Notice that the cubic spline interpolant S satisfies the above equations (3.1) and (3.2) within an error
of order O(A*). The convergence of this method for the case of Helmholtz equations with non constant
coefficients is analyzed in Section 4. Here we examine the solvability of the collocation equations. We use
the notations ¢ =k, /k,, O ={(x;,y;) € A 2<i SN-2, 2<jsM-2}and Q' =0, - Qf. If we

substitute u, in (3.1} with its representation (2.3) then the following result holds.

Lemma 3.1 Let A be the coefficient matrix of interior collocation equations (3.1} and assume { < 0. Then

A is diagonally dominant for sufficiently small h,, h, provided that



B 2o
odp e ( 2 18 Y. at QF poinis,

40 132 . 63 128
o%lp € (433 * a5 ) - Dirichler case), o%p € ( 128 eg ) Newnann case) ,(3.3)

at the poinis (x;,y; ), i=1,N-1 , j=1,M-1,

128

ozlpe(— 0

70
128 40 ) , (Dirichlet case), o&*lp € (ﬁ' .

) , (Neumann case) ,

at the points (x;.y; ), i=1.N-1 , j=2,...M-2, or i=2,... N-2, j=1 M-I

hy

where G = ——andp

Iy

o
7"

Proof. First consider the equations that comespond to the collocation points (x; Yi) € QP. Based on the

stencil 8.2 and (hose given in Appendix I, the diagonal dominance condition is written as

du-ﬁhy—z{l T2+ + 0Dl - { 4I8(a+w2)+ﬁ—+0(h,)l + (3.4)

2]320-18y0% + O ()] + 12|a+yo?| }

Without Ioss of generality we can assume that a and y are posilive, Since B? — day < 0, we conclude that
Blo+yo?) + B% are always positive. The expressions 320-18y0%, —180+32yc? become posilive For

_t
32y 187)' In this case it is easy lo observe that 4;; = . Let ¢ the function

902
¢ =-8Chlc*and d';; = 72h70%d

Now consider the point (x;, y,} € ;. From equation (3.3) we have 62 € [ %p 14302 p ] thus

M ate if 2> 2

7 p,1°5°a+c:foz> =7

mo];lln dl.l = 2

1f'§sa+cy'oz>32pandcy"02> 22 p

Similarly, for the points (x,, ;5,2 < j <M —2and6® ¢ [ 2P 2 ] we have that



mmdl_,_c F o> 1 32p. 360+ c if 02>ﬁp,

3;(1+crfol> pc:fozs-m

The same analysis establishes identical lower bounds for the d associated with the rest of points in Q.

In the case of Neumann boundary conditions and the stencils given in Appendix I, we obtain

. r 128 - r 70 -
mﬂ;nd,_l =¢ fora’e [%p, 'GTP] and mu;nd,-J=c for o? e [-ﬁp, -%ip],fon:l,N-l.

i=2,...M-2 or i=2,... N-2, j=1,M-1. Identical relations can be found for d; ;" s associated with the rest of
the points in ;. If { is negative then the lower bounds for d; ; are positive. Thus A is sirictly diagonal

dominant. This concludes the proof of the Lemma.

Notice that the boundary collocation equations (3.2) are not diagonally dominant with respect to the U; ;s
However, we can obtain diagonally dominant boundary equations by appropriate differentiation of the

operator equation Lu=Ff,

The analysis and the implementation of the cubic spline collocation method for the general operator
is more convenient if u, is defined in two phases and the method is viewed as a deferred correction type.
Each phasc involves the application of the standard second order spline collocation method with appropri-

ate right sides. Specifically, we have the following second formulation of the spline collocation method:

Phase I

(i) Determine i, such that it satisfies

[Lua - ](w) at the node points Q; L Qp

(ii) Estimate Dy,

4
i ,D’, u,—_; as follows. Let

Mg, y)=letc+h,¥)=2g0x,y)+glx — h,y)Vh?

and define A, g (x, y) similarly as the second central difference in y. Then take

at the interior nodes €;:



at the boundary nodes Qg:

Dx:" 0j = 2A; ifa(xb)'j)— A f‘o(xzo’j)- -D;HNJ = 20, 8y (a5 A alin3;),
Dyu; 0= 28,1500 31— Ay Balx; 92) Dyt pr = 20, 8,00 Iy Ay 8406 Fygp)-

Phase I

Determine u , such that it satisfies

[Luﬂ-— (_f)](rnn)= 0 ot the nodes Q; vy

where

. hZ? 2
fig=~fi; {Ddwy «IDfury for i=1..N-1, j=1..M-1.

Following the analysis of Lemma 3.1 we can prove diagonaly dominance for the second order

coefficient collocation matrix.

Lemma 3.2. Let A be the coefficient matrix of the interior collocation matrix for the standard nodal cubic

spline collocation method. Then for U <0, sufficiently small h,, h,, and &¥p restricted in the interval

( %‘ v 2) the matrix A is diagonally dominant.
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[ vh? 47hZ vh3 \
2{)&:}12—-1}1’1 8ch2p2 212 1
ah?  —6(ehZhy — g}thg el A el
2 zhy z 2) —24chh, —6(eh2h,, + $hoh?) k2
+8(7AZ + ak?) +329h3 — 18ah3 +8(7A2 + ah3) Y
ss.hgh2 32 22 212
dah? +246hh3 ot —gi};ihiﬂ doh?
—187vhZ +32ah2  ~72(yA2 4 ahl}  —189h2 +=32::th, "
2¢h2h3 4+ LgR_H 8¢h2h3 2R2. L
\ 2 Bhzhy, chZ 2¢hihZ — 1gh p
k3 +e(eh3’5;g +6hah)  124ehh, pe(chTh, 5hah3)  an2
+8(7h2 + ah?) +327h7 — 18ah2 +8(vyh2 + ahg)y Y
\ 73 a2 b2 y

Stencil §.2 The coefficient stencil of the collocation equations at a point of Qf
multiplied by 72 £? h%

3.1 Convergence analysis

The convergence of a variation of the first formulation (3.1) and (3.2) of the method is studied in
Section 4 for Helmholiz PDEs with Dirichlet or Nexmann conditions. We believe that we can establish the
optimal order of convergence for general PDEs using the second i‘onnu]al.ion. the one with two phases or a
deffered correction, To do this, we need to prove optimal order of convergence of the standard nodal col-
location method in a certain Sobolev space of order two. The numerical results of Table 11 indicates such
convergence takes place. This wonld guarantee that the perturbation term f used as a right side in phase II
is O (k). This result is already established in [Amo 84] for certain classes of problems. Then an analysis
of phase II, similar to the one in [Cave 72] and [Tto 72), would lead to the proof of optimal order of conver-
gence. The numerical results in Tables 6 to 12 strongly support the belief (hat optimal convergence holds

for general PDEs. A detailed analysis along these lines is under way.

4. CONVERGENCE OF THE SPLINE COLLOCATION METHOD FOR HELMHOLTZ EQUA-

TIONS

We first consider the simplifications that occur in the spline collocation method for the case of
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Helmholtz equations. We then establish that it has optimal order of convergence. The Helmholtz type
elliptic differential equation considered is
Lu = aDu + W% + L ==f in Q=[ab]x [c d], @.1)

subject to boundary conditions (1.2), where @, ¥, £ and f € C?[Q). Without loss of generality Lhe

coefficient functions o and 7 are assumed to be strictly positive, because of the ellipticity condition.

4.1. Dirichlet Boundary Conditions

First we consider the Helmholtz equation (4.1) with Dirichlet boundary conditions. Then the collo-
cation approximation u, is defined by the equations (3.1) and (3.2) by seu.mg B=8=&=0. Since
Lu = D;u or D;u on the boundary sides of €, one can define u, 1o satisfy the same spline end conditions
as interpolant § at Qp without loss of accuracy. Specifically, in the spline collocation method for 4.1) we

determine a cubic spline approximation u, in §{Q (0 u such that it satisfies :

(i) the interior collocation equations in &,

[ 2= [ =0 )
where L’ is defined by S.1 with B = § = ¢ =0,

(ii) the boundary collocation equations in Qp

D2u, =—f;;l0 ;. (4.32)
Dluy=—f; % (4.36)
and
(iii) the corner collocation equations in Qp
DXy =—f;;, 4.4)
where
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f =D2f - 20D, f 1

If we adopt the representation (2.3} of u,, where the B ;s are defined by (2.1), then the equation (4.4) can

be explicitly solved to obtain
Uge= l-lfo,on Upm = l-lfo,u- Unp= I-lfﬂp and Uy y = l-lfn.u- @“@.5)
with n=h2hr?36.

In order 0 express the collocation equations (4.3) to t4.4) in a matrix form we consider the m X m

tridiagonal matrix @, = trid(1,4,1). Using this notation the boundary equations (4.3) can be written as

Ouav8" = v, Qv = wf (4.62)
and

On-1v8? = wf, QuaviP = wP (4.6b)
where

W= vy, U T
Yo o Uozs v Upyroaa Ugpry |

@[ T
Yo' = UI,O' UZ.U yanay UN—ZU' UN—].U] N

n_ | T
v = | Uvi Unz -+ Utz Unpgan |

o[ T
W= Ui Usprv.-.. UN—ZM-UN—IM] ,

and the right side wé" has components

b foaltoy — Uog, b fojlGoy, for 25 j SM-2, k2 fou—iftop s — Uy
The rest of the right sides in (4.6) are defined by similar expressions.
Note that the boundary unknowns v§”, v{?, v&, vi2, in (4.6) can be explicitly determined and elim-
inated from the problem since Q. , @y, are non-singular. Finally, the interior coliocation equations
{4.2) can be described in terms of the stencils given in the Appendix 1. Figure 4.1 indicates the matrix

structure of these equations while the right side of the (x;, y;) equation is

— 1202 B2 (x:.3;) — pij @.n

where the p; ;'s are zero except near the boundary and there they can be compuied by multiplying the
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boundary unknowns with the approximate coefficients in the stencils.

DXX...
XpXX..
AXDXX.
. XXDXX
.« XXDX
<. XXD

XXX...
XXXK. .
XEXRX.
XXXXX
S ¢.9 4.4
.o XXX

XX....
XXX...
SREX,
. XXX,
.+ XXX
D 94

XXX, ..
XXXX. .
XAAXX,
. XXXXX

- CXXXX .
<. JRXX

DXX...
XDXX, .
XXADXX,
» XXDXX
.« XXDX
.. - XXD

XXX, ..
XXXX..
HXXXX.
XXXXX
. XXXX

.o XXX

XX....
XXX, ..
LKXX..
- XXX,

o o XX

DXX...
XDXX. .
NADXX.

+XXDXX .
- XXADX ..
.. XXD .

XXX...

. XXXX..,
. XXXXX.
CAXXEL .
. CXXXX ..
P 4 ¢ S,

Figure 4.1 Structure of the ‘‘interior” collocation matrix for N = M = 7 where d = diagonal non-zero
element, x = off diagonal non-zero element, . = zero element.

4.2 Neumann Boundary Conditions

Next, we consider the spline collocation method for (4.1) with constant coefficients and Neumann

boundary conditions. Specifically, we determine , in §{3 such that it satisfies

(i) the interior collocalion equations (4.2) at the interior grid points Q;,

and
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(ii) the boundary collocation equations at the points Qp U Q-

Dxaua = _DIfI-J;u'I (482[)
Dluy==-D,fi ;M (4.8b)
In order to formulate (4.2) and (4.8) in a matrix form we consider the 7 X » matrix T, defined in

terms of Q, as

Tl.l. = 2q1.1! T].z = 24]2. T2.1 = 242.1,
T"‘-"‘ = 2q"‘r"' Tﬂ-lnﬂ = 24!'"1.5 ' Tn.u—l =2g, =12

and7;; = ¢;; .2 <i,j <n-2. Then the boundary equations (4.8) can be wrilten as

WDy vE = ¥§D, (U Ty = x ), (4.92)
and
(U Tyvg? = v, (UhJ)TyvP =1, (4.9b)

where the right side r{” components

-D, fU,O’a- -D, fOJ"a for 1 sjsM, -D, fﬂ.mﬂ’(a-
The rest of the r’s are deﬁned_ by similar expressions on the other boundary sides. Notice that Tye and
T+ are positive definite. Thus (4.8) can be explicitly solved for the unknowns associated with the boun-

dary and comer grid pointsin Q5 U Q.

4.3. Convergence Analysis
We now derive a priori error bounds for the error of the cubic spline collocation method applied o

the Helmhollz equation (4.1) with Dirichlet or Neumann boundary conditions. If we represent the interpo-

N M
lant S of the solution u, as defined in Section 2, by S =Y, 3 U/ j Bi(x)B;(y) then the following result
i=D j=0

holds.

Lemma 4.1. Jf S in S$) then for the coefficients Ul; and Uy ; of S and u, that correspond to the grid

points Qg ) Q¢ we have
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Uiy =U; +OR%) (4.10)
Proof. In the case of Dirichlet boundary condition notice that both § and u, satisfy the same uncoupled,
uniquely solvable spline end conditions. Thus, in this case we have that U} 7 = Ui;- In the case of Neu-
mann conditions we consider side x = x4, xy. From Lemma 2.3 and the definition of i, we have that
DJS;; =Du;; + O (h,) and D2uy = D2u; ; at x = xq,xy. After sublracting these relations and express-

ing the resulting relation in a matrix form, we oblain

T3P — vih = 0 (1),
where ¥, are the boundary coefficient of u,. Since || Tj7L, || € 1 we conclude that (4.10) holds. We can
similarly establish (4.10) for the boundary coefficients associated with the rest of the boundary sides. This

concludes the proof of the Lemma.

According to the formulation of the method, the boundary unknowns that correspond (o the grid
points Qp W Q¢ are explicily defined by the systems (4.6) or (4.9) and can be eliminated using these
equations. The remaining unknowns U; ; that cormespond to interior grid points €, are determined by the
interior collocation equations (4.2). The behavior of the coefficient matrix A of these equations has been
studied in the Lemma 3.1. It is worth noticing that under the hypotheses of this lemma the collocation
approximation u, for (4.1) is uniquely defined. Next, we prove two important results on which the conver-
gence proof is based. Similar results hold for the standard nodal collocation method applied to the operator

L [Cave 72).

Lemma 42. Let Ay be the coefficient matrix that corresponds to the Laplace operator, 6 = il-h:— and p

. If T < 0, then for sufficiently small h, and hy that they satisfy relations (3.3) the matrices A and A,

-

are monotone and
- -1
NAT < 1A I

Proof. The cocfficient matrix A, corresponds to A with § = 0. From stencils in Appendices, Lemma 3.1

and the hypotheses of this Lemma, we conclude easily that A and A are irreducibly diagonally dominant
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with positive diagonal elements and non-positive off diagonal elements and A > Ap. Thns for sufficiently

small & we have that 0 < A~ < A% This concludes the proof of the Lemma,

In order to derive an explicit bound for | A* ] independent of & we apply a discrete maximum prin-

ciple argument similar to the one used in [Cave 72].

hy
Lemma 43, Leto=—,¢c= jl‘mircn,’ alP),andp= %. Then for sufficiently small k,, h,, Dirichlet boun-
-]

hy

19 32

dary conditions and 6%p restricted in the interval ( 3 0 1g ) Wehave |14 ol Il <(.76 +2.68 h2 )ic

Proof. First, for any discrete funclion U defined in, 7, we consider the discrete operator L, defined by
the interior stensil S.2 ar any point in Qf and the boundary stencils given in Appendix I for the points in
Q}. with B=8=¢={=0. From the discrete maximum principle [Varg 62] we conclude, by similar

arguments as in [Cave 72], that for any discrete function V such that L, ¥ = 0 on QP we have that

V{P)| < VP + L L, V(P 4.11
FER VO S, e, VO o iy I VO D

Consider the discrete function W defined in ©; \_y Qp such that L, W(P)=—1 for all P € Q;, and
W(P)=0on Q5. Based on the definition of L, for Dirichlet boundary conditions and the discrete equa-
tion L, W = -1 we obtain (he relations

726% h?

26
|W1,||S'.E”W”+'.}6ﬁ,+—uoa)

F
|wj gM”w” 4120k j=2..M-2,

T2y + T5a 0 2y+T6a g’
, 167 + 72007 7207 A/ . .
Iwial < Z6y+ 7200 | 111+ Tey+2a ' | 2..N-2.

Similar inequalities hold for the rest of the w; ;s for (i,j) in Q}. Thus, we conclude that
max_{w; ;| € (344350 Ve 4.12)

(de n:l Jl = )
Application of inequality (4.11} for w and relation (4.12) gives | |w|| < (.76 + 2.68 4.2 Yc. From the

definiton of w we have that Ay w=E withE = (-1, -1,..., —1). Therefore we conclude that

11451 11 < (76+2.68hD)1c

This concludes the proof of the Lemma.
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Lemma 4.4. For sufficiently small h,, h,, Neumann boundary conditions and c*lp restricted in the inter-

val (%,%) we have | | A" || S( .85 + .61 h? Jic

Proof. Following the analysis of the proof of Lemma 4.3 and the definition of L, for Neumann conditions

we have

max |w; ;| € (41+36h3/¢c .
(iJ)eﬂ.r'l il < x)

Using inequality (4.11) and the above relation we obtain { .85 + .61 2.2 )/c as the upper bound for [|4 o1l for

Neumann boundary conditions. This concludes the proof of the lemma.

In the case of the standard nodal cubic spline collocation method the following result holds for
Helmholtz equations with variable coefficients for the Dirichlet case and with constant coefficients for the

Neumman case.

Lemma 4.5, For the standard nodal cubic spline collocation method, sufficientdy small b, , hy. and o%lp

1

resiricted in the interval ( -21-  2) wehave | |AG']] S 3

Based on the above resulls, we can now establish the optimal convergence of the spline collocation

method for Helmholtz equations with Dirichlet or Neumann boundary conditions.

Theorem 4.4. Let u, be the spline collocation approximation of u for (4.1). Then we have the error

bounds

| 1Dy (4 — up)) | < ce g b (4.13)

where ¢, is independent of h.
Proof. From Theorem 2,1 and the definition of 1, al the interior grid points £;, we have

LS = ) Ly = O (). 4.14)

Expressing (4.14) in matrix form we obtain



-19-

ALUl; - Ui 1= 0. (4.15)
Lemma 4.1 implies that U/; — U; ; = O (#*) for (x;, ¥;) in Up \ U, and from (4.15), we conclude that
[1U! = U || =0 since | |A7}]| is bounded independently of #. This relation and the definition of
the basis functions B; of §{7) imply that

1 1DEDIS = up)] 1. € cp b (4.16)

The error bound (4.13) is then a direct consequence of (4.16) and (2.12¢c).

5. NUMERICAL RESULTS

In this section we present some numerical Tesults Lo confirm the convergence properties of the cubic
spline collocation method. For this purpose, we have selected five problems with known solutions which
are solved then for various uniform meshes. We used the first formulation for the dala summarized in
Tables 1 to 4, which indicate that the rate of convergence of the method is 3.9 . This rate should be com-
pared with the optimal fourth order convergence in the approximation with bicubic-splines. It is worth not-

icing that the coefficient of & in problem 3 is positive while the mesh ratio o” for Problem 4 is outside the

interval (—%—E—,%). This indicates that the condilions we give under which the coefficient matrix of the

method is inveriable are only sufficient. ‘We used the second formulation (phase version) for the data in
Tables 5 to 12. The other methods used for these 1ables are from the ELLPACK system and described in

{Rice 85]. The order is estimated at the grid points by

11— 8)1  nax

110 = ) max

order = —log {log( hy thy

All computations were performed on a VAX 780 in double precision except those in Tables 5 and &
that were done in single precision. In these experiments the systems of linear equations are solved by
Gauss elimination using the LINPACK routines SGEFA and SGESL. Unlike general collocation based on
Hermite bicubics [Hous 86], the cubic spline collocation equations can be solved by various iterative
methods [Hous 84), [Vava 85] and their direct solution does not require pivoting. A systemalic perfor-

mance cvaluation of the cubic spline collocation method is under way.
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. order of
Grid 0<ij sw.;l (- up)x; .J?,)I convergence
5%5 1.36e03
9x0 843 e05 3.99

13x13 1.74 e05 3.81
17x17 5.75e06 384
21x21 242 e06 3.87
25x25 1.17 e-06 3.98
3333 3.26 4-07 3.89

Table 1. The convergence of cubic-spline collocation method for a Poisson equation D2x + D u=—f

with Dirichlet boundary conditions (u=0) on the vnit square. The function [ is selectcd so that
u = 3e™ (x:x)y*y

. order of total
Grid 0s fﬂaéxnml (s — w0 3 convergence | time
6x6 7.38e-02 .18
8x8 1.56 e2 4.61 A0

I1x11 4,11 e-03 3.74 92
17x17 6.70 e-04 3.86 5.01
2121 2.81e-05 3.89 11.32

Table 2. The convergence of cubic-spline collocation method for a Helmholtz equation

D +D # — [100+sin(3my Heos(2rx)ju =—f with Dirichlet boundary conditions on the
unit square The function f is selected such that
u=-31[54-C (x)1S (x)y*y)I5. 4—C()')][1+T(x ,y)' where  C(2) =cos{@nz) ,
S (x) = sin(nx) and T (x,y) = 4(x—0.5)* + 4(y—0.5)>

. order of
Grd | | s P'Jafn_ul - u)Cy) convergence
66 5.12e03
9%9 829 ¢-04 4.11

1717 5.89 e05 3.81
21x21 240 e-05 4.01

'I'hc convcrgencc of cubic-spline collocation method for a Helmholiz equation
D +D 4 + u =-f with Dirichlet boundary condmons (u=0) on the unit square. The
funciion f is selected such that u = 3e** (x2-x)(y %~
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SPLINE COLLOCATION SPLINE GALERKIN HERMITE COLLOCATION

GRID 'I'_ola] Numbfar of ba_.nd- tpla.l numbt}r of ba!nd- u_:nal numbt_ar of ba'_nd-

time | equations | width | tme | equations | widih lime equations | width
4x4 23 16 5 73 36 21 3 36 11
8x8 a7 &4 9 348 100 33 3.92 196 19
12x12 | 2.1 144 13 9.21 166 45 16.32 484 27
16x16 || 4.9 256 17 1991 3A 57 4648 900 35

2020 || 89 400 21 34.40 484 69 105.00 1444 43
2424 || 15.0 576 25 6029 676 81 209.5 2116 51

Table 4. Performance resulls are obtained by applying cubic spline collecation, cubic spline Galerkin and
Hermite bicubic collocation to the PDE problem considered in Table 2., The first column in
each method indicates the total time in seconds for discretization and solution,

SPLINE COLLOCATION || SPLINE GALERKIN || HERMITE COLLOCATION

GRID eror order emor order error order

4x4 322e1 213e-1 6.51 e-2

88 | 3.57¢2 2.60 1.57e-2 3.73 6.22 ¢-3 277
12x12 || 632e-3 3.83 291e3 3.73 9.59 ¢4 413
16x16 || 1.63e-3 4,37 7.02e4 4.58 290 e4 3.86
20020 |} 6.69e4 37 245¢4 445 1.16¢4 3.86
24x24 || 3494 341 1.00e4 4.69 544e-5 3.96

Table 5. Errors and order of convergence of cubic spline collocation, cubic spline Galerkin and Hermite
bicubic ¢ollocation applied to the PDE problem considered in Table 2.
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SPLINE COLLOCATION SPLINE GALERKIN HODIE
GRID error order | total time error order | total time CITOr order | iotal ime
4x4 || 4.007e-3 025 3287e-3 0.97 4.230e-3 0.13
8x8 | 2.086e4 | 349 1.03 1347e4 | 3.77 423 1.650¢4 | 3.80 0.63
12x12 |} 4072e-5 | 3.61 2.81 1970e-5 | 4.25 11.27 2.810e-5 | 3.97 1.95
16x16 it 1220e-5 | 3.89 631 5707e-6 | 4.00 24.42 8320e-6 | 392 4.35
2020 |l 4.892e-6 | 3.87 12.11 2213e-6 | 4.01 47.35 3.260e-6 | 3.96 8.63

Table 6 Errors, order of convergence and total time (in seconds) for discretization and solution for the
cubic spline collocation, cubic spline Galerkin and HODIE- methods applied 1o the self adjoint
elliptic operator D, {(e™D,u) + Dy{e™Dyu) — u/(l+x+y)=f (x y) with Dirichlet boundary

conditions (z=0) on the unit square, The function f
u = 0.75¢" sin{rx )sin(rcy ).

is seclecled such that

SPLINE COLLOCATION || HODIE HBELMHOLTZ || HERMITE COLLOCATION | SPLINE GALERKIN

GRID error order eIror order EIror order crror order

545 || 5.89e4 5.55¢4 3.18e4 7.28 e4

<7 1.08 c-4 4.18 9.68 e-5 431 6.08e-5 4,08 1.60 e-4 3.80

99 || 420e-5 3.29 3.10e-5 3.96 197 e-5 3.91 547e5 364
11x11 || 1.88e-5 3.59 126 e-5 402 824 e-6 3.90 2.39¢-5 372
13x13 || 9.52¢-6 3.74 597e6 4.11 392e6 4.08 1.16 e-5 3.98
15%15 || 5.28 ¢-6 3.82 3.27e6 391 2.16¢e-6 3.87 6.08 e-6 420
17x17 || 3.15e-6 3.87 188 e6 4.14 124 e-6 4.12 347¢-6 421
19x19 || 1.99e-6 3.90 1.19e6 3.88 7.89 -7 3.86 217 e-6 3.98

Table 7. Emors and order of convergence of cubic spline collocation, HODIE Helmholtz, Hermite bicubic
collocation and cubic spline Galerkin methods applied to the PDE problem considered in Table

2.
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SPLINE-COLLOCATION SPLINE-GALERKIN
a=11/2 a=92 a=11/2 a=9/2
GRID error order error order error order error order
4x4 1425e4 1.326 ¢4 1.104 e4 1.136 34

8x8 5808e6 | 3.78 || 5.276e-6 | 3.81 || 8.872e6 | 298 | 4.650e-6 | 3.77

12x12 || 1.040e6 | 381 || 8.366e-7 | 4.07 || 1.620e-6 | 3.76 | 8505e-7 | 3.76

16x16 (| 3.320e-7 | 3.68 | 2422e-7 | 4.00 || 4970e-7 | 3.81 | 2.284e-7 | 424

2020 || 1.354e-7 | 380 || 944748 | 397 || 1.868e-7 | 4.11 || 8.994e-8 | 394

Table 8. Emors and order of convergence for the spline collocation and spline Galerkin methods applied to
the Laplace equation D%z + D u = f with Dirichlet boundary conditions on the unit square
for various values of a. The fu.ncnon f is selected such that u = (x®—x® ) (y°—y°~1).

SPLINE COLLOCATION || HERMITE COLLOCATION

GRID &rror total time ermor total lime

x5 || 4410 e4 0.50 2.63e4 3.65

11x5 || 3.340e4 0.80 2.67e4 6.64

11x9 §| 4.271e-5 1.55 1.72e-5 2340
13x11 || 1.847 e-5 2.52 733 e-6 4537
21x11 || 1.282e-5 4,27 7.06 e-6 71.94
19x17 | 3.222¢-5 7.98 1.13e-6 187.35

Table 9. Errors and total time (in seconds) for discretization and solution of cubic spline collocation and
Hermite bicubic collocation applied to the general elliptic operator (x+y+1}D2u + e"’D u
+ @-1)+1)Dyu + (x+1)Dsu + (—~1)Dyu + (xy+Du such that &, = 0 on the segment ( y=
0,0£x<.5),u, =0on the segment (x=0,0<y<.5)and u =0 on the rest of the boundary.
The problem is on the unit square and has a non-uniform mesh, The function f is selected
such that u = 3¢** (x>-x2)(y*~?. The cubic spline Galerkin and HODIE methods are not
applicable to this problem.
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GRID eror order | intal time
44 | 2.032e3 0.22
8x8 || 9.500e-5 | 3.62 1.03
12x12 || 1.750e-5 | 3.78 2.78
16x16 { 5.090e-6 | 3.96 6.08
2020 [[ 2.013e-6 | 395 12.01

Table 10. FErrors, order of convergence and total time of cubic spline collocation for the problem
T considered in Table 9, using a uniform mesh.

Ug =S 1] LUy =Syl Uy -S54 11 Uz -8, 11 U, -8, 11
GRID error order error order error order error order error order
4x4 1.19e-1 1.17 ¢-1 426¢e-1 1.67 e-1 1.70¢-1
8<8 || 3.80e2 | 191 |1 291e2 | 165 || 1.67e-1 | 1.15 || 4.62e2 | 152 || 4.61e2 | 1.54
1212 || 1.61e2 | 190 || 1.16e2 | 203 || 9.54e-2 | 135 || 2.20e2 { 1.64 || 2222 | 162
16x16 || 895e-3 | 190 || 6.17e3 | 205 || 595e2 | 152 || 1.26e2 | L79 | 130e2 | 173
2020 || 5.70e-3 | 191 |[ 3.79e3 | 206 |l 403e2 | 165 || 8.17e3 [ 1.86 || 841e3 | 184

Table 11. Derivative errors and order of convergence for the problem considered in Table 6.

The order of convergence results in Tables 5-8 confirm the conclusion from Tables 1-3 that the order

of convergence of the spline collocation method is close 10 4.0. Table 10 gives data from a completely

general operator with combined Dirichlet and Neumann boundary conditions. Again the order of conver-

gence is close to 4.0 which suggests that the optimal order of convergence of the method is 4.0 in general.

Table 11 gives results on the order of convergence of derivatives of the standard O (k%) spline collocation

method. Both first and second derivatives exhibit second order convergence. This behavior agrees with

the cne observed by [Amo 84].

Table 4 gives a comparison of the problem size and computational times for three finile element

methods using piecewise cubic polynomials. Using Hermite cubics (the Hermite collocation method) for a

given grid size, gives many more unknowns much more compulational effort and, as seen in Table 5,
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higher accuracy. However, accuracy is not improved enough to compensate for the additionat compuler
time. To achieve an accuracy of 102 or belter requires 8.9 seconds for spline collocation, 19.9 seconds for
spline Galerkin and 16.3 seconds for Hermite collocation. Table 6 shows another example where spline
collocation is more efficient than spline Galerkin and Table 9 shows another example where spline colloca-

tion is more efficient than Hermite collocation.

Table 6 gives a comparison with high order finite difference (HODIE) method which is of compar-
able accuracy wilh a given grid size and a little more efficient. However, the HODIE method is not as gen-
eral in its applicability as spline collocation (it cannot handle Uy, terms). The HODIE Helmholtz method

used in Table 7 is even faster, but this method is specifically designed for and restricted 10 Helmholiz prob-

lems with only a variable coefficient of u in the operator.
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APPENDICES

In this appendix, we present stencils for the spline collocation method after the elimination of boun-
dary unknowns. This is done both for the Dirichlet and Neumann boundary conditions. The equations are
presented in the form of stencils to be used at each grid point which involves a boundary unknown. Notice
that each grid point (x;, ¥;) is associated with the unknown U; ;. The value of each entry is the coefficient
of the corresponding unknown. In all stencils, the coefficients of the PDE are evaluated at the indicated

collocation point. All stencils have been multiplicd by the factor 72 b2 b2,



APPENDIX 1: Spline Collocation Stencils for the Dirchlet problem.

at point
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APPENDIX I : Spline Collocation Stencils for the Neumann problem.

at poini
(z0) °

af points

(xllyj-)
i=2,.,M-2

at point
(IllyM 1)

\
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f

h3

2¢h2h3 — 1 Bh.h,
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