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Quasi-Newton algorithms for unconstrained nonlinear minimization generate a sequence of matrices 
that can be considered as approximations of  the objective function second derivatives. This paper gives 
conditions under  which these approximations can be proved to converge globally to the true Hessian 
matrix, in the case where the Symmetric Rank One update formula is used. The rate of  convergence is 
also examined and proven to be improving with the rate of  convergence of the underlying iterates. The 
theory is confirmed by some numerical  experiments that also show the convergence of  the Hessian 
approximations to be substantially slower for other known quasi-Newton formulae. 
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1. Introduction 

Quasi-Newton methods are recognized today as one of the most efficient ways to 
solve nonlinear unconstrained or bound constrained optimization problems. These 

methods are mostly used when the second derivative matrix of the objective function 
is either unavailable or too costly to compute. They are very similar to Newton's 
method, but avoid the need of computing Hessian matrices by recurring, from 
iteration to iteration, a symmetric matrix which can be considered as an approxima- 
tion of the Hessian. They allow, therefore, the curvature of the problem to be 
exploited in the numerical algorithm, despite the fact that only first derivatives 
(gradients) and function values are required. We refer the reader to [3, 4, 6, 8] for 
further motivation and analysis concerning these now classical algorithms. 

* The work of this author  was supported by the National Sciences and Engineering Research Council 
of  Canada,  and by the Information Technology Research Centre, which is funded by the Province of 
Ontario. 
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The problem we consider is that of finding a local solution x .  in E" of 

m in f (x ) ,  (1) 

where f ( x )  is a smooth function from R n into E, using a quasi-Newton method. 
We denote the sequence of iterates generated by this method by {xk}. It is important 

to note that most of the theory and practice in this field is based on a "line search" 
model algorithm whose iteration is of the form 

X k +  1 = X k - -  cckBk'V f (xk) ,  (2) 

where Bk is the symmetric approximation to the Hessian mentioned above, which 
satisfies the "secant equation" 

B k +  1 (Xk+ 1 --  X k )  = V/(xk+,) - V/(xk), (3) 

and where ak is a suitable relaxation parameter that is computed by solving 
(sometimes quite inexactly) the one-dimensional problem 

min f(xk + a G ) ,  (4) 
aZ>0 

where the search direction dk is given by 

dk = --Bk'Vf(xk) .  (5) 

This last procedure is often called the "line search", hence giving its name to the 
algorithmic model. In this context, maintaining Bk positive definite has the distinct 
advantage that it guarantees that dk is a descent direction with respect to the objective 
function. This positive definiteness of the matrices Bk can be ensured by imposing 
suitable conditions on the value of ~k and using adequate recurrence relations to 
update the Bk themselves (see the above cited references again). In this context, 
updating the matrices Bk with the Broyden-Fletcher-Goldfarb-Shanno (BFGS) 

updating formula 

Bksks T Bk ~_ YkY-~ 
Bk+, = Bk s~BkSk yT sk' (6) 

where 

and 

def ( 7 )  
S k = X k +  1 - - X  k 

Yk ~r Vf (xk+ l ) -  Vf(xk), (8) 

has been quite unanimously recommended for the past 15 years. 
Maintaining positive definite approximations to the Hessian matrix of the objective 

has, however, some important drawbacks. The first one is that, even though the true 
Hessian is usually positive definite at the solution of the problem, this may not be 
the case when the current iterates of the algorithm are far away, and the concept 
of  an approximation of the Hessian at these iterates must therefore be revised. One 
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also notes that if the solution of  the minimization problem has to lie within a feasible 

region defined by bounds on the variables, or is subject to more general constraints, 

then the Hessian may be indefinite even at the solution. Finally, positive definiteness 
is known to be incompatible in practice with symmetry, the secant equation(3) and 
sparsity of Bk (see [14]). All these observations justify, in the authors' opinion, the 
continuing research on indefinite quasi-Newton methods, especially in the context 
of large-scale problems for which preserving structure and sparsity in Bk is of 
paramount  importance. 

On the other hand, the development of  "trust region" methods has, in the recent 
past, allowed the design of  efficient algorithms that are capable of handling indefinite 
Hessian approximations. Primarily used in conjunction with exact Hessian informa- 
tion (that is within Newton's method), they rapidly became an important research 
subject in a more general context (see [10] for an excellent survey of these tech- 
niques). Their success is probably due to their remarkable numerical reliability and 
their comprehensive theoretical basis. Amongst the major differences between trust 
region methods and the line search methods described above is the fact that the 
step Sk is no longer a multiple of the direction dk, and that no line search is performed. 

In two recent papers [1, 2], the authors describe and analyse a class of trust region 
methods for unconstrained and bound constrained minimization. The second of  

these papers, in particular, gives a numerical comparison of several quasi-Newton 
updating formulae used in a trust region framework and applied on small 
dimensional problems. The BFGS formula (6) is considered, together with the 
Davidon-Fletcher-Powell  (DFP) formula 

T T T T 
rkyk  + ykrk  ( r k s k ) y k y k  

Bk+l = Bk-~ yTk & ( y  Tsk) 2 , (9) 

the Symmetric Rank One (SR1) formula 

Bk+l = Bk + rkr T (10) 
T 

rkSk 

and the Powell-symmetric-Broyden (PSB) formula 

rkS T + skr T T T (rksk)s~sk 
Bk+, = Bk-~ sTsk (sTsk) 2 , (11) 

where we have defined the residual rk by 

de f  
rk = Yk -- BkSk. (12) 

Somewhat surprisingly, the traditional supremacy of the BFGS update is questioned 
by these numerical experiments, and the SR1 formula appears to be substantially 
more efficient in the trust region framework than any other quasi-Newton method 
tested in this context. It is suggested in [2] that this interesting behaviour may be 
linked to the fact that a better convergence of the matrices Bk to the true Hessian 
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of the objective at the solution has been observed when using the SR1 update, in 
comparison with the other updating formulae. 

It is the purpose of the present paper to clarify this suggestion by considering 
the convergence of the matrices Bk to the true Hessian at a limit point of the sequence 

of iterates produced by the minimization algorithm, provided the search directions 
Sk remain uniformly linearly independent, which is defined in the next section. The 
rate of convergence of  the matrices is also examined, and proven to be strongly 
related to that of the sequence {Xk}. 

The next section briefly reviews what is known about the convergence of the 
quasi-Newton matrices and discusses the assumptions made. Section 3 is devoted 
to the convergence proof  for the SR1 update, while Section 4 presents some numerical 
results supporting this theory, together with a comparison with the PSB, BFGS and 

DFP formulae. 

2. Convergence of the Hessian approximations in quasi-Newton methods 

We consider solving the unconstrained optimization problem 

min f (x ) ,  (13) 
x C ~  n 

for a local minimum, using the following algorithmic model. 

Algorithm 1. Let Xo, an initial point, be given, as well as an initial n × n symmetric 

matrix Bo. 
Step I. Set k = 0 and compute go de~ Vf(xo). 

Step 2. Find a vector sk. 
Step 3. Set 

X k +  1 = X k -~- S k ,  (14) 

compute gk+l = V f(Xk+O and Yk according to 

Yk = gk+l -- gk. (15) 

Step 4. Update the matrix Bk to obtain Bk+l by using one of the quasi-Newton 
formulae as described above. 

Step 5. Increment k by one and go to Step 2. 

This very broad outline naturally calls for some comments. 

(i) We have not specified in which way the step Sk should be computed. We 
note, however, that in the classical line search framework we have that 

Sk = - -akBklgk ,  (16) 

from (2), where we have assumed that Bk is nonsingular. 
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This freedom in the choice of Sk is, nonetheless, quite useful. In particular, we 

have in mind defining the step by a trust region scheme (using a truncated conjugate 

gradient technique, as in [2], for example), which would not yield (16). Another 
case where (16) would not hold is in the important context of large scale optimization 
using partially separable functions and partitioned updating [9], where the step is 
computed by taking all element functions into account and hence is only indirectly 
related to any particular element Hessian approximation. 

(ii) No stopping criterion has been given. We are, indeed, interested in the 
asymptotic behaviour of the algorithm, and will assume that it produces an infinite 
sequence of iterates {Xk} and an infinite sequence of quasi-Newton matrices {Bk}. 

(iii) In the case where the SR1 formula (10) is used for updating Bk, W e  have to 
make sure that it is well defined. Therefore, formula (10) will be used only if 

Ir~sk] >! clllrkIF IIs~ll, (17) 

where cl ~ (0, 1) is a constant. (Here and below, the norm considered is the usual 
/2-norm on vectors and the corresponding induced norm on matrices.) If (17) is 
violated, we will simply set Bk+l = Bk. 

(iv) It is assumed that the same quasi-Newton updating formula is used for all 
iterations: we do not consider using the BFGS update for certain iterations and the 
DFP update for others, for example. 

We now present our assumptions on the problem and the sequence of iterates 
generated by our algorithmic model. 

(AS.I) f ( x )  is twice continuously differentiable everywhere. 
(AS.2) vZf(x)%f H(x)  is Lipschitz continuous, that is there exists a constant 

C 2 > 0 such that, for all x, y c Nn, 

IlH(x) -H(y)I I  ~ c2]]x-yll. (18) 

(AS.3) The sequence {Xk} converges to some finite limit point x . ,  say. 
(AS.4) The sequence {Sk} is uniformly linearly independent, that is, there exist 

a c3 > 0, a k 0 and an m >t n such that, for each k ~> ko, one can choose n distinct indices 

with 

k ~ k l < ' "  " < k , ~ k + m  

O'min( Sk) ~ C3, (19) 

where O'min(Sk) is the minimum singular value of the matrix 

Sk ~f ( Ski Skn ) 
[I Sklll''" ' II Skn II " ( 2 0 )  

(We refer the reader to [ 11 ] for an equivalent definition of a uniformly independent 
sequence.) 

The motivation for the last of these assumptions (AS.4) comes from a careful 
analysis of the numerical results reported in [2]: in these tests, the smallest singular 
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value of the matrices Sk containing n successive normalized directions is always 
above 10 -4. The superiority of the SR1 update on the BFGS observed in this paper 

can therefore by analysed in the context of this assumption. 
It is, however, clear that (AS.4) is relatively strong: there are, indeed, known 

circumstances where it may fail. Firstly, the denominator in (10) can become 
arbitrarily small and even vanish completely during the solution of well-defined 
and well-conditioned minimization problems. This happens, in particular, when (2) 
is used with C~k = 1, in which case (10) becomes 

T 

Bk+l = Bk + gk+l gk+l (21) T 
gk+lSk 

The update (10) is then unusable if v gk+lSk ---- O, although in most quasi-Newton 
methods it is advantageous if a steplength of one minimizes the objective function 
along the search direction. Assuming that the denominator in this formula is not 
exactly zero, but merely very small, a very large correction is then made to Bk to 
obtain Bk+l, possibly obliterating the useful information already contained in Bk. 

Furthermore, the fact that now 

T 

gg+l gk+l (22) 
Bk+l~" g T+lsk 

may cause subsequent directions sk+j to be nearly orthogonal to gk+l, with the effect 
that these directions become linearly dependent, hence contradicting (AS.4). Other 
cases where this assumption is unsuitable arise in the solution of separable and 
partially separable problems, when the minimum of f ( x )  is found at different 
iterations in independent subspaces. The components of the search directions along 
the subspaces where the minimum is found first may then become very small and 

linearly dependent. 
Of course, a convergence analysis for the matrices generated by the SR1 update 

without (AS.4) is desirable, but the authors believe that such an analysis is likely 

to be very difficult. 
Maybe the oldest result about the convergence of the quasi-Newton matrices Bk, 

without assuming exact linesearches, is that given a quadratic objective function 
and a sequence of n linearly independent steps {sk}~=l, the SR1 formula determines 
the exact Hessian H = v z f  (that is B,+I = H)  provided formula (10) is well defined 
for these steps. This result seems to have been proved first by Fiacco and McCormick 
[5], and is rather well-known (see [6], for instance). It has the very remarkable 
feature that it does not depend in any way on the method used to compute the steps 

Sk, and thus holds for our general algorithmic mode. 
The convergence of the matrices generated by the PSB update has also been 

studied. In [12], Powell proved that, assuming (AS.l) and (AS.2), the convergence 
of  sequence {xk} to a point x .  and the uniform linear independence of the steps 
{Sk} (see [11]), the sequence {Bk} generated by the PSB update converges to H ( x . ) .  
The proof  is based on the fact that the PSB update defines Bk+l as the symmetric 
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matrix closest to Bk in the Frobenius norm that satisfies (3). (It is interesting to 

note that [12] has also been a seminal paper in the study of trust region methods.) 

A similar theorem has been proved for the sparse PSB update in [15]. 

The DFP and BFGS updates have been considered by Ge and Powell in a more 
recent paper [7]. They consider the case where the step Sk is obtained by (16) with 

the choice ~k = 1, and proved that the sequence {Bk} is convergent when the objective 
function is a strictly convex quadratic. However, the limit of  the sequence {Bk} need 
not be, in general, equal to the Hessian matrix of the quadratic. They, indeed, 
provide an example where this unfortunate behaviour is observed (other examples 
may be found in [4]). Ge and Powell also show that their result can be extended 
to nonquadratic objective functions provided that (AS.l) and (AS.2) hold, and that 
the sequence {Xk} converges to the limit x ,  where H ( x , )  is positive definite. The 
proofs in their paper are quite involved and depend rather crucially on their choice 

of steps sk. Quite remarkably, they do not depend on an assumption of the type of 
(AS.4). 

The convergence of the quasi-Newton matrices generated by the BFGS formula 

has also been analysed by Schuller in [13]. He shows the interesting relation 

II Bk+.+l- H(x,)II < c4]lxk-x,  II (23) 

for some constant Ca>0, but his assumptions are quite strong. Indeed, besides 
(AS.3) and (AS.4), he also assumes that the line search problem (4) is solved 
asymptotically exactly, that B0 and H ( x , )  are positive definite, that the norms of 
Bk and its inverse stay bounded, that Xo is sufficiently close to x , ,  and that the 
sequence {Xk} converges to x ,  Q-linearly. The first of these additional assumptions 
is, in particular, quite unrealistic in our context, because we wish to cover the trust 
region case, where there is no line search at all. 

3. Symmetric Rank One update for nonquadratic functions 

We now turn our attention to the SR1 update formula again, but at variance with 
the results quoted above, we consider a general nonquadratic objective function 
that satisfies (AS.I) and (AS.2). 

We first prove the following important lemma, a surprisingly simple variation of  
the quadratic case. 

Lemma 1. Assume that (AS.l) and (AS.2) hold, and also that {Xk} is a sequence of  
iterates generated by the algorithm described above, using the SRI updating formula 
(10). Assume, furthermore, that (17) holds at every iteration. Then 

I] Yj - Bj+lSj II = 0 (24) 

for all j and 

]t y j_  B,sj i] < c2 ( 2 + ,~ ~-j 2 cl a} ni, jllsjfl (25) 
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for all j and i ~ j + l, where 

def 
n,,j -- max[llxp-xsll Ij<-s<-p <- i]. (26) 

Proof. We first observe that (24) and (25) with i = j +  1 immediately results from 
(3). The proof  of (25) is by induction. We choose k>-j+ 1 and assume that (25) 
holds for all i = j +  1 , . . . ,  k. We now consider 

T T , - -C2[2  \ k - j - 2  [r~s,l=ly~s,-S~BkS, l<~lyks,-skY, l~-7~+l } n~,, II*u II IIs~ll, (27) 

where we used (12), our inductive assumption and the Cauchy-Schwarz inequality. 
Now, using the mean value theorem (see [4], for instance), we obtain that, for all l, 

where 

yl = H~s,, (28) 

Ht = H(xt + tsl) d t. (29) 

Hence (27) yields that 

¢2 // 2 \ k-j--2 
[ r ' ~ s j l < ~ l s ~ ( n k - ~ ) s j l + ~ + l )  ~Tk,~ ]lsj l] [Isk]l 

[ 2 \ k-j-2 
<-e2,k+ljllsjll II~kll+e2/--+1! '7~,,llsj II IIs~ll, (30) 

Cl \ c l  / 

where we used (29), (AS.2) and the definition (26). But, from (10), (17) and the 
triangle inequality, 

_ rj~sj I Idsjl 
Ilyj-Bk+lSjl[ =- y j -Bksj  r~sk <~llYJ--Bksjl[-~ (31) <lisa 

and therefore 

( C 2 ( 2 q _ ) k  j-2 [ 2  \k--j--2\ 
]]yj-Bk+,sjll<~ 1 + q ~ + l )  )rlk,jHsjH 

\Cx \Cl Cl 

+c2 ~+1,~ IIxj II, (32) 
Cl 

by using (30), the inductive assumption and (31). This last inequality then gives 
(25) for i =  k +  1, when one takes into account the fact that cl c (0, 1) and uses the 
simple inequality 

rlk, j <~ r/k+l,j. [] (33) 
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We are now in position to prove the desired convergence theorem. 

185 

Theorem 2. Assume that (AS.1)-(AS.4) hold, where {Xk} is a sequence of iterates 
generated by the algorithm described above using the SR1 updating formula (10). 
Assume, furthermore, that (17) holds for every iteration. Then there exists a constant 
c5 > 0 such that, for k >1 ko, 

where 

and 

II Bk+m+l -- H(X,)II  ~ C58k, 

ek ~fmax[llx~-x, ll lk~s~k+m+l], 

(34) 

(35) 

Proof. In order to prove this theorem we first observe that, for any s and p, 

IIx, -xpll  ~< IIx~ - x ,  II + II/p - x ,  ll, (37) 

which implies that 

rlk+,,+l,k ~< 2ek, (38) 

because of  the definitions (26) and (35). We also note that, because of  (AS.2), 

Ilyj -A(x , ) s j  II--I1(~ -H(x , ) ) s j  II ~ c2e~ Ilsj II (39) 

for any k <~j <~ k + m, where ~ is defined by (29). Moreover, for any such j we can 

deduce from Lemma 1 and (38) that 

Il yj -- Bk+m+l Sj ll <~ ~ ( 2-1-1) mekllSj l'. (40) 

Gathering (39) and (40) and using the triangle inequality, we obtain, for any 
k<~j<~ k+m,  that 

~ ( 2 C 2 ( £ - I - l ) m - l - c 2 ) S k  . (41) 

This inequality holds in particular for j = kl, • • . ,  k~. We have also that 

1 
Ii Bk+m+, -- H(x,)II <~-  II ( B~+m+, - H(x , )  )S~II, (42) C3 

using (AS.4). This last inequality, together with (41), implies (34) with 

def C2 ( £  ( £ + ) m  ) 
c5 = --  1 + 1 ~/-n. (43) 

C3 kCl \cl 

Now (AS.3) implies in turn that ek tends to zero, and hence (36) follows from 
(34). [] 

lim II nk - H(x,)II : o. (36) k~oo 
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We note that this theorem is indeed quite powerful. Not only does it guarantee 
the global convergence of the sequence {Bk} to the true Hessian H(x . ) ,  but it also 
provides some indication on its rate of convergence, because of the estimate (34). 
Indeed, one can obtain the following easy corollary. 

Corollary 3. Assume that (AS.1)-(AS.4) hold, where {Xk} is a sequence of iterates 
generated by the algorithm described above using the SR1 updating formula (10). 
Assume, furthermore, that (17) holds for every iteration and that there exists a constant 
c6 >10 such that, for all large enough k, 

IlXk+l-X, II c611x -x, ll. (44) 

Then there exists a constant c7 >! 0 such that 

II Bk+m+, - H ( x , ) I I  cTIIx  - x ,  II (45)  

for k sufficiently large. 

Proof. 
that 

ek ~< max[l ,  c~"] IIx~--x.II 

for k sufficiently large. Hence (45) follows from (34) with 

def c7 = max[1, c2]cs. [] 

The proof  is obvious if one observes that (44) and the definition (35) imply 

(46) 

(47) 

Thus we obtain the quite interesting result that, the fast the convergence of {xk} 

to x , ,  the faster the convergence of {Bk} to H ( x , )  ! 
This result is similar to that of Schuller mentioned above, but if our proof  only 

holds for the SR1 update, the assumptions made are substantially weaker. In 
particular, no line search is required, nor positive definiteness of any of the involved 
matrices. 

We can also concentrate our attention on the last n iterations, and replace (AS.4) 

by the following statement. 
(AS.4b) There exists a ko such that, for all k/> ko, the matrix 

S .  ~f ( sk Sk+n-1 .~ (48) 
k - II lr'""llsk+.-1U 

is nonsingular. 
We now obtain the following error estimate. 

Corollary 4. Assume that (AS.1)-(AS.3) and (AS.4b) hold, where {xk} is a sequence 
of iterates generated by the algorithm described above using the SR1 updating formula 
(10). Assume, furthermore, that (17) holds for every iteration. Then there exists a 
constant c8>0 such that, for all k >~ ko, 

II Bk+n+, -- H(x.)II <~ c8K (S*)ek, (49) 
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where S* and ek are defined by (48) and (35) respectively, and where K(X) is the 

condition number of the matrix X. 

Proof. This result can directly be deduced from the inequality (41), the definition 
(48), the bound 

Ils*ll 1 K ( s ~ * ) ~ > - - ~ > - -  (50) 
O'min(Sk ~ ) Ormin(Sk~) ' 

and the definition 
n 

+1) [] 

This result is probably best related to the behaviour one can notice in practice, 
as shown in the next section. 

Needless to say, the bounds provided by Theorem 2 and Corollaries 3 and 4 can 
be very gross, mainly because they depend quite heavily on Cl in (17) and also on 
the Lipschitz constant c2. 

It is also clear that, if condition (17) does not hold for some iterations, then the 
whole convergence process and the corresponding estimates are merely delayed. It 

would require (17) to be violated for an infinite number of iterations to prevent 
convergence of the quasi-Newton matrices. However, we may expect the number 
of  iterations where the condition (17) does not hold to be rather small in practice. 

Finally, it is interesting to note that the convergence of the matrices {Bk} to H(x , )  

does not require x .  to be a stationary point. This is useful in the context of trust 
region methods for minimization, because it guarantees that any negative eigenvalue 

present in H ( x , )  will eventually be present in Bk, and steps of negative curvature 
will then prevent the convergence of the iterates to x . .  

4. Some numerical experiments 

In this section, we report some numerical experiments that were performed with 
the double purpose of verifying the theoretical error estimates of  the quasi-Newton 
matrices generated by the SR1 update, and also of comparing these convergence 
properties with that of other famous quasi-Newton updating formulae, such as the 
BFGS, DFP and PSB. As mentioned above, all these updates were already considered 
in [2]. 

All experiments were run in FORTRAN 77 on the CRAY X-MP/24 of the Harwell 
Laboratory, mainly because this machine has a large wordlength (64 bits) and 
therefore allows a more detailed analysis of the asymptotical behaviour of the 
quasi-Newon matrices close to an objective function minimizer. All tests were 
EXTENDED PRECISION under the CFT77 compiler. The corresponding machine 
precision eM is of  the order of  10 -29. 
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As the main use of quasi-Newton formulae is within nonlinear optimization 

algorithms, our experiments were designed to analyse the convergence of  the 

quasi-Newton matrices for a sequence {Xk} converging to a minimizer of some 

objective function. We focus our attention on the unconstrained minimization of 
quartic test functions of  the form 

f ( x )  1 T , 3 1 * ~x  H x  + ~ Y~ q~x~ = tix~ + ~, . (52) 
i = l  i = l  

We now detail the choices made for H and the coefficients t~ and qf. These use the 
routine FA01 of  the Harwell Subroutine Library for generating uniformly distributed 
pseudo-random numbers in a given range from a "seed" 0. To allow reproducibility 
of our results, the recurrence used by this routine is given in an appendix. 

• Given an integer v ~  > 1, coefficients u~, 6 and q~ were first generated for i = 

1 , . . . ,  n in the order u l ,  f i ,  q~,  u2,  t2, q 2 , . . . ,  using FA01 with initial seed 0 =  
L,+ ~, x 164 and ranges [0, 1], [0, 1] and [0, 10x2~], respectively. 

• The n x n matrix H is symmetric positive definite and was then generated by 
the following procedure. 

Using the vector u = ( u l , . . . ,  un)  T, a Householder reflector 

R = I - 2nuT~ II u II 2 (533 

was defined, and the matrix H was then built as 

H = R D R  r,  (54) 

where D is a diagonal matrix whose elements are spread at equal intervals between 
1 and 2 -~. 

As the diagonal elements of D are the eigenvalues of  H, the parameter l, allows 
the conditioning of the problem to be varied. A minimum for these problems (for 
all values of  ~,) clearly lies at the origin. 

Three different types of  sequences converging to this minimum were generated 
• artificial sequences having a well determined convergence rate, 
• sequences of iterates as produced by the trust region algorithm described in [2], 
• sequences of iterates generated by a minimization algorithm using line searches, 

as described in Section 1, where the method of  determining the stepsize ak is 
specified below. 

All these sequences start at 

T=(1,  1) X 0 . . . 

and the initial quasi-Newton approximation was always chosen to be the identity 
matrix. 

The SR1 formula was skipped, as suggested by the above theory, when the test 
(17) was violated, where c~ was chosen as 1012. The BFGS and DFP updates were 
skipped whenever 

y~Sk< i0-81lykll Ilskll- (55) 



A.R. Conn et al./ Convergence of quasi-Newton matrices 189 

It is worth noticing that these conditions never prevented updating the second 

derivative approximations in any of the tests reported here. 

4.1. Artificially generated sequences 

The sequence {xk} converging to the origin was, in these tests, generated by the 

following procedure. 

Step 1. Determine the norm of the next iterate Xk+l. This is done according to 

the relations 

Jlxk II (linear convergence), 

IIx +lll = IIx  II/k (superlinear convergence), (56) 
( &  Ilxk II = (quadratic convergence), 

where/?k is a random number uniformly distributed in one of the ranges [0.7, 0.9], 
[0.4, 0.5] and [0.1, 0.3]. 

Step 2. Generate Xk+l by computing a random vector Zk+l on the unit sphere and 

setting 

X~+l = IlXk+lllzk+~ • (57) 

The vector zk+~ is computed by randomly determining its Euler angles in the 
appropriate ranges. 

Step 3. Verify that the new point gives a strict descent on the objective function. 
Iff(x~+~) <f(xk), then accept xk+~ = x~+~ as the next iterate. Else return to Step 2. 

We observe that Step 2 can be repeated a number of times before a satisfactory 
point is found. As implied in (56), three different rates of convergence were con- 
sidered: linear, superlinear and quadratic. 

We note that using random directions can be quite beneficial for the convergence 
of  the matrices generated by the SR1 update: indeed, the behaviour considered in 
the discussion of (AS.4) above is unlikely to happen in this context, because the 
steps Sg+j are no longer related to the matrix Bk+l and need not be nearly orthogonal 
to gk+l anymore. As a matter of fact, assuming Sg+l has a sizeable component 

along gk+l, the residual rk+l itself is likely to be dominated by the term 
T T --gk+~(gk+~Sk+a)/(gk+aSk) because of (22), and we observe that 

T 
rk+lrk+l gk+l g ~ + l  

Bk+2 - Bk+1 T = T , (58) 
rk+lSk+l gk+lSk 

correcting for the large rank-one term introduced by the update in Bk+~. Random-like 
directions do, however, appear in conjunction with the SR1 update in the solution 
of a large number of  well conditioned partially separable problems, for instance, 
or when the update is used in the context of an inexact trust region scheme. 
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We first report in Table 1 four sets of experiments involving linearly convergent 
sequences in 10 and 3 variables, respectively. In order to produce the results of 
these tables, linearly convergent sequences were generated as described above, and 
the process was stopped as soon as IlXk+,+lll ~< 10 -8. Then the error 

E %f max I[Bk+n+l--H(x.)]u I (59) 
i,j= l,.,.,n 

was computed. These errors appear in the tables under the headings EsR1, EpsB, 
EBms and EDFp for the four considered updates, respectively. The values of ek and 
K(S*) are also provided to allow a comparison of Esm with their product, as 
suggested by Corollary 4. 

A few conclusions can already be drawn from these results. Firstly, the prediction 
of Corollary 4 seems to be verified quite nicely, with a value of the constant c8 not 
much larger than 0.1 for our test functions. One observes indeed a quite smooth 
convergence of the quasi-Newton matrices generated by the SR1 update to the true 
Hessian matrix at the solution, even for the not so well conditioned examples (v 
large). As far as the other updating formulae are concerned, they seem to produce 
much less accurate approximations. The quality of the approximations produced 
by BFGS and DFP substantially deteriorate when the dimension is increased from 
3 to 10, especially for DFP. The theoretical convergence of the PSB matrices barely 
shows up for the best conditioned problems with n = 3, but again its performance 
decreases markedly with the quality of conditioning, and when the dimension of 

Table 1 

Linearly convergent sequences 

n flk r a n g e  p E s m  ek K ( S ~ )  EesB EBves EOFp 

3 [ 0 . 1 , 0 . 3 ]  2 1.35 x 10 7 5.51 x 1 0 - 6  3 .06 1.33 2 . 0 9 x  10 -2  9 .75 x 10 -1 

4 6 .53 x 10 8 1.84 x 1 0 - 6  1.47 3 .70  1.38 x 10 -1  1.11 x 102 

6 1.04 x 10 -6  7.28 x 10 6 3.65 2 .68 4 . 3 4 x  10 -1 4 .32 x 101 

8 9 .52  x 10 7 1 . 1 4 x  1 0 - s  3.05 2 .46 1 . 5 0 x  10 -1  1 . 2 4 × 1 0 3  

10 1 . 7 0 x  10 -8  4 . 8 0 x  10 -6  8 .89 1 . 3 6 x  101 2 . 0 2 × 1 0  - I  1 . 4 0 x  101 

[0.4,  0 .5]  2 t . 7 2 x 1 0  -7  1 . 7 0 x 1 0  7 9 . 4 9 x 1 0 1  6 . 0 9 x 1 0  -2  7 . 8 6 x 1 0  4 1 . 3 1 x 1 0 - 2  

4 8 . 8 2 x 1 0  -9  2 . 0 6 x 1 0  7 2 .16  2 . 8 9 x 1 0  - 4  3 . 7 8 x 1 0  2 3 . 6 8 x 1 0 1  

6 4 . 8 5 x 1 0  -8  2 . 0 8 x 1 0  7 8.71 1 . 2 6 x 1 0  -3  3 . 6 5 x 1 0  3 4 .66  

8 1.42 x 10 -7  1.55 x 10 7 6 .96  2 .87 x 10 -3  1 . 6 0 x  10 -3  6 . 6 2 x  10 I 

10 4 .87 x 10 -8  1 . 8 0 x  10 7 4 .93 4 .28 x 10 - z  3 . 8 4 x  10 -2  1.55 x 10 z 

[0 .7 ,  0 .9]  2 9 . 0 6 x 1 0  9 1 . 9 4 × 1 0 - 8  4 .57  7 . 1 3 x 1 0  lo 8 . 2 8 x 1 0  io 8 . 2 8 x 1 0 - 1 o  

4 7 . 5 9 x 1 0  -9  2 . 3 7 x 1 0  8 5.59 4 . 9 0 x 1 0  9 4 . 1 6 x 1 0 - 9  4 . 1 6 x 1 0  9 

6 1 . 2 3 x 1 0  8 2 . 4 6 x 1 0 - 8  6.03 4 . 1 2 x 1 0  7 7 . 2 0 x 1 0  9 7 . 2 0 x 1 0 - 9  

8 1 . 5 6 x  10 -8  2 . 5 2 x  10 -8  8 . 8 8 x  101 1 . 8 9 x  10 - 4  6 . 1 9 x  10 -7  4-08 x 1 0 - 7  

10 1 . 3 8 x 1 0  8 2 . 3 4 x 1 0 - 8  7.61 1 . 2 4 x 1 0  -1 3 . 0 6 x 1 0  -8  2 . 6 1 x 1 0  8 

10 [0.7,  0 .9]  2 1.06 x 10 -6  2 .00  × 10 -v  1.72 x 102 1.21 3 .82 x 10 -1 2 .70  

4 6 .85 x 10 7 1 . 0 5 × 1 0 - 7  4 .05 x 10 z 6 .67 4 .49  x 10 -1 5.77 

6 6 .77 x 10 6 1.02 x 1 0 - 7  2 .38 x 104 1.23 x 101 8 .22 x 1 0 - 1  1.78 x 101 

8 6 .57  x 10 s 1.06 x 1 0 - 7  4 . 6 0 x  10 s 5 .90 x 102 8 .82 x 1 0 - t  9 .24  x 102 

10 1.63 x 10 - s  1.23 x 10 7 4 .75 x 10 s 8 . 3 6 x  102 6 .09  x 1 0 - 1  4 .55 x 102 
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the problem increases. The deterioration associated with conditioning is somewhat  
to be expected, as PSB, in contrast with the other three updates, is not invariant 
with respect to linear scaling of  the variables. 

The results for superlinear and quadratic sequences are presented in Table 2. The 
first o f  these sequences was stoped at the first k, such that ][Xk[] ~< 10  -3° ,  while the 
second one was stopped when [[Xk]l ~< 10 -5°. These values al low the asymptotic 
behaviour to take place before the machine precision level is reached, despite the 
relatively high speed of  convergence. Both of  these tests were run for n = 3 only, 
because the delay of  n iterations involved in the bound given by Corollary 4 has 
to be small enough with respect to the speed of  convergence to al low a meaningful 
asymptotical behaviour to be reached. 

Again, one can observe the excellent convergence of  the matrices generated by 
the SR1 update. The best o f  the other updates is still BFGS on average, with PSB 
doing relatively well for the superlinear case. DFP is clearly the worst. 

It is also interesting to show numerically how much the convergence of  the SR1 
matrices depends on the rate o f  convergence of  the underlying sequence of  iterates 
to the minimizer. To illustrate this behaviour, we ran the tests with n -- 3 and v = 5 
for the four updates, and then counted the number of  iterations that were required 
for the error (see (59)) to be strictly smaller than 10  -6  . These counts are presented 

Table 2 

Superlinearly and quadratically convergent sequences (n  = 3 , / 3  k ~ [0.7,  0 .9] )  

P ESR 1 Ek K(S~k) Eps B EBFGS EDFP 

Superlinear 2 2.52 × 10 29 3.12 × 10 -26  2.31 4.41 × 10 -3 1.03 × 10 -3 4.10 × 10 -z 
convergence 4 2.75 × 10 -27  5.21 x 10 25 3.73 1.73 X 10 - 2  3.40 × 10 - 2  4.12 x 10 I 

6 3 .84×10 -z7 5 .33×10 25 1.37 5.85×10 8 2 .50x10 2 2.34×101 
8 4 .66×10 -27 5.36×10 -25 2.54 5.36× 10 -5 1.20× 10 -3 3.38x 101 

10 5 .25×10 25 5.68×10-25 5.34x 10 l 4 .00×10-2  4.83 x 10-z 328x 102 

Quadratic 2 1.45 x 10 H 4.00 × 10 - 6  7.90 4.70 3.47 x 10 -~ 6.95 
convergence 4 1.18x 10 -4 8.17x 10 4 1.02x 102 4.02x 101 1.56 1.06x 102 

6 3 .41x10  -8 2 .95x10 4 3.74 9 .96x10  1 8.33×10 1 8.77x101 
8 1 .71x10 9 1 .01x l0  4 2.61 1.45x102 1.49x10 -~ 1.19x102 

10 2.50x 10 8 7.27 x 10-5 2.20 x 101 1.72 x 102 5.92x 10-1 4.07 x 102 

Table 3 

Iteration counts to reach an accuracy o f  10 6 

/3 k r a n g e  SR1 PSB B F G S  D F P  

[0.7,  0.9] 70 79 72 73 

Linear [0.4,  0.5] 23 40  56 82 

[ 0 . 1 , 0 . 3 ]  14 29 > 8 8  (10  5) > 8 8  (10  2) 

Superlinear [0.7,  0.9] 12 29 > 4 6  (10 3) > 4 6  (10  °) 

Quadratic [0.7,  0.9] 10 > 1 1  (10  °)  > 1 1  (10 -1)  > 1 1  (10 -1)  
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in Table 3. When the desired precision was not reached before this new stopping 
criterio was achieved, this is denoted in the table by a ">"  sign followed by the 
number of iteration performed and, between parenthesis, the order of magnitude 
of the obtained accuracy on the quasi-Newton matrix. 

The decrease of the number of  iterations required to reach this accuracy with the 
improving speed of convergence of the sequence {xk} is quite apparent for the SR1 
update. 

4.2. Sequences generated by a trust region algorithm 

The next experiment uses sequences {Xk} that were generated by a trust region 
algorithm. The algorithm used is described in full detail in [2], and was applied to 
the quartic test examples (52) with n = 3. It was stopped as soon as 

°2 /3  (60) [ [ V f ( X k )  II ~< o M  • 

The final error in the quasi-Newton matrices compared to the true Hessian at the 
minimum was then measured as above. The results are reported in Table 4, while 
Table 5 gives more detail for the case where the SR1 update is used. In these tables, 
the heading "ng" stands for the number of gradient evaluations that were necessary 
to achieve the required accuracy. 

Table 4 

Sequence generated by a trust region method 

u SR1 PSB B F G S  D F P  

ng Esm ng Eps B ng EBFGS ng EDF P 

2 15 9 . 7 4 x  10 -1° 63 1.11 x 10 -3 24 1 .39x  10 -3 45 3.53 x 10 3 

4 25 3 . 6 7 x  10 -13 59 1 .74x 10 -4 34 2 . 0 2 x  10 -3 83 4 . 1 6 x  10 -3 

6 24 4.96 x 10 -9 116 3.81 x l 0  -4 30 1 .37x  10 -3 42 3 .22x  10 -3 

8 35 8 .55x  10 - l °  169 3 . 8 6 x  10 -4 43 2 . 3 8 × 1 0  -3 50 2 .12x  10 -3 

10 50 8 .63x  10 -t3 111 3 . 7 5 x  10 -3 49 1 .89x  10 -3 93 2 .17x  10 -3 

Table 5 

Details for the SR1 case within a trust region method 

v ng  ESR I ek K(Sk*) 

2 15 9 . 7 4 x  10 - t °  7.83 × 10 -7 5 .40x  10 ~ 

4 25 3.67 × 10 -~3 3.48 × 10 -9 9.23 

6 24 4.96 X 10 -9 5.16 x 10 -7 3.63 x 10 ~ 

8 35 8.55 x 10 - l °  1 .21x  10 8 3.57 x 101 

10 50 8.63 x 10 -13 3 . 3 0 x  10 ~o 7 . 3 0 x  10 a 
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Again, the behaviour predicted for SR1 by Corollary 4 is observed, while the 

other three formulae are significantly less efficient. 

4.3. Sequences generated by a line search algorithm 

Finally, we consider sequences {Xk} generated by a simple line search algorithm. 
This framework is the traditional one in which the BFGS formula is used, and it 
was hoped that the latter formula might show improved efficiency in this context. 
We therefore restricted our test to the SR1 and BFGS updates only. 

The search direction was determined as in (5) and the stepsize ak was computed 
by successive bisection (starting from 1) in order to satisfy the condition 

f(xk) - f (xk+l) />  O.lozk V f(Xk)'r dk. (61) 

When the BFGS updating formula was used, the additional condition 

y~Sk >i 10-811Ykll Ilskll (62) 

was also enforced, in order to guarantee positive definiteness of the Hessian approxi- 
mation. 

We note that this strategy is not really recommended for the SR1 update, since 
these formulae may generate indefinite or even singular matrices Bk. In order to 
resolve this potential difficulty, the search direction was reversed whenever dk was 
not a descent direction, which happended a few times. The singular case never 
occurred in our tests. 

The test functions used were again the quartics (52) with n = 3. The minimization 
algorithm was stopped as soon as 

IlVf(x~) I[ <~ 10eM (63) 

(which is asking slightly more than (60)). The relevant quantities were then computed 
at the final point, and are reported in Table 6. More details for the SR1 case are 
provided in Table 7. 

Even in this inappropriate framework, SR1 stays remarkably efficient, and very 
coherent with the error estimates given in Corollary 4. 

Tab le  6 

Sequence  gene ra t ed  by  a line search m e t h o d  

v SR1 BFGS 

ng ESR 1 ng EaF~S 

2 21 2 .97x  10 -14 33 2 .16x  10 3 

4 24 5.99 x 10 13 39 5.57 x 10 -4 

6 35 4.01 x 10 lO 47 1.36x 10 -3 

8 34 1.98 × 10 -17 56 1.04× 10 -3 

10 43 5.76 x 10 -11 61 3.37 x 10 -4 
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Table 7 

Details for the SR1 case within a line search method 

v ng EsR 1 e k K(S~) 

2 21 2.97 X 10  - 1 4  2.06 x 10 9 1.40 x 101 
4 24 5.99 × 10 -13 1.97 × 10  - 9  4.55 
6 35 4.01 × 10 -1° 6.37 × 10 8 2.38 × 101 
8 34 1.98 X 1 0  - 1 7  5.38 x 10 -12 1.79 

10 43 5.76 x 10 -H 7.60 × 10 -l° 4.90 x I0 ~ 

5. Conclusion 

This p a p e r  compares  the  b e h a v i o u r  o f  q u a s i - N e w t o n  u p d a t i n g  fo rmulae  as a means  

to genera te  symmet r ic  a p p r o x i m a t i o n s  to Hess ian  matr ices .  A k n o w n  convergence  

resul t  for  the  SR1 matr ices  on quadra t i c s  has been  ex tended  to the genera l  class o f  

sufficiently smooth  non l inea r  funct ions .  This convergence  is g lobal ,  and  is rate is 

shown to be  improv ing  with  that  of  the  sequence  o f  i terates  p r o d u c e d  by  the 

unde r ly ing  min imiza t ion  a lgor i thm.  

N u m e r i c a l  exper imen t s  are also p resen ted  that  suppo r t  the theory  quite well.  

Fu r the rmore ,  these  c o m p u t a t i o n s  show that ,  in c o m p a r i s o n  with o ther  fo rmulae  

such as BFGS,  D F P  or  PSB, the SR1 fo rmu la  genera tes  more  accura te  Hess ian  

a p p r o x i m a t i o n s  in a n u m b e r  o f  c i rcumstances .  

A l though  it may  not  comple t e ly  exp la in  why a trust  reg ion  m e t h o d  based  on the 

SR1 u p d a t e  o u t p e r f o r m e d  the more  class ical  l ine search based  B F G S  a lgor i thm in 

the  s tudy [2], it cer ta in ly  throws some l ight  on thei r  relat ive meri ts  and  differences.  

Appendix: the recurrence for FAOI 

As m e n t i o n e d  above,  the  rou t ine  FA01 o f  the Harwe l l  L ibrary  of  Subrou t ines  was 

used  to genera te  the coefficients of  the quar t ic  test  example  (52), and  o ther  un i fo rmly  

d i s t r ibu ted  p s e u d o - r a n d o m  numbers  in a given value  range.  In  o rde r  to a l low 

r e p r o d u c t i o n  o f  our  numer i ca l  tests,  or  use o f  (52) for  o ther  purposes ,  we now deta i l  

the recur rence  used  by  FA01 to genera te  those  numbers .  

FA01 is given a seed 0 and  the rou t ine  first resets 

0 = (9228907 x 0) m o d  168. (A.1) 

This new value  of  the  seed is then  used  on the next  call  to the  rout ine.  A p s e u d o  

r a n d o m  n u m b e r  in the  range  [0, 1] is then  ca lcu la ted  by  the fo rmula  

p s e u d o  r a n d o m  n u m b e r  = 0 x 16 -8. (A.2) 

This n u m b e r  is then  f inal ly sca led  by  the l inear  t r ans fo rma t ion  tha t  maps  [0, 1] onto  

the  des i red  value  range.  
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