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ABSTRACT Deep learning (DL)-based PV Power Forecasting (PVPF) emerged nowadays as a promising
research direction to intelligentize energy systems. With the massive smart meter integration, DL takes
advantage of the large-scale and multi-source data representations to achieve a spectacular performance
and high PV forecastability potential compared to classical models. This review article taxonomically
dives into the nitty-gritty of the mainstream DL-based PVPF methods while showcasing their strengths
and weaknesses. Firstly, we draw connections between PVPF and DL approaches and show how this
relation might cross-fertilize or extend both directions. Then, fruitful discussions are conducted based on
three classes: discriminative learning, generative learning, and deep reinforcement learning. In addition,
this review analyzes recent automatic architecture optimization algorithms for DL-based PVPF. Next, the
notable DL technologies are thoroughly described. These technologies include federated learning, deep
transfer learning, incremental learning, and big data DL. After that, DL methods are taxonomized into
deterministic and probabilistic PVPF. Finally, this review concludes with some research gaps and hints
about future challenges and research directions in driving the further success of DL techniques to PVPF
applications. By compiling this study, we expect to help aspiring stakeholders widen their knowledge of the
staggering potential of DL for PVPF.

INDEX TERMS Photovoltaic power forecasting, deep learning, big data, discriminative learning,

generative learning, deep reinforcement learning.

Nomenclature

Abbreviations

AE Auto-Encoders
AM Attention Mechanism
BDDL Big Data Deep Learning
BM Boltzmann Machines
CDQN Continuous DQN
CNN Convolutional Neural Network
CWGAN-GP Conditional Wasserstein GAN with gradient

penalty
DBN Deep Belief Networks
DCGAN Deep Convolutional GAN

DCIGN Deep Convolutional Inverse Graphics Network
DDPG Deep Deterministic Policy Gradient
DDQN Double Deep Q Network
DL Deep Learning
DPVPF Deterministic photovoltaic Power Forecasting
DQN Deep Q Network
DTL Distributed Transfer Learning
GAN Generative Adversarial Network
GRU Gated Recurrent Unit
LSTM Long-Short Term Memory
MLP Multilayer Perceptron
NTM Neural Turing Machine
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PPVPF Probabilistic photovoltaic Power Forecasting
PVPF Photo-Voltaic Power Forecasting
RBM Restricted Boltzmann Machines
ResNet Residual Neural Network
RNN Recurrent Neural Network
SAE Sparse Autoencoders
SG Smart Grid
SimGAN Simulated GAN
SOM Self Organizing Map
VAE Variational Autoencoders
WGANGP Wasserstein GAN with Gradient Penalty

I. INTRODUCTION

T
HE rapid expansion of Distributed Energy Resources
(DERs) is driven by the vast exploitation of carbon-

intensive energy sources and climate change concerns that
threaten human survival and social progress [1]. Among all
alternative sources, solar energy, specifically, Photovoltaic
(PV) solar energy, has been getting the highest interest glob-
ally in the modern electricity grid, with estimates to satisfy a
quarter of electricity needs by 2050 [2]. PV power plants’
deployment merits include inexhaustibility in PV systems
supply, long-life span, and excellent economic viability in
the mid and long term [3]. However, the discontinuity and
time-varying behavior of PV power flow bring into question
the reliability and efficiency of PV systems [4]. Moreover,
the sudden weather changes threaten the unit commitment
and affect the demand and supply balance [5]. Therefore,
PV Power Forecasting (PVPF) is a crucial factor for reliable
power supply as it significantly reduces the sensitivity of
energy systems to weather intermittency [6]. Consequently,
the futuristic Smart Grid (SG) paradigm has considerably
spurred the adoption of accurate PVPF techniques.

In this context, the energy community has been focus-
ing on developing effective forecasting techniques to meet
various technical challenges [7], [8]. With computer hard-
ware and software development, forecasting models take ad-
vantage of High-Performance Computing (HPC) to achieve
higher effectiveness. PVPF plays a vital role in handling a
series of risk assessments and solving risk decision-making
issues for an uninterruptible energy supply. PVPF can be con-
ducted directly by predicting the PVPG [9], or indirectly by
predicting the environmental factors encompassing the most
relevant frequencies originating from weather conditions,
such as solar irradiation (Fig. 1). Obviously, solar energy is
presented as the most significant and critical parameter in
concluding the characteristics of the solar units [10], [11].
Next, the predicted output is employed to deduce the PVPG
via a predetermined mathematical model. However, it has
been reported that direct PVPF leads to more accurate results
than indirect PVPF [12], [13]. Nevertheless, this review
article has considered both direct and indirect PVPF models.

Conceptually, the determination of PVPG lies in 1) Phys-
ical methods, 2) statistical methods 3) AI methods, and
4) Hybrid methods as the combination between them, as
illustrated in Fig. 1. The physical models establish the math-

ematical formulas for the PV Power Generation (PVPG)
equipment to conduct a deterministic closed-form solution
for PVPF [14]. Physical models employ Numerical Weather
Prediction (NWP) or ground measurement devices that meet
the appropriate calibrated service facilities [15]. In [16], a
physical model based on NWP has been adopted for solar
irradiation uncertainty forecasting. It has been empirically
proven that the suitable selection of the modeling window
length is critical for predicting the confidence intervals.
However, the proposed model has poor anti-interference
capabilities reflecting the unsatisfactory prediction perfor-
mance [16]. On the other hand, statistical forecasting is
carried out through extensive numerical patterns analysis
based on statistical theory. Statistical algorithms require a
data set acquisition to build their domain knowledge since
they neglect the investigated physical process. Moreover,
statistical and physical models were not significant enough
to be effective with unsatisfactory accuracy in numerous non-
trivial problems such as Renewable Energy (RE) forecasting
and weather forecasting. AI, specifically Machine Learning
(ML) techniques consist of advanced complex approaches
to acquire knowledge expertise and lead to accurate results
and better generalization capabilities. Although ML is a very
promising domain for power systems due to the abundance of
computational resources and high-resolution databases, ML
techniques have only been accorded to a few considerations
compared to statistical and physical techniques in PV sys-
tems [17].

Deep Learning (DL) is considered an evolution of ML
comprising multiple cornerstone-like models. More broadly,
DL has been given a significant emphasis in academic cir-
cles for the last decade but only recently has broken into
the industrial world for application-oriented research. Arti-
ficial Neural Networks (ANN) with multiple layers (hence
called “deep”) of interconnected neurons have sprung up
and sparked a renewed interest in the research community,
resulting in a plethora of research papers. Non-deep learning
methods comprise one to three operational layers, whereas
DL methods stacks multiple layers (more than three) of
simple modules hierarchically. Elaborately, DL is advanta-
geous to classical ML methods in distinguishing and learning
multiple complexity levels due to three principle factors [18].

Firstly, the classical models heavily rely on a generation of
hand-crafted features to track data patterns. This task neces-
sitated manual design and feature learning, which are often
labor-intensive and ad-hoc [19]. Fortunately, DL methods
can intelligently learn from parse data representation using
a general learning process [18]. This eliminates the need for
domain expertise and hard core feature extraction adopted
in handed engineering- and shallow learning-based models.
More specifically, feature extraction-based DL is deducted
automatically and optimally configured using an end-to-end
pipeline to promote faster learning without being told to
do so explicitly [20]. Secondly, traditional ML techniques
such as Random Forest (RF) and Decision Trees (DT) might
not handle multidimensional data [19]. For such models, the
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training time becomes terribly low for deep varying level
sizes [19]. Furthermore, the efficiency of these models can
be unsatisfactory since the variable correlations are neglected
[19]. Fortunately, DL methods can efficiently be fueled by
massive amounts of data with a high level of complex-
ity and multidimensionality to predict nonlinear behaviors
accurately. Thus, DL models can achieve an outstanding
predictive performance without the need for pre-defined re-
lationships. Big Data technology uses DL to process a large
pool of datasets and offers a potential solution to overcoming
the set problem. Thirdly, DL models can hold and store
more information within the neurons than the basic ANN
model [18]. This can allow learning distributed represen-
tation (many-to-many relationships between types of repre-
sentations), enabling generalization to new combinations of
values not explicitly shown in learning data [18]. The former
factors made the deployment of DL models more application-
oriented than ML, strengthening the pervasive adoption rate
by the advanced manufacturer.

A. THE DIRE NECESSITY OF DL IN PVPF

High-precision PVPF can potently promote the grid’s ac-
commodation of PVPG by alleviating the negative impacts
uncertainties on the utility grid. However, it is quite challeng-
ing to achieve satisfactory results with the classic prediction
models. Recently, DL has become a research hotspot for its
excellent ability to handle nonlinear Time Series (TS) energy
data [21]. Thus, the marriage of PVPF and DL gives an impe-
tus to build more sustainable and robust energy management
paradigms [20]. DL methods have been successfully used
in solar irradiance and solar power production forecasting.
Notably, Deep Neural Network (DNN) architectures provide
capabilities to learn hierarchical features from the data set
while providing a more efficient representation than shallow
models and improving generalization potential [22]. Hence,
by eliminating the unpredictability factor, the research com-
munity tends to make great strides towards accurate forecasts
and reliable decision-making [22].

With the whispered adoption of Advanced Metering In-
frastructure (AMI), massive amounts of stored information
with a variety of data types, complex relationships, and
explosive growth from PV stations will be continuously
generated, resulting in big or fast/real-time data streams. DL
models can handle the big amounts of data generated from
weather stations with Big Data Deep Learning (BDDL) to
produce accurate results. DL models take advantage of the
increase of computational power of Graphical Processing
Units (GPUs) to curry out massive data on stream for high-
quality forecasts. DL independently extracts features as an
efficient big data-driven analytic scheme to process insuffi-
cient quality data that contains noise, heterogeneous data. DL
models can efficiently handle the complexity, diversity, and
integrity data conundrums that encounter meteorological data
integration to improve the steadiness and security of power
dispatch [20].

B. REVIEW NOVELTY AND CONTRIBUTIONS

The rising interest in DL underpinning PVPF systems in-
tensified the need for a taxonomic review to summarize the
most recent development in PVPF [23]. Fig. 2 illustrates the
milestones of the AI development from the early attempts
until the emergence of DL in 2010.

This paper’s primary motivation comes from providing a
unifying overview of the DL methods related to the PVPF
applications. This article seeks to foster the synergy between
the PVPF systems and DL methods. The main contribution
is to enable further work both by industry and academia to
speed up the practical adoption of DL techniques for PVPF.
A bibliometric and network analysis on the PVPF topic was
conducted to organize the data in a more reader-friendly form
from Web of Science (WoS) core collection database and
VOSviewer software [24]. The VOSviewer software was em-
ployed to reveal the thematic content of the articles set based
on the identification of the keywords. Keywords included by
authors of the articles and occurred more than three times in
the WOS core database from 2015-2021 were exported into
Comma-Separated Values (CSV) format and enrolled in the
final analysis. Of the 150 keywords, the initial search iden-
tified that 50 met the threshold. The keyword combinations
are employed in the systematic review protocol to provide
a broad overview of research trends in DL techniques in
PVPF systems. Fig.3 presents the mapping analysis of the
commonly-occurring term with the VOSviewer.

Using rigorous bibliometric indicators, Fig.3 shows that
the node covering the widest and most noticeable area is the
fields of “deep learning” and "prediction" with a smaller size.
From Fig.3, the emergent research topics are classified into
two core clusters: DL models and enabling technologies such
as Deep Transfer Learning (DTL). These clusters are devoted
to organizing the paper content. To do so, the recent DL
architectures applied to PVPF and selected from the period
2015 to 2021 have been analyzed. Furthermore, the devel-
opment of Diterministic PVPF (DPVPF) and Probabilistic
PVPF (PPVPF) were presented. In this work, we focus on
reviewing the current signs of progress and pointing out
potential future directions of DL for PVPF.

Some existing works have studied PVPF and AI, listed
in Table 1 with a brief description of their related topics
and the differences with this review [22], [25]–[29]. In
[30], a comprehensive review of RE forecasting methods
has been conducted with a particular emphasis on wind
and solar energy. Specific focus of this review reports a
growing interest of studying DL techniques for forecasting
applications regarding their inherent feature extraction capa-
bilities. However, the review coverage includes both wind
and solar resources, which may lead to loose contributions
and explanations, especially when discussing the forecasting
architectures. In [6], Renewable Energy Sources (RES) fore-
casting methods have been reviewed. In the RES context, the
authors provided the common understandings and promising
research insights, including hierarchical forecasting, proba-
bilistic forecasting, and forecast combination. Additionally,
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FIGURE 1: PVPF classification.

FIGURE 2: Deep Learning: timeline and evolution

FIGURE 3: Bibliometric analysis for the author-supplied keywords; The size of nodes presents the frequency of recurrence.
The connections between the nodes illustrate their co-occurrence in the same article. When the distance between the keywords
is short, the keywords co-occur more frequently with each other.

some helpful recommendations and common research pitfalls
for publishing high-quality journals were provided. Nonethe-
less, the AI techniques adapted for RES forecasting have
not been discussed. More importantly, these works focus
exclusively on the RES spectrum and do not mainly focus
on PVPF. Therefore, the key characteristics of PV variability

and how DL can solve the PV limitations are scarce. In
[31], the authors have reported the typical policies related to
solar forecasting for grid penetration. However, this work has
not been extended to intensively investigate DL forecasting
techniques. In [32], the concept of overarching thinking is
introduced to contradicts the basic classification of predictive
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methods into statistical, ML, or NWP. Moreover, the main
post-processing methods for PVPF were reviewed to enhance
the goodness of the forecasts. However, an in-depth analysis
of regression models is not provided. Paper [22] conducted
a review on direct PVPF with a special focus on statistical
and ML models provided in the literature. The authors of this
review classified the data-driven techniques into persistence
methods, statistical approaches, ML approaches, and hybrid
techniques. Nevertheless, DL methods’ investigation, their
potential benefits, and shortcomings are not discussed in
detail [22]. In [25], the authors have been limited to review-
ing probabilistic forecasting for electricity consumption and
PVPG. This review reported that all the forecasting engines
essentially depend on the extreme forecasting scenarios,
leading to poor computability scalability in the existing ML
methods [25]. Therefore, every model should be customized
to well perform a forecasting task. However, the DL models
architectures were not explored elaborately. Besides, the im-
plementation factors of key issues of DL approaches were not
outlined. The authors in [29] have extensively studied the BD
models for PVPF. Thirty-eight papers were deeply analyzed
to enlist the most relevant ML models. It can be pointed
out the Extreme learning machines achieved an excellent
accuracy-computational time tradeoff [29]. Nonetheless, the
DL paradigms and their executions were not covered. Be-
sides, the notable techniques for PVPF deployment were
not explored explicitly. All the related works partially cover
the aims of this work. However, the related works paid less
attention to results based on DL methods. In contrast, we
limit this holistic review to the DL-based PVPF, leaving aside
shallow ML and physical methods-based PVPF. Therefore,
this study provides insights not previously fully covered or
evaluated by other reviews [33].

This review gives a particular emphasis on the application
of DL methods to the PVPF. To the best of our knowledge,
different from the previous works, this is the first initiative to
give a bird’s eye view on the applications of DL for PVPF,
which is not adequately addressed in the existing literature.
To fill this gap, this review focuses on the use of DL for
PVPF applications. The main contributions of this review are
expounded as follows:

• First, we derive taxonomies for PVPF based on vari-
ous criteria such as the forecasting horizon, forecasting
models, system features, and forecasting range.

• Second, the DL models-based PVPF are systematically
classified into learning-related. A comprehensive and
complete review of different algorithms applied in the
case of PVPF is provided to give critical insights into
their strengths and limitations. We aim to allow the
reader to readily distinguish the efficacy gaps at a
glimpse. Further, an evaluation and discussion of the
role of meta-heuristics in carrying out the functions
required in DL within the PVPF-realm have been con-
ducted.

• Third, the enabling technologies for DL-based PVPF

FIGURE 4: Diagrammatic view of the organization of the
paper.

were rigorously reviewed in a more comprehensive and
applicant-oriented manner, such as federated learning,
transfer learning, and BDDL, where previous works are
summarized logically.

• Fourth, pioneering works related to deterministic and
PPVPF have been deeply investigated.

• Fifth, a critical view over the existing research chal-
lenges are presented, and future directions in PVPF
studies to the deployment of competent, scalable, and
computationally effective algorithms based on DL are
discussed.

C. REVIEW STRUCTURE

The rest of this paper is structured as portrayed in Fig. 4. Con-
cretely, section II presents the review methodology. Section
III describes the popular taxonomies of PVPF techniques.
Section IV comprehensively investigated the DL methods
for PVPF. Section V presents the possible enabling DL
techniques for PVPF. Section VI discusses the significant
applications of DL techniques for PVPF. These applications
cover DPVPF and PPVPF. In section VII, the possible future
directions for empowering the PVPF performance by empha-
sizing the undiscovered fields have been presented. Section
VIII concludes this review paper.

II. RESEARCH METHODOLOGY AND SYSTEMATIC

REVIEW PROTOCOL

To benefit reading, extensive searches have been performed
to fetch the most relevant content. For instance, the time hori-
zon is one of the essential tools to classify PVPF techniques.
Depending on the time domain, there are four distinguished
forecasting horizons as illustrated in Fig. 1; specifically,
Ultra-Short-Term (USTF) from seconds to one hour [34],
Short-Term (STF) with the prediction period from hours to
one day, Medium-Term spans up to a month ahead, and
long-Term predictions for a month to a year [12]. With the
aim of covering the largest number of articles regarding the
review topic, possible variations were also employed for
this selection. Hence, the search string utilized was: ’Deep

learning’ AND ’Photovoltaic power’ AND ’Forecasting’ OR
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TABLE 1: Summary and comparison of the related reviews on PVPF with our review paper

Literature Year Selected keywords One-sentence summary Scope

DL DTL BDDL DPVPF PPVPF

[22] 2018 PVPF; AI; ML An overview of Analysis of ML models for PVPF - - - X -

[25] 2018 Probabilistic forecasting A systematic literature review of PPVPF - - - - X

[26] 2019 PVPF; ML A milestone Review of AI methods for PVPF - - - X -

[29] 2019 Data mining; PVPF A review on BD models for PVPF X X X - -

[27] 2020 PV; PVPF; AI; ML Insights to the application of ML for PVPF X - - X -

[28] 2020 PVPF; CNN; LSTM A comprehensive review on ML models for PVPF X - - X -

This paper 2021 PVPF; DL; SG A high-level review on DL methods for PVPF X X X X X

FIGURE 5: Search methodology based on keywords com-
binations using Boolean operators AND/OR. The specific
query searched was: (Prediction OR Forecasting) AND
(Deep learning) AND (Solar power OR Solar irradiance OR
Photovoltaic power).

’Prediction’ OR ’Solar power’ OR ’Solar irradiance’ OR
‘deep neural networks’ as shown in Fig.5.

The publications on each platform based on the keywords
were made on June 15, 2019, totaling 350 articles. The
identification of the relevant research works is conducted
according to the Preferred Reporting Items for Systematic
reviews and Meta-Analyses (PRISMA) [35]. We identified
the main academic research databases, including Google
Scholar, IEEE Xplore, Science Direct, and Nature. The iden-
tification process of relevant papers from the early stage
of the selection to the final selected publications has been
displayed in Fig. 6.

To achieve a more complete and inclusive understanding,
this review paper contributes to the existing research papers
by answering the following five Research Questions (RQ):

FIGURE 6: Flowchart of the paper selection process with
respect to PRISMA protocol.

FIGURE 7: Frequency of contrasting words "deep learn-
ing", "forecasting", and "photovoltaics" from Google Books
Ngram Viewer results (1800-2020).

RQ1: What is the popular taxonomies for PVPF?; RQ2:
What are the most up-to-date DL methods for PVPF?; RQ3:
What are the DL methods for deterministic and probabilis-
tic PVPF?; RQ4: How Big data and transfer learning can
enhance the PVPF accuracy?; RQ5: What are the research
frontiers and future research directions?

The answers to these questions consider multiple sources
of information to ensure the accuracy and objectivity of the
main findings of this paper. The inclusion criteria were as fol-
lows: (1) articles published in English-language documents
that were published between January 1, 2015, and August
01, 2021; (2) articles used a particular DL model for PVPF;

Fig. 7 presents a timescale variation on the frequency
of use of terms "Forecasting", "Deep learning", and "Pho-

tovoltaics" in scientific books from Google Books Ngram
Viewer. It can be seen from Fig. 7 that the popularity of
DL has significantly increased in the last years, while the
forecasting paradigm had decreased since 1980. This result
shows that forecasting applications must take advantage of
the increasing DL trend, especially for PV systems.

III. OVERVIEW OF PVPF AND DL

To help readers better distinguish between the emerging
learning paradigms applied to PVPF, DL methods were clas-
sified into three classes: discriminative learning, generative
learning, and Deep Reinforcement Learning (DRL). A brief
review of the knowledge and understanding of these three
concepts is presented. We, then briefly discuss the potential
of well-established mature DL structures in PVPF. Further-
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more, we cursorily investigated several Hyperparameter Op-
timization (HO) used for DL in PV systems.

A. DISCRIMINATIVE LEARNING

This subsection mainly introduces common DL models for
PVPG estimations: Multilayer Perceptron (MLP), Convolu-
tional Neural Network (CNN), Recurrent Neural Network
(RNN), and Generative Adversarial Network (GAN).

1) MLPs

MLP, also named Fully Connected Network (FCN) is the
quintessential DNN model [36]. Conceptually, this MLP
consists of three fully connected layers in a feed-forward
architecture, specifically, input layer, numbers of interme-
diate (hidden) layers, and output layer, as shown in Fig.
8(a) [8], [37]. By increasing the networkability, the hidden
layers computationally reveal underlying patterns of data at
deep levels of abstraction. With the use of nonlinear/linear
activation functions, the MLP configuration can resolve com-
plex mappings between a set of observations and response
variables. The MLP mechanism is described as follows [38]:

uk =
m∑

j=1

wkjxj (1)

yk = φ(uk + bk) (2)

where xj , wkj and bk denote the neurons’ input, synaptic
weight function, and bias term, respectively. Φ denotes the
activation function. As a supervised learning algorithm, the
MLP network employs backpropagation to minimize the
cost function. Moreover, two common training methods are
used as part of MLP: Feed-forward Back-Propagation, and
Levenberg–Marquardt. The optimal selection of the training
algorithm can enhance the convergence speed and the model
accuracy.

Pioneering work is presented in [39], where it proves
that the typical MLP network is perfectly tailored for a
day-ahead PVPF. More importantly, the developed method
could offer prominent enhancement for one day-ahead PVPF
results, especially with TanhAxon activation function and
Levenberg–Marquardt learning rule. However, hyperparam-
eter tuning for a deep MLP involves a lot of complexity in
modeling, which could be a challenging issue. Such obser-
vations are confirmed in [40], wherein the MLP performance
mainly hinges on offline training and the hyperparameters’
suitability which require significant human labor for fine-
tuning. From the authors’ work in [40], a two-state model-
based MLP and knowledge-based Neural network (KBNN)
were designed for offline and online on-site deployment.
Here, KBNN is used to avoid data shortage by including
prior analytical prediction equations. Hence, the KBNN sig-
nificantly the MLP model with the insufficiency of labeled
data. The approximate MAPE is 11%. In [41], a DL-based
mapping model between the concurrent sky image and sur-
face irradiation has been introduced. Aside from the hybrid
model, the sky images were clustered in the preprocessing

stage using K-means clustering based on Convolutional Au-
toencoder (CAE) to enhance the feature representation of
high-dimensional data. Despite the high complexity cost,
the mapping modeling of surface irradiance boosts the fore-
casting model performance. In [42], an MLP model has
been proposed for solar radiation forecasting. Four types
of uncertainties were presented; errors from meters’ mea-
surements, sarcastically of weather data, ML uncertainties,
and errors due to the forecasting range. A reliability index
has been comprehensively introduced to assess the goodness
of the forecasts [42]. Although the model generalization
to complex cases, the MLP model is restricted to reveal
patterns among sequential samples such as PV generation
data. This is mainly due to the fact that this configuration
does not save the previous information in an internal memory
[43]. Consequently, the Time Series (TS) data are trained
independently, which may lead to poor accuracy [43].

2) CNNs

CNNs, popularly termed as ConvNet, are a popular class of
feed-forward networks designed to process grid-like struc-
tured data [28]. The core of the CNN network was con-
ceptualized based on three principal elements: convolution,
pooling computations, and Fully Connected Layers (FCL),
as shown in Fig. 8(b). These elements lead to a spectacular
features extraction capacity and robust feature representa-
tion [44]. The objective of the pooling layers is to merge
semantically similar features into a single one by applying a
specific function. This allows the pooling layer to reduce the
feature map dimension, accelerating the system convergence
[44]. While the convolutional layer extracts local features
from contiguous data. The layered structure of CNN com-
prises one-dimensional CNN, two-dimensional CNN, and
three-dimensional CNN. For PVPF, one-dimensional CNN
is essentially used to process sequential data [28]. The fully
connected layers are usually the last few layers and are used
to summarize information.

In [45], the authors introduced a hybrid framework by in-
tegrating a hybrid CNN-Long-Short Term Memory (LSTM)
network-based PVPF model. Using the hybrid paradigm,
CNN automatically filters out noise and extracts the valuable
features, while LSTM efficiently handles sequential inputs.
More specifically, the authors have sought to exploit the
Multiple Relevant and Target variables Prediction Pattern
(MRTPP) method to optimize the distribution of the input
features. This promotes the forecasting engine’s efficiency
in capturing the nonlinear variation of PVPG for multi-
step prediction. However, the convolutional layer in CNN
has a convolutional kernel of constant size and a limited
receptive domain, which is limited to local feature learning.
Whereas in [46], the authors proposed a specialized CNN
for 15-min ahead minutely-averaged PVPF. The proposed
model provides accurate predictions represented by a 5.7%
forecast skill without intensive hand-engineered features as
input. However, the major limitation of CNN can not be fully
suitable for capturing time dependencies.
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FIGURE 8: Typical structure and functions of typical MLP, CNN, RNN, LSTM, GRU, AM, RBM, BM, DBN, AE, SAE,
BiLSTM, ResNet, VAE, GAN, and DRL (a) MLP architecture with a naive structure comprising two hidden layers (b) CNN
with four convolutional layers (c) Schematic of a RNN block (d) Underling gating structure of LSTM (e) Underling gating
structure of GRU (f) Schematic of a AM block (j) Operating principle of an RBM where the neurons form a bipartite graph
(h) The conceptual structure of an BM (i) The DBN architecture stacking multiple RBMs structures hierarchically (g) The
inner structure of an AE (k) The schematic diagram of an SAE (l) The inner structure of an BiLSTM (m) ResNet mechanism
as a CNN that increases the depth of a network by stacking convolutional layers and using skip connections to in-crease the
receptive field (n) The inner structure of an VAE (o) The conceptual structure of an GAN, which creates lifelike artifacts from
a target distribution (p) The architecture of an DRL, where the initial state are fed to the primary network.

3) RNNs

RNNs are a special type of DNN based on control theory
composed of a chain of neurons whose output is connected
not only to the next layer but also to feedback connection, as
shown in Fig. 8(c) [47]. By sequencing TS data as an input
vector, the RNN cell allows the underlying information to
persist until feeding it back to the next prediction. Thus, the
RNN provides a quicker implementation and fast training.
The TS data passes through a cell in a sequential vector, at
each step the cell output value is concatenated with the next
time step data, and the output value of the cell serves as input
for the next time step. The process is repeated until the last
time step data. However, the most common drawback of the

vanilla RNN model is the limited capability of handling long-
term dependencies [47].

For TS data, RNNs based models form the core of most
sophisticated fancy TS applications, which allows them to be
perfectly tailored for PVPF and widely depicted in pioneer-
ing articles. To name a few, the authors in [48] proposed a
deep RNN to predict solar irradiation accurately. It is worth
mentioning that five RNN categories were rigorously de-
scribed, specifically, the standard RNN, Deep RNN, stacked
RNN, Deep RNN with shortcut connections, and Deep RNN
with deep output layer. Compared with other benchmarks,
using realistic data from natural resources in Canada, the
RNN showed better accuracy when processing TS high-level
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features. In [49], an LSTM-Convolutional network (LSTMC)
has been adopted for PVPF. The proposed approach results in
RMSE of 0.621kW for short-term PVPF. Surprisingly, it can
be remarked that LSTMC model outperforms CNN-LSTM.
This paper demonstrates that extracting temporal correlations
first and then spatial correlations using this processing order
could improve the forecasting effectiveness. Despite the high
accuracy of the proposed model, it is concluded that a large
number of training samples is extremely needed for achieving
generalizability.

LSTM network is a special chain-like structure with mem-
ory cells proposed by Hochreiter and Schmidhuber [50].
The LSTM is a particular type of RNN that overcomes
the notorious vanishing gradient phenomenon in modeling
long-range temporal dependencies [51]. A typical LSTM cell
mainly consists of input gate it, forget gate ft, output gate
ot, and one control gate ct to manage the information flow,
as shown in Fig. 8(d). Concretely, these gates are used to
control the update, maintenance, and deletion of information
contained in cell status. The operations on the memory block
are managed using adaptive multiplicative gates. The LSTM
gates, hidden outputs, and cell states are computed as follow-
ing [52]:

It = σ(WIxt + Uiht−1 + bI) (3)

ft = σ(Wfxt + Ufht−1 + bf ) (4)

ot = σ(Woxt + Uoht−1 + bo) (5)

c̃ = ft ⊙ ct−1 (6)

ht = ot ⊙ tanh(ct) (7)

where xt and ct is the input sample at time t and the
memory unit, respectively. (bf ,bI ,bo) ,(Wf ,WI ,Wo) , and
(Uf ,UI ,Uo) stands for the bias terms, weight vector, and
input weights for each gate respectively. The symbol ⊙
denotes Hadamard product. ht−1 is the hidden layer for the
respective gates x in the current timestamp. σ activation
function denotes the element-wise calculation. The LSTM
has an excellent potential to process time-based information.
For instance, the authors in [53] employed an LSTM-based
to perform an hourly PVPF. The particle swarm optimization
(PSO) algorithm was employed to adjust the load dispatch.
The simulation results from the proposed model exhibit that
it considerably increases the accurateness of prediction a
Mean Absolute Percentage Error (MAPE) error of 15.87%.
However, the computational cost is high compared to MLP
model.

Gated Recurrent Unit (GRU) is considered as one of the
preferred single TS forecasters [54]. By using the recurrent
connections, the GRU architecture permits the network to
access the historical information. The GRU is a kind variant
of RNN that has gates that modulate the flow of information
inside the unit, as shown in Fig. 8(e). A typical GRU cell is
composed of only two gates, the reset gate rt = σ(wrxt +
Urht−1) and the update gate zt = σ(wzxt + Uzht−1) [54].
σ is a smooth and differentiable function; bz ,Wz , and Uz

are the bias, the input constant of the update gate (z),and
the previous activation constant, respectively. Nonetheless, it
is distinguished for its gate reduction strategy to accelerate
the learning process without lowering the performance. Pa-
per [55] employed GRU for PVPF. In their study, various
processing blocks were built based on the characteristics
of each block to promote the proposed approach accuracy.
Specifically, the Pearson coefficient is exploited to rank the
feature inputs according to their relevance to the PVPG.
Next, K-means clustering is used to group the training
data according to the similarities of input patterns. These
groups are utilized to generate an averaged PVPF output.
The proposed GRU architecture demonstrated its expertise
in capturing temporal dependencies. However, the average
training time is 365.40 seconds, which is painfully slow
compared to statistical techniques such as Auto-regressive
Integrated Moving Average (only 3.66 seconds). Bidirec-
tional LSTM (BiLSTM) is an improvement to one-way
RNN where the forward and backward hidden layers are
combined to access both the preceding and succeeding data
[56]. Bidirectional Mechanism (BM) is a way of learning the
information from both directions, as shown in Fig. 8(l) [56].
In a nutshell, BiLSTM can handle the sequential modeling
challenge better than conventional LSTM by acquiring the
forward and reverse information from the cyclic feedbacks.
For instance, the authors in [57] proposed a BiLSTM model
to model nonlinear time dynamics for PVPF, which helps in
boosting the model performance significantly. The proposed
model can accurately detect meteorological changes over
time. Meanwhile, the real-world implementation of the Bi-
LSTM model requires memory-bandwidth-bound computa-
tion, which compromises their application ability due to high
computation and storage. To combat this challenge to a large
extent, Attention Mechanism (AM) is associated in the RNNs
structures for better generalization ability by mimicking the
attention of the human brain [58].

AM puts more focus on the input sequence’s core elements
that affect the quality of the forecasts to learn the information
in the input sequence better. The principle idea of the AM
in DL is also to neglect the irrelevant data to the current
task and only to select the information that is more critical
to the current mission, as shown in Fig. 8(f). AM can be
categorized into spatial attention, channel attention, and self-
attention [59]. AM allows the forecasting models to pay more
attention to useful features, so AM is widely used in RNNs.
The computation of AM is initialized by a Query (Q) and
Keys (K) as f(Q,Ki) = QTKi. The Softmax activation
function is used for weights standardization as [59]:

ai = Softmax(f(Q,Ki)) =
exp(f(Q,Ki))∑L

j=1 exp(f(Q,Kj))
(8)

The attention value is obtained by calculating the sum
Attention(Q,K, V ) =

∑L

i ai ∗ V aluei, where L is the
size of the input sequence. In [60], the authors proposed a
Convolutional self-Attention Based LSTM (CA-LSTM) for
PVPF. The self AM is a special form of AM, which better
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captures the syntactic and semantic information from the row
of TS data. The proposed model aims to fully use the features
of long sequence inputs, achieving an overall MAPE of 10%.
Thus, the AM successfully improves the traditional LSTM
performance with a lower MAPE of 17%. Reference [61]
proposed an LSTM-based Temporal AM (TA-LSTM) for
solar generation forecasting. The proposed model employs
partial autocorrelation to follow the input lag. The TA-LSTM
produces a Root Mean Square Error (RMSE) of 0.26kW,
which seems to prove its high competitiveness compared to
the classic LSTM in PVPF. Meanwhile, the hyperparameter
list is increased, which leads to extensive hyperparameter
tuning. Despite the high suitability of this network for TS
processing of the gated RNN architectures, their massive
storage and computation requirements hinder their applica-
tion ability, particularly for PVPF.

B. GENERATIVE LEARNING

In this section, we review the state-of-the-art DL architec-
tures. These ubiquitous DL architectures are Auto-Encoders
(AEs), Restricted Boltzmann Machines (RBMs), and Deep
Belief Networks (DBNs), and Generative Adversarial Net-
work, respectively.

1) RBMs and DBN

The RBM (Restricted Boltzmann Machine) network is
energy-based stochastic neural networks, as shown in Fig.
8(j). In a nutshell, this variant of Boltzmann Machines (BM)
has node connections both within layers and between layers
(Fig. 8(h)). The RBM model has the potential to learn the in-
put probability distribution in supervised/unsupervised learn-
ing. The RBM architecture has two levels with symmetrical
connections between them, one is the visible layer v, which
contains the input and output, and the other is the hidden
layer h with n units [18]. The visible and hidden units that
follows a joint distribution can be expressed as:

P (v, h) =
exp(−E(v, h))

z
(9)

E(v, h) = v′wh+ α′v + b′h (10)

and z =
∑

v,h E(v, h). Deep Belief Networks (DBN) is an
unsupervised greedy learning algorithm with a stacked RBM
units as shown in Fig. 8(i) [18]. The DBN performs layer-
wise training to learn probability distribution of the input
vectors. The DBN processing consists of using layer-by-
layer unsupervised pre-training to select the suitable initial
parameters and supervised fine-tuning mechanism to rebuild
training samples by tuning the parameters [62]. The RBM
layers were seen as feature extractors to generate a high-
dimensional abstraction of the inner relationships of the data.

In [63], the authors proposed an Integrating gray data
preprocessor and DBN for day-ahead PVPF. These contri-
butions are completed in [62], where the authors proposed a
day-ahead global solar radiation forecasting using functional
DBN. The performance enhancement of the developed tech-
nique relies on an embedding clustering layer and knowledge

functions from empirical models. These processing units
demonstrate a sophisticated and elongated iterative fashion,
thus improving the model robustness for longer time de-
pendencies [62]. Although the DBN model demonstrated its
efficiency in various forecasting tasks, the DBN architecture
is prone to model structure and parameter optimization chal-
lenges.

2) Autoencoders

Autoencoder (AE) architecture is one of the most ground-
breaking unsupervised learning models that learn charac-
teristics from unlabeled data representation [9]. AEs are
loosely inspired by the way the human brain works. Typical
components of the approach are the encoder and the decoder
[20]. By minimizing the reconstruction error between the
input data at the encoding layer and its reconstruction at the
decoding layer. There are many types of AEs, and the most
commonly used ones are; Stacked Autoencoders (StAE),
Denoising Autoencoder (DAE), Sparse Autoencoders (SAE),
CAE, and Denoising CAE (DCAE), and Variational Autoen-
coders (VAE) [20]. An AE-LSTM network is proposed for
day-ahead PVPF for the next day at 15-min interval [64],
with a normalized RMSE of 4.56%. The proposed AE-LSTM
model jointly exploits the feature extraction of AE and the
sequential TS forecasting engine of LSTM. However, the
trans day weather volatility is poorly predicted by the for-
mal predictor. The authors of [65] established an AE-driven
DL model-based PVPF method to overcome the stochastic
behavior of PV power output, which achieves an optimal
R2 = 99.5%. Despite the ability of the proposed model to
provide accurate one-step and multi-step forecasting results,
the VAE shown in Fig. 8(n) is prone to the vanishing latent
variable problem.

3) GAN

GAN is an unsupervised pre-trained network consisting of
two competing neural networks: the generator G(z) and the
discriminator D(x), as presented in Fig. 8(o). By learning
the real data x distribution, G generates realistic scenarios
until they cannot be distinguished anymore from real data.
The fake data is generated from random noise using Gaus-
sian distribution. This operation is conducted by deliberately
introducing feedback at the back-fed input cell from the input
noisy variables pz(z). And D correctly distinguishes whether
the input data comes from the true data pdata(x) or the
generator. The two models are optimized simultaneously by
updating the network weights in an alternating manner. The
hyperparameters are tuned based on optimizing the loss and
varying the randomness. The objective function formulated
as [66]:

min
G

max
D

V (D,G) = Ex ∼pdata(z) [log(D(x))]

+Ez ∼pz(z) [log(1−D(G(z))]
(11)

GAN has gradually attracted prominence in the PVPF
domain, especially for data augmentation purposes. For in-
stance, the authors in [66] employ Wasserstein GAN with
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Gradient Penalty (WGANGP) for weather classification-
based PVPF. The WGANGP was utilized for data augmen-
tation purposes by producing synthetic data that follows the
same heteroscedasticity of original data. The newly gener-
ated data is fed to the CNN model to improve its performance
by ameliorating the feature representation. A series of exper-
iments on 33 meteorological weather types were conducted
and proved the effectiveness of the method by comparing it
with other methods. However, the major caveat of the GAN
model lies in the fact that the GAN training is relatively
unstable.

C. DEEP REINFORCEMENT LEARNING

Recently, DRL has been introduced as a combination of DL
(DL), and Reinforcement Learning (RL) to better cope with
the dynamic changes of the unsteady PV environment [67].
By bridging DL and RL, DRL shows its great potential in
handling complex tasks and high scalability to suit compli-
cated and unfamiliar environments, particularly in power sys-
tems [68]. As a goal-oriented learning method from the en-
vironment feedback, the traditional RL extends its potential
to store high-space actions and states with an intuitive hierar-
chical feature extraction ability and nonlinear approximation
ability of DL architectures, as shown in Fig. 8(p). Conse-
quently, DL models intersection state information from se-
quential PV data [69]. From the DRL scheme, the agent con-
tinuously interacts with the state environment over a series
of trial-and-error processes to shape the optimal strategies
[70]. Several methods for the Q values updates were provided
in the literature, such as State-Action-Reward-State-Action
(SARSA) and Asynchronous-Advantage-Actor-Critic (A3C)
and Deep Q Net (DQL) [68]. In RL, the environment can
be modeled as a Markov Decision Process (MDP) expressed
as (S,A, P,R, γ). Here, S, A, P , and R denote the discrete
states in the environment, a finite set of actions provided
for the agent, the state transition probability matrix, and the
reward function, respectively. γ presents the discount factor
utilized to quantify the importance of the future and present
rewards. Despite the ample opportunities of DRL, efforts to
employs the DRL in PVPF have been scarcely found in the
literature.

Using the powerful representation ability of DNNs, the
value function is fitted to optimize the explosion of contin-
uous and integer state-action space problems. Mainly, DRL
provides high-dimensional input or large action sets to solve
intractable problems using self-adjustments and optimization
solutions. However, current DRL techniques are dependent
on massive training data and expensive computational re-
quirements, which may be unacceptable in practical PV ad-
vertising platforms. DRL models were roughly divided into
two main settings: Model-based, and Model-free-based. The
following subsections describe these concepts.

1) Model-Based

Model-Based DRL (MDRL) expects that the agent under-
stands the system dynamics and how the system crosses

from one state to another one and how rewards are gener-
ated. This MDRL methods have been effective in terms of
data-efficiency, transferability, and universality [70]. How-
ever, MDRL is computationally expensive and ineffective in
rapidly varied environments [70]. MDRL has been proposed
to solve the optimal action-selection policy [71]. MBRL
employs an internal model to approximate the environment,
and the control behavior can be learned through this model.
It has been reported that model-based approaches are more
efficient than model-free approaches. However, MDRL needs
to save the state transition matrix and employing Dynamic
Programming (DP) algorithms leading to massive calculation
requirements [72]. This approach is not always practicable,
especially in complicated paradigms where the agent has
limited to no knowledge about its environment. Authors in
[73] applied an MDRL-based MuZero algorithm to solve the
scheduling problem of distributed microgrid, particularly for
PV systems. The proposed approach combines the Monte-
Carlo tree search method with a learned NN to efficiently
learn a network model. However, Despite the high sample
efficiency of the proposed model, the model design is com-
plicated, especially for large PV systems.

2) Model-Free Based

Model-Free DRL (MFDRL) conducts the optimal policy
without explicitly learning the model of the environment. It
can be achieved by using three approaches: Value-Based RL
(VBRL), Policy-Based DRL (PDRL), and Actor-Critic (AC)
based [80]. VDRL is a prominent learning method to deal
with high-dimensional state space and discrete or continuous
action spaces in optimization problems [81]. On the other
hand, PDRL architecture guarantees better convergence and
keeps relatively high efficiency in high-dimensional or con-
tinuous action space [81]. However, agents require millions
of time steps to learn tasks from many iterative systems.
Since updates occur in small steps, agents may under-explore
their environments or under-develop strategies, leading to
exploration shortcomings in some cases. AC is a fusion of
policy-based and value-based models to constitute an end-
to-end learning paradigm from perception to action [82].
Asynchronous advantage actor-critic (A3C) and deep deter-
ministic policy gradient, and twin delayed deep deterministic
policy gradient (TD3) were the standard representations of
AC method [81].

MFDRL is widely depicted for optimization and control of
PVPG in research works. To name a few, in [83], the authors
adopted a novel strategy that brings together DQN and CNN
to cope with the uncertainties of an isolated microgrid. Con-
cisely, the proposed DRL model optimizes the sum of diesel
generators’ generation cost and the penalty of non-served
power demand. However, the curse of dimensionality persists
with the DQN. A combination of Policy Dynamics based
Win or learn Fast-Policy Hill Climbing (PDWoLF-PHC) and
Back Propagation Neural Network (BPNN) network has been
adopted to tackle the RES uncertainties for fast-response
regulation units [84]. The proposed model optimizes the
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TABLE 2: Comparison between popular DL algorithms

Model Ref. Advantage Weakness

LSTM [54] - Effectively model dynamics in sequential data
- Flexible input dimensions

- Lack of spatial data modeling
- Difficult HO

MLPs [41] - Able to reveal the highly nonlinear relationships
- Easy-to-implement

- Insufficiency for high-dimensional input data representation
- Poor performance for spatio-temporal patterns

GRU [54], [74],
[75]

- Less computational cost compared to LSTM
- Less vulnerable to the gradient explosion dilemma

- Limited applicability
- Lack of spatial data modeling

CNN [76] - Efficient spatial feature extraction
- Distributed deployment

- Expensive computational requirements
- Limited temporal modeling potential

AE [9], [76] - Does not require labeled data
- Robustness and noise-resilient architecture

- Time-consuming pre-training process
- Prone to gradient explosion

GNN [77] - Efficient for graph-structured information modeling
- Explicitly extract high-level representations

- Require extensive work in building a graph for non-graph
data
- Prone to time complexity issue

RBM [63] - Can learn high-dimensional feature patterns
- flexible and useful for pre-training

- Low robustness for noisy data
- Sensitive to parameter initialization

ResNet [78] - Powerful representational ability
- High compelling performance with multiple layers

- Increased complexity and low explainability potential
- Prone to over-fitting

GAN [77] -Does not require Monte Carlo approximation for training
- Does not a deterministic bias

- Low interpretability and explainability
- Unstable training

DRL [79] - Unsupervised training
- Able to scale tasks with high-dimensional state and action
spaces

- Slow convergence and long computation time
- May has convergence issues in practice

DBN [63] - Unsupervised greedy learning
- Less computationally expensive

- Heavy HO
- Difficult implementation

coordinated control for the source-grid-load. Despite the high
efficiency of the proposed model for automatic generation
control, its deployment requires high exploration costs in a
multi-area interconnected grid. A multi-agent Double Deep
Q Network and an Action Discovery (DDQN-AD) has been
proposed for distributed RES management [85]. However,
the proposed model is limited to homogeneous agents to
work effectively. Paper [86] proposed an automatic genera-
tion control-based AC strategy. The proposed method relies
on DQN to follow an isolated microgrid paradigm’s inter-
action agent-environment without the need for RE forecasts.
However, the proposed system can only have deterministic
policies, limiting its feasibility in practical power grids. To
sum up, DRL is limited for optimization and control tasks,
enhancing the prediction systems’ efficiency. Nonetheless,
the forecasting problems remain unsolved entirely via DRL,
which requires more investigations.

D. HYBRID MODELS-BASED

The efficiency of stand-alone DL models can be unsatisfac-
tory in PVPF in different case scenarios due to inappropriate
HO, bias-overfitting conundrum, and unbearable complexity
in both computational and spatial dimensions. To bridge
that gap, the combination of two or more cross-discipline
methods (a.k.a hybrid models) is commonly proposed to
forecast PVPG with an improved performance than the single
DL models [7]. This performance enhancement refers to
the fact that the single DL models have their strengths and
limitations, as reported in Table 2. Specifically, DL has some

limitations, including the lack of interpretability with DL
outputs that we cannot even fathom how they are generated
yet, extensive computation requirements, and the need for
massive data to efficiently perform the desired task. Hybrid
models are often preferred for solving the insurmountable
PVPF problems to eliminate or reduce the shortcomings
of single models by combining them with another model
in order to obtain impressive results [87]. Fig. 9 shows a
comprehensive distribution of the reviewed papers in this
review according to the forecasting method.

As remarked in Fig. 9, the hybrid methods are by far more
deployed than the rest of DL models. For instance, a Conv-
GRU model has been proposed to predict the PVPG accu-
rately [88]. The proposed model provides a high versatility to
deal with the nonlinear behaviors to provide an accurate PV
output. A CNN-LSTM model has been proposed for PVPF
[89]. However, the extraction of positional and temporal
representation in the PV output requires explicit recognition
of patterns and regularities in data, challenging to compute
due to the massive computational burden in real-life applica-
tion. An AE-LSTM model has been proposed [9]. A DBN-
based Auto-Regressive has been proposed for nonlinear TS
modeling [90], which provides decent performance. But, the
algorithm is fragile when faced with the PV volatile behavior
when applied to different locations and not suitable for PVPF.
An innovative USTF method has been depicted in [34]. The
authors’ work consists of implementing of the underlying
Local Sensitive Hash algorithm (LSH). The used taxonomy
considers four weather conditions: clear, cloudy, rainy, and
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FIGURE 9: Distribution of the selected papers per DL
method.

snowy weather. LSH profoundly investigates the coupling
correlated weather features. The methodology adopted for
LSH system classifies the PV power segments and gener-
ates a PPF output. In [34], the authors exploited a hybrid
method for an accurate hourly PV power prediction based on
a gradient-descent Back-Propagation method (BP), Schema
Frog Leaping Algorithm (SFLA), and ANN named BP-
SFLA-ANNs model. Subsequently, their adopted BP-SFLA-
ANNs model consists of using SFLA to mediate between
BP and ANNs models. BP model provides the values of
the primary hyperparameters of ANNs to let the SFLA start
from this initial selection to further search for more suit-
able parameters of a typical ANNs. The interaction between
SFLA and the BP led to a superior ANN accuracy and less
computational burden compared to an SFLA-ANNs without
the initial tuning of BP. Further applications of hybrid models
in PVPF are listed in Table 3.

However, computational complexity is one of the main
weaknesses of the hybrid models due to using of two or more
techniques. Thus, the accuracy improvement should not com-
promise the computational complexity of mixed models. The
performance of a mixed model depends on the performance
of a single model.

E. HYPERPARAMETER OPTIMIZATION OF DL

ARCHITECTURES

The ever-increasing complexity of the newly developed DL
methods has raised an emerging resurgence of research on

FIGURE 10: Meta-heuristic algorithms with Sine cosine
algorithm [99], Find fix exploit analyse [100], Electro-
search algorithm [101], Selfish heard algorithm [102], Em-
peror Penguins colony [103], Butterfly optimization algo-
rithm [104], Group counseling optimization [105], Volley-
ball premier league algorithm [106], Jaya algorithm [107],
Gaining sharing knowledge based [108], Differential search
algorithm [109], Backtracking search optimization [110],
Stochastic fractal search [111], Synergistic fibroblast opti-
mization [112].

HO. A wide range of hyper-tuning techniques was adopted to
support DL algorithms or provide an alternative for specific
optimization tasks. Automated hyperparameter selection is
an essential step to save the rare resources of human expertise
and notorious efforts. Meta-heuristic techniques offer the
adequate tools to provide an optimal or near-optimal config-
uration of DL models due to their efficiency and scalability
for various complex applications. Meta-heuristic algorithms
can be divided into four distinguished categories, specifically,
evolution-based, swarm intelligence-based, physics-based,
and human behavior-based, as shown in Fig. 10.

For instance, Ant Colony Optimization algorithm has been
proposed for model tuning to accurately predict the PVPG
[113]. Paper [114] developed a CNN and a Salp Swarm
Algorithm (SSA) for PVPF. For different types of weather,
five CNN regression models are designed. Consequently, the
prediction engine is easy-to-implement even if the knowledge
of the hyperparameters was limited. Paper [56] adopted a
combination of BiLSTM, Sine Cosine Algorithm (SCA),
and complete ensemble empirical mode decomposition with
adaptive noise (CEEMDAN) for solar irradiance forecast-
ing. Similarly, the authors in [115] established an improved
BiLSTM model with Genetic Algorithm (GA). However, the
proposed version of the BiLSTM model is susceptible to the
random weight initialization.
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TABLE 3: Related hybrid DL models.

Methods Ref. Error metrics Lowest error Data set

VAE [65] RMSE, MAE, R2, EV R2 = 99.50% National Institute of Standard and Technology grid-connected
plant in Algeria

CNN-LSTM [91] MAPE, RMSE, MAE RMSE=0.13kW PV inverter installed in Haenam,South Korea

PC-LSTM [92] MSE, MAE, R2 R2 = 91% Different areas in Australia

NARX-LSTM [12] nMAE, nRMSE, R2 R2 = 99.89% Desert Knowledge Australia Solar Center Urbana-Champaign
solar farm-Flyover, USA

GRU-RNN [93] NRMSE, MAE, MAPE MAPE=1.27% the arid Northern Cape region, South Africa

MC CNN [94] RMSE, MAPE, R2 MAPE= 8.639 % PV plants at 164 sites in South Korea

ConvLSTM [95] RMSE, MAE, MAPE RMSE=6.64kW PV plant in Morocco

GRU [96] MAPE, RMSE RMSE=67.29W Solar Radiation Database for Phoenix International Airport in
Phoenix, Arizona.

DenseNet [78] MSE, MAE, MSLE,MASE,MHE MAE=0.152kW Desert Knowledge Data from Solar Center, Australia

ResNet [78] MSE, MAE, MSLE,MASE,MHE MAE=0.180kW Desert Knowledge Australia Solar Center

Modified LSTM [97] MAE, RMSE RMSE=0.55kW Ansan, Gyeonggi-do, Korea

VMD-ARMA-DBN [98] NRMSE, NMAE, TIC NMAE=1.033% PV power plant in China-Yunnan

IV. DEEP LEARNING MODELS USED IN PVPF

APPLICATIONS

In this section, the notable techniques for PVPF have been
discussed, including DTL, BDDL, incremental learning, on-
line learning, and federated learning.

A. FEDERATED LEARNING BASED PVPF

As DL models based on a central server are suffering from
critical privacy-intrusive and security challenges, without ex-
plicit awareness of the users, these concerns hold particularly
strong. Concerns about data awareness in PV systems may
lead end-users to be progressively unwilling to send their
potentially private and personal data to data centers, raising
the problem about how DL algorithms will be trained [116].
Federated Learning (FL) is regarded as privacy-preserving
collaborative learning that gained a whispered emphasis from
academics and practitioners due to its significant contribu-
tions [117]. This emergent technology permits various parties
ideally, mobile devices, to cooperatively train a DL model on
their combined sets, without any participants having to reveal
their local data to a centralized server.

For the energy hub, FL seems to be the missing puzzle
piece in the widespread adoption of SE. For instance, the au-
thors in [118] applied a secure FL method based on Bayesian
LSTM Model to address solar irradiation prediction. The
proposed model proves its efficiency in solving the problem
of sparse samples by using a distributed training framework.
Meanwhile, the missing and faulty data can considerably
hinder the training of the FL model. FL is still in the early
stages of development. There are many works to do and a
few structural achievements in the approval process that still
need to happen before the researchers could leverage the FL
technology to its full potential.

B. DEEP TRANSFER LEARNING IN PVPF

To further supplement the staggering potential of DL, Deep
Transfer Learning (DTL) based on Transfer Learning (TL)
and DL has been proposed to overcome the insufficiency
problem of the actual training data sets convergence issues
and isolated learning shortcomings [119]. DTL employs the
pre-existing knowledge acquired from a DNN model for a
particular task to solve related ones [120]. Concretely, the
sensor measurements are hardly sufficient and sparsely gen-
erated [119]. Instead of learning any new task from scratch,
DTL is devoted to avoiding much expensive data-labeling
efforts using cross-domain data sets [121]. Furthermore, the
HO-based DL algorithms could be conducted using TL [122].
This learning framework operates by transferring the knowl-
edge gained by a DNN model in handling a task (source
problem) to solve another related task. We define a source
domain Ds and a target domain Dt with Ds 6= Dt. A learning
and source tasks (Ts Tt) with Ts 6= Tt constitute a DTL
framework if ηt is a nonlinear function represented by a
DNN. The source and target domains is formulated as [121]:

Ds = {(xS
j , y

s
i )}

M
i=1 (12)

Dt = {(xt
j , y

t
j)}

N
j=1 (13)

With M and N are labeled samples in Ds and Dt, respec-
tively; Xs and Xt denote the feature spaces of source and
target domains, respectively. xi denotes the data instance and
yi is the related class label. In [123], a Shared-Optimized-
Layer LSTM (SOL-LSTM) network has been proposed for
PVPF. The rationale of the proposed model design is to
combine a Sequential Model-Based Global Optimization
(SMBO) with the LSTM network. DTL can solve the data
insufficiency of the newly build PV plant by pre-training
the hyperparameters in a similar source domain and fine-
tuning in the target domain. However, with the increase of
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the data’s volume, the SOL-LSTM performance significantly
decreases. In [122], a DNN has been proposed to tackle
nonlinear weather uncertainties for RES farms. However, the
DTL model seeks repeated access and preprocessing of a
potentially massive data set of source tasks to establish the
necessary knowledge base for the downstream target task.
This requirement may not be feasible in large PV systems due
to the lack of data-intensive computing resources. Therefore,
it is of great significance to merge DTL and BD solutions to
solve the data problems in large-scale PV systems.

Although the DTL would significantly enhance the per-
formance of the DL-based PVPF, the research work on the
DTL use for PV systems is relatively limited contrary to other
areas such as fault detection in PV systems [124]. This may
be related to the essential need for data sets with minimum
reasonable similarity.

C. BIG DATA DEEP LEARNING FOR PVPF AND

CHALLENGES

As known, DL models are data-hungry, requiring a large data
to work effectively [125], [126]. Reciprocally, DL scales well
with growing amounts of data [127]. However, the compu-
tational efficiency of the actual calculators is considerably
limited, especially with the trend of increasing DNN size.
To bridge this gap, it is, thereby, generally not an option to
employ Big Data technologies for model training, especially
with the continuous flow of data pouring from monitoring
systems and smart devices [128]. Big Data and Analytics
provide the means to predict the weather conditions and
PVPG for PV systems to work at peak efficiency. Data
mining can truly be beneficial for enhancing the PVPF in a
complex ground-level infrastructure.

In [124], the authors have proposed a deep Feed-Forward
Neural Network (FFNN) with big data set from Australia. A
H2O package has been employed to combine non-deep and
deep learning methods with Apache Spark cluster-computing
framework. The simulation results proved that the lagged
information does not need more than the previous 24 hours
of historical information to provide and accurate results.
However, the grid search algorithm tuning of the trained
model may produce heavy computation requirements. Con-
sequently. An adequate selection of optimization algorithms
will be of utmost importance to establish cost-efficient pre-
diction tools.

In [126], the authors introduced a big data solution by
combining used physical and dynamical theories and in-
telligent algorithms to solve big data problems. However,
decent documentation of the used software (Sun4CastTM )
is missing. Paper [129] proposed an annual rooftop solar irra-
diation analysis based Spark-based fuzzy partitioning LSTM
model. The proposed solution employs rooftop characteris-
tics, horizontal solar irradiation, visibility of the sky, and
shading factor. Hence, the simulations prove that ensemble
models represented by RF overcome NN symbolized by
extreme learning machine ensembles with an accuracy of
92%. The authors in [130] applied a big data forecasting tool

based to solve the PVPF problem, where, Pyspark package is
employed to implement the neural network model. The simu-
lation results produce an average RMSE=0.03 MW with fast
convergence. Unfortunately, the computational complexity
disables the model from the transition from proof of concept
to production. Whereas a massive amount of engineering
is needed to deploy it in production. Big Data frameworks
applied to PV systems can contour several limitations such as
data privacy and security, multisource data integration, real-
time data processing to ensure that the data clearly conveys
what they need the DL to learn for real-world PV plants
[131].

D. INCREMENTAL AND ONLINE LEARNING

Under the umbrella of DL, incremental and online Leaning
has emerged as a continuous evolving scheme to improve the
universality of the prediction engines for accurate regional
forecasting. Hence, the difference between these two algo-
rithms is quite challenging. Online Learning (OL) dynami-
cally trains or adapts the model using each incoming data
point at each time step, without saving [132]. Thus, OL is
used to handle large volumes of streaming data transmitted
at high velocity. Incremental Learning (IL) provides a fast
remodeling from batch learning of data at different time
intervals, and has the capability to integrate new knowledge
on-the-fly of the predefined model if the network deems to
be expanded. The incremental samples can be fed from the
available Samples (SIL) or even unseen classes (CIL).

Authors [133] established an online PVPF method to
handle concept drift. A model-agnostic online forecast-
ing (MAOF)-based LSTM model is used, generating an
MAPE=23.59%. However, the model produces a serious
performance degradation is particular case scenarios leading
to stability issues. The work in [134] applied an incremental
learning model for solar irradiance based-Regression En-
hanced Incremental Self-Organising Neural Network (RE-
SOINN). The proposed model is trained incrementally as
new data come in progressively. This architecture avoids the
tedious retraining process of DL models.

V. APPLICATION POTENTIAL IN PV POWER

FORECASTING

With the increasing spatiotemporally coupled uncertainties
in PVPG, PVPF becomes a desperate need to ensure grid
stability and weaken the uncertainty of solar PV power, hence
paving the way towards a large-scale economic deployment
of RES in the electricity grid. Conceptually, PVPF can be
broadly classified into two folds, point PVPF and interval
PVPF.

A. POINT PV POWER FORECASTING

Point forecasting, so-called deterministic forecasting, is
widely regarded as essential for optimal power system man-
agement. Point forecasting models have been thoroughly
researched over the years, and the trend of developing more
accurate forecasts is still booming [135]. The average PVPG
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Pt+k|t, is estimated to be produced from a PV system during
a specific time period, for the PVPG forecast made at time
step t, for a look-ahead time, t+k, if it would function under
an equivalent constant PV power. The time horizon T , for
which the prediction is generated, defines the total length
of the forecast period. Deterministic PVPF provides accurate
and specific future values [136], [137]. Further, these meth-
ods are easy-to-use, deploy and evaluate using score metrics
such as RMSE, MAE, R, and MAPE [33]. Unsteady PVPG
threatens energy generation. However, spot forecasts do not
include the uncertainties around the mean value. Therefore,
their results can be unreliable and misleading in particular
scenarios [12].

Table 4 presents several exemplary applications of deter-
ministic DL methods for PVPF. For instance, the authors
in [144] adopted a LSTM–CNN model. It produced the
most accurate forecasts over single LSTM and CNN, with
a forecasting skill of 37%–45%. But, the computational
burden is ten times longer than the standalone LSTM. A
deep Extreme Learning Machine (ELM) has been applied in
[145]. The proposed model incorporated Enhanced Colliding
Bodies Optimization (ECBO), Variational Mode Decomposi-
tion (VMD), and a ELM algorithms. However, the proposed
model does not shed light on uncertainty abstraction and
reasoning. Therefore the forecasting engine is found inef-
ficient in dealing with meteorological data pervaded with
uncertainty.

B. PROBABILISTIC PV POWER FORECASTING

With the increasing PV power uncertainties, Probabilistic
Deep Learning (PDL) has become the de-facto solution to
lessen negative impacts on power system reliability and
economic efficiency from stochastic PV generation [146].
PPVPF can provide an estimated interval where various
possible PVPG values for a specific time are generated to
quantify the intrinsic uncertainties associated with point fore-
casts [146], [147]. PPVPF draws excellent attention to bal-
ancing authorities for its ability to provide prediction interval,
quantile, density, or conditional probability distribution of
future predicted power [148]. From the literature, the most
overwhelming PPVPF methods lie in conditional quantile
regression (QR) and conditional expectile regression [149].
For instance, An Improved quantile CNN has been proposed
for indirect PVPF to compute consistent quantile estimates
[150]. The simulation results indicate that two-stage training
strategy has a positive influence on enhancing forecasting
accuracy. A deep QR-CNN-based Wavelet Transform (WT)
has been exploited to model DPVPF and PPVPF [151]. The
CNN-WT efficiently provides a wider view of a prediction.
The proposed model is tested using TS data collected by
Elia, Belgium’s transmission system operator. The erage
Coverage Error (ACE) obtained varies from -1.02 to 0.43 for
a prediction horizon of 15 min.

In [149], the authors propose a Robust Self-Attention
Multi-horizon (RSAM) model for PPVPF using QR. How-
ever, the QR generates a non-differentiable loss function that

threatens the model stability and robustness. The proposed
model employs a self-attention-based transformer model.
However, the problem of crossing quantile curves is fre-
quently observed, particularly when considering a dense set
of quantiles or using a small data set. Furthermore, the DNN
is naturally deterministic and limited to PPVPF. Therefore,
Bayesian probability is often integrated with DL models to
provide prediction intervals associated with forecasted point
values [152], [153]. Substantial research has shown that
PPVPF is scarcely investigated compared to deterministic
PVPF. A number of DL techniques have been exploited in
the literature for PPVPF. For instance, paper [154] presents
a Robust Self-Attention Multi-horizon (RSAM). The pro-
posed model indicates an 18.60% improvement compared
to the conventional LSTM. A Traditional Encoder Single
Deep Learning (TESDL) framework has been proposed,
which provides a 27% improvement in accuracy factor
[155]. Reference [156] exploited an SAE and Lower Upper
Bound Estimation Method for PPVPF. It was found that the
wind speed, weather temperature, weather relative humidity,
global horizontal radiation, and diffuse horizontal radiation
can effectively predict PV energy production. Despite their
importance, PPVPF may ignore the interdependence shape
of forecast errors among look-ahead timesteps, and may lose
their potential in practical use in the time-dependent and
multi-stage decision-making processes, such as the trading
strategies design in a multi-market environment.

VI. CHALLENGES AND FUTURE RESEARCH

DIRECTIONS

The last section concludes this review with rigorous investi-
gations and guidelines for future studies. The main findings
and the research frontiers of this study are enlisted as follow-
ing:

• There is a desperate need to convince the PV experts
that DL concept is efficient and satisfactory to gain ac-
ceptance by operators and stakeholders. This high-tech
concept needs to overcome several weaknesses to win
broader acceptance and confidence from the energy hub.
This poor DL integration can be explained by various
reasons from the industrial perspective. For instance,
DL limitations lie in poor generalization potential in
learning evolving operating conditions. with the high
complexity of the atmospheric condition, designing an
ideal DL method is beyond the bounds of possibility. To
build PV industry trust, DL models have to overcome
the lack of representativeness of the train sets and the
potential adversarial attacks.

• The time resolution for a large extent of the research
works emphasizes the STF-based PVPF. However, the
MTF and LTF are essential for energy trading, strategic
planning, and degradation-rate-impacted energy poten-
tials of PV panels. Nevertheless, the performance va-
lidity expires in a more extended period with increased
error values compared to STF forecasts.
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TABLE 4: Selected recent works on DL-based PVPF.

Method Ref. Benchmarks Inputs Data set source

CNN [138] SVM1, RF, DT,
MLP, LSTM

Temperature, Solar radiation, Historical PV power PV station in Taiwan

FSEL [139] LSTM, ARIMA,
VAR

Installation price, Customer price, Temperature, Average
sunshine, Population density, Treasury yield

local PV installation in Jeollanam-do and
Gwangju

Self-
attention

[140] SVM, DNN, ELM,
CNN, LSTM

Time information, Weather information and Historical
power generation

Power generation data set published by the
University of Massachusetts Amherst in 2017

Deep
ConvNets

[141] PM, ResNet Solar radiation, Sky images Folsom, CA, USA -NREL Golden, CO Data
Set

AE-LSTM-
PM

[64] PM, FFNN, DNN,
LSTM, AE-LSTM

Irradiance, Solar Zenith angle, Temperature, Minute
index, Cloud cover, Day index

SOA university Bhubaneswar, Odisha, India

Copula
function-
LSTM

[142] LSTM, SVM Temperature, Wind speed, Wind direction, Cloud cover
ratio, Radiation, Surface pressure, Precipitation, Humidity

PV power station data from China and the
US.

LSTM [143] LSTM-RNN,
BPNN2, SVM, PM

Historical PV power Desert Knowledge Australia Solar Center
(DKASC)

ResNet,
DenseNet

[78] SVR, ES, MLP,
CNN, QR

Historical PV power, Numerical weather prediction,
Diffuse and global horizontal radiation

Desert Knowledge Australia Solar Center
(DKASC)

1 Support Vector Machines 2 Back-propagation Neural Network

• The hybrid models possess immense potentialities in
PV paradigms. Consequently, the number of papers that
address the hybridization of DL is ever-growing. How-
ever, the model hybridization entails an elevated com-
putational burden. Almost half of the reviewed papers
for forecasting applications incorporate hybrid models.
It can be deduced from the related works that GRU
and LSTM architectures have been frequently deployed
in the model fusion due to their suitability in time
series data. The hybrid models’ high accuracy should
not compromise their reasonable complexity.

• The shortage of PV skilled professionals and experts
to deploy DL techniques presents a severe problem
that impedes the vast deployment of these techniques.
The major concern for PV practitioners is the lack of
clear guidance rules for algorithms’ structure and HP
tuning. Therefore, finding near-optimal solutions can
be a cumbersome problem for non-qualified operators.
As DL jobs are in high demand, matching DL and PV
technology landscape is relatively limited. More impor-
tantly, it is quite hard to find qualified man-labor in
both domains of interest. Getting sufficient professional
knowledge in both DL and PV technologies requires
personal initiative due to the lack of resources in these
infancy subjects.

• The explainability and interpretability of the proposed
PV systems is a severe challenge for their practical
feasibility. DL models operate in a "black-box" fashion,
impeding their whispered adoption due to the lack of
explainability. The poor visibility of model performance
may lead to manufacturing problems especially due to
safety-critical concerns. Nevertheless, interpretable DL
methods have scarcely been applied and tested in PVPF,

where the transparency and understandability of the de-
cision logic of the forecasting engine are not guaranteed.

• The data mining and big data analytics are essential for
the cost-effectiveness of predictive modeling in PV sys-
tems. The data accumulated from weather stations are
processed in a continuous flow or stream with various
formats, sizes, and variability. Big data analytics is a
means to improve data power stability. However, most
research papers do not shed light on the utilization of
DL models in actual PV plants.

• PVPF is recently proposed to mitigate energy uncertain-
ties. However, the proposed methods may face several
implementation issues, as reported in Table 2. In fact,
most of the proposed methods were still in the proof-
of-concept stage without passing to real-world applica-
tions. The implementation barrier lies in the laborious
DL adjustment in terms of storage, dimension, search
capacity, and convergence settings for actual standalone
or grid-connected PV systems.

• The available DL models were commonly validated
in the Standard Test Conditions (STC). Nonetheless,
very little work has been done for real-world validation,
where the performance accuracy dramatically decreases
for real PV systems.

• Data privacy awareness presents the key enabler for the
integrity and reliability of forecasting systems. There
is a pressing need to protect data privacy from vul-
nerabilities and cyber intrusions for promoting the DL
deployment. For instance, false data detection tools are
needed to preserve the forecasting engine and achieve
effective decision-making. FL-based PVPF presents a
prospective direction towards a Secure and Resilient
grid [118]. However, the studies aiming to cover data-
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driven cybersecurity technologies-based PVPF are ex-
ceedingly rare in the literature.

• The proposed techniques often operate for a specific
time frame over a specific geographical area. For in-
stance, DL models can outperform the benchmarks for
the forecasting situation under scrutiny. But, this model
could not perform equally in other PV areas with dif-
ferent topographies and weather patterns. In fact, DL
is hitherto inefficient in regional PVPF and limited to
the technical characteristics of PV plants. Designing
general models that could transfer learning from local
PV plant to another is a potential solution towards model
universality.

• The online prediction tools are seldom investigated for
PV plants despite their importance in real PV systems.
Online prediction effectively adapts to newly incom-
ing information. More concretely, offline DL methods
fail with unpredictable conditions during the process.
Online PVPF can obtain near-optimal predictions and
promotes model stability. This requires an engagement
of sufficient storage space of the infrastructure and an
adequate frequency for model updates.

• Another challenge is pre and post-processing of data.
Data preprocessing and error post-processing is a se-
rious concern, especially with the sheer size of data.
The unfathomable amounts of data lead to noise and
imprecise knowledge problems such that they can
be difficult to surmount. Data preprocessing usually
includes data normalization, faulty and missing data
filtering, data resolution adjustment, data augmenta-
tion correlation analysis data clustering, and graph
constriction. While, post-processing procedures usually
include various pruning routines, rule filtering, or even
knowledge integration. Paper [32] taxonomized post-
processing techniques for solar forecasting into four
classes: deterministic-to-deterministic, probabilistic-
to-deterministic, deterministic-to-probabilistic, and
probabilistic-to-probabilistic post-processing. In this
paper, the authors reported that post-processing is vital
for consistency, quality, and value in the PVPF context
[32].

• The integration of satellite and ground-based measure-
ments is rarely being studied. The reason for this short-
age may refer to the limited access to satellite images
which prohibits the data collection. Despite satellite-
derived irradiance datasets provide spatial diversity, the
obtained accuracy is relatively low in the presence of
poor datasets. Designing a data-light DL systems is a
potential solution to overcome the large data require-
ments barrier and achieve satisfactory results.

• Standardizing forecast evaluation towards an universal
functional form is mandatory to facilitate the selection
of the suitable model among others. Quantifying pre-
dictability presents a tiresome task due to a large num-
ber of error metrics. The diversified score criteria may
inhibit attaining a statistical consensus of the model’s

goodness. Unifying the score metrics is essential to
gain the industry and end-users acceptability in real-
world problems. The standardized criteria alleviate the
costs of the prediction system and the economic im-
pact. Although error metrics standardization seems an
intuitively appealing task, research works are limited
towards that goal.

• Hierarchical TS Forecasting (HTSF) is deemed suit-
able to achieve excellent performance in PVPF through
explanatory variables. However, the use of HTSF is
limited. HTSF follows a hierarchical aggregation struc-
ture at different levels by reconciling incoherent fore-
casts according to their proximity from individual TS.
Therefore, the relationships within the hierarchy are
preserved. This entails a problem of coherency at differ-
ent granularity levels of the time-varying observations.
Therefore, the adjustment between upper and lower
levels is vital to ensure the consistency of the forecast.
DL is particularly well-positioned to predict the TS data
of all nodes in the hierarchy and reconcile them [157].
However, to the authors’ best knowledge, HTSF is still
not applied to PV systems.

• Forecasting with multimodal and multilevel information
fusion is scarcely discussed. Multimodal learning al-
lows learners to merge the information from different
sources. In the PV context, the multimodal data may in-
clude sky images and cloud motion speed records. These
heterogeneous data from different modalities present
complementary information from multiple sources. In-
formation fusion from different modalities with strong
end-to-end governance standards can significantly en-
hance the prediction accuracy, boosting interest towards
concepts to model in this area.

• Smart meters (SM) sensing may bring rigorous chal-
lenges to forecasting accuracy, especially with their
short service life span. A meter failure can bring a
plethora of problems for simple causes such as internet
loss, software flaws, and hardware malfunctions. How-
ever, manually checking all SM on a regular basis can
be labor-intensive. DL can efficiently work for early
detection of inaccurate SM, towards longer-lasting SM.
The careful investigation of the data reliability and sens-
ing tampering early on helps in producing more robust
predictions.

• The performance of DL methods depends on the acces-
sibility of abundant quality of PV data to meet power
quality standards. However, these models run slowly
and have narrow boundaries of the frequency domain
division in the production environment. The DL deploy-
ment lies in three major aspects: portability, scalability,
and computational cost. Operationalizing and robusti-
fying DL are still tedious tasks that mandate fruitful
research in this direction.
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VII. CONCLUSION

With the inevitable emergence of the Smart Grid, DL-as-a-
service plays an essential and indispensable role in the bulk
penetration of Photovoltaic (PV) energy across efficient PV
Power Forecasting (PVPF) systems. This paper provides a
comprehensive review of the recent PVPF involving DL.
We took a deeper dive into the well-known architectures for
PVPF. Three types of emerging learning methods are classi-
fied, specifically, discriminative learning, generative learning
and deep reinforcement learning. The DL methods have
their own merits and numerous shortcomings, which may be
covered by optimal hyperparameter tuning. Different PVPF
strategies concerning time horizons have been described in
the study. A vast majority of case studies from the literature
demonstrated that hybridization and assembling straighten
DL techniques leading to better accuracy and high robust-
ness. It is hoped that this review paper would help researchers
and practitioners to improve forecasting accuracy through
moving DL models from the nascent stage to real-world
applications and to come up with more precise PV energy
forecasts.
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