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CONVERGENCE OF AN
O(h') CUBIC SPLINE COLLOCATION METHODS FOR

ELLIPTIC PARTIAL DIFFERENTIAL EQUATIONS

EN. Houstis, E.A. Vavalis and JR. Rice
Purdue University

Department of Computer Science
West Lafayette, m 47907

CSDTR596
May 15. 1986

AlISTRACT

This paper presents a new class of collocation methods using cubic splines for solving elliptic partial
differential equations (POEs). The error bounds obtained for these melhods are optimal. The methods are
formulated and a convergence analysis is carried out for a broad class of elliptic POEs. Experimental
resulls confirm the oplimal convergence and indicate that tlJese methods are computationally more efficient
than methods based on either collocation with Hennite cubics or on Galerkin with cubic splines.
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1. INTRODUCTION

We consider the Cannulation and analysis of a method Co> approximating the solution u. (z oJ) of the

elliptic linear partial differential equation

Lu =uDx
2
u + f3D",D)'u + "'ID,2U +01)"," +£Dyu + 'u =-f in 0= rap] x [c.d] (1.1)

subject to homogeneous Dirichlet or Neumann boundary conditions

Bu == 0 on an == boundary of n (1.2)

where Bu is u. D.>: u or Dy u. TIlrollghout it is assumed that the coefficients a,p;y satisfy the ellipticity con­

dition /32 - 4ay< O.

The method considered in this paper involves the determination of the bicubic spline piecewise poly­

nomial u",(x,y) over the partition Ii of n. The spline "6 is chosen to satisfy exactly the boundary condi.

tions and an operator equation L'ulJ. = -f at the interior grid points of 6., whereL' is a high orderperturba­

tion of L plus additional spline end conditions. An implementation of the method exists in ELLPACK

[Rice 85] for equation (1.1) and mixed homogeneous boundary conditions. The method of collocation at

nodal points based on tensor product of cubic splines was" first analyzed independently in [Cave 72] and

[Ito 72] for Helmholtz elliptic PDEs with Dirichlet boundary conditions on a square. Second order conver~

gence of the method was proved. The formulation of this method for more general elliptic PDEs was con.

sidered in [Ito 72] without deriving any error estimales. In [Arno 84] the nodal collocation method using

the tensor product of smoolhest splines of arbitrary odd order is analyzed for a certain class of elliptic

PDEs. The results indicate the failure of this meLhod to produce an optimal order approximation for the

solution of (1.1),(1.2). Optimal order of convergence is oblained in various Sobolev spaces with oreler

greater or equal to the order of the operator. In [Fyfe 69],[Arch 73],[Cave 72],[Dani 75],[Rubi 76],[Arch

77] variants of the nodal cubic spline collocation are studied yielding 0 (h 4
) discrete and semidiscrete

approximations to one dimensional elliptic and parabolic equations. In these sludies the collocation

approximation is required to satisfy a perturbed differential equation and boundary conditions within

o (h 4
). These high order perturbations are derived through an accurale spline interpolant of the true solu­

tion and its derivatives. This idea was firsl introduced in [Fyfe 69] and the meLhod was fonnulaled as a
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deferred correction type. Applying Ihe same idea, an 0 (hi line cubic spline collocation method was inlro-

duced in [Rome 79] for !.he Poisson equation and in [Hous 84J. [Vava 85] for larger classes: of problems.

The ilerative solution of lhe resulting linear equations is smdied extensively in [Hous 84] and [Vava 85].

2. ffiGH ORDER INTERPOLATION RELATIONS

In this section we derive a high order perturbation L' ofL based on various interpo~alion results for

cubic splines. 'Throughout we denote by .1~ == {xl =a + kh:l,; k = 0 to N with h;J< = (b-a)/N} and

!!.y == b', = C + lhy; 1 = 0 to M wiLh by = (d-c)/M} the unifonn partitions of [a,b] and [e,d]. Then

I'J. = ~ x ~ is the induced Wliform partition of Q. The nodal points (x;, Yi) of .6. are broken into three

sets, for later use as follows: 0/ = points interior to 0, Q B = points of an but nOl comer points. 0c =

comer points of 6. Throughout., we denote by 53,1r" == P3,K. n C2 ([a,bD the space of one-dimensional

cubic splines with respect 10 a partition 1t,. of [a,b] and by SJ?J.. the subspace of 53".. whose elements

satisfy the boundary conditions (1.2).

We define sf.lto be the space of the two-dimensional splines associated with /J. and which satisfy

exactly the boundary conditions (1.2). We can construct a basis for S~ by' fanning the tensor product of

basis elements of Ihe one-dimensional splines S~% and sf.lr If 11:.. == [t, = a + ih, i = -1 to n+l,

h = (b-a )/n) is a unifonn partition of [a,b} then the basis functions {Iij } for S 3,,,- can be chosen so that

A A AN 2 A" 2
Bj(ti±l) = 1/6, 8 i (l;) =713, Bi (ral) = I/h , Bj (t j )=-71h,

B'-(li_l) ~ 1I(2h) and B'-(li+l) ~-1I(2h).

In the case of Dirichlet boundary conditions lite basis functions B j of the subspace S~2. can be

defined in terms of Bj's by

B,(x) ~Bo(x) - 4B_I(x). BI(x) ~ BI(x) -B_I(x),

Bi(x) =Bi(x). j = 2 •...• N-2

BN_1(x) = BN_1(z) -BN+1(X) and BN =BN(x) - 4BN+1(X).

Similarly, for Neumann boundary conditions, the basis functions for Sa can be defined by

(2.1)
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Bo(x) = 80(x), B ,(x) = 8_,(x) + 8,(x),

B.(x) =B~(I), i =2 .... I N-2, BN_1(x) = BN+1(X) +BN_l(X) and

BN(x) =8N(x) .

Throughout we adopt the following representation of uti

N M
",(x,]) =:E :E U'J B,(x)Bj(Y).

;=0 j=oJ:J

(2.2)

(2.3)

In order to formulate the spline-collocation method and prove its convergence, we need to derive

some results on bicubic spline interpolation. Throughout we denote by S (x;y) the bicubic spline inlerpo-

Jant of u in SJ~ such that

Sj,j=u'J.1:S:i::ON,l:S:j:SM.

D"/2Sij =D/UiJ' O:5i '5.N. j =O/rf.

DZ
2D;SjJ =Dz.2Dy

zU;J' i =O,N j =O,M,

where we use the"notation

(2.4)

(2.5)

(2.6)

(2.7)

and

Next, we list several useful identities that S satisfies.

Lemma 2.1lf U E C6(Q). then the/allowing relations hold ot the nodes (Ij,Yj) ofa Wliformpartition 1.1

D!SjJ =D;UiJ - (hx.'1D:z4UiJ I12 + O(~4).

D.}SiJ = DiUjJ - (hy'J Dy
4UjJ I12 + o(h/).

The relations (2.8) are direct consequences of the discussion in [Luca 74].

Corollary 2.1 Under the hypotheses ofLemma 2.1, we have

for l:5>i :5>N-l andOSj SM.

(2.80)

(2.8b)

(2.9)

The relation (2.9) is established by a straighlforward application of Lemma 2.1, while a similar relation

holds for Dy4u. Similarly, using well known relationships valid for any smooth one-dimensional cubic
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spline [Luca 74] for uniform meshes and Corollary 2.1, it is relatively simple to prove the following.

Lemma 2.2 If U E C6(Q), Ilten at the inreriar nodes (OJ) of!1 we have

(D",2Si_1J + IOD;SiJ + D;r.2Si+1J)f12 = D}UiJ + 0 (hz
4), (2.lOa)

(D;SiJ_l + lODyZSjJ +D;SjJ+l)1l2 = D y
2

UiJ + 0 (hy4), (2.10b)

D;zSiJ =D"ujJ + O(~4). DyS;J = DyujJ + o(h/). (2.1Oc)

By Taylor's expansion, it can be shown that D;r.4UOJ =2D24u1J - Dz
4u2,j + 0 (hz~ and

D;,;4UNJ = W;>:4UN_1j - D 2
4

UN_2J + 0 (hz'1 for 1 $', j $', M. Similar relations hold for D y
4u;,o and D:/uj,M

for 1 $', i $', N. These together with. (2.9) imply the following result

Corollary 2.2Ifu E C6(Q), then aJ the boundary nodes (OB) of.6. we have

( 14D;r.2SoJ - 5Dz
2S lJ + 4D;S2J - D}S3j )/12 = D,,2uOJ + 0 ( ~4 ) (2.11a)

(14DlsNJ - 5D",2SN_1J + 4D,,2SN_2J -D;r.2SN_3J )/12 =D;?UNJ + O( h",4) (2.l1b)

( 14D.}Si,o - SD.}Sj,1 + 4D;Si,2 - DiS.,3 )112 = D/u;,o + 0 ( hy4) (2.~lc)

(14D/Si ,M - 5D,2Sj ,M_1 + 4D,2Si ,M_2 -D/Si ,M_3 )112 =D/Ui.,M + O( 11,4) (2.11d)

It is worth noticing lhat the relations (2.8) to (2.11) are independent of the spline end conditions. The fol­

lowing results will be used later to develop discretization error bounds for a class of two-dimensional ellip­

tic boundary value problems.

Lemma 2.3 If U E C4(Q), then we have

(i) D;,:D,S;J =D;,:D,U;J + 0 (h;,:4) + 0(11,4)

(il) D:D;SiJ=D:D;UiJ+0(h2~+0(h,~, 2=s;k+154

at each node ofa, and, with h = max(h", hy),

(2.120)

(2.12b)

(2.120)

The relations (2.12) can be derived from the discussion in [Carl 73] with minor modifications. Using the

relations of Lemmas 2.1 to 2.3 and the corresponding corollaries we can prove the following resuH on

which the formulation of the spline-collocaLion melhod is based.
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Theorem 2.1 Suppose U E C's[.Q], a. 13, "f,lS. E,' E C[nl.! E C4[Q] and h = max(h.. .hy). Then

LSiJ = -1;J + 0 (h1. for 0'$ i 5. N. 0 So j 5, M I

and

(2.13)

L'Sij = -fjJ + O(h4
), for (x',)'j) E OJ. (2.14)

where thefuru:tions a. 13. 'Y •a,E and ~ are evaluated at the associated points and the operator L' (a high

order perturbation ofL) is given symbolically at the point (Xi ;Yj). by the stencil S.l. Furthermore at boun~

dory nodes Os the following relations holdfor each type ofboundary conditions:

Case ofDirichlet conditions at x = Xo

L 'So..; ~ ~ (l4Dz2S0J-5DII2S IJt4DII2S2,j-D",2S3j)+JID...V,SoJ+OD;r.SoJ =-/OJ +0 (h 4
), (2.ISa)

Case ofNeUl1Ulnn conditions at x = Xo

L'SOj == ~ (l4D;r.2S0J-5D;Sljt4D;J.2S2j-D;S3j) + fDySo..;

*(D;SOJ_l + lOD;SOj+D/S OJ+1) + ~So=-foJ + o(h 4
).

Similar relations holdfor the other boundary sides.

3. CUBIC SPUNE COLLOCATION METHOD FOR GENERAL ELLIPTIC PDES

(2.lSb)

In this section we define the cubic spline collocation method for the case of homogeneous boundary

conditions (1.2). Based on the relation (2.14), we define an approximation utr. E sf.l to the solution u of

(1.1), (1.2) by using the method of collocation such thal it satisfies:
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~~laD;S(:Ci. y;) + ;D~S(:Z:i' Yill
+6D:S(x;, !Ii) + fD~S(Zi' Yi)
+PD,:DIIS(x•• !Ii) + ~S{:ril !Ii)

Stencil S.l. Definition ofL'S at Q, in terms of the cubic spline interpolant S and its derivatives at the grid
points 0, U as. L'S is defined at boundary nodes by (2.15a) or (2.15b).

(i) the interior collocation equations

[ L 'u d - (-[) ] (:r..,y,) = 0 at the interior grid points Of

whereL'is defined by S.l,

(ii) the boundary collocation equations

[ L'U/i-(-f)] =0 at the boundary knots as
(%.",)

where L' is defined by (2.15a) or (2.15b) depending on the type of boundary conditions (1.2).

(3.1)

(3.2)

Notice that the cubic spline interpolant S satisfies the above equations (3.1) and (3.2) within an error

of order O{h4
). The convergence of lhis method for the case of HelmhoIlZ equations with non constant

coefficients is analyzed in Section 4. Here we examine the solvability of the collocation equations. We use

the notations cr =hzlh,. 0 1°;: {(x"Yj) E A; 2::::; i ::::; N-2, 2::::; j :S M-2 } and D} = OJ - np. If we

substitute ul!. in (3.1) with ilS representation (2.3) Ihen the following result holds.

Lemma 3.1 Let A be Jhe coefficienJ matrix ofinterior collocation equations (3.1) and assume ~ :s O. Then

A is diagonatly dominanlfor sufficiently small h~, hy provitkd thal
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~ (18 32 1 nO·crlp E 32' 18 . at ;>'~I pomts,

crlp E ( 1~ . ~~ ) . (Dirichlet case) I

at the points (Xi.,yj). i=1/V-I ,j=!,M-I,

a'i e(~ 128)
p 128'68 I (Neumann case) •(3.3)

~ m.. w m
a2/p E ( 128 ' 40 ) • (Dmchlel case). rrlp e ( 128 • 70) . (Neumonn case).

at lhe points (Xi.,yj). i=l;N-l .j=2•...,M-2, or i=2 •... /V-2.i=1 ,M-l

h, a
whereOE - andp=-.

h, Y

Proor. First consider the equations tha1 correspond to the collocation points (Xi'Yj) E 0.,0. Based on the

stencil S.2 and those given in Appendix I, the diagonal dominance condition is wriuen as

dij = 72~"i ( 1-72(a+-,u') + o(h,'l I - ( 418(a+-,u') + ~ ~ + O(h,ll + (3.4)

2132a-181O' + o(h,) I + 121ao/I }

Without loss of genern.lity we can assume that ex and y are positive. Since ~2 - 4ay < 0 I we conclude that

8(a+)u2) + P~ are always positive. The expressions 32a-18~. -18cx+32')'Cil become positive for

cr I8ex 32a .
e ( 321 ' 18y l· In this case

c =-81;h}a'andd'iJ = 72h,'a'd'j'

it is easy LO observe Let c the funclion

Now consider the point (Xl. Yl) E n}. From equation (3.3) we have cr'l E [ 1~2'P I

• d' 307 if..2 19 IOSO if ~ > 19mJn 1,IS-,-Q+c J fJ>YiP' """"i9Q+C I 0- 16 P'

1228 a+c if rr> 32 p and c if rr> 132 p.
19 19 40

Similarly,forthepoinlS(Xl,)'j).2'5.j '5.M -2andcre [~~ p, ~~ p ) we have that

132P ] thus
40
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rr:j.n d;J;: c if rr > ~~ P, 36 a+ c if c? > :: P.

36 a+c 'if cr> 32 P c 'if ---.2> 132 P9 IS' 0- 72 -

The same analysis establishes identical lower bounds for the di~ associated with !.he rest of points in O}.

In the case ofNewnann boundary conditions and the stencils given in Appendix n. we obtain

mjn d;.1 = c for c? e [ 1~8 p. : p ) and mjn d:J = c for rr E ( 17~ p, ~~ p J, for i=l,N.l.

j=2•.••,M-2 or i=2,... ,N-2, j=1,M-1. Identical relations can be fOlDld for d;/ s associated with the rest of

the points in O}. If' is negative then the lower bounds for dj J are positive. Thus A is smetIy diagonal

dominanL This concludes the proof ofme Lemma.

Notice that the boundary collocation equations (3.2) are not diagonally dominant with respect lo the Vi J '5.

However, we can obtain diagonally dominant boundary equations by appropriate differentiation of the

operator equation Lu=f.

The analysis and the implementation of the cubic spline collocation method for the general operatQr

is more convenient if u'" is defined ill two phases and the method is viewed as a deferred correction type.

Each phase involves the application of the standard second order spline collocation method with appropri-

ate right sides. Specifically, we have the following second formulation of lhe spline collocation melhod:

Phase I

(i) Determine Ii1I. such that it satisfies

A.g(x, y) = W(x + h. y) - 2g(x, y) + g(x - h, y)]lh'

and defineAyg (x I y) similarly as the second central difference in y. Then tnke

at the interior nodes 0/:
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at the boundary nodes nB :

D;r;4UOJ :;;; 2A;z'l16(xl;Yjr- A z UI!>(X2;Y). D:z
4
UN,j /:::I2A2 Uf:,.(XN_l;Yjr- A;r.UlJ,(XN_2,Jj).

D,/Ui.O == 2AyUt.(Xi;J1r A,IiA(Xi;Y~' Dy4Ui)rl == 2A,ii",(Xi.;YM_r}- AyUI!>(X'OYM_iJ.

Phase IT

Determine UA such that it satisfies

where

A h1 4 h/"4
fij =-/;" -( 12)D;ZUiJ -( 12)DyUiJ for i = 1,...,N-l, j =l,....M-l.

Following the analysis of Lemma 3.1 we can prove diagonaly dominance for the second order

coefficient collocation matrix.

Lemma 3.2. Let A be the coefficient matrix of the interior collocation matrix for the standard nodal cubic

spline collocation me/hod. Then/or 1;;:S: 0, sufficiently small h;;r. h" and dl'lp restricted in the interval

( ~ • 2) the matriz A is diagonally domiTl1lnt.
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'1h~ 4'"jh; ")'h;

2~h;h~ - ~Ph:l:hl1 8~h7.h'2
2~h;h~ + tPh:l;hvah' -6(ch;hJl - 5hzh~} • •• -24ch;hy -6(eh;hu + 6h:l:h~} ah'+8(-yh; +Qh~) +32"1h; - 18Qh~ +8(-yh; +o:h;) •

Brh').h 2 32rh2h2 8rh2h2• •4ah' +246h%h~ • • ••• -246h h2 -toh2
-IS..,h; + 32crh; -72(..,h; + Qh~) • •

-187h2 + 32ah2 •
• •

2rh2h'J + lPh h 8rh2h2
2rh2 h2 - 1fth hah'

:l:~ .. Z II • •+6(Eh",hy + 5h,.h;) +24eh;hll' '" 21: 4 '" II• +6(Ehz hll - 6h:l;h;} ah'+8{-rh; +ah~) +321h; - 18ah2 +8(-rh; +ah;J ••
7h; 4'lh; "1h;

Stencn S.2 The coefficient slencil of lhe collocation equations at a point of np
mulliplied by 72 h! hi.

3.1 Convergence analysis

The convergence of a variation of the first Cannulation (3.1) and (3.2) of the method is studied in

Section 4 for Helmhollz PDEs with Dirichlet or Neumann conditions. We believe that we can establish the

optimal order of convergence for general PDEs using the second Cannulation, lhe one with two phases or a

deffcred correction. To do this, we need to prove optimal order of convergence of Ihe standard nodal col-

location method in a certain Soholev space of order two. The numerical resuIlS of Table II indicates such

convergence takes place. This would guarantee lhat the perturbation term I used as a right side in phase II

is 0 (h 4
). This result is already established in [Amo 84] for eenain elasses of problems. Then an analysis

of phase II, similar to Ihe one in [Cave 721 and [Ito 72], would lead to the proof of optimal order of conver-

gence. The numerical resullS in Tables 6 to 12 strongly support the belief that optimal convergence holds

for general PDEs. A detailed analysis along these rmcs is under way.

4. CONVERGENCE OF THE SPLINE COLLOCATION METHOD FOR HELMHOLTZ EQUA-

TIONS

We first consider the simplifications that occur in the spline collocation method for the case of
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HeImhollZ equations. We then establish that it has optimal order of convergence. The Helmholtz type

elliptic differential equation considered is

L. = aD," + yD," + r.. = -f in n = [a,b 1x [c ,dl. (4.1)

subject to boundary conditions (12), where a, 'Y. ~ and f E C2[Q). Wilhout loss of generality the

coefficient functions a and r are assumed to be strictly positive, because of the ellipticity condition.

4.1. Dirichlet Boundary Conditions

First we cornider !.he Helmholtz equation (4.1) with Dirichlet boundary conditions. Then the collo-

cation approximation U.o is defin~ by the equations (3.1) and (3.2) by selling ~ !=l 8 := E == O. Since

Lu =D;c2.u or D}u on lhe boundary sides of.O:, one can define uti. to satisfy the same spline end conditions

as interpolant S at Q B without loss of accuracy. Specifically, in the spline collocation method for (4.1) we

determine a cubic spline approximation UA in sj2 to u such that it satisfies :

(i) the interior collocation equations in 0 1

[ L 'u.o - (-/) ] (:r,,yJ) = 0

whereL' is defined by S.l with J3 == S =: e =0.

(ii) lhe boundary collocation equalions in nB

DlulJ, = -fiJIO;J.

Dy'lulJ. = -fiJ/yjJ.

and

(iii) the comer collocalion equations in nc

2 2 -
D"D.,u",=-fjJ'

where

(4.2)

(4.30)

(4.3b)

(4.4)
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-, .,f = [rD,! - w,rD,f], J

If we adopt the representation (2.3) of utr,. where the Bj's are defined by (2.1), then the equation (4.4) can

be explicitly solved to oblain

with IJ. =h,' Jrif36 .

(4.5)

In order lO express the collocation equations (4.3) to (4.4) in a matrix Conn we consider the m x m

tridiagonal matrix Qm = trid(l,4,I). Using this notation the boundary equations (4.3) can be wriuen as

and

where

(1)_[ ]T
Vo - V O•1.UO;1. ••••• UO,M_2.UO,M_1 •

"'_[ ]TVo - U1/J. U2,o •..•• UN_2,o. UN_I•D I

and the right side wJI) has components

h~2 f o,l'lXo,l - Uo.o• hx2f oJ/lXoJ' for 2:S; j ::; M-2, hl f oN-I'<Xo.M-1 - V OM _

The rest of the right sides in (4.6) are defined by similar expressions.

(4.00)

(4.6b)

Note that lhe boundary unknowns vJI), vklJ, vf!), vIP, in (4.6) can be explicitly del.ennined and cUm-

inated from the problem since QN-l • QM-I are non-singular. Finally, the interior coliocaLion equations

(4.2) can be described in terms of the stencils given in lIle Appendix I. Figure 4.1 indicates the matrix

structure of these equations while !.he right side of !.he (Xi. Yj) equation is

- 72h; hi! (Xi;Yj) - PiJ (4.7)

where the Pi/S are zero excepl near the boundary and Lhere !.hey can be compuLed by multiplying !.he
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boundllJ)' unknowns with the approximate coefficients in the slencils.

DXX ••• XXX.. xx ...
XDXX.. xxxx.. XXX. •
XXDXX. xxxxx. .XXX ••
•XXDXX .XXXXX •. xxx.
• • XXDX •• xxxx . .xxx
••• XXD ••• xxx ...xx

xxx.
xxxx ..
xxxxx.
.xxxxx
.xxxx

...xxx

xx .
xxx .
•XXX ••
· .xxx.
· .xxx
... xx

OXX •••
XDXX ••
XXDXX.
.XXDXX

.XXDX
.XXD

xxx ...
xxxx ..
xxxxx .
.xxxxx
..xxxx
.. xxx

xxx ...
xxxx ..
xxxxx.
.xxxxx
· .xxxx
...xxx

DXX •••
XDXX ••
XXDXX.
.XXDXX
· .x:mx
• .XXD

xx .
xxx .
.xxx ..
• .XXX •
... xxx

..xx

xxx ...
xxxx ..
xxxxx.
.xxxxx
.. xxxx
... xxx

xx ..
xxx..
.xxx ..
. .xxx .
. ..xxx
.... xx

xx.... xxx ...
xxx. . xxxx.
.xxx .. xxxxx.
•• XXX •• xxxxx
... xxx .. xxxx
.... xx ...xxx

oxx ... XXX ••
XDXX •• XXXX.
XXDXX. xxxxx .
. XXDXX .xxxxx

,XXDX •• XXXX
••. XXD ••• xxx

xx. .
xxx ...
.xxx ..
. .xxx .
.. xxx
••• XX

xx .... xxx ..• DXX ••• XXX •••
XXX. •• XXXX.. XDXX.. XXXX ...
•XXX •• XXXXX. XXDXX. XXXXX •
•• XXX•• XXXXX .XXDXX .XXXXX
••• XXX •• XXXX •• XXDX •• XXXX
•••• XX ••• XXX ••• XXD ••• XXX

•••• •• • ••••••••••• XX •••• XXX ••• DXX •••
•••••• •••••• •••••• XXX ••• XXXX •• XDXX ••
• • • • •• •••••• •••••• •XXX.. XXXXX. XXDXX.
• • • • •• •••••• •••••• •• XXX. . XXXXX •XXDXX
..................... xxx .. xxxx ..XXDX
•••••••••••••••••••••• XX ••• xxx ...XXD

Figure 4.1 SbUcture of the "interior" collocation matrix for N = M = 7 where d =diagonal non-zero
element, x = off diagonal non-zero element, . = zero element

4.2 NeumanD Boundary Conditions

Next, we consider Ihe spline collocation melhed for (4.1) wilh constant coefficients and Neumann

boundary conditions. Specifically I we determine Ud in S~~ such that it satisfies

(i) the interior collocation equations (4.2) at the interior grid points OJ,

and
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(ii) the boundary collocation equations at the points nB U Oe

(4.8.)

(4.8b)

In order to formulate (4.2) and (4.8) in a matrix fonn we consider the 11 x n matrix T" defined in

tenns of Q.. as

T - o.
1,1 - '""fl,1o

T" ... ='2q",n.

T1,2 =2q1,2.

Til_I ... = 2q1l-t,ll I

T 2,1 = 2q2,I.

T" ..._I = 2q1l ...._I.

and T;.j = qiJ .2'5. j j '5. n-2. Then the boundary equations (4.8) can be wrinen as

aad
(4.9.)

(4.9b)

where the right side rIP components

-D;z f o,rla.. -D:z f OJ/a for 1 '5. j S M I -D:z f O.M+l/a.

The rest of the f'S are defined by similar expressions on the other boundary sides. Notice that TM +1 and

TN +1 are positive definite. Thus (4.8) can be explicitly solved for the unknowns associated wilh the boun-

dary and comer grid points in nB U Oe.

4.3. Convergence Analysis

We now derive a priori error bounds for the error of the cubic spline collocation method applied to

the Helmholtz equation (4.1) wilh Dirichlet or Neumann boundary conditions. If we represent the interpo-

N M
Iant S of the solution u. as defined in SecLion 2, by S = L L ufJ Bj (x)8j (y) then the following result

i=O j=O

holds.

Lemma 4.1. 1/S in sfJ then/or rhe coefficients ufJ and UiJ 0/ Sand ulJ. thar correspond to rhe grid

points.QB u.De we have
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(4.10)

Proof. In the case of Dirichlet boundary condition notice that bolh S and UA satisfy lhe same uncoupled.

uniquely solvable spline end conditions. Thus. in this case we have that Ufj = U;J. In the case of Neu.

mann conditions we consider side .r = zo. :rN' From Lemma 2.3 and lite definition of u... we have that

ing the resulting relation in a mabix form, we oblain

where Vo are the boundary coefficient of "fr.o Since II TM~I JI.:s; 1 we conclude that (4.10) holds. We can

similarly establish (4.10) for the boUndary coefficients associated wilh tlle rest of the boundary sides. This

concludes the proof of Ihe Lemma.

According to the fonnulation of lhe method, me boundary unknowns that correspond La the grid

poinls 0B U D.e are explicitly defined by the systems (4.6) or (4.9) and can be eliminated using these

equations. The remaining unknowns Ui J lhat correspond lo interior grid points OJ are determined by the

interior collocation equations (4.2). The behavior of the coefficient matrix A of these equations has been

studied in the Lemma 3.1. IL is worth noticing that under the hypotheses of this lemma the collocation

approximation uti. for (4.1) is uniquely defined. Next, we prove two important resulls on which the conver-

gence proof is based. Similar results hold for the standard nodal collocation method applied to the operator

L [Cave 72].

Lemma 4.2. Let A o be the coefficient matrix that corresponds to the Laplace operalor, a=: ~ and p

=:..!:.. 1/ ~ .:s; O. then/or sufficiently small h;< and hy that they satisfy relations (3.3) lhe matrices A and A oy

are monotone and

Proof. The coefficient matrix A o corresponds to A with ~ == O. From stencils in Appendices. Lemma 3.1

and the hypotheses of this Lemma, we conclude easily that A 0 and A are irreducibly diagonally dominant
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wilh posiLive diagonal elements and non-positive off diagonal elements and A ~ A o. Thus for sufficiently

small h we have that 0 s; A -1 SAo. This concludes the proof of !.he Lemma.

In order to derive an explicit bound for II A 01 II independent of h we apply a discrete maximum prin-

ciple argument similar to Ihe one used in [Cave 72].

h
Lemma 4.3. Let cr:= h,:J: I c:= min a(P), and p =: .!!.. Then/or sufficiently small ~ I hy. Dirichlet houn-

PGo, 'Y

dary COruJjtiOTIS and crlp restricted in rhe interval ( ~; • i~ )we have IIAol II S; ( .76 + 2.68 ~2 )Ie

Proof. First. for any discrete function U defined in, OP. we consider the discrete operator Lit defined by

lhe interior stensil 5.2 at any point in np and the boundary stencils given in Appendi:x I for the points in

n}. with J3 = 5 = e = ,= O. From the discrete maximwn principle [Varg 62] we conclude, by similar

argumenlS as in [Cave 72J. that for any discrete funclion V such !.hat L" V ~ 0 on np we have that

max IV(P)I < mIX IV(P)I + -.L max IL. V(P)I
PeO: Pec.;vo. 2cPeo,·

(4.11)

j ~2, ....M-2.

j =2,.../1/-2 .

Consider lhe discrete funcLion W defined in 0/ U 0B such lhat Lit W(P) = -1 for all P E 0/. and

W (P) = 0 on 0B' Based on tlle definition of Lit for Dirichlet boundary conditions and tlle discrete equa.

tion Lit W =-1 we obtain tlle relations

I I s 721+ 16a.(f Ilwll + 71J:i!h;
Wlj TJ:y+76acf 72y+76acf'

161 + 72a.fiJ I I I 72cf h.
3

IWi.II S 76y+72a~ I w + 76y+72a.cf'

Similar inequalities hold for lhe rest of tlle Wij 's for (ij) in O}. Thus, we conclude Ihat

max IW;J'I <(.34+.35h;)/c
(ij) e 0: (4.12)

Application of inequality (4.11) for w and relaLion (4.12) gives Ilwll S (.76 + 2.68 hl )/c. From the

definiton ofw we have thatA o w =.s. wilh.s. = (-1, -1 •...• -1). Therefore we conclude that

This concludes the proof of the Lemma.



- 18-

Lemma 4.4. For sufficiently small h~, hy. Neumann boundary conditions and rrlp restricted in the inter-

18 32 _ ,
val ( 32 '17) we have IIAoll1 S( .85 +.61 h:l, )/c

Proof. Following the analysis of the proof ofLemma 4.3 and the definition of Lit for Neumann conditions

we have

max ,lWij J ~ (Al+.36h;)1c •
(iJ)e n;

Using inequality (4.11) and the above relation we obtain (.85 + .61 ~2 )/e as the upper bound for IlAo-ln for

Neumann boundary conditions. This concludes lhe proofof the lemma.

In the case of the standard nodal cubic spline collocation method the following result holds for

Hebnhol!z equations with variable coefficients for the Dirichlet case and with constant coefficients for the

Neumman case.

Lemma 4.5. For the standard nodal cubic spline collocalion method, suffidently small h;r., hy. and cflp

restricted in the interval ( ~ I 2) we have I lAo! I J S 3
1
, .

Based on the above resulls, we can now establish the optimal convergence of the spline collocation

method for Helmholtz equations with Dirichlet or Neumann boundary conditions.

Theorem 4.4. Let "6 be the spline col/ocation approximation of ufor (4.1). Then we have th£ error

bounds

where Ck,l is independent ofh.

Proof. From Theorem 2.1 and the definition ofu 6 at the interior grid points 0/. we have

Expressing (4.14) in matrix fonn we obLain

(4.13)

(4.14)
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(4.15)

Lemma 4.1 implies that ufJ - UiJ = o(h4) for (Xi. y) in VB U Uc and from (4.15), we conclude that

II VJ - U II = 0 (h 4) since IIA-Ill is rounded independently of h. This relation and Ihe definilion of

the basis functions Bi of S~~ imply that

(4.16)

The error bound (4.13) is then a direct consequence of (4.16) and (2.12c).

5. NUMERICAL RESULTS

In this section we present some numerical results La confinn the convergence properties of the cubic

spline collocation method. FOI" this purpose.. we have selected five problems with known solutions which

are solved then for various uniform meshes. We used the first formulation for !.he daLa swnmarized in

Tables 1 to 4. which indicate thal the rate of convergence of the method is 3.9 • This rale should be com-

pared with the optimal fourth order convergence in the approximation with bicubic-splines. It is worth not-

icing lhat the coefficient of u in problem 3 is positive while the mesh ratio cr'- for Problem 4 is outside the

interval (~~ • i~). This indicates that the conditions we give Wlder which the coeffici~t matrix of the

method is invertable are only sufficient We used tile second fonnulation (phase version) for the data in

Tables 5 to 12. The other metllods used for these tables are from the ELLPACK system and described in

[Rice 85]. The order is esLimated at the grid points by

order =
11(. - u,,llimu

-log
11(. - .,,llimu

All computations were perfonned on a VAX 780 in double precision except those in Tables 5 and 6

that were done in single precision. In these experiments the systems of linear equations are solved by

Gauss elimination using the UNPACK routines SGEFA and SGESL. Unlike general collocation based on

Hennite bicubics [Hous 861, the cubic spline collocation equations can be solved by various iterative

methods [Hous 841. [Vava 851 and their Wrecl solution does not require pivoting. A systematic perfor-

mance evaluation of the cubic spline collocation method is under way.
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Grid max 1(0 - O,.)(Xi,yj)l
order of

OSiJ SN),I convergence

5><5 1.36 e..Q3
9><9 8.43~5 3.99

13x13 1.74~5 3.81
17x17 5.75 e-Q6 3.84
21x21 2.42e-06 3.87
25x25 1.17 e-06 3.98
33X33 3.264-07 3.89

Table 1. The convergence of cubic-spline collocation method for a Poisson equation n;u + D/u =_/
with Dirichlet boundary conditions (u=O) on the unit square. The function f is selected so that
u = 3e:E+.Y(;c2_x }(y2_y).

Grid max Jeu - u.J(;c-,y·)I
order of total

OSiJS.N,M • J convergence time

6x6 7.380-02 .18
8x8 1.56 e-02 4.61 .40

Ilxl1 4.1l~3 3.74 .92
17x17 6.700-04 3.86 5.01
21x21 2.810-05 3.89 11.32

Table 2. The convergence of cubic-spline collocation method for a Helmholtz equation
D;u +D/u - [100+sin(31t)')+cos(2ttr)Ju =-1 with Dirichlet boundary conditions OR the
unit square. The function f is selected such that
u~.31[5.4-C (x )]S (x )(y'-y )[5.4-C(y )J[I+T (x,y r'-.S] where C(,) ~ co,(4",)
S (x) ~ sin(",) and T(x,y) ~ 4(x-{).5)' +4(Y-{).5)'.

Grid max 1(0 - U,.)(Xi,y-)
order of

OSiJSrfM J convergence

6x6 5.72e-03
9><9 8.2ge-04 4.11

17x17 5.89 e-05 3.81
21x21 2.40e-05 4.01

Table 3. The convergence of cubic-spline collocation method for a Helmhollz equation
Dz.2u + Dy2u + U = -/ with Dirichlet boundary condilions (u=O) on the unit square. The
funcLion fis selected such that u = 3eHY (x2_x)(y2_y).
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SPLINE COLLOCATION SPLINE GALERKlN HERM11E COLLOCATION

GRID
Totl! Number of band- lOti! number of band- lOti! number of band-
lime eouations width lime eauations width lime eClUations width

4x4 23 16 5 .73 36 21 .3 36 11

8><8 .71 64 9 3.48 100 33 3.92 196 19

12x12 2.1 144 13 921 196 45 16.32 484 27

16X16 4.9 256 17 19.91 324 57 46.48 900 35

20><20 8.9 400 21 34.40 484 69 105.00 1444 43

24x24 15~0 576 25 6029 676 81 209.5 2116 51

Table 4. Performance results are obtained by applying cubic spline collocation, cubic spline Galerkin and
Hermite bicubic collocation to the PDE problem considered in Table 2. The first column in
each method indicates the total time in seconds for discretization and solution.

SPLINE COLLOCATION SPLINE GALERKlN HERM11E COLLOCATION
GRID ellUf order ellUf order error order

4x4 3.22e-l 2.13 e-l 6.51 e-2

8X8 3.57 e-2 2.60 1.57 e-2 3.73 6.22 e-3 2.77

12x12 6.32 e-3 3.83 2.91 e-3 3.73 9.59 e-4 4.13

16x16 1.63 e-3 4.37 7.02e-4 4.58 2.90 e-4 3.86

20x20 6.69 e-4 3.77 2.45e-4 4.45 1.16e-4 3.86

24x24 3.4ge-4 3.41 l.ao e-4 4.69 5.44 e-5 3.96

Table 5. Errors and order of convergence of cubic spline collocation, cubic spline Galerkin and Hermite
bicubic collocation applied to the POE problem considered in Table 2.
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SPLINE COLLOCATION SPLINE GALERKIN HODIE

GRID error order total time error order total time error order total time

4x4 4.007 e-3 0.25 3.287 e-3 0.97 4.230 e-3 0.13

8x8 2.086 e-4 3.49 1.03 1.347 e-4 3.77 4.23 1.690 e-4 3.80 0.63

12x12 4.0720-5 3.61 2.81 1.970 e·5 4.25 11.27 2.810e-S 3.97 1.95

16x16 1.220 e-5 3.89 6.31 5.707 e-6 4.00 24.42 8.320 e·6 3.92 4.35

2Dx20 4.8920.6 3.87 12.11 2213 e-6 4.01 47.35 3.260e-6 3.96 8.63

Table 6. Errors. order of convergence and total time (in seconds) for discrelization and solution for the
cubic spline collocation, cubic spline Galerkin and HODIK methods applied to Lhe self adjoint
elliptic Openltor D%(e~D%u) + D,(e-ZYD,u) - u/(l+x +y)=f (x,y) with Dirichlet boundary
conditions (u=O) on the unit square. The function f is selecLed such that
u = O.75e-'9 sin(m)sin(lt)').

SPLINE COLLOCATION HODIE HELMHOLTZ HERMITE COLLOCATION SPLINE GALERKIN

GRID error order error order error order error order

5x5 5.89 e-4 5.55e-4 3.18 e-4 7.28 e-4

7x7 1.08 c-4 4.18 9.68 e-5 4.31 6.08 e-5 4.08 1.60 e-4 3.80

9x9 4.20e·S 3.29 3.lOe-5 3.96 1.97 e-5 3.91 5.47 e·S 3.64

llxll 1.88 e·S 3.59 1.26 e-5 4.02 8.24 e-6 3.90 2.39 c-S 3.72

13x13 9.52 e-6 3.74 5.97 e-6 4.11 3.920-6 4.08 1.16 e-S 3.98

15x15 5.280-6 3.82 3.27 e-6 3.91 2.16 e-6 3.87 6.08 e·6 4.20

17x17 3.15 e-6 3.87 1.880.6 4.14 1.24 e-6 4.12 3.470.6 4.21

19x19 1.99 e-6 3.90 1.19 e-6 3.88 7.89 e-7 3.86 2.17 0.6 3.98

Table 7. Errors and order of convergence of cubic spline collocation, HODIE Helmholtz. Hennite bicubic
collocation and cubic spline Galerkin methods applied to the PDE problem considered in Table
2.

,
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SPLINE-COLLOCATION SPLINE-GALERKIN
3- 11/2 a-9f2 a= 11/2 a-9f2

GRID error order error order error order error order

4x4 1.425 e-4 1.326 e-4 1.104 e-4 1.1363-4

8><8 5.808 e.<i 3.78 5.276e-6 3.81 8.872l?6 2.98 4.650 e-6 3.77

12X12 1.040 e-6 3.81 8.366 e-7 4.07 1.620 e-6 3.76 8.505 e-7 3.76

16x16 3.320e-7 3.68 2.422e-7 4.00 4.970e-7 3.81 2.284e-7 424

2000 1.354 e-7 3.80 9.4474 ·8 3.97 1.868e-7 4.11 8.994 e-8 3.94

Table 8. Errors and order ofconvergence for the spline collocation and spline Galerkin melhods applied to
lhe Laplace equation D;u + D/u = f wilh Dirichlet boundary conditions on the unit square
for various values ofa The function! is selected such that u = (x"_x"-l)(y"_y,,-t).

SPLINE COLLOCATION HERMITE COLLOCATION
GRID error total time error total Lime

7x5 4.410 e-4 0.50 2.63 e-4 3.65

llx5 3.340 e-4 0.80 2.67 e-4 6.64

llX9 4.271 e-5 1.55 1.72 e-5 23.40

13xll 1.847 e-5 2.52 7.33 e-6 45.37

21xl1 1.282 e-5 4.27 7.06 e-6 71.94

19x17 3.222e-5 7.98 1.13e.<i 18735

Table 9. Errors and total time (m seconds) for discretization and solution of cubic spline collocation and
Hennite bicubic collocation applied to the general elliptic operator (x+y+l)D,,2U + e"'--YDiu
+ (.x:-l)(y+l)D.r:yu + (x+l)D",u + (Y-I)Dyu + (xy+l)u such that Uy = 0 on the segment (y =

0,0 S x:;:;.s), u.. =0 on Lhesegment (x = 0, 0:;:; y.:s;.5) and u =0 on the rest of the boundary.
The problem is on the unit square and has a non-unifonn mesh. The function f is selected
such that u = 3e%+)'(.x3_x~(y3_y~. The cubic spline Galerkin and HOmE methods are not
applicable to this problem.
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SPLINE COLWCATION

GRID em>r order IOta! time

4x4 2.032e-3 0.22

8><8 9.5OOe-5 3.62 1.03

12><12 1.750 e-5 3.78 2.78

16x16 5.090006 3.96 6.08

2Ox20 2.013 e-6 3.95 12.01

Table 10. Errors, order of convergence and total time of cubic spline collocation for the problem
considered in Table 9, using a-uniform mesh.

IIU~ -S~II IIUw-Swll IIU_ -S_II IIU.-S.II IIU.-S.II
GRID em>r order error order em>r order em>r order em>r order

4x4 1.19 e-l 1.11 e-l 4.26 e-l 1.67 e-l 1.70 e·J

8><8 3.80 e-2 1.91 2.91 e-2 1.65 1.67 e-l 1.15 4.62 e-2 1.52 4.61 e-2 1.54

12X12 1.61 e-2 1.90 1.16 e-2 2.03 9.54 e-2 1.35 2.20e-2 1.64 2.22 e-2 1.62

16x16 8.95 e-3 1.90 6.17 e-3 2.05 5.95 e-2 1.52 1.26 e-2 1.79 1.30 e-2 1.73

20x20 5.70e-3 1.91 3.79 e-3 2.06 4.03 e-2 1.65 8.17 e-3 1.86 8.41 e-3 1.84

Table 11. Derivative errors and order ofconvergence for the problem considered in Table 6.

The order of convergence results in Tables 5-8 confirm the conclusion from Tables 1-3 that the order

of convergence of the spline collocation method is close LO 4.0. Table 10 gives data from a completely

general operator with combined Dirichlet and Neumann boundary conditions. Again the order of conver-

gence is close to 4.0 which suggests that the optimal order of convergence of the method is 4.0 in general.

Table II gives results on the order of convergence of derivatives of the standard 0 (h'1 spline collocation

method. Both first and second derivatives exhibit second order convergence. This behavior agrees with

the one observed by [Arno 84].

Table 4 gives a comparison of lhe problem size and computational times for three finite element

methods using piecewise cubic polynomials. Using Hermite cubics (the Hennite collocation melhod) for a

given grid size, gives many more unknowns much more computational effort and, as seen in Table 5,
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higher accuracy. However, accuracy is DOL improved enough to compensate for lhe additional compuler

time. To achieve an accurncy of 10-3 or belter requires 8.9 seconds for spline collocation. 19.9 seconds for

spline Galerkin and 16.3 seconds for Hennite collocation. Table 6 shows another example where spline

collocation is more efficient than spline Galerkin and Table 9 shows another example where spline coUcx:a-

lion is more efficient than Hermite collocation.

Ta,!,le 6 gives a comparison with high order finite difference (HODIE) method which is of compar-

able accuracy wilh a given grid size and a liUle more efficient. However, the HOOlE method is nOl as gen-

eral in its applicability as spline collocation (it cannot handle U;ry terms). The HODIE Helmholtz method

used in Table 7 is even faster, but this melhod is specifically designed for and reslricted to Helmhollz prob.

terns with only a variable coefficient of u in the operator.
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APPENDICES

In this appendix, we present stencils for the spline collocation method after lhe elimination of boun­

dary unknowns. This is done bolh for the Dirichlet and Neumann boundary conditions. The equations are

presented in the form of stencils to be used at each grid point which involves a boundary unknown. Notice

that each grid point (Xj I Yi) is associated wilh the unknown UiJ . The value of each entry is lhe coefficient

of the corresponding unknown. In all stencils, the coefficients of Ihe PDE are evaluated at the indicated

collocation point All stencils have been multiplied by the factor 72 h¥.2 h/.



APPENDIX I : Spline Collocation Stencils for the Dlrchlet problem.

"Yh; 4jh; ""I h;

2S'h;h~ - tPh::;hl/ SS'h~h~ 2S'h;h~ + tPh::;h ys •
-6(Eh;hl/ - 6h::;h~) -24€h;hy -6(Eh~hJl + 6h::;h~) ah'

+Sjh; + 4crh~ +32"Yh; - 19crh~ +Sbh;+ crh~) "
at point. 8S'h~h2

32S'h~h2
8S'h2h2

(Xl' yl) s " s "
+246h::;h~ % " -246h",h~ 4crh2

-l9""fh; + 16crh~
-76bh; + crh~)

-l9""fh; + 32crh~
•

2S'h;~ + iPh",hy SS'h2h2 is'h;h~ - tPh::;hy
s "+6(Eh::;h y + 6h::;h~) +24Eh;hy +6(Eh;h y - 6h::;h~) ah'

+1bh;+crh~) +16""1h~ - 19crh~ +4""1h; + 8crh~ "
s "

""Ih; 4-yh; ""Ih;

2S'h;h~ - tPh",h~ 8S'h2h~ 2S'h;i?, + t,Bh",h~
s "-6(Eh::;hJl - 6h::;hy) -24€h;hJl -6(Eh::;hl/ + 6h",hy) ah'•

+8"Yh; + 4crh~ +32..,h; - 19crh~ +Sbh; + ah~)

at points 8S'h2h2
32S'h2h~

SS'h2h'2s •
% "

(Xl. Yi) +246h::;h; s • -246h::;h; 4crh2
-72""1h2 _ 76ah'2 •

j=2•.••• M-2 -18..,h; + 16crh; s • -18..,h; + 32ah;

2S'h;hZ + t,Bh::;h" SS'h2h2 2S'h;hZ - t,Bh",hy
. "'251

+6(Eh;h" + 6h",h;) +24Eh",hu +6(Eh;hu - 6h",h~) ah'
+S""Ih; + 4ah; +32..,h; - 19crh; +8bh; + ah;) "

..,h; 4""1h; ""Ih;

2S'h;h; - t,Bh",hu SS'h2h2 2S'h;h~ + t,Bh::;h y
% " ah'-6(Eh;hu - 6h",h;) -24Eh;hy -6(Eh;h" + 6h",h;) •+4(jh; + ah;) +16""1h; - 19crh; +4..,h; + Sah;

8S'h2h~
32S'h~h2

8S'h2h2
s • % •

4ah2+246h",h; s " -246h::;h;
at point -76bh; + ah;) •-lSjh; + 16a:h; -18"Yh; + 32ah~

(Zl,YM-1)

2S'h;~+ tPh::;h ll SS'h2h 2 2S'h;~ - tPh",hy
s " ah'+6(Eh",hll + 6h",h;) +24Eh;hy +6(Eh::;hll' - 6h",h~)

"+8"1h; + 4ah; +32,h; - 190:h; +S("1h; + crh;)

"Yh; 4..,h; ...,h;



APPENDIX. IT : Spline Collocation Stencils for the Neumann problem.

'Yh~ 4'Yh~ 'Yh~

2th~h~ - ~.8h",hy 8~h2h'J 2~h~h~ + ~.8h",hll• •
-6(€h~hll - Sh,.h~) -24€h~hy -6(€h~hll + Sh",h~) ah'

+8(,.,h~+ ah~) +32'Yh~ - 17ah~ +8(,.,h~ + ah;) •
at point.

8~h2h2 8~h2h'J(Xl. Y1) . ~ 32~h2h2 ••+5h",hll • • -245h",h~ 4ah2

-17'Yh~ + 32ah; -68(,.,h~+ ah~)
-17'Yh~ + 32a~;

•

2~h~h~ + ~.8h",hll 8~h2h2 2~h;h; - ~.8h",hy••+6(€h~hy+ 5h",h;) +24€h~hll +6(fh~hll - Sh,.h~) ah'
+8(,.,h; + ah;) +32'Yh~ -17ah; +8(,.,h~ + ah;) •

'Yh; 4-yh; 'Yh;

2~h;h~ - t.8h",hy 8~h2h2 2~h;hl + ~.8h",hy• •-6(fh;hy - Sh",h;) -24€h;hll -6(€h",hy + Sh",h;) ah'
+8("'h;+ ah;l +32'Yh~ - 17ah~ +8(,.,h~+ah;) •

at points 8~h'Jh'J
32~h2h2

8~h'Jh2. ~ • •
(Xl. y;) +Sh",hy • • -24Sh",h; 4ah'-72'Yh2 - 68ah2 •

j=2•...• M-2 -18'Yh; + 32ah; • • -18'Yh; + 32o:h;

2~h~h~ + t.8h",hll 8~h2h2
-
2~h;hlz - t.8h",hy• •+6(fh",hll + Sh",h;) +24fh;hl/ +6(fh",h ll - Sh",h;) ah'•+8(,.,h; + ah;) +32'Yh; - 17ah; +8bh; + ah;)

'Yh; 4-yh; 'Yh;

2~h;h; - t.8h",hl/ 8~h2h2 2~h;h; + ~.8h",hy• •
-6(fh;h ll - Sh",h;) -24€h;hl/ -6(fh;h ll + Sh",h;l ah'•+8(,.,h; +ah;) +32'Yh; -"17ah; +8(,.,h~+ah;)

8~h2h2
32~h2h2

8~h2h2. ~ • •
+Sh",hy • • -24Sh",h; 4ah2

at point -68("'h; + ah;) •-17'Yh; + 32ah; -17'Yh; +32ah~
(Xl. YM-!l

2~h;h; + t.8h",hll 8~h2h2 2rh~~ - t.8h",h~• •
+6(€h;h ll + Sh",h;l +24fh;h ll +6(fh",hl/ - Sh",hJl )

ah'•+8(,.,h; + ah;) +32'Yh; - 17o:h; +8('Yh; +ah;)

'Yh; 4'Yh; 'Yh;
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