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CONVERGENCE OF RESTARTED KRYLOV SUBSPACE METHODS
FOR STIELTJES FUNCTIONS OF MATRICES*

ANDREAS FROMMER', STEFAN GUTTEL!, AND MARCEL SCHWEITZER'

Abstract. To approximate f(A)b—the action of a matrix function on a vector—by a Krylov
subspace method, restarts may become mandatory due to storage requirements for the Arnoldi basis
or due to the growing computational complexity of evaluating f on a Hessenberg matrix of growing
size. A number of restarting methods have been proposed in the literature in recent years and
there has been substantial algorithmic advancement concerning their stability and computational
efficiency. However, the question under which circumstances convergence of these methods can
be guaranteed has remained largely unanswered. In this paper we consider the class of Stieltjes
functions and a related class, which contains important functions like the (inverse) square root and
the matrix logarithm. For these classes of functions we present new theoretical results which prove
convergence for Hermitian positive definite matrices A and arbitrary restart lengths. We also propose
a modification of the Arnoldi approximation which guarantees convergence for the same classes of
functions and any restart length if A is not necessarily Hermitian but positive real.

Key words. matrix functions, Krylov subspace methods, restarted Arnoldi method, conjugate
gradient method, shifted linear systems, shifted GMRES method, harmonic Ritz values

AMS subject classifications. 65F60, 65F50, 65F10, 65F30

1. Introduction. When approximating

f(A)b,

the action of a function of a matrix A € C"*™ on a vector b € C"™ by m iterations of
Arnoldi’s method [8,21,25,30], one computes an Arnoldi decomposition

AV = VinHpy + hini 1.mUm g1 €5, € = (0,...,0,1)T € R™, (1.1)
where H,, = (hi;) € C™*™ is an upper Hessenberg matrix and the columns of
Vin = [v1,..., 0] € C"*™ form an orthonormal basis of K,,,(4, b), the mth Krylov

subspace corresponding to A and b. One then approximates f(A)b in K., (A, b) by
Fn = Vi f(H)VED = |62V f(Hp) €1, €1 = (1,0,...,007 € R™. (1.2)

This procedure requires storing the full Arnoldi basis and evaluating f(H,,), a
function of an m x m matrix. When a large number m of iterations is necessary to
approximate f(A)b with the desired accuracy, e.g., when A has eigenvalues near a
singularity of f, the approximation (1.2) may be practically infeasible due to storage
limitations and/or high computational complexity. To overcome this problem a num-
ber of restarting approaches have been proposed in the literature, where—similarly
to the techniques for linear systems—after a certain number of iterations the Arnoldi
basis is discarded and a new Arnoldi cycle is started to approximate the error of the
last iterate, cf. [1,2,10,11,16,23,35]. While much work has been devoted to tuning
the methods towards numerical stability and efficiency, there are only few theoretical
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results concerning the convergence of these methods. Finite termination at the ex-
act solution is guaranteed—at least in exact arithmetic—for the unrestarted Arnoldi
method in the sense that there exists m < n with f(A)b = ||b||2Vi f(Hy,)é . This is
not the case for the restarted variant where it might happen that the approximants
do not converge to the solution at all. Such unwanted behavior is well known in the
context of restarted GMRES for linear systems; see, e.g., [24,32,37,38]. We illustrate
by an example that this is also the case for the restarted Arnoldi method.
ExaMpLE 1.1. For odd n € N consider the matrix

1 0 -~ 0 1
1 1 0 - 0

A=]0 1 1 . | eR™", (1.3)
N |
0 -~ 0 1 1

which is non-singular, det(4) = 2. Let é; denote the ith canonical unit vector and
take b = & and the function f(z) = z~!. This means that f(A)b = A71b is the
solution of the linear system Ax = b, and the restarted Arnoldi method reduces to
the restarted full orthogonalization method (FOM) [30,34]. The solution of the linear

system is given by

When the restarted Arnoldi method with restart length m < n is applied to the linear
system Az = b, the first Arnoldi basis () and the upper Hessenberg matrix o
in (1.1) are given by

if 7 is odd,

if 7 is even.

| o=

X (1.4)
2

1 0 0

Vi) =[é,é,...,é, and HY = o € R™M*m, (1.5)
: . 0
0 -~ 1 1

The matrix HT(,}) is clearly non-singular, thus the Arnoldi approximation :1;,(711 ) =

TELI)(Hr(nl))_lél from (1.2) is defined. A simple calculation shows that the corre-

sponding residual 7’7(,%) =b-— A:I:,(nl) satisfies m(r}) = €n+1- To describe the situation

for further restart cycles let us agree that the lower indices ¢ in the canonical unit
vectors ey are to be understood modulo n, i.e., é,11 = €1, and so on. The second
restart cycle computes the Arnoldi basis v = [émt1,---, €], the same Hessen-
berg matrix Hy(,%) = HT(n1 ), and the residual rr(f ) — ém+1. Continuing in this manner
we obtain that in all restart cycles the Hessenberg matrices are equal to the one
from (1.5) and that in the kth cycle the Arnoldi basis consists of the canonical unit

. ; k A
vectors €y 1ym1;- - - €km, and r,(,L) = Ekm+1-
As a consequence, restarted FOM does not converge, since its residuals do not
tend to 0, for any restart value m € {1,...,n — 1}. We note that in this example A

is normal and has the eigenvalues 1 + exp(27ij/n) (j = 1,...,n) which all lie in the
right half plane. We refer to [33] for further investigations of the arbitrary convergence
behavior of restarted FOM.
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Example 1.1 illustrates that we cannot guarantee the convergence of a restarted
Arnoldi method unless additional assumptions on A and/or f are made. We restrict
ourselves to the class of Stieltjes functions (see, e.g., [4,5,18]), which can be repre-
sented as a Riemann—Stieltjes integral

f(2) = / T, (1.6)

with respect to a function p(t) which is monotonically increasing and positive on
[0, 00) and satisfies the condition

/OOO t% du(t) < oo, (1.7)

Simple examples of Stieltjes functions arise if p(t) is a piecewise constant step
function with a finite number of (positive) jumps &; at points ¢;, i.e.,

T &
f(Z) = Zi:o t; +z°

Many other Stieltjes functions correspond to a differentiable function p(t). In this
case (1.6) can be written as an ordinary (improper) Riemann integral

/Oo ) 4. (1.8)
0

t+ =z

cf., e.g., [18]. Two important examples of Stieltjes functions of this type are

3 oo e
27 = sin(a) / dt for a € (0,1)

and

oo 41
log(1 +2) :/ L (1.9)
z 1 t+=z

More examples of Stieltjes functions can be found in, e.g., [4,5,18].

The few theoretical results concerning the convergence of the restarted Arnoldi
method for matrix functions available in the literature [2,10] are based on approxi-
mation theory and make use of bounds for the error of interpolating polynomials for
certain classes of analytic functions, using the connection between Krylov subspace
methods and polynomial interpolation (as explained in, e.g., [12,30]). Here we take a
different approach, using the intimate relation between Arnoldi’s method for matrix
functions and FOM for families of shifted linear systems [34], as well as a similar
relation with the “shifted GMRES” method from [15].

The remainder of this paper is organized as follows. In section 2 we briefly review
the ideas behind restarted Krylov subspace methods for f(A4)b without going into
algorithmic details. We also reproduce known convergence results for the restarted
Arnoldi method in this section and formulate a new result on the monotonic decrease
of the Euclidean norm of the error. In section 3 we discuss the relation between the
Arnoldi approximation of matrix functions and FOM for families of shifted linear
systems. In section 4 we prove convergence of the restarted Arnoldi method with
arbitrary restart length for Stieltjes functions and a class of related functions when
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A is Hermitian positive definite. Thick restarts as a means towards accelerating
convergence are briefly discussed in section 5. A modification of Arnoldi’s method
using harmonic Ritz values as interpolation points and the corresponding convergence
theory for non-Hermitian, positive real matrices are presented in section 6. We end
with results of some numerical experiments in section 7.

2. Restarted Arnoldi approximations for f(A)b. The main idea when re-
starting Arnoldi’s method for matrix functions is to apply an additive correction

£ = 10 + el

where f,%” denotes the approximation (1.2) obtained from m iterations of the standard

Arnoldi method and efnl ) is an approximation of the error f(A)b — f,%l) obtained by
m iterations of a new Arnoldi cycle. Repeated application of this additive correction
leads to approximations fn(@k) for f(A)b with

F) = pk=1)  ob=1) o — 93

A requirement for employing this approach is to have a representation of the error
flA)b — £ in the form e%)(A)v(l), with a new function eg)(z) and a new vector
v in order to again apply Arnoldi’s method for approximating it. A first result in
this direction was given in [10], characterizing the restart function ey (z) as the mth
order divided difference [6] of f(z) with respect to the Ritz values, i.e., the eigenvalues
of H,,; see also [23]. For functions representable by a “Cauchy-type” integral, an
integral representation of the restart function instead of a representation using divided
differences was given in [16], which was then used to develop a numerically stable
restart procedure. We rephrase this result for Stieltjes functions.

THEOREM 2.1. Let f be a Stieltjes function. Assume spec(A) N (—o0,0] =
0 and denote by f,, the mth Arnoldi approximation (1.2) to f(A)b. Assume that
spec(Hy,) = {61,...,0m} satisfies spec(Hy,) N (—00,0] = 0 and define

- © 1
em(z) = (_1) +1||b||27m/

0o Wn(t) i+t du(t), = ¢& (=00, 0], (2.1)

where wy, (£) = (t+601) -+ (t + 0) and v, = [/~ hit1,:. Then
f(A)b —fm = em(A)'Uerla (22)

where vUy,41 is the (m + 1)st Arnoldi vector.

This result is contained in [16, Thm 3.2] for the case when p is differentiable and
thus f is of the form (1.8).* For general  the proof of (2.2) can be done in an identical
manner, so we refrain from reproducing it here. Inductively, Theorem 2.1 also yields

a representation for the error f(A)b — ﬁSLk ) of the restarted Arnoldi approximation

ﬁf) after k restart cycles. For its formulation we continue to systematically use an
upper index in brackets to distinguish quantities from the various cycles. We then
have

FA)b — £ = B (A)pl), (2.3)

*In [16] the integration interval is (—oo, 0], i.e., the integration variable ¢ is transformed as t — —t.
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06 = 0 el (I, 08) [ s - s @)
j=1"m

For f a Stieltjes function and A Hermitian positive definite, the Ritz values 0; are
all real and positive. The conditions spec(A)N(—o0,0] = @ and spec(H,,)N(—o0,0] =
() are then always fulfilled, and the nodal polynomial w,,(t) = (¢t +61)--- (¢t + 6,,) is
positive for ¢ > 0. Therefore 1/wp, (t ) is also positive and there exists a constant
a > 0 such that 1/wy,(t) < (1.7) this shows that

T4
. bl
ft) = / oy )
is defined and has a finite value for all £ > 0. Since

1
wm(t)

da(t) = du(t),

this yields the following proposition.

PROPOSITION 2.2. Let f be a Stieltjes function and A € C™*™ be Hermitian
positive definite. Then the error function e, (z) from (2.1) is a scalar multiple of a
new Stieltjes function,

em(2) = (=1)™1b]|2Ym /OOO _IH dp(t). (2.5)

In Algorithm 1 we summarize a generic form of the restarted Arnoldi method
based on an error function representation. We refer the reader to [16] for a detailed
description of the method when the restart function from (2.2) is evaluated via nu-
merical quadrature, or to [2] for a different approach using a rational approximation

of f.

Algorithm 1: Restarted Arnoldi method for f(A)b from [10] (generic version).
Given: A, b, f, m
Compute the Arnoldi decomposition AV,gll)
with respect to A and b.
Set £ = ||b||v7§3> FHSE
for k = 2,3,... until convergence do

DB AL it

Determine the error function e~ 1)( ).

k k k k) 4
VO HE 1, 000

Compute the Arnoldi decomposition AV(k)

with respect to A and ’117(: 11).

Set f(k). fn(lk_l)—FV(k) (k— 1)(H7(1§))é1

There are two main results on the convergence of the restarted Arnoldi method
in the literature so far. In [10] it is proven that for entire functions of order one (this
class contains the exponential function as an important special case), superlinear
convergence can be guaranteed for all restart lengths m.
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THEOREM 2.3 (Theorem 4.2 and Corollary 4.3 in [10]). Let A € C"*™, b € C™,
and let f be an entire function of order one. Then there exist constants C and vy
independent of m and k such that

km—1

17 (A = £ < C i10ll> for all k. (2:6)

v
(km —1)

The proof of Theorem 2.3 relies on convergence results for polynomials of best
uniform approximation to entire functions of order one, see [13].

The second main convergence result, proven in [1], relies on a different approach.
It uses the fact that the sequence of Ritz values being generated by the restarted
Arnoldi method with restart length m = 1 applied to a Hermitian positive definite
matrix A asymptotically alternates between only two values ¥; and 95, so that the
corresponding approximation can be asymptotically characterized as an interpolation
process with only two nodes. Using several additional results on the asymptotic
behavior of the Arnoldi basis vectors, it was then proven in [1] that the restarted
Arnoldi approximation with m = 1 converges at least linearly for a class of functions
which contains the Stieltjes functions.

THEOREM 2.4 (Corollary 5.5in [1]). Let A € C"*™ be Hermitian positive definite,
b € C", and let Apin and Apmax denote the smallest and largest eigenvalue of A,
respectively. Let [ be a function analytic in [Amin, Amax] which has no singularities
in C\ R. Then the restarted Arnoldi method with restart length m = 1 converges to
f(A)b with asymptotic convergence factor at least

)\max - Amin
, 2.7
|Cf)‘max|+|gf)\min| ( )

where ¢ is a singularity of f which is closest to [Amin, Amax)-

Note that Arnoldi with restart length m = 1 can be seen as a generalization of
the method of steepest descent for matrix functions (see [2]). While the two-cyclic
behavior of Ritz values can also be observed for larger restart lengths, a generalization
of Theorem 2.4 for m > 1 is currently unknown.

A third, weaker but noteworthy result is from [14], see also [7].

THEOREM 2.5. Let f be a Stieltjes function, A € C™*™ Hermitian positive definite
and let f,, denote the approximation obtained with m iterations of Arnoldi’s method
(without restarts). Then

1F(A)b = frniilla < |f(A)b = fiull2 for all m with f,, # f(A)b,

i.e., the Euclidean norm of the error decreases strictly monotonically.
In the light of Proposition 2.2 this generalizes to the restarted Arnoldi method.
COROLLARY 2.6. Under the assumptions of Theorem 2.5, the approrimations

n(@k) obtained via the restarted Arnoldi method satisfy

1£(A)b — £ < | f(A)b — £ P2 for all k unless £F) = f(A)b.

Corollary 2.6 only shows that the errors are monotonically decreasing in the Eu-
clidean norm, but it does not state that the errors tend to 0. However, it complements
the asymptotic result from Theorem 2.4 for Stieltjes functions (and restart length
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m = 1) as it shows that the convergence is monotone in the Euclidean norm from the
very first cycle.

The next two sections will show that moving from the Euclidean norm to the
energy norm will allow us to give stronger convergence results for Stieltjes functions
of Hermitian positive definite matrices.

3. Approximating f(A)b and the FOM iterates for shifted linear sys-
tems. For ¢t > 0 let @, () = ||b||2Vin (Hpm + tI) "1 € denote the mth FOM iterate for
the shifted linear system

(A+thz=1b

with initial guess @q(t) = 0 and spec(A)N(—o0, 0] = @. For the Arnoldi approximation
fm for f(A)b with a Stieltjes function f(z) = [~ t-&-% dp(t) we then have
o= [62Vin () = [ [BaVon(Hon 4 e erdu(t) = [ an(®)du(e)
0 0
The respective FOM residuals 7, (t) = b — (A + tI)x,, (t) satisfy

(=1)™ ]| bll2ym

wm(t) Um+1- (31)

Tm(t) =
This is known from [31], and it also follows by applying (2.1) to the function f(z) =
(2 +t)~! represented as a Stieltjes function with the step function p having exactly
one jump of size 1 at t. Using Theorem 2.1 we see that the error e,, = f(A)b — f,,
can be represented as

emn = em(A) V41 = /OOO(A +tI) "t (1) du(t) = /000 en(t) du(t), (3.2)

where e,,(t) = (A+tI)~tb—z,,(t) is the error of the mth FOM iterate for the system
(A+tl)x = b. A similar result holds for analytic functions using the Cauchy integral
representation; see, e.g., [11,21,30].

We proceed to show that this representation carries over to the restarted case, thus
following [11] where this was done for functions with a Cauchy integral representation.
Restarting FOM for the system (A + tI)x = b after k cycles of length m means that
given the current approximation a:,(,f ) and its residual ngf ) we compute a correction
for a:,(rf) by applying m iterations of FOM to the system (A + tI)e® (t) = 7’755) (1),
yielding

:c,(,fH)(t) = :1:,(,5“) () + ¥ (t) with e,(,’f) (t) = HngVn(f)(H,(f) +tI)"te;.

Inductively, using (3.1), we see that for all ¢ > 0 the residual o )(t) satisfies

, H§:1 77(72) (k)
H?le(j)(t) m+1

Using (2.3) and (2.4), this shows that for the errors et = flA)b — ) 0s the
restarted Arnoldi approximations fn(f) we have

<
—
Sy
N2
—~~
~
~—
I

e Vs 1]

el = Dt = [TAHD OG0 = [P0, 63
0 0
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Our approach to prove convergence of the restarted Arnoldi method for Stieltjes
functions is based on known convergence results for the (restarted) FOM iterates for
(A+tl)x = b. For A Hermitian positive definite and ¢ > 0, the matrix A + ¢I is
Hermitian positive definite as well and (restarted) FOM is mathematically equivalent
to (restarted) CG. Of course, restarted CG seems not to be a method with great
practical use. However, the convergence theory available for CG can also be applied
to restarted CG, and this will allow us to establish the convergence of the restarted
Arnoldi method for Stieltjes functions of Hermitian positive definite matrices in the
next section. We end the present section by recalling the classical convergence result
for CG which uses the energy norm

lel|la = Vel Ae.

THEOREM 3.1 (see, e.g., [31]). Let A € C**™ be Hermitian positive definite and
xg, b € C™. Further, let * denote the solution of the linear system Ax = b and let
x,, be the mth CG iterate with initial guess xy. Let k = i‘“'f"‘ denote the condition
number of A and define o

c:\/g_l and am:; (3.4)
VE+1

cosh(mlnc)’
Then the energy norm of the error in the CG method satisfies

l2* — @nlla < anlle’ - zo.a.

4. Convergence of restarted Arnoldi for Stieltjes matrix functions. Us-
ing the tools from section 2 and section 3, we will now derive our main results for
positive definite A. Our starting point is the following lemma, which provides a first
generalization of Theorem 3.1 to the matrix function case.

LEMMA 4.1. Let A € C™"*" be Hermitian positive definite, b € C™, and let f be
a function of the form (1.6) and f,Sf) the approzimation to f(A)b from k cycles of
Arnoldi’s method with restart length m. Let Apin and Amax denote the smallest and
largest eigenvalue of A, respectively, and define the functions

S PP (| P S—
Wm0 )

The energy norm of the error offrglk) is then bounded by

(k) = am (1)
nﬂMb—mnAsmm¢M@A el . 6

)\max +1
)\min +1 ’

k(t) = (4.1)

Proof. By using (3.3), we can write

ﬂm%%W—AW#WMWL

where ef )(t) denotes the error of the approximation z\ )(t) from k cycles of restarted

CG with restart length m for the shifted linear system (A + tI)xz = b. This yields

wmw—ﬂﬂugé e ()4 dpu(t)

/OO \% >\max
0 Vv )\max +1

S less (6)l]aser dpa(t),
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where we used that ||v]|4 < v/ Amax/(Amax + t) - ||v]| a+er holds for all ¢ € [0, 00) since

HA+thv = v Av + tof v and v Av < A\paxv¥v. We now apply Theorem 3.1
for the shifted matrices A + ¢tI which are positive definite for ¢ € [0,00). Using the
fact that the kth cycle of restarted CG can be interpreted as performing m iterations
of CG with initial guess z\F _1)(t), the result of the previous cycle, and denoting the
solution of (A + tI)x = b by x*(t), we obtain

Hf( )b -f(k)HA< \% max/

\/74_” () = 25 ()] ager dpa(t),

with a;,(t) from (4.1). Repeatedly applying the CG estimate for all ¢ throughout
all restart cycles and using the fact that the initial guess of the first restart cycle is
xo(t) = 0 for all ¢, we conclude that

1700 = 0 < Vs [ 2l

As z*(t) = (A +tI)71b, a straightforward calculation shows that

|z (O aser du(t).  (4.3)

. [b]]2
t <
2 (|| aver < o T 1

Inserting (4.4) into (4.3) completes the proof. O

Lemma 4.1 gives a bound for the energy norm of the error when approximating
a Stieltjes matrix function by the restarted Arnoldi method with arbitrary restart
length m. It is, however, not immediately clear whether the right-hand side of (4.2)
tends to zero as k — 0o, or even whether it is finite at all. We now further investigate
the integral on the right-hand side of (4.2) and prove that it is always finite and tends
to zero, thus proving convergence for all Stieltjes functions. To do so we need the
following auxiliary result on the monotonicity of the function a,(¢) from (4.1).

PROPOSITION 4.2. The function o, (t) from (4.1) is monotonically decreasing
on [0,00).

Proof. As a function of ¢ € [0,00), £ decreases monotonically from x(0) to 1, ¢
increases monotonically from ¢(x(0)) to 1 as a function of x € [k(0), o), and a,, in-
creases monotonically as a function of ¢ € [¢(x(0)),1). Altogether, thus, ., decreases
monotonically as a function of ¢. O

With these prerequisites, we are prepared to give our first main result.

THEOREM 4.3. Let A € C"*™ be Hermitian positive definite, b € C", f a

function of the form (1.6), and fyst) the approximation from k cycles of Arnoldi’s
method with restart length m. Further, let a,,(t) be defined as in (4.1) and let to > 0
be the left endpoint of the support of . The energy norm of the error off,,(lk) can then
be bounded as

(4.4)

1£(A)b — £ |4 < Cann(to)*, (4.5)
where
C = [1b]l2vXmax - £ (v N A ) (4.6)

is a constant independent of m and k, and 0 < au,(to) < 1. In particular, the restarted
Arnoldi method converges for all restart lengths m > 1.
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Proof. We begin by using Lemma 4.1 and Proposition 4.2 to estimate

k
708 = 500 < 1ol R | e dutt)

min + t \/)\max + t

< HbHQQm(tO)k V )\max/o \/)\ ! d/j/(t) . (47)

min 1 t- \/)\max +t

The geometric mean v/ AminAmax Of Amin and Anax satisfies

1 1
\/Amm + t \/)\mdx + t \/)\mmAmdx + t

Using this in (4.7) we obtain

b— (k) < b mt m'}x/
1F(A)b = £ 4 < 11Bll20m (t0)* v/ Amax mw

The integral on the right-hand side is f(v/AminAmax), which completes the proof. O
Using ||v]|2 < \/%H’UHA for all v € C™, Theorem 4.3 implies the bound

dp(t).

1F(A)b = £z < Can(to)*, where C = [[bllav/k(0)f (v MinAmax)  (4.8)

for the Fuclidean norm of the error.
We proceed by discussing two “extremal” cases of the error bounds given in (4.5)
and (4.8). The first one is restart length m = 1, the situation considered in [1]. Then

(t ) o >\max - )\min o )\max - )\min
07 )\max+Amin+2t0 B |_t0_)\max|+‘_t0_)\min|’

so that we recover exactly the asymptotic convergence factor from Theorem 2.4 since
for a Stieltjes function f and A Hermitian positive definite, the singularity of f nearest
t0 [Amin, Amax] 18 always ¢ = —to.
The second extremal case is k = 1, i.e., the unrestarted Arnoldi method.
COROLLARY 4.4. Let the assumptions of Theorem 4.3 hold and let f,, be the
approzimation to f(A)b after m iterations of the unrestarted Arnoldi method. The
energy norm of the error of f,, can then be bounded as

[£(A)b = finlla < Cam(to), (4.9)

where C' is the constant from (4.6).

The bound from (4.9) is, up to the factor C, the same bound as the standard
bound for CG convergence for the linear system (A+toI)x = b obtained by bounding
the CG polynomials with the Chebyshev polynomials. This bound does not incorpo-
rate superlinear convergence effects due to spectral adaptation. We will give a result
in this direction (Theorem 6.6) at the end of section 6.

It is possible to generalize the result of Theorem 4.3 to another class of functions
closely related to Stieltjes functions, namely functions of the form f(z) = zf(z2),
where fv is a Stieltjes function. Notable examples are the positive fractional powers
2% = 2271 for a € (0, 1), including the square root, and the logarithm log(1 + z) =
ZM' The error representation for these functions is closely related to the one
for Stieltjes functions. The result was given in [16] for functions with a Cauchy-type
integral representation. As before, we rephrase it in terms of Stieltjes functions.
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PRrROPOSITION 4.5 (Corollary 3.4 in [16]). Let the assumptions of Theorem 2.1
hold for the function f and let f(z) = zf(z). Denote by f, the mth Arnoldi approxi-
mation (1.2) to f(A)b. Then

F(A)b — fin = Aen(A) Vi1 — hiny1m (érzzf(Hm)él) Um+1, (4.10)

where e, is the error function for f from Theorem 2.1.

We assume that the restart procedure is implemented as suggested in [16], which
means that the second term in (4.10) is evaluated exactly before each restart (all
necessary quantities are known) and then added to the Arnoldi iterate, giving the
approximation fm. Then the error is given by

(A — F = (~1)™ 1 [b ]l A /Om A+t o dp(®). (411)

1
Wi (1)
We can now formulate the following convergence result for this restarted Arnoldi
method. It follows by using exactly the same techniques as in the proofs of Lemma 4.1
and Theorem 4.3, now applied to the error representation (4.11), and it makes use of
the fact that ||Aljla = Amax-

THEOREM 4.6. Let A € C"*™ be Hermitian positive definite, b € C", f(z) =
zf(z) where f is a Stieltjes function as in (1.6). Let f,%’“) be the approximation from
k cycles of Arnoldi’s method with restart length m for f(A), let a,,(t) be defined as
in (4.1), and let to > 0 be the left endpoint of the support of p. Then, if the restart
method is implemented as described above,

1£(A)b — F®] 4 < AmaxClom (to)*
and
||f(A)b - f(k)H? < /\maxéam(tO)ka

where C and C are the constants from Theorem 4.3 and from (4.8), respectively. In

particular, the restarted Arnoldi method for f(z) = zf(z) converges for all restart
lengths m > 1.

5. Thick restarts. Thick restarts were introduced in [28] and then [11] as a
means to accelerate the convergence of the Arnoldi method similar in spirit to deflated
restarts in Krylov subspace methods for solving linear systems; see, e.g., [26, 27].
Without going too far into the technical details, we now sketch how the previous
convergence results carry over to thick restarts.

The idea of thick restarts is to use information on the spectrum of A gained in
cycle k to effectively deflate eigenvalues close to a singularity of f. For A Hermitian
and positive definite and f a Stieltjes function, this means that we target at deflating
the smallest eigenvalues. Technically, instead of the standard Arnoldi decomposition
(1.1), we now compute for each cycle k > 1 an Arnoldi-like relation of the form

AW® —® Gk

k) T (k) nXx(l+m (k) l+m l+m
l+m +m Z+m+v( )e WZ+mGC X )’ G@-{-meC(Jr peet )’

{4+m>

where Wé(-]i)m has orthonormal columns which span the sum of a deflation subspace of

dimension ¢ and the Krylov subspace K,, (A, v(kfl)). For a Stieltjes function f this
implies that we get a relation analogous to (3.3)

oo o0
et = ey, (A = / (A+tD) e () du(t) = / e (1) du(t),
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where all residuals Tzz(-}f-)m(t) are collinear with v*) and eéf_)m(t) =(A+ tI)*er(_]ﬁ)m(t)

is the error of the restarted deflated FOM iterate wg(i)m(t) for (A4 tl)x = b after
cycle k, i.e.,

k k—1 k—1 k—1 -1 k—1NH (k-1
mz(+)m(t) = mz(er) + We(+m )(Gé+m) + ”) (We(+m )) re(+m )(t)-

Noting that mé(_’i:nl) + Wé(_t:nl) (Ggl_:nl) + tl)fl (We(_]::nl))Hre(_]ﬁ;:)(t) minimizes the en-
ergy norm |z — (A + tI)_er(i;l)(t)HAHI over we(i;l) + colspan(Wg(f)m) and that
colspan(We(_]:)m) contains KC,, (A, v*~1), we obtain
k .
e (@)l aver < (@) [(A+4D) 7 bl aser

with o, (t) from (4.1). We thus arrive at the following generalization of Theorem 4.3.
THEOREM 5.1. Under the same assumptions as in Theorem 4.3, the approxima-

tions fz(j:zn for f(A)b obtained with the thick restarting approach satisfy

1F(A)b — £ 4 < Cam(to)*, € = [b]lav/ Amax - F(V/ AminAmar)- (5.1)

The interest of this theorem is that it shows that the thick restarting method
converges. Its drawback is that (5.1) does not at all reflect the acceleration of conver-
gence which thick restarts are aiming at. A more precise analysis would have to take
into account how well colspan(Wf(f)m) approximates the smallest eigenvectors of A,
and elaborating on this is beyond the scope of this paper. In fact, a rigorous analysis
of these effects would need to take into account not only the extremal eigenvalues of
A, but the distribution of all eigenvalues and the components of b in the eigenvector
basis of A. Practically, one usually observes that after some number of, say, kg cycles,
the eigenvectors corresponding to the ¢ smallest eigenvalues are very well approxi-

mated by a subspace of colspan(We(gn), so that from then on one can replace a,y, (to)

in (5.1) by its effective counterpart

1 kel — 1 Amax + t
eff _ eff _ eff _ /‘max 0
o (fo) = cosh(mIn ceff)’ ¢ 1 e+t
where A\ is the (m + 1)st smallest eigenvalue of A. The bound (5.1) is then to be

replaced by the estimate

1£(Ab = £ 114 S Clam(to)™ (asf (1)) .

6. Restarted harmonic Arnoldi for Stieltjes matrix functions. Any ma-
trix function f(A) is identical to a polynomial matrix function ¢y 4(A), where g4 s is
the polynomial of degree < n — 1 which interpolates f at spec(A); see, e.g., [19,22].
Interpolation is to be understood in the Hermite sense; more precisely, at each eigen-
value A all derivatives of f and ga,f have to coincide up to order ind(\) — 1, where
ind(A) is the size of the largest Jordan block for A. By results from [12,30], we have
q(A)b = V,,q(H,,)V;E b for any polynomial q of degree < m — 1, hence the Arnoldi
approximation f,, from (1.2) can also be characterized as f,, = qu,, (A)b, where
qm,,,f interpolates f at the eigenvalues of H,, which are the (standard) Ritz values
of A with respect to the Krylov subspace K, (A, b).
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The purpose of this section is to show that an alternative Krylov subspace ap-
proximation, based on polynomial interpolation at the harmonic Ritz values instead
of the standard Ritz values, allows us to enlarge the class of matrices for which we can
prove convergence of a restarting method. This class will be the positive real matrices,
i.e., matrices A for which Re(v Av) > 0 for all v € C*, v # 0. The matrix A from
Example 1.1 is positive real, and we showed that even for the simple Stieltjes function
f(z) = 27! there is no convergence with the standard restarted Arnoldi method, i.e.,
when we interpolate at the standard Ritz values.

DEFINITION 6.1. The harmonic Ritz values of A € C™*™ with respect to a sub-
space U C C™ are those numbers ¥ € C for which there exists x € U, x # 0 such
that

Az —Jdx 1L AU.

We note that the standard Ritz values 6 are those for which Az’ — 6z’ 1 U for
some ' # 0 and that for non-singular A the value 9 is a harmonic Ritz value with
respect to U if and only if 9! is a standard Ritz value for A~! with respect to Al.
From now on we will consider Krylov subspaces U = K,,,(4, b) and no longer explicitly
mention the dependence of the (harmonic) Ritz values on the subspace. The following
known results on harmonic Ritz values are key to formulating a restarted harmonic
Arnoldi method for matrix functions and its analysis for Stieltjes functions. We also
refer to [20] where interpolation at harmonic Ritz values has been discussed in the
context of the unrestarted Arnoldi method.

LEMMA 6.2. Consider the Arnoldi decomposition (1.1).

(i) The harmonic Ritz values of A with respect to K,,(A, b) are the eigenvalues

of the matrix

ﬁm =Hp + (herl,mH;ll ém) AZ:L-

(i) Let w € C™ be any vector and H,, = H,, + wél . Then for any polynomial q
of degree < m — 1 we have

Vina(Hy )V

m

b=q(A)b.

(iii) With i1, +i1.f the polynomial which interpolates f at the spectrum of ]?I,,ﬁ—t[,
f(Hp +tI) = qﬁerth(I;'m +tI), we have for allt € C

Vi or g (Hm +tDHVEb = q5 . (A+tD)b.

(iv) For f(z) = 271, let 4, -1 be the polynomial interpolating f at spec(ﬁm),
and let p(2) = 1= 2q5, -1(2). Put Tn(t) = Vo (Hp +tI)"*VEb. Then

T (t) := b — (A +tD) & () = N (t) 7 (0),

where
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Proof. Part (i) can be found in, e.g., [29]. For w = 0 part (ii) was shown in [30];
for the matrix H,, (i.e., u = Rins1.mH,' €n) the result was given in [36]. The proof
for the general case follows in the same manner, i.e., by inductively establishing that
mefﬁ;lvnfb = A’b for j = 0,1,...,m — 1. For part (iii) we use the shift invariance
of the Arnoldi relation (1.1),

AV = Vi Hyn + it i Wms1 € = (A 4+ tD Vi = Vi (Hpy + 1) 4 hyn 1 m Om 11 €5

for all t € C, and apply (ii) to the matrix A+t and the rank-1 modification (H,,+tI)+
(hms1,mH,, én)éL of Hy,, +tI. We note in passing that for ¢t # 0 the harmonic Ritz
values of A+ ¢I are not the eigenvalues of Hy, +tI. To show (iv) let g ., (-1(2)
interpolate 1/z at spec(H,, + tI) = spec(Hyn,) +t. Then o (t) = Pmt(A 4+ tI)b
with pp,(2) =1— g, 001 (2). For each t the polynomial p,, ¢ of exact degree m

interpolates the zero function at spec(H,,+tI) and is normalized to satisfy Pm,t(0) = 1.
In particular, with ¢; (i = 1,...,m) denoting the (possibly multiple) eigenvalues of
H,,, we have

poo(a) =TI, (1= 7)) (6:2)

and

m z 1
pme) = I, (1= 57) = o mggpmoe =0, (6.3)
the last equality holding because the polynomial on the right-hand side has the same
Zeros as P, and attains the value 1 at z = 0. 0

_ Let us reserve the term harmonic Arnoldi approzimation for the approximation
fm = 4, f(A)b for f(A)b, where the polynomial a,, ¢ interpolates f at the har-
monic Ritz values of A. By Lemma 6.2 we have

j:m = me(f_jm)vnljba

and with f a Stieltjes function, f(z) = [;°

tiz dp(t), we obtain the representation

fm = V:m/ (ﬁm +t1)71 dﬂ(t) V7£Ib
0
Similarly to (3.2), the error of the harmonic Arnoldi approximation is
& — / (A 4 1)L () dp(t) = / D (D) (A + 1)~ dpa(t) - 2 (0)
0 0

with 7, (t) from (6.1). We thus have &,, = &,,(A)7,(0) with the error function

emlz) = / S0 ) (6.4)

Alternative representations for é,,(z) are possible, for example as a divided differ-
ence with respect to the harmonic Ritz values (see, e.g., [10] where a divided difference
representation was derived for arbitrary interpolating polynomials). However, the in-
tegral representation (6.4) for Stieltjes functions has the same two crucial advantages
as has (2.1) and (2.2) for the standard Arnoldi approximation: it allows for a stable
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numerical implementation of restarts based on numerical quadrature, and it is the
starting point of our convergence analysis for the case that A is positive real. Note
that we have

6 — / T en(®)dult) with en(t) = (A+t)~'b — @n(b),
0

where &, (t) is the error of the Krylov subspace approximation &y, (t) = Vi (H,, +
tI)~'V.H2 b to the solution of the system (A +tI)xz = b. For t = 0, the vector Z,,(0)
is thus just the mth GMRES iterate for the system Az = b. For ¢t > 0 the vectors
Z,(t) are not the GMRES iterates for (A+tI)z = b; instead they are Krylov subspace
approximations characterized by a residual collinear to that of the GMRES iterates for
t = 0. The collinear residual approach was introduced in [15] for developing variants
of restarted GMRES for families of shifted linear systems. We refer to this work for an
efficient computational method based on a single QR-factorization (of H,,) to obtain
all the vectors &, (t) for several values of ¢ simultaneously. The paper [15] also showed
that the restarted shifted GMRES approach produces convergent iterates &,,(t) for
all t > 0 if A is positive real, and Lemma 6.3 below is a quantitative refinement of
results presented therein.
The four quantities

H -1
pe=min {Re(* 2 ) v e € v £ 0},
. vH Av n
5::m1n{’ o ‘:'UG(C ,'0750},
. oH A1y .
(5’::m1n{’ iy |:v€(C ,’0750},
. (A’U)H(A’U). n
Vmax .—max{ivHv :veC ,U#O}

will be useful in the analysis to follow. Since with A the matrix A~! is also positive
real, the numbers p, §, ¢’ and vy, are all positive if A is positive real. Clearly, p < §’
with equality holding if the field of values of A is symmetric with respect to the real
axis, for example, when A € R"*",

LEMMA 6.3. Let A be positive real. Then

~ m/2
7 O)]l2 < (1= 68)"|[b]l, (6.5)
and the collinearity factors n,(t) from (6.1) satisfy
1 m
W< (—) <1 .
ol < (7)< (6:)

Proof. The bound (6.5) on the GMRES residuals for A positive real was derived
in [9, Cor. 6.2]. It improves over the classical textbook bound; see, e.g., [17,31]. From
the definition of 7y, (¢) in Lemma 6.2 we have

N 1
O L)

with 1; being the harmonic Ritz values of A. Since the harmonic Ritz values of A
are the inverses of the Ritz values of A~!, we have ¢; ! = v/T A= w; /v v; for some
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vector v; € C™ and thus Re(9; ) > p. Therefore, for any ¢ > 0 we have
1+t > 1+ tRe(W; ') > 1+tp fori=1,...,m,

which gives (6.6). O

We need a further auxiliary result relating the energy norms with respect to A%A
and (A +tI)H (A +tI).

LEMMA 6.4. Let A be positive real.

(i) For all v € C" and t > 0 we have

1
H'U||,24HA <= Hv||%A+tI)H(A+tI)‘

Vmaxt? + 2pt + 1
(i) Fort >0 we have

Vr;al.xtz +2pt+1 (t+ meaX)2

Proof. For part (i) we expand

H’U”%A-i-tI)H(A—&-tI) = HUH?LXHA + 2tRe(vHAv) + %3

1

Vmax

The inequality now follows from ||v||3 > |v||%s 4, and

Re(v? Av) /(v AT Av) = Re(w? A~ w) /(wf w) > p, where Aw = v.

The inequality in part (ii) is equivalent to (t + prmax)? < 2 + 2pVmaxt + Vmax, i-€., t0
p2umax < 1, which can be established as follows: let v be the normalized eigenvector of
(AAH )_1 corresponding to the smallest eigenvalue which is 1/vyax, since the spectra
of A" A and AAM are identical. Then

1

/2 -
Vmax

p< 8 < [vA 0| < o]l A 0]l =

0

We are now in a position to state the following result on the convergence of the
restarted harmonic Arnoldi method as an analogon to Lemma 4.1 and Theorem 4.3
for the standard Arnoldi approximations.

THEOREM 6.5. Let A € C™*™ be positive real, b € C", f a function of the
form (1.6), and f,Sf) the ap