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In memory of Vladimir I. Petviashvili (1936–1993), who made an outstanding contribution to the
theory of nonlinear waves.

Abstract. We analyze a heuristic numerical method suggested by V.I. Petviashvili in 1976 for
approximation of stationary solutions of nonlinear wave equations. The method is used to construct
numerically the solitary wave solutions, such as solitons, lumps, and vortices, in a space of one
and higher dimensions. Assuming that the stationary solution exists, we find conditions when the
iteration method converges to the stationary solution and when the rate of convergence is the fastest.
The theory is illustrated with examples of physical interest such as generalized Korteweg–de Vries,
Benjamin–Ono, Zakharov–Kuznetsov, Kadomtsev–Petviashvili, and Klein–Gordon equations.
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1. Introduction. Nonlinear waves and vortices are often described by partial
differential equations, whose solutions cannot be found analytically even in a space of
one dimension. Numerical computations are used to approximate various solutions,
including stationary solutions. An effective numerical method for computing solitary
wave solutions in a space of two dimensions was proposed by V. I. Petviashvili in
the context of the Kadomtsev–Petviashvili equation with positive dispersion (KPI
equation) [P76]. The numerical method was shown to converge to a stationary solu-
tion, but no analysis or proof was given. One year later, the very same solution was
found analytically [MZ77], referred to as the two-dimensional soliton or lump. After
the pioneering work [P76], Petviashili’s numerical method was applied to numerous
nonlinear problems in modern mathematical physics [PP92].

In this paper, we prove the convergence theorem for Petviashvili’s numerical
method in a context of a nonlinear scalar wave equation with power nonlinearity.
We assume that the stationary solution exists in a suitable function space, when the
method is well defined. The method clearly diverges in the cases when no stationary
solution exists in such spaces. We derive conditions on parameters of the numerical
method and on the spectrum of a linearized operator associated with the stationary
solution, when the method converges to the stationary solution.

We start with a nonlinear scalar wave equation with power nonlinearity in one
dimension:

ut − (Lu)x + pup−1ux = 0,(1.1)

where u : R×R+ �→ R, p > 1, and L is a linear self-adjoint nonnegative pseudodiffer-
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ential operator in x with constant coefficients, such that

〈u,Lu〉 = 〈Lu, u〉 ≥ 0, 〈f, g〉 =

∫ ∞

−∞
f̄(x)g(x) dx.(1.2)

Stationary solutions of (1.1) are of the form u(x, t) = Φ(x − ct), where c is an
eigenvalue and Φ(x) is a bound state of the boundary-value problem on x ∈ R,

cΦ + LΦ = Φp,(1.3)

such that lim|x|→∞ Φ(x) = 0. The paramater c, which is typically continuous, has a
physical meaning of a speed of the stationary wave. The bound state Φ(x) belongs to
the function space X(R), defined in Assumption 1.1.

We employ the Fourier transform,

u(x) =
1

2π

∫ ∞

−∞
û(k)eikxdk, û(k) =

∫ ∞

−∞
u(x)e−ikx dx(1.4)

and rewrite the boundary–value problem (1.3) in the form

[c + v(k)] Φ̂(k) = Φ̂p(k),(1.5)

where v(k) is the range of L in the Fourier space. If L is a nonnegative pseudodif-
ferential operator of order m, the function v(k) is an mth order polynomial of |k|,
such that v(k) ≥ 0. The function v(k) has meaning of phase velocity of linear waves
(infinitesimal perturbations) of the scalar wave equation (1.1). Resonance between
nonlinear bound states and linear waves is excluded if c+v(k) �= 0 for any k ∈ R. For
the nonnegative operator L with v(k) ≥ 0, the resonance is excluded for c > 0.

Assumption 1.1. Let m be the order of a linear pseudodifferential operator L,
p > 1, v(k) ≥ 0, and c > 0. There exists a real analytical solution of the boundary-
value problem (1.5) in the function space

X = L2(R) ∩ Lp+1(R) ∩Hm/2(R).(1.6)

A naive iterative algorithm for numerical approximation of Φ̂(k) in the problem
(1.5) can be proposed in the form

ûn+1(k) =
ûp
n(k)

c + v(k)
,(1.7)

where ûn(k) is the Fourier transform of un(x) and un(x) is the nth iteration of the
numerical solution. However, this algorithm usually diverges, even if a fixed point Φ̂(k)
exists in the nonlinear problem (1.5). A modified iterative procedure is proposed by
introducing the stabilizing factor Mn [P76],

ûn+1(k) = Mγ
n

ûp
n(k)

c + v(k)
,(1.8)

where the stabilizing factor Mn is computed as

Mn = Mn[ûn] =

∫∞
−∞ [c + v(k)] [ûn(k)]

2
dk

∫∞
−∞ ûn(k)ûp

n(k) dk
,(1.9)
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and γ is a free parameter, which must be chosen for convergence of the sequence
{un(x)}∞n=0. The fixed points of the iterative map (1.8)–(1.9) are the same as the
bound states Φ̂(k) of the nonlinear boundary-value problem (1.5).

Lemma 1.2. A set of fixed points of the iteration map (1.8)–(1.9) coincides with a

set of bound states Φ̂(k) of the boundary-value problem (1.5), provided that γ �= 1+2n,

n ∈ Z.

Proof. If ûn(k) = Φ̂(k) is a solution of the boundary-value problem (1.5), then
Mn = 1 from (1.9) and ûn+1(k) = Φ̂(k) from (1.8). Therefore, the solution Φ̂(k) is
a fixed point of the iteration map (1.8)–(1.9). In the other direction, let û∗(k) be a
fixed point of the iteration map (1.8)–(1.9). Multiplying (1.8) by [c + v(k)]û∗(k) and
integrating over k, we find M∗ = Mγ

∗ . When γ �= 1 + 2n, n ∈ Z, there exist only two
solutions: M∗ = 0 or M∗ = 1. Since c + v(k) > 0 for any k ∈ R, the former solution
is equivalent to a trivial zero fixed point: û∗(k) = 0. The fixed point of (1.8) with
M∗ = 1 satisfies the boundary-value problem (1.5), such that û∗(k) = Φ̂(k).

When γ = 0, the iterative method (1.8) is the same as in (1.7) and it diverges
in most cases as was mentioned above. Nevertheless, a nonempty range for γ can be
found empirically, when the method converges to the bound state Φ(x), starting with
u0 ∈ X(R) such that un ∈ X(R), limn→∞ un(x) = Φ(x), and limn→∞ Mn = 1. For
p = 2 (quadratic nonlinearity), Petviashvili has found empirically that the iteration
method (1.8)–(1.9) converges for 1 < γ < 3, with the fastest rate of convergence at
γ = 2 [PP92]. He also noticed that the fastest rate of convergence occurs when the
degree of the uniformity of the right-hand side of (1.8) is zero with respect to ûn(k).
The convergence results do not depend on the actual dependence v(k), provided that
c + v(k) > 0 [PP92].

In this paper, we prove that the iteration method (1.8)–(1.9) converges for 1 <
γ < (p+1)/(p−1) under some additional assumptions on the spectrum of a linearized
operator associated with the bound state Φ(x). The fastest rate of convergence occurs
for γ = γ∗ = p/(p− 1).

From a practical point, the iteration procedure can be stopped when |Mn−1| ≤ ε
for any given small ε > 0. Therefore, parameter ε defines the distance between un(x)
and Φ(x) that measures the numerical error in the sense of the integrals in (1.9). Two
additional sources of numerical errors come from the use of spectral methods, such as
(i) the truncation of the integration domain k ∈ R by a finite interval k ∈ [−K,K]
and (ii) the discretization of the integrals at a finite number of grid points.

The paper is organized as follows. Section 2 describes properties of the linearized
operator associated with the scalar wave equation (1.1) and also formulates the main
convergence theorem. Section 3 presents the proof of the convergence theorem. Con-
vergence of the special sequences, which are self-similar to the bound states, is con-
sidered in section 4. Examples of the iteration method (1.8)–(1.9) in one and two
dimensions are studied in sections 5 and 6.

2. Spectral properties of the linearized operator. Here we study properties
of the linearized operator associated with the nonlinear wave equation (1.1) at u =
Φ(x− ct),

H = c + L − pΦp−1(x),(2.1)

such that H : L2(R) → L2(R) and 〈f,Hg〉 = 〈Hf, g〉. Since the operator H is self-
adjoint in L2(R), its spectrum is real, eigenvalues of the discrete spectrum have equal
geometric and algebraic multiplicities, and the spectral decomposition of L2(R) is
orthogonal.
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The continuous spectrum of H is positive and bounded away from zero under
Assumption 1.1. The null-space of H is not empty and includes at least one eigen-
function: HΦ′(x) = 0, since the nonlinear equation (1.1) has the translation sym-
metry: u(x, t) → u(x − x0, t). The negative spectrum of H is not empty, since
HΦ(x) = (1 − p)Φp(x) and

〈HΦ,Φ〉 = −(p− 1)〈Φp,Φ〉 = − (p− 1)

2π

∫ ∞

−∞
Φ̂(k)Φ̂p(k)dk

= − (p− 1)

2π

∫ ∞

−∞
[c + v(k)]

[
Φ̂(k)

]2

dk < 0.(2.2)

The analysis does not depend on the number and type of positive eigenvalues of H.
We summarize the main properties of the spectrum of H in the following assumption.

Assumption 2.1. The spectrum of H in L2(R) consists of eigenvalues µ of the
discrete spectrum for µ < c and the continuous spectrum for µ ≥ c. The null-space
of H is one dimensional with the eigenfunction Φ′(x). The negative space of H has
dimension n(H) ≥ 1.

Two linear eigenvalue problems are associated with the linearized operator H on
x ∈ R:

Problem I: ∂xHU = λU(2.3)

and

Problem II: HU = λ(c + L)U.(2.4)

Problem I occurs in the linearization of the nonlinear wave equation (1.1) with a small
perturbation to the bound state: u = Φ(x−ct)+U(x−ct)eλt. The nonzero spectrum
of ∂xH is defined in the constrained function space Xc(R),

Xc = {U ∈ L2(R) : 〈Φ, U〉 = 0},(2.5)

since λ〈Φ, U〉 = 〈Φ, ∂xHU〉 = −〈HΦ′, U〉 = 0. The spectrum of ∂xH in Xc(R) gives
stability or instability of the bound state Φ(x) in the time evolution of the nonlinear
wave equation (1.1). If there exists λ ∈ C such that Re(λ) > 0, the bound state is
spectrally unstable and the perturbations grow exponentially in time. If the spectrum
is located at the axis Re(λ) = 0, the bound state is weakly spectrally stable and the
perturbation may grow at most as powers of time. The spectral stability-instability
theorem for the scalar wave equation (1.1) can be formulated as follows.

Theorem 2.2 ([BSS87, PW92]). . Let Ps(c) = 〈Φ,Φ〉 be a C1 function of c
for c > 0 and Assumptions 1.1 and 2.1 be satisfied. The bound state Φ(x) is weakly

spectrally stable with respect to the time evolution problem (2.3) if n(H) = 1 and

P ′
s(c) > 0. The bound state Φ(x) is spectrally unstable if n(H) = 1 and P ′

s(c) < 0.
The negative space of the operator H in the constrained function space Xc(R) has the

dimension n(H) − 1 if P ′
s(c) > 0 and the dimension n(H) if P ′

s(c) < 0.
Spectral stability of the bound state Φ(x) occurs if the negative space of H is

empty in the constrained function space Xc(R) and the spectral instability occurs if
the negative space of H is one dimensional in Xc(R). On the contrary, the convergence
of the iteration method (1.8)–(1.9) does not depend on spectral stability or instability
of bound states. Convergence of the iteration method is related to the spectrum of
Problem II, which occurs in the linearization of the iteration method (1.8)–(1.9); see
(3.5) below.
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We consider the spectrum of the operator (c + L)−1H in a different constrained
space Xp(R),

Xp = {U ∈ L2(R) : 〈Φp, U〉 = 0}.(2.6)

The spectrum of (c+L)−1H diagonalizes simultaneously two linear operators: H and
(c+L). Since (c+L) is positive, all eigenvalues λ are real and the algebraic multiplicity
of eigenvalues equals to their geometric multiplicity. Therefore, the spectral decom-
position of L2(R) is orthogonal with respect to the positive weighted inner product
〈U, (c + L)U〉. In particular, due to the constraint (2.6), the eigenfunction U(x) is
orthogonal with respect to (c + L) to Φ(x), which is the eigenfunction of Problem II
for λ = 1 − p < 0.

Before formulating our main result (Theorem 2.8), we study the spectrum of
(c + L)−1H in Xp(R) under Assumption 2.1. Our analysis appears similar to the
Birman–Schwinger principle for Schrödinger operators in quantum mechanics [BS87].

Lemma 2.3. The negative space of H in Xp(R) has the dimension n(H) − 1.
Proof. The number of eigenvalues of H in the constrained function space Xp(R)

can be found from the constrained eigenvalue problem

Hψ = µψ − νΦp(x),(2.7)

where (µ, ψ) is the eigenvalue-eigenfunction pair of H in Xp(R) and ν is the Lagrange
multiplier defined from the constraint 〈Φp, ψ〉 = 0. The operator H − µ is invertible
for any µ not in the spectrum of H, where the spectral decomposition for ψ(x) takes
the form

ψ(x) = ν

[
∑

µk < 0

〈uk,Φ
p〉

µ− µk
uk(x) +

∑

µk > 0

〈uk,Φ
p〉

µ− µk
uk(x)

]
.(2.8)

Here (µk, uk) is the eigenvalue-eigenfunction pair of H in L2(R) and the formal sum∑
µk > 0 includes also the integral over the positive continuous spectrum of H. The

set of eigenfunctions {uk(x)}k is assumed to be orthogonal and normalized. The set
of eigenvalues µ of H in Xp(R) consists of two subsets. The first subset is given by
eigenvalues µk, whose eigenfunctions uk(x) belong to Xp(R). The other subset is
defined by zeros of the function

F (µ) =
1

ν
〈Φp, ψ〉 =

∑

µk < 0

|〈Φp, uk〉|2
µ− µk

+
∑

µk > 0

|〈Φp, uk〉|2
µ− µk

.(2.9)

We study zeros of F (µ) by direct application of the theory of constrained variational
problems [P04]. The function F (µ) is monotonically decreasing for µ ≤ 0 and µ �= µk.
Assume for simplicity that µ = µk is a single eigenvalue. The function F (µ) has a
jump from negative infinity at µ = µk − 0 to positive infinity at µ = µk + 0, if the
eigenfunction uk(x) at µ = µk does not belong to constrained function space Xp(R).
Otherwise, i.e., if uk(x) lies in Xp(R), the function F (µ) is continuous at µ = µk. The
function F (µ) approaches −0 in the limit µ → −∞ and it approaches a positive value
in the limit µ → 0,

F (0) = −〈Φp,H−1Φp〉 =
1

p− 1
〈Φp,Φ〉 > 0,(2.10)

where we have used the Parseval identity (2.2). The number of negative eigenvalues µ
of operator H in Xp(R) equals the number of zeros of the function F (µ) for µ < 0 and
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the number of eigenfunctions uk(x) of operator H that belongs to the space Xp(R)
for µk < 0. By continuity of the decreasing function F (µ) between µ ∈ [µk, µk+1] and
by counting the jump discontinuity of F (µ) at µ = µk [P04], we conclude that the
number of negative eigenvalues µ of H in Xp(R) equals n(H) − 1.

Lemma 2.4. The spectrum of (c+L)−1H in Xp(R) has n(H)− 1 negative eigen-

values λ.

Proof. By Sylvester’s inertial theorem [M88, P04], the dimension of the negative
space of the quadratic form 〈U,HU〉 is invariant in any orthogonal basis of Xp(R)
that diagonalizes 〈U,HU〉 with respect to a positive weighted inner product. One
orthogonal basis for Xp(R) is given by the eigenfunctions ψ(x) of the constrained
problem (2.7). The other orthogonal basis with respect to (c + L) is defined by the
eigenvalue problem (2.4). By invariance of the negative index of H in Xp(R), we have
n(H) − 1 negative eigenvalues λ in Problem II.

Lemma 2.5. The positive spectrum of (c+L)−1H in Xp(R) consists of infinitely

many discrete eigenvalues λ in the interval 0 < λ < 1, accumulating to λ → 1−. If

Φp−1(x) ≥ 0 for x ∈ R, no eigenvalues λ exists for λ > 1. If there exists x0 ∈ R such

that Φp−1(x0) < 0, the spectrum of (c+ L)−1H also includes infinitely many discrete

eigenvalues in the interval 1 < λ ≤ λmax, accumulating to λ → 1+, where

λmax < 1 +
p

c

∣∣∣min
x∈R

Φp−1(x)
∣∣∣ < ∞.(2.11)

Proof. Positive eigenvalues λ can be estimated from (2.4) rewritten in the form

(c + L)U − p

1 − λ
Φp−1(x)U = 0.(2.12)

Since (c+L) is positive, no continuous spectrum of the problem (2.12) exists. It was
proved in [CM99] for a similar spectral problem that the spectrum of the problem
(2.12) is discrete since trM2 < ∞, where M = (c+L)−1/2Φp−1(c+L)−1/2 is a bounded
operator. Since the spectrum of Φp−1(x) is infinite-dimensional, the spectrum of the
bounded operator M cannot be a finite rank [C01]. The potential term in (2.12)
becomes singular in the limit λ → 1 and therefore the point λ = 1 is an accumulation
point of the discrete eigenvalues. If Φp−1(x) ≥ 0 for any x ∈ R, the positive part
of M and the spectrum of the problem (2.12) in the interval 0 < λ < 1 are infinite-
dimensional, with eigenvalues accumulating to λ → 1−. In this case, no eigenvalues
exist for λ > 1, since

λ = 1 − p
〈U,Φp−1U〉
〈U, (c + L)U〉 < 1.(2.13)

If Φp−1(x) changes sign on x ∈ R, the negative part of M and the spectrum of the
problem (2.12) for λ > 1 are infinite-dimensional, with eigenvalues accumulating to
λ → 1+ [C01]. Since 〈U,LU〉 ≥ 0 and

〈U,Φp−1U〉 > −
(

min
x∈R

|Φp−1(x)|
)

〈U,U〉,

the largest positive eigenvalue λ = λmax is bounded from above by (2.11). The
spectrum of (c + L)−1H is shown schematically on Figure 1.

Corollary 2.6. The spectrum of (c+L)−1H is located below λ < 1 if and only

if p is odd or the bound state of the nonlinear problem (1.3) is nonnegative, Φ(x) ≥ 0
on x ∈ R.
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2 1 0 1 2

n(H) 1 

λ
 max

 λ 

∞ 0 or ∞ 

Fig. 1. Schematical representation of the spectrum of the operator (c + L)−1H.

Assumption 2.7. Either Φp−1(x) ≥ 0 on x ∈ R or λmax < 2.
Our main theorem prescribes convergence or divergence of the iteration method

(1.8)–(1.9).
Theorem 2.8. Let Φ̂(k) be a solution of the boundary-value problem (1.5) and

Assumptions 1.1 and 2.1 be satisfied. The iteration method (1.8)–(1.9) converges to

Φ̂(k) in a small open neighborhood of Φ̂(k) if (i) 1 < γ < (p+1)/(p−1), (ii) n(H) = 1,
and (iii) Assumption 2.7 is met. The fastest rate of convergence occurs for γ = γ∗ ≡
p/(p− 1). If any of the three conditions are not met, the iteration method (1.8)–(1.9)
diverges from Φ̂(k).

3. Contraction of the iterative method near the fixed point. Our proof
of Theorem 2.8 is based on the spectral analysis of the iteration operator (1.8)–(1.9),
linearized at Φ̂(k), and on the application of the contraction mapping principle for
nonlinear operators [HP80].

Proposition 3.1. The iteration operator (1.8)–(1.9), linearized at Φ̂(k), has a

spectral radius smaller than one if and only if (i) 1 < γ < (p+1)/(p−1), (ii) n(H) = 1,
and (iii) Assumption 2.7 is met.

Proof. Consider ŵ0(k) = û0(k) − Φ̂(k) be a small perturbation to Φ̂(k), such
that 〈Φ′, w0〉 = 0. The sequence ŵn(k) = ûn(k) − Φ̂(k) is generated by the iteration
operator (1.8), linearized at Φ̂(k),

ŵn+1(k) = γmnΦ̂(k) + p
Φ̂p−1 ∗ ŵn(k)

c + v(k)
,(3.1)

where ∗ is the convolution operator and mn = Mn−1. The correction mn is generated
by the stabilizing factor (1.9), linearized at Φ̂(k),

mn = (1 − p)

∫∞
−∞ Φ̂p(k)ŵn(k) dk
∫∞
−∞ Φ̂p(k)Φ̂(k) dk

.(3.2)

The correction term wn(x) can be decomposed explicitly as

wn = anΦ(x) + qn(x), qn ∈ Xp(R),(3.3)

where Xp(R) is defined by (2.6). It follows from (3.1) and (3.2) that mn = (1 − p)an
and mn solves the linear map

mn+1 = [p− γ(p− 1)]mn.(3.4)
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On the other hand, the correction term qn(x) solves the homogeneous part of the
problem (3.1), which is equivalently rewritten on x ∈ R as

qn+1(x) = qn(x) − (c + L)−1Hqn(x).(3.5)

If 1 < γ < (p + 1)/(p − 1), then limn→∞ mn = 0, such that limn→∞ Mn = 1 for the
stabilizing factor Mn = 1 + mn. Therefore, the first term in the decomposition (3.3)
vanishes as n → ∞. The second term qn(x) may, however, remain finite or even grow
with the number of iterations. We derive the conditions when qn(x) converges to zero
as n → ∞.

If w0(x) is orthogonal to Φ′, then 〈Φ′, q0〉 = 0. It follows from (3.5) that 〈Φ′, qn〉 =
0, ∀n. We apply, therefore, the spectral decomposition of Xp(R), described in Lemmas
2.4 and 2.5. The sequence {qn(x)}∞n=0 is decomposed through eigenfunctions Uk(x)
of the operator (c + L)−1H as follows:

qn(x) =

n(H)−1∑

k=1

α
(n)
k Uk(x) +

∑

0<λk<1

β
(n)
k Uk(x) +

∑

1<λk≤λmax

γ
(n)
k Uk(x),(3.6)

where the first sum represents the finite-dimensional negative space of Xp(R), the
second sum represents the infinite-dimensional positive space of Xp(R) for 0 < λ < 1,
and the third sum represents the infinite-dimensional positive space of Xp(R) for
1 < λ ≤ λmax, if the latter exists. The linear maps for coefficients of expansions are

α
(n+1)
k = (1 + |λk|)α(n)

k , λk < 0,(3.7)

β
(n+1)
k = (1 − λk)β

(n)
k , 0 < λk < 1,(3.8)

and

γ
(n+1)
k = (1 − λk)γ

(n)
k , 1 < λk ≤ λmax.(3.9)

Iterations for coefficients α
(n)
k diverge for any λk < 0. Iterations for coefficients β

(n)
k

converges for any 0 < λk < 1. Iterations for coefficients γ
(n)
k diverge for any λk ≥ 2

and converge for 1 < λk < 2. In the limit n → ∞, the correction qn(x) uniformly
converges to zero if the negative space of Xp(R) is empty, i.e., n(H) = 1, and the
positive space of Xp(R) is empty for λk ≥ 2. The latter condition is satisfied under
Assumption 2.7, i.e., when either the third sum in (3.6) is absent (p is odd or Φ(x) ≥ 0
on x ∈ R) or λmax < 2. We note that λmax is bounded from above by (2.11).

Remark 3.2. In the proof of Proposition 3.1, we have assumed that 〈Φ′, w0〉 = 0.
If w0(x) does not satisfy the constraint, iterations of the linearized operator (3.1)–
(3.2) converge to the eigenfunction Φ′(x) of the kernel of H, which simply translates
the bound state Φ(x) in x.

When the kernel of H has dimension greater than one, the corresponding eigen-
functions translate the bound state Φ(x) to some other solutions, which typically
implies bifurcations of the bound states. It is expected that the iteration method
(1.8)–(1.9) selects only one branch of solutions beyond the bifurcation, i.e., the other
branches of solutions have the negative index n(H) > 1. We eliminate the bifurcation
cases by Assumption 2.1, which ensures that the kernel of H is one dimensional.

Remark 3.3. The rate of convergence of the stabilizing factor Mn = 1 + mn

becomes superlinear if γ = γ∗ = p/(p − 1), see (3.4). However, the corrections qn(x)
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still converge with the linear rate at γ = γ∗; see (3.5). Thus, the fastest but linear
rate of convergence occurs at γ = γ∗. This conclusion confirms the Petviashvili’s
conjecture on the fastest rate of convergence [PP92].

Proposition 3.4. The iteration operator (1.8)–(1.9), linearized at the sequence

{φ̂n(k)}∞n=0, is continuous in a small open neighborhood of Φ̂(k).

Proof. Consider a difference δûn(k) = ûn(k) − φ̂n(k) between any two sequences

{ûn(k)}∞n=0 and {φ̂n(k)}∞n=0 generated by the iteration operator (1.8)–(1.9). The

sequence δûn(k) is defined by the iteration operator (1.8), linearized at φ̂n(k),

δûn+1(k) = γ
δMn

Mn
φ̂n+1(k) + pMγ

n

̂φp−1
n ∗ δûn(k)

c + v(k)
,(3.10)

where Mn = Mn[φ̂n] and δMn = Mn[φ̂n + δûn] − Mn[φ̂n]. The correction δMn is

generated by the stabilizing factor (1.9), linearized at φ̂n(k),

δMn =
2
∫∞
−∞ [c + v(k)] φ̂n(k)δûn(k) dk − (1 + p)Mn

∫∞
−∞ φ̂p

n(k)δûn(k) dk
∫∞
−∞ φ̂p

n(k)φ̂n(k) dk
.(3.11)

The linearized iteration operator (3.10)–(3.11) is continuous with respect to φn ∈
X(R), where X(R) is defined by (1.6).

Proof of Theorem 2.8. The iteration method (1.8)–(1.9) represents a nonlinear
operator ûn+1 = A(ûn) in function space X(R). The operator A(ûn) has a continuous
Frechet derivative A′(ûn) in small open neighborhood of Φ̂ in X(R). Under the three
conditions of Proposition 3.1, the spectral radius of A′(Φ̂) is smaller than one, i.e.,
||A′(Φ̂)|| < 1. By continuity of the Frechet derivative, for any ǫ with 0 < ǫ <
1 − ||A′(Φ̂)||, there is a small open ball S(Φ̂, δ) ∈ X(R) centered at Φ̂(k) with the
radius δ = δ(ǫ), such that

q = sup
ûn∈S(Φ̂,δ)

||A′(ûn)|| < 1.(3.12)

It follows from [HP80, Lemma 4.4.7] that

||A(f̂) −A(ĝ)|| ≤ q||f̂ − ĝ||(3.13)

for any f̂ , ĝ ∈ S(Φ̂, δ). Then, the contraction mapping theorem [HP80, Theorem 4.3.4]
applies and the nonlinear operator A(ûn) has a unique asymptotically stable fixed
point for ûn ∈ S(Φ̂, δ). Moreover, the asymptotic rate of convergence is determined
by the Frechet derivative at Φ̂ as follows:

||ûn − Φ̂|| ≤
(
||A′(Φ̂)|| + ǫ

)n

||û0 − Φ̂||.(3.14)

See [HP80, Lemma 4.4.8] for further details.

4. Convergence of self-similar sequences. Here we derive conditions for con-
vergence of a special sequence {xnΦ̂(k)}∞n=0, which is self-similar to Φ̂(k) module to
amplitude scaling. We also consider convergence of a general sequence in the small
open neighborhood of {xnΦ̂(k)}∞n=0.

Proposition 4.1. Let Φ̂(k) be a solution of the boundary-value problem (1.5)
and Assumption 1.1 be satisfied. There exists a sequence {xnΦ̂(k)}∞n=0 in the iteration

map (1.8)–(1.9), which converges to Φ̂(k) for any x0 > 0 if 1 < γ < (p + 1)/(p− 1).
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Proof. Define û0(k) = x0Φ̂(k) for any x0 > 0. Then, it follows from (1.5), (1.8),
and (1.9) that ûn(k) = xnΦ̂(k) for any n ≥ 0, where xn is defined by the power
iteration map

xn+1 = Mγ
nx

p
n = xp−γ(p−1)

n ,(4.1)

where Mn = x1−p
n . The iteration map converges for 1 < γ < (p + 1)/(p− 1) with the

limit limn→∞ xn = 1. As a result, limn→∞ ûn(k) = Φ̂(k).
Remark 4.2. The rate of convergence of the power iteration map (4.1) is linear

for γ �= γ∗, where γ∗ = p/(p − 1). When γ = γ∗, the convergence occurs in a single
iteration: û1(k) = Φ̂(k) for any x0 > 0. The starting value û0(k) is self-similar to
the bound state Φ̂(k) module to amplitude scaling. The special sequence {ûn(k)}∞n=0

exists in the iteration map (1.8)–(1.9) due to the power nonlinearity. The special
sequence does not exist for general nonlinear functions.

Proposition 4.3. Let Φ̂(k) be a solution of the boundary-value problem (1.5)
and Assumptions 1.1 and 2.1 be satisfied. Let {xnΦ̂(k)}∞n=0 be a self-similar sequence,

where xn is generated by the power iteration map (4.1) with any x0 > 0. The iteration

operator (1.8)–(1.9), linearized at {xnΦ̂(k)}∞n=0, has a spectral radius smaller than one

if and only if (i) 1 < γ < (p + 1)/(p − 1), (ii) n(H) = 1, and (iii) Assumption 2.7 is

met.

Proof. We use the linear map (3.10)–(3.11) with φ̂n(k) = xnΦ̂(k), where xn solves
the power iteration map (4.1). As a result, we find that Mn = x1−p

n . The linear map
(3.10)–(3.11) is then equivalent to the linear map (3.1)–(3.2) with the relations

ŵn(k) =
δûn(k)

xn
, mn =

δMn

xp
n

.

Thus, Proposition 4.3 is equivalent to Proposition 3.1.

5. Examples in one dimension. Here we discuss two examples of the scalar
wave equation (1.1), where the iteration method (1.8)–(1.9) can be used for finding
stationary solutions such as solitary waves.

Example 5.1 (generalized Korteweg–de Vries (KdV) equations). A family of
generalized KdV equations is defined for L = −∂2

x, such that v(k) = k2 ≥ 0 and
m = 2. The bound state solutions of the boundary-value problem (1.3) exist for p > 1
in the analytical form (see, e.g., [PW92])

Φ(x) =

[√
(p + 1)c

2
sech

(
p− 1

2

√
cx

)] 2

p−1

.(5.1)

It follows from (5.1) that the bound state Φ(x) decays exponentially as

lim
|x|→∞

Φ(x)e
√
c|x| = a∞, a∞ = [2(p + 1)c]

1

p−1 .(5.2)

The function Φ(x) belongs to X(R) of Assumption 1.1. Since Φ(x) ≥ 0 on x ∈ R,
it also satisfies Assumption 2.7. The linearized operator H becomes a Schrödinger
operator with a solvable potential,

H = c− ∂2
x − p(p + 1)c

2
sech2

(
p− 1

2

√
cx

)
.(5.3)
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The Schrödinger operator (5.3) satisfies Assumption 2.1. Since HΦ′(x) = 0 and Φ(x)
has no nodes on x ∈ R, the Sturm oscillation theorem predicts only one negative
eigenvalue of H, i.e., n(H) = 1. As a result, Theorem 2.8 applies and the iteration
method (1.8)–(1.9) converges to the bound state Φ̂(k) in the generalized KdV equation
for any value of p > 1 if 1 < γ < (p + 1)/(p− 1).

Remark 5.2. In accordance with Theorem 2.2, the bound state Φ(x) is weakly
spectrally stable with respect to the time evolution problem for p < 5 and spectrally
unstable for p ≥ 5 (see also [BSS87, PW92]). On the other hand, the iteration method
(1.8)–(1.9) converges for any p > 1, irrelevantly to the stability of bound states in
the time evolution problem. For instance, the interval of convergence with p = 5 is
1 < γ < 3/2 and the interval shrinks to zero when p → ∞.

Example 5.3 (generalized Benjamin–Ono (BO) equations). A family of general-
ized BO equations is defined for L = −∂xH, where H(u) is the Hilbert transform of
u(x),

H(u) =
1

π
℘

∫ ∞

−∞

u(z)dz

z − x
,(5.4)

and the symbol ℘ denotes the principal value of the integral. In this case, v(k) =
|k| ≥ 0 and m = 1. The bound state solutions of the nonlinear problem (1.3) are
unknown in the analytical form except for the case p = 2, when

Φ(x) =
2c

1 + c2x2
.(5.5)

Using the asymptotic representation for Φ(x) ∈ L1(R),

H(Φ) = − 1

πx

∫ ∞

−∞
Φ(z)dz + O

(
1

x2

)
,

and the balance of inverse powers of x in the problem (1.3), we derive the algebraic
decay of Φ(x) at infinity,

lim
|x|→∞

x2 Φ(x) = a−2, a−2 =
1

πc

∫ ∞

−∞
Φ(x)dx.(5.6)

The function Φ(x) has sufficient decay at infinity to belong to X(R) of Assumption
1.1, if it exists for p > 1. Since Φ(x) ≥ 0 on x ∈ R as follows from our numerical
approximations (see Figure 2), Assumption 2.7 is satisfied. The linearized operator
H becomes a nonlocal operator,

H = c− ∂xH − pΦp−1(x).(5.7)

It was proved in [CK80] for p = 2 that the nonlocal linearized operator (5.7) satisfies
Assumption 2.1 and has only one negative eigenvalue, i.e., n(H) = 1. As a result,
Theorem 2.8 states that the iteration method (1.8)–(1.9) converges to the bound state
Φ̂(k) for the case p = 2 if 1 < γ < 3.

We have computed the bound states Φ(x) for p = 2, 3, 4, 5 from the iteration
method (1.8)–(1.9) starting with the Gaussian approximation u0(x) = exp(−x2) for
c = 1 (see also [AS87]). The numerical approximations are plotted on Figure 2, where
dots for p = 2 show the exact values from (5.5). Figure 3 shows convergence of
the stabilizing factor Mn in the iteration method (1.8)–(1.9) with p = 2, for three
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Fig. 2. Numerical approximations of the bound states Φ(x) of the generalized BO equation for
p = 2, 3, 4, 5. Dots on curve 2 show exact values from the analytical solution (5.5).

different values of γ: γ = 2 (dots), when the rate of convergence is the fastest; γ = 1.1
(triangles), near the left boundary of the convergence interval; and γ = 2.9 (crosses),
near the right boundary of the convergence interval. We conclude that the iteration
method (1.8)–(1.9) converges to the bound state of the generalized BO equation for
p = 2, 3, 4, 5 if 1 < γ < (p + 1)/(p − 1). Moreover, numerical computations show
convergence of the method to a positive-definite bound state Φ(x) for any p > 1,
including noninteger values of p.
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Fig. 3. Stabilizing factor Mn versus n for the iteration method (1.8)–(1.9) with p = 2 for γ = 2
(dots), γ = 1.1 (triangles), and γ = 2.9 (crosses).
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Remark 5.4. The bound state Φ(x) is spectrally stable with respect to the time
evolution problem for p = 2 and spectrally unstable for p ≥ 3 [BSS87, CK80]. Under
assumption that n(H) = 1 and Φ(x) ≥ 0 on x ∈ R for any p > 1, the iteration method
(1.8)–(1.9) converges to the bound state for any p > 1, irrelevantly to the stability of
bound states in the time evolution problem. Therefore, the method becomes useful
for numerical approximations of the bound states in the generalized BO equation,
when exact analytical expressions are not available. In fact, the iteration method
(1.8)–(1.9) was successfully used for numerical approximations of soliton solutions
in the generalized BO and KdV equations in [AS87]. Another numerical method is
developed with the help of Newton iteration algorithms but the Newton iterations
have convergence problems as pointed out in [BK03]. We notice that Petviashvili’s
iteration method (1.8)–(1.9) is not sensitive to the choice of a starting function, which
is its great advantage compared to the Newton’s iteration method.

6. Examples in two dimensions. We finish the article with generalizations of
the iteration method (1.8)–(1.9) for the scalar wave equation in space of two dimen-
sions,

ut − (Lu)x + pup−1ux = 0,(6.1)

where u : R2 × R+ �→ R, p > 1, and L is a linear self-adjoint nonnegative pseudo-
differential operator in x and y with constant coefficients. If the Fourier transform
(1.4) is replaced by the double Fourier transform in L2(R2), the iteration method
(1.8)–(1.9) can be applied to the scalar wave equation (6.1) in two dimensions. The
only modification is required for Assumption 2.1, since the kernel of H = c + L −
pΦp−1(x, y) has at least two eigenfunctions ∂xΦ(x, y) and ∂yΦ(x, y).

Assumption 6.1. The spectrum of H in L2(R2) consists of eigenvalues µ of the
discrete spectrum for µ < c and the continuous spectrum for µ ≥ c. The null-space of
H is two dimensional with the eigenfunctions ∂xΦ(x, y) and ∂yΦ(x, y). The negative
space of H has dimension n(H) ≥ 1.

With this modification, we formulate the results of sections 2 and 3 as the following
theorem.

Theorem 6.2. Let Φ̂(k) be a solution of the boundary-value problem (1.5) and

Assumptions 1.1 and 6.1 be satisfied. The iteration method (1.8)–(1.9) converges to

Φ̂(k) in a small open neighborhood of Φ̂(k) if (i) 1 < γ < (p+1)/(p−1), (ii) n(H) = 1,
and (iii) Assumption 2.7 is met. The fastest rate of convergence occurs for γ = γ∗ ≡
p/(p− 1). If any of the three conditions are not met, the iteration method (1.8)–(1.9)
diverges from Φ̂(k).

Here we discuss three examples of the scalar wave equation (6.1) in two dimen-
sions, where the iteration method (1.8)–(1.9) can be used for finding stationary solu-
tions such as solitary waves.

Example 6.3 (generalized Zakharov–Kuznetsov (ZK) equations). The generalized
KdV equations of Example 5.1 are extended to the two-dimensional ZK equations,
when L is an isotropic operator,

L = −(∂2
x + ∂2

y),(6.2)

such that v(k) = k2
x +k2

y ≥ 0. The bound state u = Φ(x− ct, y) satisfies the nonlinear
problem

cΦ − ∆Φ = Φp.(6.3)
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Existence and uniqueness of positive solutions of the nonlinear elliptic problem (6.3)
was proved for any p > 1 [GNN81, K89] such that Φ(x, y) = Φ(r) is radially symmet-

ric, where r =
√
x2 + y2, and satisfies the limiting decay

lim
r→∞

e
√
crr1/2Φ(r) = a∞ > 0.(6.4)

The positive solutions Φ(r) satisfy Assumptions 1.1 and 2.7. The linearized operator
H becomes the Schrödinger operator with the radially symmetric potential

H = c− ∂2
x − ∂2

y + pΦp−1(r).(6.5)

Assumption 6.1 is satisfied for the Schrödinger operator (6.5) and the negative index
of H for the positive ground state Φ(r) is one, i.e., n(H) = 1 [S9, p. 63]. Therefore,
iterations of the numerical method (1.8)–(1.9) converge for 1 < γ < (p + 1)/(p − 1),
according to Theorem 6.2 for any p > 1. This result justifies the use of the iteration
method (1.8)–(1.9) for numerical approximation of bound states of the generalized
ZK equations.

Example 6.4 (generalized Kadomtsev–Petviashvili (KP) equations). The general-
ized KdV equations of Example 5.1 are extended to the two-dimensional KP equations,
when L is an anisotropic operator,

L = −∂2
x + ∂−2

x ∂2
y ,(6.6)

such that v(k) = k2
x + k−2

x k2
y ≥ 0. The linear operator L in (6.6) corresponds to the

KPI equation with two-dimensional solitons, called lumps. The nonlocal ∂−1
x operator

is well posed subject to the constraint on u(x, y, t)

∫ ∞

−∞
u(x, y, t) dx = 0.(6.7)

The bound state u = Φ(x− ct, y) satisfies the nonlinear problem

cΦ − Φxx + ∂−2
x Φyy = Φp.(6.8)

The exact analytical solution for Φ(x, y) exists for p = 2 [MZ77],

Φ(x, y) = 12c
3 + c2y2 − cx2

(3 + c2y2 + cx2)2
.(6.9)

The bound state Φ(x, y) is sign-indefinite due to the constraint (6.7). Existence of
sign-indefinite bound states in the nonlinear problem (6.8) was proved for p = 3, 4
by using constrained minimization [BS97]. It was also shown that the solution exists
only for p < 5 and p = p1/p2, where p1 is any even integer and p2 is any odd integer
[LW97]. Bound states Φ(x, y) satisfy Assumption 1.1.

It can be shown with the Riemann–Hilbert inverse scattering method [PS00] that
the spectrum of H for p = 2 satisfies Assumption 6.1 with n(H) = 1. Since the bound
states Φ(x, y) are nonpositive, they satisfy Assumption 2.7 only if λmax < 2. It follows
from (6.9) for p = 2 that
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Fig. 4. A numerical approximation of the bound state Φ(x, y) of the generalized KPI equation
with p = 3.

min
(x,y)∈R2

Φ(x, y) = Φ

(
± 3√

c
, 0

)
= − c

2
.

Therefore, the upper bound (2.11) applies with λmax < 1 + 1 = 2, i.e., As-
sumption 2.7 is also satisfied. Theorem 6.2 states that the iteration method (1.8)–
(1.9) converges to Φ(x, y) for p = 2 if 1 < γ < 3. This analysis justifies the use
of the numerical iteration method (1.8)–(1.9), proposed originally by Petviashvili
[P76].

We have computed the bound states Φ(x, y) for p = 2, 3, 4 from the iteration
method (1.8)–(1.9) starting with the lump solution (6.9) with c = 1. The constraint
(6.7) is built into the algorithm as zero Fourier mode with kx = 0. The final solution
Φ(x, y) is shown on Figure 4 for p = 3 (see also [AS87]). Cross-sections Φ(x, 0) and
Φ(0, y) are shown on Figure 5(a,b) for p = 2, 3, 4, where dots for p = 2 show exact
values from (6.9). Figure 6 shows convergence of the stabilizing factor Mn in the
iteration method (1.8)–(1.9) with the fastest rate γ = p/(p − 1) for p = 2, 3, 4. We
conclude that the iteration method (1.8)–(1.9) converges to the bound state of the
generalized KP equation for p = 2, 3, 4 if 1 < γ < (p + 1)/(p− 1).

Remark 6.5. Nonpositive bound states of the generalized KP equations may
consist of several individual lumps. Multilump solutions of the KPI equation with
p = 2 were discovered both numerically [AS85] and analytically [PS93]. However, a
discrepancy occurs between the numerical and analytical solutions for a double-lump;
the analytical solution is unique for the double-lump [PS93], while the numerical
solution represents a continuous family with a free parameter of the distance between
the two lumps [AS85]. This discrepancy is likely to be explained by low accuracy
of the numerical procedure in [AS85], i.e., low resolution of the numerical mesh and
small grid size. Since the negative index of H for multilump solutions typically exceeds
one, the iteration method (1.8)–(1.9) must diverge in the neighborhood of multilump
solutions, according to Theorem 6.2. Numerical approximations obtained in [AS85]
are likely supported by the truncation of the domain on R2 and the discretization
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Fig. 5. Cross sections Φ(x, 0) and Φ(0, y) of numerical approximations of the bound states
Φ(x, y) of the generalized KPI equation with p = 2, 3, 4. Dots on curves 2 show exact values from
the analytical solution (6.9).

of the numerical grid (x, y). This example shows a danger of the direct use of the
iteration method (1.8)–(1.9) without analysis of the three conditions of convergence
in Theorems 2.8 and 6.2.

Example 6.6 (generalized Klein–Gordon (KG) equations). Our last example
shows that the iteration method (1.8)–(1.9) can be used for other nonlinear
problems, such as the generalized KG equation,

utt − c20(uxx + uyy) + u = up.(6.10)

Travelling wave solutions of (6.10) are of the form u(x, y, t) = Φ(x − ct, y), where
Φ(x, y) satisfies the boundary–value problem

Φ − (c20 − c2)Φxx − c20Φyy = Φp.(6.11)

If |c| < c0, the boundary–value problem (6.11) can be reduced to the form (6.3) of
Example 6.3 with a simple rescaling of variables x and y.
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Fig. 6. Stabilizing factor Mn versus n in the iteration method (1.8)–(1.9) with the fastest rate
γ = p/(p− 1) for p = 2, 3, 4.

Acknowledgments. The authors are thankful to H. Kalisch and A. N. Notik for
collaboration on the early stage of the work. One of the authors (D. P.) appreciates
useful discussions with R. Gadyl’shin, A. Pushnitski, A. Scheel, and V. Vougalter.

REFERENCES

[AS85] L. A. Abramyan and Yu. A. Stepanyants, Two-dimensional multisolitons: station-
ary solutions of the Kadomtsev–Petviashvili equation, Radiophysics and Quantum
Electronics, 28 (1985), pp. 20–26.

[AS87] L. A. Abramyan and Yu. A. Stepanyants, Structure of two-dimensional solitons in the
context of a generalized Kadomtsev–Petviashvili equation, Radiophysics and Quan-
tum Electronics, 30 (1987), pp. 861–865.

[BS87] M. Sh. Birman and M. Z. Solomyak, Spectral Theory of Self-Adjoint Operators in
Hilbert Space, Reidel, Dordrecht, The Netherlands, 1987.

[BK03] J. Bona and H. Kalisch, Singularity Formation in the Generalized Benjamin–Ono
Equation, preprint, 2003.

[BSS87] J. L. Bona, P. E. Souganidis, and W. A. Strauss, Stability and instability of solitary
waves of Korteweg-de Vries type, Proc. Roy. Soc. London Ser. A, 411 (1987), pp. 395–
412.

[BS97] A. De Bouard and J. C. Saut, Solitary waves of generalized Kadomtsev–Petviashvili
equations, Ann. Inst. H. Poincare, Anal. Non Lineaire, 14 (1997), pp. 211–236.

[CK80] H. H. Chen and D. J. Kaup, Linear stability of internal wave solitons in a deep stratified
fluid, Phys. Fluids, 23 (1980), pp. 235–238.

[C01] A. Constantin, On the scattering problem for the Camassa–Holm equation, Proc. R.
Soc. Lond. Ser. A Mat. Phys. Eng. Sci. 457 (2001), pp. 953–970.

[CM99] A. Constantin and H. P. McKean, A shallow water equation on the circle, Comm.
Pure Appl. Math., 52 (1999), pp. 949–982.

[GNN81] B. Gidas, W. M. Ni, and L. Nirenberg, Symmetry of positive solutions of nonlinear
elliptic equations in RN , in Mathematical Analysis and Applications, Adv. in Math.
Suppl. Studies 7A, L. Nachbin, ed., Academic Press, New York, 1981, pp. 369–402.

[HP80] V. Hutson and J. S. Pym, Applications of Functional Analysis and Operator Theory,
Academic Press, London, 1980.



CONVERGENCE OF PETVIASHVILI’S METHOD 1127

[K89] M. K. Kwong, Uniqueness of positive solutions of ∆u−u+up = 0 in RN , Arch. Rational
Mech. Anal., 105 (1989), pp. 243–266.

[LW97] Y. Liu and X. P. Wang, Nonlinear stability of solitary waves of a generalized
Kadomtsev–Petviashvili equation, Comm. Math. Phys., 183 (1997), pp. 253–266.

[M88] J. H. Maddocks, Restricted quadratic forms, inertia theorems, and the Schur comple-
ment, Linear Algebra Appl., 108 (1988), pp. 1–36.

[MZ77] S. V. Manakov, V. E. Zakharov, L. A. Bordag, A. R. Its, and V. B. Matveev, Two-
dimensional solitons of the Kadomtsev–Petviashvili equation and their interaction,
Phys. Lett. A, 63 (1977), pp. 205–206.

[PW92] R. L. Pego and M. I. Weinstein, Eigenvalues, and instabilities of solitary waves, Phil.
Trans. Roy. Soc. London Ser. A, 340 (1992), pp. 47–94.

[P04] D. Pelinovsky, Inertia law for spectral stability of solitary waves in coupled nonlinear
Schrödinger equations, preprint, Proc. Roy. Soc. Lond. Ser. A, (2004).

[PS93] D. E. Pelinovsky and Yu. A. Stepanyants, New multisoliton solutions of the
Kadomtsev–Petviashvili equations, JETP Lett., 57 (1993), pp. 24–28.

[PS00] D. E. Pelinovsky and C. Sulem, Eigenfunctions and eigenvalues for a scalar Riemann–
Hilbert problem associated to inverse scattering, Comm. Math. Phys., 208 (2000),
pp. 713–760.

[P76] V. I. Petviashvili, Equation of an extraordinary soliton, Plasma Physics, 2 (1976),
p. 469.

[PP92] V. I. Petviashvili and O. V. Pokhotelov, Solitary Waves in Plasmas and in the
Atmosphere, Gordon and Breach, Philadelphia, 1992.

[S9] W. A. Strauss, Nonlinear Wave Equations, CBMS Reg. Conf. Ser. Math. 73, AMS,
Providence, RI, 1989.




