
CONVERGENCE OF RESTARTED KRYLOV SUBSPACESTO INVARIANT SUBSPACESCHRISTOPHER BEATTIE�, MARK EMBREEy, AND JOHN ROSSI�Abstra
t. The performan
e of Krylov subspa
e eigenvalue algorithms for large matri
es 
an bemeasured by the angle between a desired invariant subspa
e and the Krylov subspa
e. We developgeneral bounds for this 
onvergen
e that in
lude the e�e
ts of polynomial restarting and impose norestri
tions 
on
erning the diagonalizability of the matrix or its degree of non-normality. Asso
iatedwith a desired set of eigenvalues is a maximum \rea
hable invariant subspa
e" that 
an be developedfrom the given starting ve
tor. Convergen
e for this distinguished subspa
e is bounded in termsinvolving a polynomial approximation problem. Elementary results from potential theory lead to
onvergen
e rate estimates and suggest restarting strategies based on optimal approximation points(e.g., Leja or Chebyshev points); exa
t shifts are evaluated within this framework. Computationalexamples illustrate the utility of these results. Origins of superlinear e�e
ts are also des
ribed.Key words. Krylov subspa
e iteration, Arnoldi methods, restarts, perturbation theory, eigen-values, pseudospe
tra, potential theory, invariant subspa
es.AMS subje
t 
lassi�
ation. 15A18, 15A42, 31A15, 41A25, 65F151. Setting. Let A be an n�n 
omplex matrix with N � n distin
t eigenvaluesf�jgNj=1 with 
orresponding eigenve
tors fujgNj=1. (We do not label multiple eigen-values separately and make no assertion regarding the uniqueness of the uj .) Ea
hdistin
t eigenvalue �j has geometri
 multipli
ity nj and algebrai
 multipli
ity mj (sothat 1 � nj � mj and PNj=1mj = n). We aim to 
ompute an invariant subspa
easso
iated with L of these eigenvalues, whi
h for brevity we 
all the good eigenvalues,labeled f�1; �2; : : : ; �Lg: We intend to use a Krylov subspa
e algorithm to approx-imate this invariant subspa
e, possibly with the aid of restarts as des
ribed below.The remaining N � L eigenvalues, the bad eigenvalues, are not of interest and wewish to avoid ex
essive expense involved in inadvertently 
al
ulating the subspa
esasso
iated with them.The 
lass of algorithms 
onsidered here draw eigenve
tor approximations fromKrylov subspa
es generated by the starting ve
tor v1 2 C n ,K`(A;v1) = spanfv1;Av1; : : : ; À �1v1g:Su
h algorithms, in
luding the Arnoldi and bi-orthogonal Lan
zos methods reviewedin x1.1, di�er in their me
hanisms for generating a basis for K`(A;v1) and sele
t-ing approximate eigenve
tors from this Krylov subspa
e. Though these approximateeigenve
tors may appear to be obvious obje
ts of study, their 
onvergen
e 
an begreatly 
ompli
ated by eigenvalue multipli
ity and defe
tiveness; see [21℄. The boundsdeveloped in the following se
tions avoid these diÆ
ulties by instead studying 
on-vergen
e of the Krylov subspa
e to an invariant subspa
e asso
iated with the goodeigenvalues as the dimension of the Krylov subspa
e is in
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2 CHRISTOPHER BEATTIE, MARK EMBREE, AND JOHN ROSSIGiven two subspa
es,W and V of C n , the proximity of one to the other is measuredby the 
ontainment gap (or just gap), de�ned asÆ(W;V) = sup infx2W y2V ky� xkkxk = sin(#max):Here #max is the largest 
anoni
al angle between W and a \
losest" subspa
e bV of Vhaving dimension equal to dimW. (Throughout, k � k denotes the ve
tor 2-norm andthe matrix norm it indu
es.) Noti
e that if dimV < dimW then Æ(W;V) = 1, whileÆ(W;V) = 0 if and only if W � V. The gap 
an be expressed dire
tly as the norm ofa 
omposition of proje
tions: If �W and �V denote orthogonal proje
tions onto Wand V, respe
tively, then Æ(W;V) = k(I��V)�Wk (see, e.g., Chatelin [7, x1.4℄).The obje
tive of this paper then is to measure the gap between Krylov subspa
esand anm-dimensional invariant subspa
e U ofA asso
iated with the good eigenvalues.We explore how qui
kly Æ(U;K`(A;v1)) 
an be driven to zero, re
e
ting the speedof 
onvergen
e, and how this behavior is in
uen
ed by the distribution of eigenvaluesand non-normality of A. Note that Æ(U;K`(A;v1)) = 1 when ` < m. For ` � m, ourbounds ultimately take the formÆ(U;K`(A;v1)) � C0 C1 C2 min�2P̀ �m maxfj�(z)j : z 2 
badgminfj�(z)j : z 2 
goodg ;(1.1)where P` is the set of degree-` polynomials, and 
good and 
bad are disjoint 
ompa
tsubsets of C 
ontaining the good and bad eigenvalues, respe
tively. Here C0 andC2 are 
onstants depending on the non-normality of A, while the 
onstant C1 alsoin
orporates starting ve
tor biases. In x2 we identify the subspa
e U, whi
h in 
om-mon situations will be the entire invariant subspa
e of A asso
iated with the goodeigenvalues, but will be smaller when A is derogatory or the starting ve
tor v1 isde�
ient. The basi
 bound (1.1) is derived in x3. Se
tion 4 addresses the polynomialapproximation problem embedded in (1.1), des
ribing those fa
tors that determinelinear 
onvergen
e rates and 
an lead to superlinear e�e
ts. Se
tion 5 analyzes the
onstants C1 and C2, and x6 provides 
omputational examples illustrating the bounds.Sin
e it be
omes prohibitively expensive to 
onstru
t and store a good basisfor K`(A;v1) when the dimension of A is large, pra
ti
al algorithms typi
ally limitthe maximum dimension of the Krylov subspa
e to some p � n. If satisfa
toryeigenve
tor estimates 
annot be extra
ted from Kp(A;v1), then the algorithm isrestarted by repla
ing v1 with some new v 2 Kp(A;v1) that is, hopefully, enri
hedin the 
omponent lying in the subspa
e U. Sin
e this v is 
hosen from the Krylovsubspa
e, we 
an write v =  (A)v1 for some polynomial  with deg( ) < p. Ourbounds also apply to this situation, and ideas from potential theory, outlined in x4,motivate parti
ular 
hoi
es for the polynomial  .The results presented here 
omplement and extend earlier 
onvergen
e theory.Saad bounded the gap between a single eigenve
tor and the Krylov subspa
e for amatrix with simple eigenvalues [34℄. Jia generalized this result to invariant subspa
esasso
iated with a single eigenvalue for a defe
tive matrix, but these bounds involvethe Jordan form of A and derivatives of approximating polynomials [20℄. Simon
iniuses pseudospe
tra to des
ribe blo
k Arnoldi 
onvergen
e for defe
tive matri
es [39℄.Interpreting restarted algorithms in terms of subspa
e iteration, Lehou
q developed



CONVERGENCE OF RESTARTED KRYLOV SUBSPACES 3an invariant subspa
e 
onvergen
e theory for matri
es with simple eigenvalues [26℄.Calvetti, Rei
hel, and Sorensen have studied single eigenve
tor 
onvergen
e for Hermi-tian matri
es using elements of potential theory [6℄. A key feature of our approa
h isits appli
ability to general invariant subspa
es, whi
h may be better 
onditioned thanindividual eigenve
tors (see, e.g., [42, Ch.V℄). Notably, we estimate 
onvergen
e ratesfor defe
tive matri
es without introdu
ing any spe
ial 
hoi
e of basis and withoutrequiring knowledge of the Jordan form or any related similarity transformation.Finally, we note that other measures of 
onvergen
e may be more appealing in
ertain situations. Alternatives in
lude Ritz values [20, 24℄, although 
onvergen
ebehavior might be obs
ure for matri
es that are defe
tive (or nearly so). The subspa
eresidual is 
omputationally attra
tive be
ause it doesn't require a priori knowledge ofthe good invariant subspa
e. This measure 
an be related to gap 
onvergen
e [17, 41℄.1.1. Arnoldi and Bi-orthogonal Lan
zos Algorithms. Suppose V is ann� n unitary matrix that redu
es A to upper Hessenberg form; i.e., V�AV = H forsome upper Hessenberg matrix, H. For any index 1 � ` � n, let H` denote the `thprin
ipal submatrix of H:H` = 26664h11 h12 � � � h1`�2 h22 � � � h2`. . . . . . ...�` h`` 37775 2 C `�` :The Arnoldi method [2, 34℄ builds up the matri
es H and V one 
olumn at a timestarting with the unit ve
tor v1 2 C n , although the pro
ess is typi
ally stopped wellbefore 
ompletion, with ` � n. The algorithm only a

essesA through matrix-ve
torprodu
ts, making this approa
h attra
tive when A is large and sparse.Di�erent 
hoi
es for v1 produ
e distin
t out
omes forH`. The de�ning re
urren
emay be derived from the fundamental relationAV` = V`H` + �`+1v`+1e�̀;where e` is the `th 
olumn of the `�` identity matrix. The `th 
olumn of H` is deter-mined so as to for
e v`+1 to be orthogonal to the 
olumns of V`, and �`+1 then is de-termined so that kv`+1k = 1. After ` steps, the 
olumns of V` 
onstitute an orthonor-mal basis for the order-` Krylov subspa
e K`(A;v1) = spanfv1; Av1; : : : ; A`�1v1g.Sin
e V�̀AV` = H`, the matrix H` is a Ritz{Galerkin approximation of A on thissubspa
e, as des
ribed by Saad [35℄. The eigenvalues of H` are 
alled Ritz values andwill, in many 
ir
umstan
es, be reasonable approximations to some of the eigenvaluesof A. An eigenve
tor of H` asso
iated with a given Ritz value �j 
an be used to
onstru
t an eigenve
tor approximation for A. Indeed, if H`yj = �jyj , then the Ritzve
tor buj = V`yj yields the residualkAbuj � �jbujk = j�`+1j je�̀yj j:When j�`+1j � 1, the 
olumns of V` nearly span an invariant subspa
e of A. Smallresiduals more often arise from negligible trailing entries of the ve
tor yj , indi
atingthe most re
ent Krylov dire
tion 
ontributed negligibly to the Ritz ve
tor buj .



4 CHRISTOPHER BEATTIE, MARK EMBREE, AND JOHN ROSSIAlternatively, suppose bV is an n � n invertible matrix that transforms A viasimilarity to tridiagonal form; i.e., bV�1A bV = T for some tridiagonal matrix T. Forany index 1 � ` � n, let T` denote the `th prin
ipal submatrix of T:T` = 26664�1 
2Æ2 �2 . . .. . . . . . 
`Æ` �` 37775 2 C `�` :Let bV̀ = [v1; v2; : : : ; v`℄ denote a matrix 
ontaining the �rst ` 
olumns of bV; andfor 
W� = bV�1, let 
W` = [w1; w2; : : : ; w`℄ denote a matrix 
ontaining the �rst `
olumns of 
W.The bi-orthogonal Lan
zos algorithm [25℄ builds up the matri
es T, bV, and 
Wone 
olumn at a time starting with the unit ve
tors v1 and w1, a

essing A andA� only through matrix-ve
tor produ
t operations. Di�erent 
hoi
es for v1 and w1produ
e distin
t out
omes for T, if all goes well. Re
overing from situations wherenot all goes well is a fundamental aspe
t of later re�nements of the algorithm; twosu
h approa
hes are dis
ussed in [16℄ and [30℄.At the `th step, the basi
 re
ursion isA bV̀ = bV̀ T` + Æ`+1v`+1e�̀;A�
W` = 
W`T�̀ + 
`+1w`+1e�̀:Typi
ally, normalization is determined so that j
j j = jÆj j and v�jwj = 1. With exa
tarithmeti
, the �rst `� 1 steps yield matri
es bV̀ and 
W` that satisfy� 
W�̀ bV̀ = I;� Ran( bV̀ ) = spanfv1; Av1; : : : ; À �1v1g = K`(A;v1), and� Ran(
W`) = spanfw1; A�w1; : : : ; (A�)`�1w1g = K`(A�;w1).Noti
e that T` = 
W�̀A bV̀ , and so the eigenvalues for T` (also 
alled Ritz values)are Petrov{Galerkin approximations to the eigenvalues of A [35℄. In both the Arnoldiand bi-orthogonal Lan
zos methods, approximations to the (right) invariant subspa
esof A are drawn from the same subspa
e K`(A;v1), though with respe
t to di�erentbases: V` vs. bV̀ . However, bi-orthogonal Lan
zos's T` is not in general similar toArnoldi's H`; indeed, the bi-orthogonal Lan
zos eigenvalue approximations typi
allydi�er 
onsiderably from those provided by Arnoldi.Our fo
us here will remain �xed on how well a good invariant subspa
e U is 
ap-tured by K`(A;v1) without regard to how a basis for K`(A;v1) has been generated.Further algorithmi
 details of parti
ular methods 
an be found in [4℄.1.2. Polynomial Restarts. The 
ost of pro
eeding through p steps of theArnoldi re
urren
e is roughly the 
ost of p matrix-ve
tor produ
ts of the form Avkon top of the net 2np2 
oating point operations ne
essary for orthogonalization. Bi-orthogonal Lan
zos requires 2p matrix-ve
tor produ
ts (of the form Avk and A�wk)and also on the order of np2 
oating point operations to enfor
e bi-orthogonality. Ifn is very large and A is very sparse (say, with a maximum number of nonzero entriesper row very mu
h smaller than n), then the 
ost of orthogonalization 
an qui
kly



CONVERGENCE OF RESTARTED KRYLOV SUBSPACES 5dominate as p grows. One general approa
h for alleviating the growing 
ost of or-thogonalization is known as polynomial restarting. At the end of p + 1 steps of there
urren
e, one sele
ts some \best" ve
tor v+1 2 Kp+1(A;v1) and restarts the re
ur-ren
e from the beginning using v+1 . Di�erent restart strategies di�er essentially inhow they attempt to 
ondense progress made in the last p+1 steps into the ve
tor v+1 .Sin
e any ve
tor in Kp+1(A;v1) 
an be represented as  p(A)v1 for some polynomial p of degree p or less, a restart of this type 
an be expressed asv+1   p(A)v1:(1.2)If subsequent restarts o

ur (relabeling v+1 as v(1)1 ) thenv(1)1   [1℄p (A)v1 (�rst restart)v(2)1   [2℄p (A)v(1)1 (se
ond restart)...v(�)1   [�℄p (A)v(��1)1 (�th restart);and we 
an 
olle
t the e�e
t of the restarts into a single aggregate polynomial ofdegree �p: v(�)1  	�p(A)v1;(1.3)where 	�p(�) =Q�k=1  [k℄p (�).Evidently, the restart ve
tors should retain and amplify 
omponents of the goodinvariant subspa
e while damping and eventually purging 
omponents of the bad in-variant subspa
e. One obvious way of en
ouraging su
h a trend is to 
hoose the poly-nomial 	�p(�) to be as large as possible when evaluated on the good eigenvalues whilebeing as small as possible on the bad eigenvalues. If the bad eigenvalues are situatedwithin a known 
ompa
t set 
bad (not 
ontaining any good eigenvalues), Chebyshevpolynomials asso
iated with 
bad are often a reasonable 
hoi
e. When integrated withthe Arnoldi algorithm, this results in the Arnoldi{Chebyshev method [36℄ (
f. [18℄).Saad introdu
ed a di�erent restart strategy that may appear more dire
t and in-volves less a priori information about bad eigenvalue lo
ations [34℄. In this strategy,one 
omputes the eigenvalues of H` and sorts the resulting ` = k + p Ritz valuesinto disjoint sets Sgood and Sbad. The k Ritz values in Sgood are regarded as approx-imations to the good eigenvalues of A, and the restart ve
tor is de�ned as a linear
ombination of good Ritz ve
tors, v+1  kXj=1 
jbuj :(1.4)Saad proposed using either a sele
ted Ritz ve
tor by itself, or forming a linear 
ombi-nation that is weighted to favor Ritz ve
tors that yield large residuals, so as to providebalan
ed 
onvergen
e to the good invariant subspa
e [34℄. Sin
e ea
h Ritz ve
tor bujis in K`(A;v1), one may interpret either of these strategies as polynomial restarting,as in (1.2) above.



6 CHRISTOPHER BEATTIE, MARK EMBREE, AND JOHN ROSSISorensen introdu
ed a related strategy, 
alled exa
t shifts [40℄, that has provedextremely su

essful in pra
ti
e. As before, one 
omputes the eigenvalues of H`and sorts the resulting ` = k + p Ritz values into two disjoint sets Sgood and Sbad.But instead of using any expli
itly determined linear 
ombination of Ritz ve
torsasso
iated with the k good Ritz values, the remaining p Ritz values in the setSbad are used to de�ne the restart polynomial  p(�) = Qk+pj=k+1(� � �j). Morgandis
overed a remarkable 
onsequen
e of this restart strategy: The updated Krylovsubspa
e, K`(A;v+1 ) generated by the new starting ve
tor v+1 in (1.2) using exa
tshifts satis�es K`(A;v+1 ) = spanfbu1; bu2; : : : ; buk;Abuj ;A2buj ; : : : ;Apbujg for ea
h in-dex j = 1; 2; : : : ; k [28℄. Thus, Sorensen's exa
t shifts will provide, in the stagefollowing a restart, a subspa
e 
ontaining every possible Krylov subspa
e of dimen-sion p that Saad's expli
it Ritz ve
tor restart 
ould generate. Furthermore, Sorensenshowed how to apply shifts impli
itly, regenerating the Krylov subspa
e K`(A;v+1 )with only p matrix-ve
tor produ
ts in a numeri
ally stable way. Analogous features
an be veri�ed for the restarted bi-orthogonal Lan
zos method using bad Lan
zosvalues as polynomial roots. Su
h a strategy has been explored in [16, 9℄.In all that follows we assume the Arnoldi or bi-orthogonal Lan
zos pro
ess haspro
eeded ` steps past the last of � restarts, ea
h of whi
h (for the sake of simpli
ity)has the same order p. For the jth restart, with j = 1; 2; : : : ; �, we use a set of shiftsf�jkgpk=1. De�ne 	�p(�) = �Yj=1 pYk=1(�� �jk)to be the aggregate restart polynomial after � restarts. An iteration without restartswill have p = � = 0 and 	�p(�) = 1.Let K� (A;v(�)1 ) denote the Krylov subspa
e of order � generated by the start-ing ve
tor v(�)1 that is obtained after � restarts. The following basi
 result followsimmediately from the observation that v(�)1 = 	�p(A)v1.Lemma 1.1. For all � � 0, K� (A;v(�)1 ) = 	�p(A)K� (A;v1):2. Rea
hable Invariant Subspa
es. If the good eigenvalues are all simple,then the asso
iated invariant subspa
e is uniquely determined as the span of all thegood eigenve
tors. However, if some of these eigenvalues are multiple, there 
ouldbe a variety of invariant subspa
es asso
iated with them. Nonetheless, single-ve
torKrylov eigenvalue algorithms with polynomial restarts are only 
apable of revealingone of the many possible invariant subspa
es for any given initial ve
tor. Beforedeveloping 
onvergen
e bounds, our �rst task is to 
hara
terize this distinguishedinvariant subspa
e pre
isely.Let M be the 
y
li
 subspa
e generated by the initial starting ve
tor v1,M = spanfv1;Av1;A2v1; : : : g:M is evidently an invariant subspa
e of A and s � dim(M) � n. Sin
e any invariantsubspa
e of A that 
ontains v1 must also 
ontain A�v1 for ea
h integer � > 0, Mis the smallest invariant subspa
e of A that 
ontains v1. The �rst s ve
tors of theKrylov sequen
e fv1;Av1;A2v1; : : : ;As�1v1g are linearly independent, and so must
onstitute a basis for M.



CONVERGENCE OF RESTARTED KRYLOV SUBSPACES 7Re
all that a linear transformation is non-derogatory if ea
h eigenvalue has geo-metri
 multipli
ity equal to one, i.e., ea
h distin
t eigenvalue has pre
isely one eigen-ve
tor asso
iated with it, determined up to s
aling.De�ne AjM to be the restri
tion of A to M.Lemma 2.1. AjM is non-derogatory and K� (A;v(�)1 ) = K� (AjM;v(�)1 ) �M:Proof. Consider the matrix representation of AjM with respe
t to the basisfv1;Av1;A2v1; : : : ;As�1v1g. Sin
e M is s-dimensional,AjMAs�1v1 = Asv1= s�1Xj=0 
jAjv1for some 
onstants 
0; : : : ; 
s�1. Thus,AjM � 26664 0 � � � 0 
01 . . . ... .... . . 0 
s�21 
s�1 37775 = bH:That is, AjM is similar to an irredu
ible upper Hessenberg matrix, whi
h is ne
essarilynon-derogatory sin
e rank( bH � �) � s � 1 for all �. The se
ond assertion followsimmediately from v(�)1 2M.De�ne �j to be the as
ent (or index) of the eigenvalue �j , i.e., the minimumpositive integer � su
h that Ker (A��j)� = Ker (A��j)�+1. This �j is the maximumdimension of the nj di�erent Jordan blo
ks asso
iated with �j and Ker (A � �j)�jthen is the span of all generalized eigenve
tors asso
iated with �j .The spe
tral proje
tion onto ea
h subspa
e Ker (A��j)�j 
an be 
onstru
ted inthe following 
oordinate-free manner; see, e.g., [23, xI.5.3℄. For ea
h eigenvalue �j ,j = 1; : : : ; N , let �j be some positively-oriented Jordan 
urve in C 
ontaining �j in itsinterior and all other eigenvalues �k 6= �j in its exterior. Then the spe
tral proje
tionis de�ned as Pj � 12�i Z�j (z �A)�1 dz:Pj is a proje
tion onto the span of all generalized eigenve
tors asso
iated with �j . Inparti
ular, Pjv1 will be a generalized eigenve
tor asso
iated with �j and will generatea 
y
li
 subspa
e K�j (A;Pjv1) � Ker (A��j)�j . Let b�j be the minimum index b� sothat Kb�(A;Pjv1) = Kb�+1(A;Pjv1). This b�j is 
alled the as
ent with respe
t to v1 ofthe eigenvalue �j . Noti
e that 1 � b�j � �j andKb�j (A;Pjv1) is the smallest invariantsubspa
e of A that 
ontains Pjv1. Furthermore, Pjv1 is a generalized eigenve
torof grade b�j asso
iated with �j and b�j < �j only if v1 is de�
ient in all generalizedeigenve
tors of maximal grade �j asso
iated with �j .De�ne spe
tral proje
tions Pgood and Pbad having ranges that are the maximalinvariant subspa
es asso
iated with the good and bad eigenvalues, respe
tively:Pgood = LXj=1Pj and Pbad = NXj=L+1Pj :



8 CHRISTOPHER BEATTIE, MARK EMBREE, AND JOHN ROSSINote that Pgood +Pbad = I.The following result 
hara
terizes M. The �rst statement, in
luded for 
ompari-son, is well-known; the se
ond is also understood, though we are unaware of its expli
itappearan
e in the literature. Related issues are dis
ussed in [1℄, [13, Ch. VII℄.Lemma 2.2. C n = �Nj=1Ker(A� �j)�j with PNj=1 �j � n, andM = �Nj=1Kb�j (A;Pjv1) with PNj=1 b�j = dimM.Proof. Sin
e PNj=1Pj = I, any x 2 C n 
an be written as x = Ix = PNj=1Pjx,whi
h shows that C n � �Nj=1Ker(A��j)�j . The reverse in
lusion is trivial and yieldsthe �rst statement.For the se
ond statement, use PNj=1Pj = I to get, for any integer � > 0,v1 = NXj=1Pjv1; Av1 = NXj=1APjv1; : : : ; A�v1 = NXj=1A�Pjv1:Thus, for ea
h integer � > 0, K� (A;v1) � �Nj=1Kb�j (A;Pjv1), and,in parti
ular, for� suÆ
iently large this yields M � �Nj=1Kb�j (A;Pjv1).To show the reverse in
lusion, note that for every j = 1; : : : ; N , one 
an 
on-stru
t a polynomial pj su
h that pj(A) = Pj . (This polynomial interpolates zero ateigenvalues �k 6= �j , one at �j , and has �j � 1 zero derivatives at �j ; see, e.g., [19,x6.1℄ for related information.) Thus for any x 2PNj=1Kb�j (A;Pjv1), one 
an writex = NXj=1 gj(A)Pjv1 = NXj=1 gj(A)pj(A)v1 2Mfor polynomials gj with degree not ex
eeding b�j � 1. Thus �Nj=1Kb�j (A;Pjv1) �M,and so M = �Nj=1Kb�j (A;Pjv1).Let Xgood and Xbad be the invariant subspa
es of A asso
iated with the goodand bad eigenvalues, respe
tively. Then de�ne Ugood � M \ Xgood and Ubad �M \ Xbad. The following lemma develops a representation for Ugood and Ubad; itshows that Ugood is the maximum rea
hable invariant subspa
e asso
iated with thegood eigenvalues that 
an be obtained from a Krylov subspa
e algorithm started withv1. \Maximum rea
hable invariant subspa
e" means that any invariant subspa
e Uasso
iated with the good eigenvalues and stri
tly larger than Ugood is unrea
hable:The angle between U and any 
omputable subspa
e generated from v1 is boundedaway from zero independent of `, p, �, and 
hoi
e of �lter shifts f�jkg.Lemma 2.3.Ugood = �Lj=1Kb�j (A;Pjv1);dim Ugood = LXj=1 b�j � m; and Ubad = �Nj=L+1Kb�j (A;Pjv1);dim Ubad = NXj=L+1 b�j = s�m:Furthermore, for any subspa
e U of Xgood that properly 
ontains Ugood,Ugood � U � Xgood;
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onvergen
e in gap 
annot o

ur: For all integers ` � 1,Æ(U;K`(A;v(�)1 )) � 1kPgoodk > 0:Proof. Sin
e Kb�j (A;Pjv1) � Ker(A � �j)�j , Lemma 2.2 leads to M \ Xgood =�Lj=1Kb�j (A;Pjv1). Furthermore, dimKb�j (A;Pjv1) = b�j implies that dimUgood =m as de�ned above. The analogous results for Ubad follow similarly.Note that Xbad = �Nj=L+1Ker(A� �j)�j so, for all ` � 0,K`(A;v(�)1 ) �M � Ugood �Xbad:Thus any v 2 K`(A;v(�)1 ) 
an be de
omposed as v = w1 +w2 for some w1 2 Ugoodand w2 2 Xbad. When Ugood is a proper subspa
e of U, there exists an bx 2 U so thatbx ? Ugood and kbxk = 1. Note that kbx�w1k � kbxk = 1. Now,minv2K`(A;v(�)1 ) kv� bxk � minw12Ugoodw22Xbad kw1 +w2 � bxk� minw12Ugoodw22Xbad kw2 � (bx�w1)kkbx�w1k� miny2Xgoodw22Xbad kw2 � ykkyk� 0� maxy2Xgoodw22Xbad kPgood(w2 � y)kkw2 � yk 1A�1 = 1kPgoodk :Thus, Æ(U;K`(A;v(�)1 )) = maxx2U minv2K`(A;v(�)1 ) kv � xkkxk� minv2K`(A;v(�)1 ) kv � bxk � 1kPgoodk :This means that we have no hope of 
apturing any invariant subspa
e that 
ontainsa (generalized) eigenspa
e asso
iated with multiple Jordan blo
ks | at least whenusing a single ve
tor iteration in exa
t arithmeti
. On the other hand, 
onvergen
e 
ano

ur to the good invariant subspa
e Ugood, with a rate that depends on propertiesof A, v1, and the 
hoi
e of �lter shifts f�jkg, as we shall see.Almost every ve
tor in an invariant subspa
e is a generalized eigenve
tor of maxi-mal grade and so almost every starting ve
tor will 
apture maximally defe
tive Jordanblo
ks. While easily a
knowledged, this fa
t 
an have perplexing 
onsequen
es for the
asual Arnoldi or bi-orthogonal Lan
zos user, sin
e eigenve
tors of other Jordan blo
ksmay be unexpe
tedly \washed out."



10 CHRISTOPHER BEATTIE, MARK EMBREE, AND JOHN ROSSISuppose A is de�ned as A = 266664 1 0 0 0 01 1 0 0 00 0 1 0 00 0 1 1 00 0 0 1 1 377775 :A is in Jordan 
anoni
al form and has eigenve
tors e2 and e5 asso
iated with theeigenvalue 1. (ej denotes the jth 
olumn of the 5�5 identity matrix.) The eigenvalue1 also has generalized eigenve
tors of grade 1 given by e1 and e4 asso
iated with the2� 2 and 3� 3 Jordan blo
ks, respe
tively, and a generalized eigenve
tor of grade 2given by e3 asso
iated with the 3� 3 Jordan blo
k.Let � 2 C be arbitrary and note that the ve
tor v1 = [1 � 1 1 1 ℄T generates a
y
li
 subspa
e spanned by the �rst three ve
tors in the Krylov sequen
e,v1 = 266664 1�111 377775 ; v2 = Av1 = 266664 11 + �122 377775 ; and v3 = A2v1 = 266664 12 + �134 377775 :By 
hoosing j�j to be large, the starting ve
tor v1 
an be made to have an arbitrarilylarge 
omponent in the dire
tion of e2, the eigenve
tor asso
iated with the 2 � 2Jordan blo
k.De�ning M = [v1; v2; v3℄ and bH = 24 0 0 11 0 �30 1 3 35; a simple 
al
ulation revealsAM =M bH:The Jordan form of bH is easy to 
al
ulate:R�1 bHR = 24 1 0 01 1 00 1 1 35 ; where R = 24 1 �1 10 1 �20 0 1 35 :(2.1)The 
y
li
 subspa
e generated by the single ve
tor v1 has 
aptured a three-dimensional invariant subspa
e, asso
iated with the maximally defe
tive 3�3 Jordanblo
k. But this subspa
e is not the expe
ted spanfe3; e4; e5g. Using the 
hange ofbasis de�ned by R in (2.1), one may 
al
ulate A(MR) = (MR)(R�1 bHR), whi
h is266664 1 0 0 0 01 1 0 0 00 0 1 0 00 0 1 1 00 0 0 1 1 377775266664 1 0 0� 1 01 0 01 1 01 1 1 377775 = 266664 1 0 0� 1 01 0 01 1 01 1 1 37777524 1 0 01 1 00 1 1 35 :Note that e5 alone is revealed as the eigenve
tor asso
iated with the eigenvalue 1;e2 has been washed out in spite of v1 having an arbitrarily large 
omponent in that
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tion. Indeed the eigenve
tor e2 (and so any subspa
e 
ontaining it) is unrea
hablefrom any starting ve
tor v1 for whi
h e�3v1 6= 0. In this example, v1 itself emerges asa generalized eigenve
tor of grade 2. Note that every ve
tor v in C 5 with e�3v 6= 0 isa generalized eigenve
tor of grade 2 asso
iated with the eigenvalue 1.We 
lose this se
tion with a 
omputational example that both 
on�rms the gapstagnation lower bound for derogatory matri
es given in Lemma 2.3 and illustratesother 
onvergen
e properties explored in future se
tions. Consider two matri
es A1and A2, ea
h of dimension n = 150 with eigenvalues spa
ed uniformly in the interval[0; 1℄. In both 
ases, all the eigenvalues are simple ex
ept for the single good eigen-value � = 1, whi
h has algebrai
 multipli
ity �ve. In the �rst 
ase, the geometri
multipli
ity also equals �ve, so the matrix is diagonalizable but derogatory. In these
ond 
ase, there is only one eigenve
tor asso
iated with � = 1, so it is defe
tivebut not derogatory. Both matri
es are 
onstru
ted so that kPgoodk � 104. Figure 2.1illustrates the gap 
onvergen
e for the Krylov subspa
e to the invariant subspa
eXgood asso
iated with � = 1. The starting ve
tor v1 has 1=pn in ea
h 
omponent;no restarting is used here. Convergen
e 
annot begin until the �fth iteration, whenthe Krylov subspa
e dimension mat
hes the dimension of Xgood. This initial periodof stagnation is followed by a sublinear phase of 
onvergen
e leading to a se
ondstagnation period. This is the end of the story for the derogatory 
ase, but for thenonderogatory 
ase, the se
ond stagnation period is transient and the 
onvergen
erate eventually settles towards a nearly linear rate. In fa
t, this rate improves slightlyover the �nal iterations shown here, yielding so-
alled \superlinear" 
onvergen
e, thesubje
t of x4.3. These 
onvergen
e phases resemble those observed for the GMRESiteration, as des
ribed by Nevanlinna [29℄.
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10
0 diagonalizablebut derogatory defe
tive,not derogatory1kPgoodk

Krylov subspa
e dimension, `
Æ(X good;K `(A;v
1))

Fig. 2.1. The Krylov subspa
e 
an never 
apture Xgood when this subspa
e is asso
iated witha derogatory eigenvalue; 
onvergen
e is possible, however, when the asso
iated eigenvalues are de-fe
tive but not derogatory, as des
ribed by Lemma 2.3.



12 CHRISTOPHER BEATTIE, MARK EMBREE, AND JOHN ROSSI3. Basi
 Estimates. Sin
e all rea
hable subspa
es are 
ontained inM andAjMis non-derogatory, hen
eforth we assume without loss of generality thatA itself is non-derogatory so that n = dimM, and v1 is not de�
ient in any generalized eigenve
torof maximal grade. To summarize the 
urrent situation: A is an n � n matrix withN � n distin
t eigenvalues, f�jgNj=1, ea
h having geometri
 multipli
ity 1 and al-gebrai
 multipli
ity mj , so that PNj=1mj = n. We seek L (1 � L < N) of theseeigenvalues f�1; �2; : : : ; �Lg (the \good" eigenvalues) together with the 
orrespond-ing (maximal) invariant subspa
e Ugood of dimension m = PLj=1mj , whi
h is nowthe net algebrai
 multipli
ity of good eigenvalues sin
e A is non-derogatory.We begin by establishing two lemmas that are used to develop a bound for thegap in terms of a polynomial approximation problem in the subsequent theorems.Lemma 3.1. Given U;V � C n , suppose bu 2 U (kbuk = 1) and bv 2 V satisfyÆ(U;V) = maxu2U minv2V ku� vkkuk = kbu� bvk:Then bu� bv ? V and bu� bv � Æ(U;V)2bu ? U.Proof. The �rst assertion is a fundamental property of least squares approxima-tion. To show the se
ond, 
onsider an arbitrary unit ve
tor u 2 U and take " > 0.Letting�V denote the orthogonal proje
tion onto V, the optimality of bu and bv implieskbu� bvk2 � k(I��V)(bu+ "u)k2kbu+ "uk2 :Expanding this inequality, noting bv =�Vbu, and using the �rst assertion givesÆ(U;V)2(1 + 2"Re(bu�u) + "2) � Æ(U;V)2 + 2"Re((bu� bv)�u) + "2k(I��V)uk2:Colle
ting terms quadrati
 in " on the left hand side,"2(Æ(U;V)2 � k(I��V)uk2) � 2"Re((bu� bv � Æ(U;V)2bu)�u):Note that the left hand side must be non-negative. Repeating the above argumentwith u multiplied by a 
omplex s
alar of unit modulus, we 
an repla
e the right handside with 2" j(bu� bv � Æ(U;V)2bu)�uj. Thus for any unit ve
tor bu 2 U," (Æ(U;V)2 � k(I��V)uk2) � 2 j(bu� bv � Æ(U;V)2bu)�uj � 0:Taking "! 0, we 
on
lude that bu�bv�Æ(U;V)2bu is orthogonal to every u 2 U.As the gap between subspa
es 
loses (Æ(U;V) ! 0), noti
e that bu � bv be
omes\almost" orthogonal to U in the sense that the proje
tion of bu� bv onto U has normÆ(U;V)2.Lemma 3.2. Let Pm�1 denote the spa
e of polynomials of degree m � 1 or less.The mapping { : Pm�1 ! Ugood de�ned by{( ) =  (A)Pgoodv1(3.1)is an isomorphism between Pm�1 and Ugood. Furthermore, there exist positive 
on-stants 
1 and 
2 so that
1 k kPm�1 � k (A)Pgoodv1k � 
2 k kPm�1 ;(3.2)



CONVERGENCE OF RESTARTED KRYLOV SUBSPACES 13uniformly for all  2 Pm�1 for any �xed norm k � kPm�1 de�ned on the spa
e Pm�1.Proof. { is 
learly linear. To see that { maps Pm�1 onto Ugood, observe that forany given y 2 Ugood, there exist polynomials fgj(�)gLj=1 with deg(gj) � mj � 1 su
hthat y = LXj=1 gj(A)Pjv1:The L polynomials fgjgLj=1 provide L separate \sli
es" of a single polynomial that
an be re
overed by (generalized) Hermite interpolation. Let  be a polynomialinterpolant that interpolates gj and its derivatives at �j : (k)(�j) = g(k)j (�j)for k = 0; 1; : : : ;mj � 1 and j = 1; 2; : : : ; L. Theorem VIII.3.16 of [11℄ leads us �rstto observe that  (A)Pj = gj(A)Pj for ea
h j = 1; : : : ; L. Then sin
e deg( ) �PLj=1mj � 1 = m� 1, we have from (3.1) thaty = LXj=1  (A)Pjv1 =  (A)Pgoodv1 = {( ):Sin
e dim(Pm�1) = dim(Ugood), nullity({) = 0 and { is bije
tive from Pm�1 to Ugood.The last statement is an immediate 
onsequen
e of the fa
t that linear bije
tions arebounded linear transformations with bounded inverses.Theorem 3.3. Suppose that A and v1 satisfy the assumptions of this se
tion,and that none of the �lter shifts f�jkg 
oin
ides with any of the good eigenvaluesf�jgLj=1. For all indi
es ` � m, the gap between the good invariant subspa
e, Ugood,and the Krylov subspa
e of order `, K`(A;v(�)1 ), generated from the �-fold restartedve
tor, v(�)1 satis�esÆ(Ugood;K`(A;v(�)1 )) � C0 max 2Pm�1 min�2P̀ �m k�(A) (A)	�p(A)Pbadv1kk�(A) (A)	�p(A)Pgoodv1k ;where C0 � 1 if Ugood ? Ubad and C0 � p2 otherwise.Proof. First, suppose Ugood ? Ubad. This implies that Pgood and Pbad areorthogonal proje
tions, Ugood is an invariant subspa
e for both 	�p(A) and [	�p(A)℄�,and, as we will see, that Æ(Ugood;K`(A;v(�)1 )) < 1. Indeed, suppose instead thatÆ(Ugood;K`(A;v(�)1 )) = 1. Then there is a ve
tor bu 2 Ugood with kbuk = 1 su
h thatbu ? K`(A;v(�)1 ). De�ne by � [	�p(A)℄�bu 2 Ugood, and note that by Lemma 3.2,there exists a polynomial b 2 Pm�1 su
h that by = b (A)Pgoodv1. Now, for ea
hj = 1; 2; : : : ; ` we have0 = hbu; Aj�1v(�)1 i = hbu; Aj�1	�p(A)v1i= hby; Aj�1Pgoodv1i= h b (A)Pgoodv1; Aj�1Pgoodv1i:



14 CHRISTOPHER BEATTIE, MARK EMBREE, AND JOHN ROSSISin
e ` � m, this implies �rst that k b (A)Pgoodv1k = 0 and then bu = 0. (Re
all that[	�p(A)℄� is bije
tive on Ugood sin
e 	�p has no roots in 
ommon with good eigenval-ues.) But bu was given to be a unit ve
tor, so it must be that Æ(Ugood;K`(A;v(�)1 )) < 1.Now, there are optimal ve
tors bv 2 K`(A;v(�)1 ) and bx 2 Ugood with kbxk = 1 thatsatisfy Æ(Ugood;K`(A;v(�)1 )) = maxx2Ugood minv2K`(A;v(�)1 ) kv� xkkxk = kbv � bxk:(3.3)Sin
e Æ(Ugood;K`(A;v(�)1 )) < 1, it must be that bv 6= 0. Furthermore, optimality forbv means bv� bx ? K`(A;v(�)1 ) (viz., Lemma 3.1) and in parti
ular, bv�(bv� bx) = 0. So,bv 6= 0 implies bv 62 Ubad. There is a polynomial �`�1 2 P`�1 su
h thatbv = �`�1(A)v(�)1 = �`�1(A)	�p(A)v1:De�ne Q = Ugood \ Ker(�`�1(A)) and let bq be the minimum (moni
) annihilatingpolynomial for Q.1 Evidently, �`�1 must 
ontain bq as a fa
tor.Sin
e bv 62 Ubad, �`�1 
annot be an annihilating polynomial for Ugood, so Q 6=Ugood and deg(bq) � m� 1. One may fa
tor �`�1 as the produ
t of a polynomial, �,of degree `�m and a polynomial, q, of degree m� 1 
ontaining bq as a fa
tor,�`�1(�) = �(�)q(�):Observing that Ugood is invariant for both �(A) and �(A)�, we may de
ompose bxas bx = �(A)by + n for some by 2 Ugood and some n 2 Ker(�(A)�) \ Ugood. Noti
ethat bv��(A)by = bv�bx = bv�bv > 0, so �(A)by 6= 0. However, we'll see that it musthappen that n = 0. Indeed, Lemma 3.1 shows that if z 2 Ugood is orthogonal to bx,bx�z = 0, then bv�z = 0 as well. In parti
ular, for z = knk2�(A)by � k�(A)byk2n wehave bx�z = 0. Sin
e Ker�(A)� = Ran�(A)? implies bv�n = 0, we have0 = bv�z = knk2bv��(A)by:We have already seen that bv��(A)by > 0, and so n = 0. Thus we 
an safely ex
ludefrom the maximization in (3.3) all x 2 Ugood ex
ept for those ve
tors having thespe
ial form x = �(A)y for y 2 Ugood and � as de�ned above.We 
an now begin our pro
ess of bounding the gap. Note thatÆ(Ugood;K`(A;v(�)1 )) = maxx2Ugood minv2K`(A;v(�)1 ) kv� xkkxk= maxx2Ugood min�2P̀ �m minq2Pm�1 k	�p(A)�(A)q(A)v1 � xkkxk= maxy2Ugood min�2P̀ �m minq2Pm�1 k	�p(A)�(A)[q(A)v1 � y℄kk	�p(A)�(A)yk ;(3.4)where we are able to justify the substitution x = 	�p(A)�(A)y sin
e 	�p(A) is aninvertible map of Ugood to itself.1That is, bq is the minimum degree moni
 polynomial su
h that bq(A)r = 0 for all r 2 Q.



CONVERGENCE OF RESTARTED KRYLOV SUBSPACES 15Now by Lemma 3.2, y 2 Ugood 
an be represented as y =  (A)Pgoodv1 for some 2 Pm�1. Sin
e I = Pbad +Pgood, one �nds (A)v1 � y =  (A)Pbadv1:Continuing with (3.4), assign q �  2 Pm�1. ThenÆ(Ugood;K`(A;v(�)1 )) � maxy2Ugood(y= (A)Pgoodv1) min�2P̀ �m k	�p(A)�(A)[ (A)v1 � y℄kk	�p(A)�(A)yk= max 2Pm�1 min�2P̀ �m k	�p(A)�(A) (A)Pbadv1kk	�p(A)�(A) (A)Pgoodv1k ;as required, 
on
luding the proof when Ugood ? Ubad.Now, if the two subspa
es Ugood and Ubad are not orthogonal, introdu
e a newinner produ
t on C n with respe
t to whi
h they are orthogonal. For any u;v 2 C n ,de�ne hu;vi� � hPgoodu;Pgoodvi+ hPbadu;Pbadvi;and de�ne the gap with respe
t to the new norm k � k� =ph�; �i� to beÆ�(W;V) = sup infx2W y2V ky� xk�kxk� :Noti
e that for any ve
tor w 2 C n ,kwk2 = kPgoodw +Pbadwk2 � 2 �kPgoodwk2 + kPbadwk2� = 2kwk2�;kPgoodwk� = kPgoodwk; and kPbadwk� = kPbadwk:In parti
ular, for any x 2 Ugood and y 2 C n these relationships dire
tly implyky� xkkxk � p2 ky � xk�kxk� ;and so Æ(Ugood;K`(A;v(�)1 )) � p2 Æ�(Ugood;K`(A;v(�)1 )). Sin
e Ugood and Ubad areorthogonal in this new inner produ
t, we 
an apply the previous argument to 
on
ludeÆ(Ugood;K`(A;v(�)1 )) � p2 max 2Pm�1 min�2P̀ �m k�(A) (A)	�p(A)Pbadv1k�k�(A) (A)	�p(A)Pgoodv1k�= p2 max 2Pm�1 min�2P̀ �m k�(A) (A)	�p(A)Pbadv1kk�(A) (A)	�p(A)Pgoodv1k ;as required.22A more pre
ise value for C0 
an be found as1 � C0 =s 2 kI� 2Pgoodk21 + kI� 2Pgoodk2 � p2;however the marginal improvement in the �nal bound would not appear to merit the substantial
omplexity added.



16 CHRISTOPHER BEATTIE, MARK EMBREE, AND JOHN ROSSIIf N is a square matrix with an invariant subspa
e V, de�nekNkV � maxv2V kNvkkvk = kN�Vk;where �V here denotes the orthogonal proje
tion onto V.Theorem 3.4. Suppose A, v1, and the shifts f�jkg satisfy the 
onditions ofTheorem 3.3. Then for ` � m,Æ(Ugood;K`(A;v(�)1 )) � C0 C1 min�2P̀ �m k[�(A)	�p(A)℄�1kUgood k�(A)	�p(A)kUbad ;where C0 is as de�ned in Theorem 3.3 andC1 � max 2Pm�1 k (A)Pbadv1kk (A)Pgoodv1k(3.5)is a 
onstant independent of `, �, p, or the �lter shifts f�jkg.Proof. Let �good and �bad denote the orthogonal proje
tions onto Ugood andUbad, respe
tively. Thenk	�p(A)�(A)Pbad (A)v1k = k	�p(A)�(A)�badPbad (A)v1k� k	�p(A)�(A)�badk kPbad (A)v1kand, assuming for the moment that �(A) is invertible,kPgood (A)v1k = k[	�p(A)�(A)℄�1�goodPgood	�p(A)�(A) (A)v1k� k[	�p(A)�(A)℄�1�goodk kPgood	�p(A)�(A) (A)v1k:Hen
e,k	�p(A)�(A)Pbad (A)v1kk	�p(A)�(A)Pgood (A)v1k� k[	�p(A)�(A)℄�1kUgoodk	�p(A)�(A)kUbad k (A)Pbadv1kk (A)Pgoodv1k :Minimizing with respe
t to � and maximizing with respe
t to  yields the 
on-
lusion provided the expression for C1 is �nite. This is assured sin
e, as an immediate
onsequen
e of (3.2), k (A)Pgoodv1k = 0 
an o

ur only when  = 0.It is instru
tive to 
onsider the situation where we seek only a single good eigen-value, �1, whi
h is simple. In this 
ase m = dimUgood = 1; the 
on
lusion of Theo-rem 3.3 may be stated asÆ(Ugood;K`(A;v(�)1 )) � C0 C1 min�2P̀ �1 k�(A)	�p(A)wkj�(�1)	�p(�1)j ;where w = Pbadv1=kPbadv1k and C1 = kPbadv1k=kPgoodv1k. Elementary geometri

onsiderations yield an alternate expression for C1:C1 =s� 1kPgoodk sin�(Ugood;v1)
os�(U?bad;v1) �2 +�1� 1kPgoodk 
os�(Ugood;v1)
os�(U?bad;v1) �2;



CONVERGENCE OF RESTARTED KRYLOV SUBSPACES 17where �(Ugood;v1) and �(U?bad;v1) are the smallest angles between v1 and the one-dimensional subspa
es Ugood and U?bad, respe
tively. This spe
ial 
ase is stated asProposition 2.1 of [18℄.3Our next step is to redu
e the 
on
lusion of Theorem 3.4 to an approximationproblem in the 
omplex plane. Let U be an invariant subspa
e of A asso
iated witha 
ompa
t subset 
 � C (that is, 
 
ontains only those eigenvalues of A asso
iatedwith U and no others). De�ne �(
) as the smallest 
onstant for whi
h the inequalitykf(A)kU � �(
)maxz2
 jf(z)j(3.6)holds uniformly over all f 2 H(
), where H(
) denotes the fun
tions analyti
 on 
.4Evidently, the value of the 
onstant �(
) depends on the parti
ular 
hoi
e of 
 (aset 
ontaining, in any 
ase, those eigenvalues of A asso
iated with U). The followingproperties of �(
) are shared by the generalized Kreiss 
onstant eK(
) of Toh andTrefethen [44℄ (de�ned for U = C n ). �(
) is monotone de
reasing with respe
t to setin
lusion on 
. Indeed, if 
1 � 
2, then for ea
h fun
tion f analyti
 on 
2,kf(A)kUmaxfjf(z)j : z 2 
1g � kf(A)kUmaxfjf(z)j : z 2 
2g :Thus, 
1 � 
2 implies �(
1) � �(
2).Sin
e the 
onstant fun
tions are always among the available analyti
 fun
tions on
, �(
) � 1. If A is normal, �(
) = 1. Indeed, if A is normal and � denotes the setof eigenvalues of A asso
iated with the invariant subspa
e U, then1 � �(
) = supf2H(
) kf(A)kUmaxfjf(z)j : z 2 
g = supf2H(
) maxfjf(�)j : � 2 �gmaxfjf(z)j : z 2 
g � 1:If any eigenvalue asso
iated with the invariant subspa
e U is defe
tive, then some
hoi
es of 
 will not yield a �nite value for �(
). For example, letA = � 0 10 0 �and take U = C 2 as an invariant subspa
e asso
iated with the defe
tive eigenvalue� = 0. If 
 
onsists of the single point f0g and f(z) = z then evidently kf(A)kU = 1but maxz2
 jf(z)j = 0. So, no �nite value of �(
) is possible (see [33, p. 440℄). Moregenerally, if 
 is the spe
trum of a defe
tive matrix A, then the moni
 polynomial
onsisting of a single linear fa
tor for ea
h distin
t eigenvalue of A is zero on 
 but
annot annihilate A, as it has lower degree than the minimum polynomial of A.We now use � to adapt Theorem 3.4 into a more approa
hable approximationproblem. In parti
ular, if 
good is a 
ompa
t subset of C 
ontaining all the goodeigenvalues of A but none of the bad, thenk[�(A)	�p(A)℄�1kUgood � �(
good)maxfj[�(z)	�p(z)℄�1j : z 2 
goodg= �(
good)minfj�(z)	�p(z)j : z 2 
goodg :3[18℄ 
ontains an error amounting to the ta
it assumption that Pgood is an orthogonal proje
tion,whi
h is true only if Ugood ? Ubad. Thus the results 
oin
ide only in this spe
ial 
ase (note C0 = 1).4For given k � 1, the sets 
 that (i) 
ontain all eigenvalues of A, and (ii) satisfy �(
) � k are
alled k-spe
tral sets and �gure prominently in dilation theory of operators [31℄.



18 CHRISTOPHER BEATTIE, MARK EMBREE, AND JOHN ROSSIApplying a similar bound to k�(A)	�p(A)kUbad , we obtain the following result, the
enterpie
e of our development.Theorem 3.5. Suppose A and v1 satisfy the 
onditions of Theorem 3.3. Let
good and 
bad be disjoint 
ompa
t subsets of C that 
ontain, respe
tively, the goodand bad eigenvalues of A, and suppose that none of the �lter shifts f�jkg lies in 
good.Then, for ` � m,Æ(Ugood;K`(A;v(�)1 )) � C0 C1 C2 min�2P̀ �m maxfj	�p(z)�(z)j : z 2 
badgminfj	�p(z)�(z)j : z 2 
goodg ;where C0 and C1 are the 
onstants introdu
ed in Theorems 3.3 and 3.4, respe
tively,and C2 � �(
good)�(
bad).Evidently, Theorem 3.5 
an be implemented with a variety of 
hoi
es for 
goodand 
bad, whi
h a�e
ts both the polynomial approximation problem (dis
ussed in thenext se
tion) as well as the 
onstant C2 (
onsidered in x5.3). A key feature of thisdevelopment, whi
h be
omes more evident in the next se
tion, is the limited role thelo
ation of the good eigenvalues play in the approximation problem.4. The Polynomial Approximation Problem. Theorem 3.5 suggests the gapbetween a Krylov subspa
e and an invariant subspa
e will 
onverge to zero at a ratedetermined by how small polynomials of in
reasing degree 
an be
ome on 
bad whilemaintaining a minimal uniform magnitude on 
good. How 
an this manifest as alinear 
onvergen
e rate? Consider the ansatzmin�2P̀ � maxf j�(w)j : w 2 
badgminf j�(z)j : z 2 
goodg = r`�;for some 0 < r � 1. Pi
k a �xed � 2 P`� , say with exa
t degree `�. Thenlog�maxf j�(w)j : w 2 
badgminf j�(z)j : z 2 
goodg � � `� log(r):(4.1)Introdu
ing U�(z;
bad) � 1̀� log� j�(z)jmaxfj�(w)j : w 2 
badg�, (4.1) is equivalent tominz2
good U�(z;
bad) � � log(r):Evidently, the size of r will be related to how large U�(z;
bad) 
an be made uniformlythroughout 
good; larger U� values allow smaller r (faster rates). U�(z;
bad) has thefollowing properties� U�(z;
bad) is harmoni
 at z where �(z) 6= 0;� U�(z;
bad) = log jzj+ 
+ o(1) for a �nite 
onstant 
 as jzj ! 1;� U�(z;
bad) � 0 for all z 2 �
bad.Potential theory provides a natural setting for studying su
h approximation prob-lems. It is 
entral to the analysis of Krylov subspa
e methods for linear systems [10,29℄, and has been used by Calvetti, Rei
hel, and Sorensen to analyze the Hermi-tian Lan
zos algorithm with restarts [6℄. We will apply similar te
hniques to studyU�(z;
bad), and thus begin by presenting some fundamental ba
kground.
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kground. Consider the Diri
hlet problem:Suppose G is an open region with 
ompa
t 
losure in C and suppose f(z) isa 
ontinuous fun
tion on the boundary �G. Find u(z) su
h that�u = 0 on G,u = f on �G.(4.2)Solutions to this problem exist for ea
h 
ontinuous f on �G provided the set G is a\Diri
hlet region" [8, xX.4℄. This holds, for example, when G has a pie
ewise smoothboundary with no isolated points. For our purposes here, su
h sets are suÆ
ient; thee�e
t of isolated points is addressed in x4.3.Suppose, then, that G is a bounded Diri
hlet region 
ontaining the origin, 0 2 G.Assign f(z) = log jzj in (4.2) and let u(z) denote the asso
iated solution to theDiri
hlet problem. De�ne the Green's fun
tion of G with pole at 0 by�g(z;G) = u(z)� log jzj for z 2 G.The following relevant properties of �g(z;G) are straightforward:(i) �g is harmoni
 in Gnf0g;(ii) limz!0�g(z;G) + log jzj = �nite 
onstant;(iii) limz!bz�g(z;G) = 0 for all bz 2 �G;(iv) �g(z;G) > 0 for all z 2 G.Properties (i) and (iii) are elementary. Property (ii) is a 
onsequen
e of the
ontinuity of u(z) at 0. Property (iv) follows from (i), (ii), the fa
t that (ii) impliesthat �g > 0 in any suÆ
iently small neighborhood of 0, and the maximum prin
iplefor harmoni
 fun
tions. The maximum prin
iple also shows that �g(z;G) is the onlyfun
tion satisfying (i){(iv).The Green's fun
tion of an unbounded region with pole at in�nity 
an be de�nedand understood in terms of �g . Let D � C be a 
ompa
t set whose 
omplement C nD isa 
onne
ted Diri
hlet region (say, D has a pie
ewise smooth boundary and no isolatedpoints). The 
onformal 
hange of variable z 7! z�1 maps C nD to a bounded regionG with 0 2 G. The Green's fun
tion of C nD with pole at 1 then is then de�ned asg[z;D℄ = �g(z�1;G) for z 2 C nD.Harmoni
ity is preserved under this 
hange of variable, and one 
an see that properties(i){(iv) hold for g[z;D℄, repla
ing 0 by 1, log jzj by � log jzj, and G by C nD.Example 4.1. If C nD is simply 
onne
ted, one is assured (from the Riemannmapping theorem; see, e.g., [8, xVII.4℄) of the existen
e of a fun
tion F (z) that mapsC nD 
onformally onto the exterior of the 
losed unit disk C nB1 = fz : jzj > 1g su
hthat F (1) =1. Su
h an F must behave asymptoti
ally as �z+O(1) as jzj ! 1 forsome 
onstant �, sin
e it must remain one-to-one in any neighborhood of 1. Sin
elog jzj is harmoni
 for any z 6= 0, one may 
he
k that u(z) = log jF (z)j is a solutionto (4.2) with f = 0 and u(1) = 1. Noti
e that log jzj itself is the Green's fun
tionwith pole at in�nity for C nB1 . Thus, log jF (z)j is the Green's fun
tion with pole atin�nity for C nD. Evidently, limjzj!1 u(z)� log jzj ! log j�j.Even for more 
ompli
ated 
ompa
t sets D, the 
ondition that g[z;D℄ is harmoni
everywhere outside D with a pole at 1 restri
ts the rate of growth of g[z;D℄ near1.Loosely speaking, as jzj be
omes very large, the 
ompa
t set D be
omes less and less
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entered at 0 (say, with radius 
), and so g[z;D℄ be
omesless and less distinguishable from g[z;B
 ℄ = log jz=
j = log jzj � log 
, whi
h is theGreen's fun
tion with pole at in�nity for C nB
 = fz : jzj > 
g. From property (ii)(with 1 now repla
ing 0), we 
on
lude that g[z;D℄ has growth at in�nity satisfyinglimjzj!1 g[z;D℄� log jzj = � log 
(4.3)for some 
onstant 
 > 0 known as the logarithmi
 
apa
ity of the set D. This 
 
anbe thought of as the e�e
tive radius of D in the sense we've just des
ribed.Example 4.2. Suppose �`(z) is a moni
 polynomial of degree ` and letD"(�`) = fz 2 C : j�`(z)j � "gbe a family of regions whose boundaries are the "-lemnis
ates of �`(z). D"(�`) is
ompa
t for ea
h " > 0, though it need not be a 
onne
ted region. With an easy
al
ulation one may verify that D"(�`) has the Green's fun
tion (
f. [38, p. 164℄)g[z;D"(�`)℄ = 1̀ log� j�`(z)j" � :Equipped with the Green's fun
tion g[z;D℄, we 
an return our attention to thefun
tion U�(z;D) des
ribing the error in our approximation problem. The followingresult is a simpli�ed version of the Bernstein{Walsh lemma (see [38, xIII.2℄).Proposition 4.3. Let D be a 
ompa
t set with pie
ewise smooth boundary �D.Suppose u is harmoni
 outside D and that u(z) � 0 for z 2 �D. If u(z) = log jzj+
 + o(1) for some 
onstant 
 as jzj ! 1, then u(z) � g[z;D℄. In parti
ular, if �(z)is any polynomial of degree `, thenU�(z;D) = 1̀ log� j�(z)jmaxfj�(w)j : w 2 Dg� � g[z;D℄(4.4)for ea
h z 2 C nD.Proof. De�ne v(z) � u(z) � g[z;D℄ for z 2 C nD. Note that v is harmoni
 inC nD, limz!�D v(z) � 0, and v is bounded at in�nity. We will show this implies v � 0throughout C nD. Consider any w 2 C nD. Without loss of generality, suppose D
ontains the unit disk 
entered at the origin. For any " > 0, v"(z) � v(z) � " log jzjis harmoni
 in C nD with limz!�
 v"(z) � 0. Sin
e v is bounded in C nD, there existsR > jwj su
h that v"(z) � 0 on the 
ir
le jzj = R. By the maximum prin
iple,v"(w) � 0. Letting "! 0, we see that v(w) � 0, and so u(w) � g[w;D℄.When � has all its roots in D and is of exa
t degree `, then U�(z;D) satis�esthe hypotheses on u(z), giving (4.4). If � has exa
t degree ` but roots outside D,then U�(z;D) has singularities in C nD. En
lose these singularities in a set B
 
on-sisting of the union of 
losed disks with radius 
, with 
 > 0 suÆ
iently small thatU� < 0 throughout the interior of B
 . Now limz!�D[�B
 U�(z;D)� g[z;D℄ � 0 andU�(z;D)� g[z;D℄ is harmoni
 on C nfD [B
g. By the above arguments, (4.4) holdsthroughout C nfD [ B
g and remains true as 
 > 0 is made arbitrarily small.If deg(�) < `, repla
e ` in the de�nition of U� by deg(�). Apply the argumentabove to prove this new fun
tion is bounded by g[z;D℄; sin
e this fun
tion is largerthan U�, (4.4) holds.
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ertain spe
ial 
hoi
es of D = 
bad, the polynomial approximation problemof Theorem 3.5 
an be solved exa
tly.Theorem 4.4. Suppose �`�(z) is a moni
 polynomial of degree `�. Let 
bad =D"(�`�) be an asso
iated "-lemnis
ati
 set as de�ned in Example 4.2 and suppose
good is a 
ompa
t subset of C su
h that 
good \D"(�`�) = ;. Thenmin�2P̀ � maxf j�(w)j : w 2 
badgminf j�(z)j : z 2 
goodg = "minf j�`�(z)j : z 2 
goodg :Proof. Using the Green's fun
tion for D"(�`�) des
ribed in Example 4.2, we 
anrearrange (4.4) to show that for any � 2 P`� ,j�(z)jmaxfj�(w)j : w 2 D"(�`�)g � j�`�(z)j"holds for all z 2 
good. Equality is attained for every z 2 C whenever � = �`� .Minimizing over z 2 
good and then maximizing over � 2 P`� yieldsmax�2P̀ � minfj�(z)j : z 2 
goodgmaxfj�(w)j : w 2 D"(�`�)g � minfj�`�(z)j : z 2 
goodg" :(4.5)In fa
t, equality must hold in (4.5) sin
e � = �`� is in
luded in the 
lass of fun
-tions over whi
h the maximization o

urs. The 
on
lusion then follows by taking there
ipro
al of both sides.More general 
hoi
es of D = 
bad will not typi
ally yield an exa
tly solvable poly-nomial approximation problem, at least for �xed (�nite) polynomial degree. However,the following asymptoti
 result 
an be obtained as the polynomial degree is allowedto in
rease.Theorem 4.5. Let 
bad and 
good be two disjoint 
ompa
t sets in the 
omplexplane su
h that C n
bad is a Diri
hlet region. Thenlim`�!1 min�2P̀ � �maxfj�(w)j : w 2 
badgminfj�(z)j : z 2 
goodg �1=`� = e�minfg[z;
bad℄ : z2
goodg(4.6)where g[z;
bad℄ is the Green's fun
tion of C n
bad with pole at in�nity.Proof. The theorem is proved in [27, p. 236℄, where the left hand side of (4.6) isreferred to as the (`�; 0) Zolotarjov number. We give here a brief indi
ation of theproof suÆ
ient to support later dis
ussion. The inequality (4.4) 
an be manipulatedto yield � j�`�(z)jmaxfj�`�(w)j : w 2 
badg�1=`� � eg[z;
bad℄;whi
h in turn implies�maxfj�`�(w)j : w 2 
badgminfj�`�(z)j : z 2 
goodg �1=`� � e�minfg[z;
bad℄ : z2
goodg:



22 CHRISTOPHER BEATTIE, MARK EMBREE, AND JOHN ROSSIFurthermore, one may 
onstru
t polynomials Lk that have as their zeros pointsdistributed on the boundary �
bad, the Leja points f�1; �2; : : : ; �kg, de�ned re
ur-sively so that �k+1 = arg max� kYj=1 jz � �j j : z 2 
bad�;see [38, xV.1℄. This sequen
e of Leja polynomials satis�es asymptoti
 optimality,limk!1� jLk(z)jmaxfjLk(w)j : w 2 
badg�1=k = eg[z;
bad℄(4.7)for ea
h z 2 C n
bad . Convergen
e is uniform on 
ompa
t subsets of C n
bad . Thus we
an reverse the order of the limit with respe
t to polynomial degree and minimizationwith respe
t to z 2 
good, then take re
ipro
als to �ndlimk!1�maxfjLk(w)j : w 2 
badgminfjLk(z)j : z 2 
goodg �1=k = e�minfg[z;
bad℄ : z2
goodg:(4.8)Sin
e �maxfjL`�(w)j : w 2 
badgminfjL`�(z)j : z 2 
goodg �1=`� � min�2P̀ � �maxfj�(w)j : w 2 
badgminfj�(z)j : z 2 
goodg �1=`�� e�minfg[z;
bad℄ : z2
goodg;equality must hold throughout and thus (4.6) holds.In the 
ontext of Example 4.1, where F (z) was a 
onformal map taking theexterior of 
bad to the exterior of the 
losed unit disk with F (1) =1, Theorem 4.5redu
es to (
f. [10, Thm. 2℄)lim`�!1 min�2P̀ � �maxfj�(w)j : w 2 
badgminfj�(z)j : z 2 
goodg �1=`�= maxz2
good 1jF (z)j :4.2. E�e
tive restart strategies. The usual goal in 
onstru
ting a restartstrategy is to limit the size of the Krylov subspa
e (restri
ting the maximum degree ofthe polynomial �) without degrading the asymptoti
 
onvergen
e rate. Demonstratingequality in (4.6) pivoted on the 
onstru
tion of an optimal family of polynomials|inthis 
ase, Leja polynomials. There are other possibilities, however. Fekete polynomi-als are the usual 
hoi
e for the 
onstru
tion in Theorem 4.5; see [38, xIII.1℄. Chebyshevpolynomials and Faber polynomials o�er familiar alternatives. (For Hermitian ma-tri
es, a pra
ti
al Leja shift strategy has been developed by Calvetti, et al. [3, 6℄.Heuveline and Sadkane advo
ate numeri
al 
onformal mapping to determine Faberpolynomials for restarting non-Hermitian iterations [18℄.) On
e some optimal familyof polynomials is known that solves (4.6), e�e
tive restart strategies be
ome evident.Theorem 4.6. Let 
good and 
bad be two disjoint 
ompa
t sets in the 
om-plex plane 
ontaining, respe
tively, the good and bad eigenvalues of A, and su
h thatC n
bad is a Diri
hlet region. Suppose that 	�p(z) is the aggregate restart polynomial
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h of order p.(a) If polynomial restarts are performed using roots of optimal polynomials for
bad (i.e., 	�p(z) are optimal polynomials of degree �p), thenlim�!1 min�2P̀ ��maxfj	�p(w)�(w)j : w 2
badgminfj	�p(z)�(z)j : z 2
goodg� 1�p+`�= e�minfg[z;
bad℄:z2
goodg;(4.9)where g[z;
bad℄ is the Green's fun
tion of 
bad with pole at in�nity.(b) If the boundary of 
bad is a lemnis
ate of 	�p�`� ,
bad = D"(	�p�`�) = fz 2 C : j	�p(z)�`�(z)j � "g ;for some degree-`� moni
 polynomial �`� and some " > 0, thenmin�2P̀ � maxfj	�p(w)�(w)j : w 2 
badgminfj	�p(z)�(z)j : z 2 
goodg = "minfj	�p(z)�`�(z)j : z 2 
goodg :Proof. Part (b) follows immediately from Theorem 4.4. Part (a) 
an be seen byobserving that sin
e 	�p(z) is an asymptoti
ally optimal family for 
bad,maxfj	�p(w)j : w 2 
badgminfj	�p(z)j : z 2 
goodg � min�2P̀ � �maxfj	�p(w)�(w)j : w 2 
badgminfj	�p(z)�(z)j : z 2 
goodg �� �e�minfg[z;
bad℄ : z2
goodg��p+`�:Now �xing p and `�, the 
on
lusion follows from (4.8) by following the subsequen
egenerated by � = 1; 2; : : : .Re
all that the desired e�e
t of the restart polynomial is to retain the rapid
onvergen
e rate of the full (unrestarted) Krylov subspa
e without requiring the di-mension `� to grow without bound. We have seen here that restarting with optimalpolynomials for 
bad re
overs the expe
ted linear 
onvergen
e rate for 
bad (presum-ing one 
an identify this set, not a trivial matter in pra
ti
e). Still, the unrestartedpro
ess may take advantage of the dis
rete nature of the spe
trum, a

elerating 
on-vergen
e beyond the expe
ted linear rate. Designing a restart strategy that yieldssimilar behavior is more elaborate.4.3. Superlinear e�e
ts from assimilation of bad eigenvalues. In a varietyof situations, the gap appears to 
onverge superlinearly. True superlinear 
onvergen
eis an asymptoti
 phenomenon that has a nontrivial meaning only for nonterminatingiterations. Thus one must be 
autious about des
ribing superlinear e�e
ts relatingto (unrestarted) Krylov subspa
es, sin
e Ugood is eventually 
ompletely 
aptured bythe Krylov subspa
e as dis
ussed in x2. Here our point of view follows that of [49,51℄, showing the estimated gap may be bounded by a family of linearly 
onvergingpro
esses exhibiting in
reasingly rapid linear rates. The next result mimi
s the Ritzvalue bounds for Hermitian matri
es developed by van der Sluis and van der Vorst [50,x6.6℄. We assume here that 
bad 
onsists of the union of s dis
rete points, potentiallywith some additional Diri
hlet region. That is, some bad eigenvalues (typi
ally those
losest to the good eigenvalues, or distant outliers) are treated as dis
rete points,while any leftovers are 
olle
ted in the Diri
hlet region.
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good and 
bad be disjoint 
ompa
t subsets of C and suppose
bad 
ontains s isolated points, z1; z2; : : : ; zs. De�ne a sequen
e of s + 1 nestedsubsets as 
k = 
k+1 [ fzkg for k = 1; : : : ; s with 
1 � 
bad, so that ea
h set
k � 
k+1 6= ; di�ers from adja
ent sets in the sequen
e by single points. De�nealso the asso
iated diametersek � max fjw � zkj : w 2 
kg and dk � min fjz � zkj : z 2 
goodg :Then for r = 1; : : : ; s and ea
h `� > r,min�2P̀ � max fj�(w)j : w 2 
badgmin fj�(z)j : z 2 
goodg � � rYj=1 ejdj� min�2P̀ ��r max fj�(w)j : w 2 
r+1gmin fj�(z)j : z 2 
goodg :Proof. Fix an integer k � 1 and observe thatmin�2P̀ � maxw2
k j�(w)jminz2
good j�(z)j � min�2P̀ ��1 maxw2
k j(w � zk)�(w)jminz2
good j(z � zk)�(z)j= min�2P̀ ��1 maxw2
k+1 j(w � zk)�(w)jminz2
good j(z � zk)�(z)j� ekdk min�2P̀ ��1 maxw2
k+1 j�(w)jminz2
good j�(z)j :The 
on
lusion follows by applying the argument repeatedly for k = 1; 2; : : : ; r.Asymptoti
ally, the dis
rete points in 
bad have no e�e
t on the 
onvergen
e rate.Corollary 4.8. In the notation of Theorem 4.7, suppose 
s+1 is a Diri
hletregion. Thenlim`�!1 min�2P̀ � �max fj�(w)j : w 2 
badgmin fj�(z)j : z 2 
goodg �1=`� � e�minfg[z;
s+1℄ : z2
goodg;where g[z;
s+1℄ is the Green's fun
tion with pole at in�nity asso
iated with C n
s+1 .Proof. e Sin
e 
r+1 � 

onvr+1 , The result follows by applying the asymptoti
approa
h of Theorem 4.5 to the result of Theorem 4.7 for r = s.To demonstrate su
h superlinear e�e
ts, we 
onsider a parameterized diago-nal matrix A� having 100 bad eigenvalues spa
ed uniformly in the unit interval[�1� �;��℄ and 4 good eigenvalues uniformly spa
ed in [0; 1℄. Figure 4.1 illustrates
onvergen
e of the gap Æ(Ugood;K`(A�;v1)) for � = 0:1, 0:01, 0:05, and 0:001, alwayswith the starting ve
tor v1 having 1=pn in ea
h 
omponent (n = 104). Above ea
h
onvergen
e 
urve are bounds from Theorem 3.5 and Theorem 4.7. (The 
al
ulationof C1 is addressed in x5.1.) For the superlinear bounds, take 
bad to be the set ofbad eigenvalues and set 
r to be 
bad less the r � 1 rightmost bad eigenvalues. Weapproximate the optimal polynomial in Theorem 4.7 by Chebyshev polynomials for

onvr+1 (see [37, xIV.4.1℄ for details). Noti
e the envelope produ
ed by the aggregatedlinear rates 
reates a superlinear 
onvergen
e e�e
t to an extent determined by the\granularity" of bad eigenvalues as viewed from the nearest good eigenvalue. Greatergranularity (smaller �) 
auses poor initial rates due to nearby bad eigenvalues, thatrapidly dissipate as these eigenvalues are assimilated, yielding to improved rates de-termined by more remote bad eigenvalues. The same phenomenon is observed in x6.4
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ted by Theorem 3.5 and Theorem 4.7 for 
r withr = 1; : : : ; 50.for a Markov 
hain eigenvalue problem. But assimilation of nearby bad eigenvaluesis not the only me
hanism for superlinear 
onvergen
e. In x5.3, we des
ribe hownon-normality 
an also give rise to su
h behavior, illustrated experimentally in x6.2.5. Analysis of Constants. This se
tion 
ontains a more detailed dis
ussion ofthe 
onstants C1 and C2 that arise in the 
onvergen
e bounds given in Theorems 3.4and 3.5. The magnitude of these 
onstants 
ontrols the predi
ted start of the linearphase of 
onvergen
e: larger 
onstants suggest delayed linear 
onvergen
e. Thus weseek an appre
iation of those matrix and starting ve
tor properties that lead to moreor less favorable 
onvergen
e bounds.5.1. Bounding C1. Noti
e thatC1 = max 2Pm�1 k (A)Pbadv1kk (A)Pgoodv1k = maxv2Km(A;v1) kPbadvkkPgoodvk = maxx2Cm kPbadVmxkkPgoodVmxk ;where the 
olumns of Vm form a basis for Km(A;v1). This last expression for C1is simply the largest generalized singular value of the pair of matri
es PbadVm andPgoodVm (see, e.g., [14, x8.7.3℄). This is how we determine C1 for our 
omputationalexamples.The dependen
e of C1 on the starting ve
tor v1 is 
riti
al. If v1 is biased againstUgood, then C1 will be large and our bounds predi
t a delay in 
onvergen
e. Likewise,a good starting ve
tor a

elerates 
onvergen
e as expe
ted.5 We will investigate this5Though our bounds expli
itly in
orporate restart e�e
ts into the polynomial approximationproblem, an alternative approa
h 
ould instead handle restarts via the 
onstant C1, whi
h we expe
tto shrink as restarts enri
h the starting ve
tor in Ugood.



26 CHRISTOPHER BEATTIE, MARK EMBREE, AND JOHN ROSSIbehavior with an illustrative example, but �rst give bounds for C1 that relate itsmagnitude to the orientation of Km(A;v1) relative to the invariant subspa
es Ugoodand Ubad.Proposition 5.1. Under the 
onditions of Theorem 3.4,1kPgoodk Æ(Km(A;v1);Ugood)Æ(Km(A;v1);Ubad) � C1 � kPgoodk Æ(Km(A;v1);Ugood)1� kPgoodk Æ(Km(A;v1);Ugood) ;where the se
ond inequality holds provided kPgoodk Æ(Km(A;v1);Ugood) < 1.Proof. If �good denotes the orthogonal proje
tion onto Ugood then I ��good =(I��good)(I �Pgood), and sok(I��good) (A)v1k � k(I�Pgood) (A)v1k = k (A)Pbadv1k:Thus,Æ(Km(A;v1);Ugood) = max 2Pm�1 minu2Ugood ku�  (A)v1kk (A)v1k= max 2Pm�1 k(I��good) (A)v1kk (A)v1k= max 2Pm�1 k (A)Pgoodv1kk (A)v1k k(I��good)(I�Pgood) (A)v1kk (A)Pgoodv1k� max 2Pm�1 k(I�Pbad)(I��bad) (A)v1kk (A)v1k kPbad (A)v1kk (A)Pgoodv1k� kI�Pbadk max 2Pm�1 k(I��bad) (A)v1kk (A)v1k k (A)Pbadv1kk (A)Pgoodv1k� kPgoodk Æ(Km(A;v1);Ubad)C1:This gives the �rst inequality. For the se
ond, note that for any  2 Pm�1,k (A)Pbadv1kk (A)Pgoodv1k = k(I�Pgood) (A)v1kk (A)v1k k (A)v1kk (A)Pgoodv1k= k(I�Pgood)(I��good) (A)v1kk (A)v1k k (A)(Pgood +Pbad)v1kk (A)Pgoodv1k� kI�Pgoodk k(I��good) (A)v1kk (A)v1k �1 + k (A)Pbadv1kk (A)Pgoodv1k� :(A more frugal inequality leads to a sharper but rather intri
ate upper bound for C1.)Maximizing over  2 Pm�1 and noting that kI�Pgoodk = kPgoodk [22℄ yieldsC1 � kPgoodk Æ(Km(A;v1);Ugood)(1 + C1):When kPgoodk Æ(Km(A;v1);Ugood) < 1, this expression 
an be rearranged to give thedesired upper bound.The bounds given in Proposition 5.1 
an be disparate when kPgoodk is large orÆ(Km(A;v1);Ugood) is 
lose to one. To obtain alternative lower bounds, approximate



CONVERGENCE OF RESTARTED KRYLOV SUBSPACES 27the maximizing polynomial  in (3.5). Some intuitively appealing 
hoi
es for theroots of  2 Pm�1 in
lude the Ritz values or harmoni
 Ritz values generated fromKm�1(A;Pgoodv1). (This is motivated by the fa
t that taking  to be a degree-mpolynomial with the m Ritz values from Km(A;Pgoodv1) as roots would zero thedenominator of the expression (3.5) for C1.)5.2. An Illustration of Starting Ve
tor In
uen
e. Consider a Hermitianmatrix A 2 C 128�128 with eight good eigenvalues uniformly distributed in the inter-val [1; 2℄. The remaining eigenvalues uniformly �ll the interval [�1; 0℄. Sin
e A isnormal, the 
onstants C0 and C2 are trivial, C0 = C2 = 1. Theorem 3.5 thus boundsgap 
onvergen
e as the produ
t of the 
onstant C1, whi
h depends on the startingve
tor, and a polynomial approximation problem, whi
h is independent of it. Taking
bad = [�1; 0℄ and 
good = [1; 2℄, Theorem 4.5 yields an asymptoti
 
onvergen
efa
tor of 3 � p2 � 0:1716, an expedient rate due to the good separation of 
goodfrom 
bad. To study the role of C1, we 
onstru
t seven di�erent starting ve
tors v1that form angles of � = 10�15; 10�12; 10�9; 10�6; 10�3; 1 radians with Ugood. (Ea
hstarting ve
tor has equal 
omponents in ea
h unwanted eigenve
tor dire
tion.) Fig-ure 5.1 shows the result of this experiment. The gap 
onvergen
e 
urves are solidlines; the dotted lines show bounds from Theorem 3.5. For the �nite-degree poly-nomial approximation problem in Theorem 3.5, we use Chebyshev polynomials for
bad = [�1; 0℄. (Sin
e Æ(Ugood;K`(A;v1)) = 1 when ` < m = dim Ugood = 8, weshow the 
omplementary measure Æ(K`(A;v1);Ugood) for the �rst seven iterations.)As predi
ted by our bounds, the asymptoti
 
onvergen
e rate appears largely inde-pendent of the orientation of v1. Interestingly, even a 
onsiderable starting ve
tor biastoward Ugood yields only a modest improvement in 
onvergen
e, whi
h may appeareven less signi�
ant for problems with slower 
onvergen
e rates.
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e dimension, `min[Æ(U good;K `
);Æ(K `;U good)℄

Fig. 5.1. The e�e
t of a biased starting ve
tor on gap 
onvergen
e. The solid lines denote the
omputed gap 
onvergen
e 
urves for starting ve
tors v1 that form angles of � radians with Ugood.The dotted lines show the bound derived from Theorem 3.5 for ea
h value of �. The bla
k dotsdenote the values of C1. In the verti
al axis label, K` is a shorthand for K`(A;v1).



28 CHRISTOPHER BEATTIE, MARK EMBREE, AND JOHN ROSSI5.3. Bounding C2. In 
ontrast to C1, whi
h was strongly linked to the ori-entation of the starting ve
tor v1 with respe
t to the good invariant subspa
e, the
onstant C2 has a somewhat more di�use interpretation. C2 
aptures the e�e
t ofthe non-normality of A, yet ambiguity in the sele
tion of 
good and 
bad inje
ts widevariability to the values C2 
an a
hieve. Generally speaking, 
hoosing the sets 
goodand 
bad to be overly large yields a small 
onstant C2 at the expense of a slow 
onver-gen
e rate for the polynomial approximation problem. Shrinking these sets in
reasesthe 
onstant but improves the predi
ted 
onvergen
e rate. The smallest possible setsthat 
an be 
hosen for 
good and 
bad are the sets of good and bad eigenvalues,respe
tively. If A is diagonalizable, it is possible to pose the approximation problemover these dis
rete point sets, at the expense of a potentially large C2 term arisingfrom eigenve
tor 
onditioning.Lemma 5.2. Suppose � is a subset of the spe
trum of A 
onsisting only of non-defe
tive eigenvalues, and let U denote the maximal invariant subspa
e asso
iated witheigenvalues in �. If the 
olumns of X are eigenve
tors of A forming a basis for U,then �(�) � 
ond2(X):(The 
ondition number 
ond2(�) is the ratio of the maximum to the minimum nonzerosingular value.)Proof. Observe that � � X (X�X)�1X� de�nes an orthogonal proje
tion ontoU, and suppose � is a diagonal matrix with entries in � su
h that AX = X�. Thenfor any fun
tion f that is analyti
 on �, f(A)X = Xf(�), andkf(A)kU = kf(A)X (X�X)�1X�k= kXf(�) (X�X)�1X�k� kXk k (X�X)�1X�k kf(�)k= 
ond2(X) max�2� jf(�)j:Now if 
good and 
bad in Theorem 3.5 are pre
isely the sets of good and badeigenvalues of A, respe
tively, Lemma 5.2 leads to a bound on C2.First Corollary to Theorem 3.5. To the 
onditions of Theorem 3.5, addthe assumption that A is diagonalizable,A[Xgood;Xbad℄ = [Xgood;Xbad℄ diag(�good; �bad):Then Æ(Ugood;K`(A;v(�)1 )) � C0 C1 bC2 min�2P̀ � maxj=L+1;::: ;N j�(�j )	�p(�j)jmink=1;::: ;L j�(�k)	�p(�k)j ;(5.1)where C0 and C1 are as de�ned in Theorems 3.3 and 3.4 andbC2 � 
ond2(Xgood) 
ond2(Xbad):When A is far from normal, the 
onstant bC2 will typi
ally be large; it growsin�nite as A tends towards a defe
tive matrix. However, su
h extreme situations are
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essarily asso
iated with severe degradation in 
onvergen
e behavior, and sothe bound (5.1) will be most appropriate when A is either normal or nearly so.Non-normality 
an 
ompli
ate invariant subspa
e 
omputation in a variety ofways. The good eigenvalues 
an be individually ill-
onditioned, with 
ond2(Xgood)�1, while the asso
iated invariant subspa
e is perfe
tly 
onditioned. In other 
ases, onemay �nd the desired eigenvalues are well-
onditioned, while the bad eigenvalues arehighly non-normal (as when 
ond2(Xbad) � 
ond2(Xgood) � 1).6 In either 
ase, thegood invariant subspa
e may still have physi
al signi�
an
e, and we would like tounderstand how this ill-
onditioning a�e
ts the rate at whi
h we 
an 
ompute it.Sin
e non-normal matri
es are of spe
ial interest, 
onsideration of pseudospe
trayields a natural approa
h that often 
an provide sharper, more des
riptive 
onvergen
ebounds. Re
all that the "-pseudospe
trum [45, 46℄ is the set�"(A) � fz 2 C : k(z �A)�1k � "�1g;or, equivalently, �"(A) = fz 2 �(A+E) : kEk � "g, where �(M) denotes the set ofeigenvalues of a matrixM.For a �xed ", �"(A) is a 
losed set in the 
omplex plane 
onsisting of the union ofno more thanN 
onne
ted sets, ea
h of whi
h must 
ontain at least one eigenvalue. As"! 0, �"(A) tends toN disjoint disks (whose radii depend on eigenvalue 
onditioningand defe
tiveness) 
entered at and shrinking around the N distin
t eigenvalues.Lemma 5.3. Let U be an invariant subspa
e of A and suppose � is the set ofeigenvalues asso
iated with U.(a) Let 
 be a set 
ontaining � but no eigenvalues of A outside �, and supposethe boundary �
 is the �nite union of positively-oriented Jordan 
urves. Then�(
) � 12� Z�
 k(z �A)�1kU jdzj:(5.2)(b) Let �" 
ontain the union of those 
onne
ted 
omponents of �"(A) that in
lude� 2 �, and suppose further that �" 
ontains no eigenvalues outside of � and itsboundary ��" is the �nite union of positively-oriented Jordan 
urves. Then�(�") � L(��")2�" ;(5.3)where L(��") is the length of the boundary of �":Proof. For part (a), let � be the orthogonal proje
tor onto the given invariantsubspa
e U and let P be the spe
tral proje
tor for A asso
iated with U. For anyfun
tion f analyti
 on 
, kf(A)kU = kf(A)�k = kf(A)P�k � kf(A)Pk: Now,f(A)P = 12�i Z�
 f(z)(z �A)�1 dz:Thus for any ve
tor x 2 U,kf(A)xk � 12� Z�
 jf(z)j k(z �A)�1xk jdzj� � 12� Z�
 k(z �A)�1kU jdzj� maxz2�
 jf(z)j kxk:6This is the 
ase for the Markov 
hain example des
ribed in x6.4. Trefethen des
ribes anotherexample, the Gauss{Seidel iteration matrix for the 
entered di�eren
e dis
retization of the se
ondderivative [46, Example 10℄.
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e f is analyti
 on 
, maxz2�
 jf(z)j = maxz2
 jf(z)j. Part (b) follows from (a)by assigning 
 = �".Pseudospe
tral bounds were developed by Trefethen to bound the GMRES resid-ual norm [45℄, and Simon
ini has used a similar approa
h to analyze blo
k-Arnoldi
onvergen
e [39℄. In the single eigenve
tor 
ase, her Theorem 3.1 
losely resem-bles our (5.6) below. (Lemma 5.3 
ould easily be sharpened to instead involve�"(U�AU), where the 
olumns of U form an orthonormal basis for Ugood; note that�"(U�AU) � �"(A) [43℄.)The pseudospe
tral approa
h leads to a robust alternative to the eigenve
tor-based bound (5.1).7 Suppose " is suÆ
iently small that the 
omponents of the "-pseudospe
trum en
losing the good eigenvalues are disjoint from those 
omponentsen
losing the bad eigenvalues. �"(A) 
an then be 
ontained in the two disjoint sets�good" and �bad" , leading to an alternative bound.Se
ond Corollary to Theorem 3.5. Assume the 
onditions of Theorem 3.5and suppose that " > 0 is suÆ
iently small that �good" \ �bad" = ;. Then, provided	�p(z) has no roots in �good" , and the boundaries of �good" and �bad" are �nite unionsof positively-oriented Jordan 
urves,Æ(Ugood;K`(A;v(�)1 )) � C0 C1 eC2(") min�2P̀ � maxfj�(z)	�p(z)j : z 2 �bad" gminfj�(z)	�p(z)j : z 2 �good" g ;(5.4)where C0 and C1 are as de�ned in Theorems 3.3 and 3.4, andeC2(") � L(��good" )L(��bad" )4�2"2 :(5.5)L(��good" ) and L(��bad" ) are the boundary lengths of �good" and �bad" , respe
tively.This pseudospe
tral bound holds for a range of "-values, providing a naturalme
hanism for adjusting the sets 
good and 
bad. As " gets smaller, eC2(") generallyin
reases, but the 
onvergen
e rate indu
ed by the polynomial approximation problemimproves, sin
e the sets on whi
h the approximation problem is posed re
ede from oneanother. For the most des
riptive 
onvergen
e bound, take the envelope of individualbounds 
orresponding to a variety of "-values; see Figures 6.1 and 6.3. Of 
ourse, thebound (5.4) is only meaningful when " is suÆ
iently small that �good" \�bad" = ;. Theneed to take " parti
ularly small to satisfy this 
ondition may signal an ill-
onditionedproblem; 
onsider enlarging the set of good eigenvalues.In some situations, one may wish to use di�erent values of " for the good and badpseudospe
tra, in whi
h 
ase (5.4) 
hanges in the obvious way. Furthermore, whenthe good eigenvalues are normal (i.e., one 
an take 
ond2(Xgood) = 1), it is best to
ombine the pseudospe
tra and eigenve
tor approa
hes to obtainÆ(Ugood;K`(A;v(�)1 )) � C0 C1 L(�bad" )2�" min�2P̀ �maxfj�(z)	�p(z)j : z 2 �bad" gmink=1;::: ;L j�(�k)	�p(�k)j :(5.6)We 
lose this se
tion by pointing out one non-normal situation where the eigenve
-tor-based bound (5.1) 
an be dramati
ally superior to the pseudospe
tral bound (5.4).7Note that Greenbaum has demonstrated how more 
lever use of eigenve
tor information 
ansometimes be superior to estimating integrals of the resolvent norm [15℄.
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ity that dimUgood = dimUbad with Ugood � Ubad for some diag-onalizable A. It is possible for the basis ve
tors in Xgood and Xbad to be perfe
tly
onditioned on their own, but terribly 
onditioned if taken together, e.g.,Xgood = 2664 1 00 10 00 03775 ; Xbad = 2664 1 00 1
 00 
 3775 ;with 0 < j
j � 1. This results in bC2 = 1 but eC2(")� 1 for usefully small values of ".(This 
an be remedied by 
onsidering the pseudospe
tra of A orthogonally proje
tedonto Ugood and Ubad.) What is happening here? The more alike Ugood and Ubadare, the more prominent their general orientation is in the Krylov subspa
e, possiblyresulting in an initial period of rapid sublinear 
onvergen
e. Dis
riminating the �nedi�eren
e between Ugood and Ubad may still be 
hallenging.6. Some Examples. How well does the ma
hinery 
onstru
ted in the previousse
tions work? Here we demonstrate our bounds for a variety of examples. Thesetest problems are 
ontrived to illustrate the e�e
ts we have des
ribed as 
leanly aspossible. Eigenvalue problems from appli
ations inevitably involve more 
ompli
atedspe
tral stru
ture.6.1. In
uen
e of Non-normality on Predi
ted Rates. We begin with twoexamples involving non-diagonalizable matri
es where pseudospe
tral 
onvergen
ebounds 
an be used to good e�e
t. (While the examples in this subse
tion and thenext are defe
tive, we emphasize that the pseudospe
tral bound 
an also be useful fordiagonalizable matri
es with large values of bC2.) De�neA = �Dgood 00 J58(�1)� ;(6.1)where Dgood is a 6 � 6 diagonal matrix 
ontaining good eigenvalues uniformly dis-tributed in [1; 2℄, and J58(�1) is a Jordan blo
k of dimension 58 with the bad eigen-value � = �1 on the main diagonal and ones on the �rst superdiagonal. Note thatUgood ? Ubad, so C0 = 1. Sin
e the good eigenvalues are normal, we apply the hybridpseudospe
tral bound (5.6). The pseudospe
tra of a dire
t sum of matri
es is theunion of the pseudospe
tra of ea
h 
omponent matrix [48℄, so we need only fo
us onthe pseudospe
tra of the Jordan blo
k, whi
h are 
ir
ular disks for all " > 0 [32℄; seeFigure 6.1. It follows that eC2(") = r"=", where r" is the radius of �bad" = �"(J58(�1)),determined numeri
ally. For � 2 P`� we take the Chebyshev polynomial for �bad" ,�(z) = (z + 1)`� . For all " su
h that r" < 2, (5.6) givesÆ(Ugood;K`(A;v1)) � C1r"" �r"2 �̀ �;(6.2)where we have used the fa
t that j�(�)j � 2 for all good eigenvalues �. The 
onver-gen
e 
urve and 
orresponding bounds are shown in Figure 6.1 for the starting ve
torv1 with 1=pn in ea
h 
omponent; no restarting is performed. Interestingly, for smallvalues of " the bound (5.6) a

urately 
aptures the �nite termination that must o

urwhen ` = n = 64, a trait exhibited by pseudospe
tral bounds in other 
ontexts.
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Fig. 6.1. On the left, good eigenvalues (�) and pseudospe
tral boundaries ��bad" for " = 10�2,10�5, 10�15, and 10�100, where A is given by (6.1). (The bad eigenvalue (�) is obs
ured by the" = 10�100 boundary.) On the right, gap 
onvergen
e (solid line) together with the bound (6.2) (dottedlines) for ea
h of the pseudospe
tral 
urves shown on the left. For small values of ", (6.2) 
apturesthe �nite termination that must o

ur at the 64th iteration.Our se
ond example is the same, ex
ept the good eigenvalues are now repla
edwith a Jordan blo
k, A = �J6( 32 ) 00 J58(�1)� ;(6.3)where J6( 32 ) is a 6�6 Jordan blo
k with 32 on the main diagonal and ones on the �rstsuperdiagonal; J58(�1) is as before. Again note that Ugood ? Ubad, implying C0 = 1.Sin
e both the good and bad eigenvalues are defe
tive, apply the pseudospe
tralbound (5.4). Re
alling the pseudospe
tra of Jordan blo
ks are 
ir
ular disks, letrbad" and rgood" denote the radii of �bad" = �"(J58(�1)) and �good" = �"(J6( 32 )),respe
tively; see the left plot of Figure 6.2. The Se
ond Corollary to Theorem 3.5holds whenever rbad" + rgood" < 52 . For su
h ", eC2(") = rbad" rgood" ="2 andÆ(Ugood;K`(A;v1)) � C1 rbad" rgood""2  rbad"52 � rgood" !̀ �;(6.4)where again we have taken for � 2 P`� the Chebyshev polynomial for �bad" , �(z) =(z + 1)`� . The 
onvergen
e 
urve and 
orresponding bounds are shown in Figure 6.2for the starting ve
tor v1 with 1=pn in ea
h 
omponent; no restarting is performed.6.2. Superlinear E�e
ts Due to Non-normality. Our �nal example of pseu-dospe
tral bounds addresses the matrixA = � 0 00 F � ;(6.5)where there is a single good eigenvalue � = 0 (with multipli
ity one) and a badeigenvalue � = � 13 asso
iated with the 63� 63 bidiagonal matrix F, whi
h has � 13 in



CONVERGENCE OF RESTARTED KRYLOV SUBSPACES 33

0 6  20 30 40 50  64 70
10

−15

10
−10

10
−5

10
0

−2 −1 0 1 2

−1

−0.5

0

0.5

1

" = 10 �2" = 10 �3" = 10 �5
Krylov subspa
e dimension, `Æ(U good;K `(A;v

1))
Fig. 6.2. On the left, bad eigenvalue (�), good eigenvalue (�), and pseudospe
tral boundaries��bad" and ��good" for A given by (6.3) and " = 10�2, 10�3, and 10�5. On the right, gap 
onver-gen
e (solid line) with the bound (6.4) (dotted lines) for the three " values used in the left plot.the main diagonal entries and 1=j in the (j; j + 1) entry of the superdiagonal. Likethe Jordan blo
ks des
ribed before, the pseudospe
tra of F are 
ir
ular disks [32℄, butthe radii of these disks shrink mu
h more rapidly as " de
reases than observed for theJordan blo
k. As a result, the 
onvergen
e rate steadily improves as " gets smaller;this is 
ompensated by growing eC2(") values. Taking �(z) = (z + 13 )`� , we obtainÆ(Ugood;K`(A;v1)) � C1r"" (3r")`�;(6.6)provided r" < 13 , where r" is the radius of �bad" . Figure 6.3 shows the spe
trum of Aand pseudospe
tra of F. As " gets smaller, the bound (6.6) tra
es out an envelopethat predi
ts early stagnation followed by improving linear 
onvergen
e rates. Thisis \superlinear" 
onvergen
e, but of a di�erent nature from that des
ribed in x4.3.Figure 6.3 shows these bounds along with the gap 
onvergen
e 
urve for a ve
torv1 with real entries drawn from the standard normal distribution. Pseudospe
tralbounds for GMRES exhibit similar superlinear behavior for matri
es like F [10, 12℄.Although all the examples here have used defe
tive matri
es, these bounds are alsoappropriate for diagonalizable matri
es with a large eigenve
tor 
ondition number.6.3. Shift Sele
tion for Restarted Algorithms. The results of x4 indi
atethat e�e
tive restart strategies 
an be 
onstru
ted using optimal polynomials asso
i-ated with sets 
ontaining the bad eigenvalues. In this se
tion, we give some examplesof how 
hoi
es for 	�p based on partial information (or misinformation) about badeigenvalue lo
ation a�e
ts the observed 
onvergen
e rates and illustrate how well ourbounds 
an predi
t this.Consider the 200� 200 upper triangular matrixA = � Dgood C0 Dbad �;where Dgood is a 16� 16 diagonal matrix of good eigenvalues, distributed uniformlyaround the 
ir
le in the 
omplex plane 
entered at 3 with radius 1; Dbad is a diagonal
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Fig. 6.3. On the left, bad eigenvalue (�), good eigenvalue (�), and pseudospe
tral boundaries��bad" for A given by (6.5) and " = 10�2, : : : , 10�12. On the right, gap 
onvergen
e (solid line)with the bound (6.4) (dotted lines) for the eleven " values shown in the left plot.matrix 
ontaining the bad eigenvalues distributed uniformly along the line segment(designated Ibad) parallel to the imaginary axis 
onne
ting the points �1� 5i; C isa full (row) rank matrix s
aled so that kPgoodk � 1000. The starting ve
tor, v1,has normally distributed random 
omplex entries. (The same v1 was used for allexperiments shown in this subse
tion.)Figure 6.4 
ompares the predi
ted and observed 
onvergen
e 
urves for the un-restarted iteration, where the Krylov subspa
e grows without bound. The left plotdisplays the equipotentials of g(z; Ibad)|the physi
al analog is the potential �eldgenerated by a 
ontinuous (line) 
harge distribution spread over Ibad. The 
olor baris 
alibrated to show exp(�g(z; Ibad)), giving the predi
ted 
onvergen
e rates at lo-
ations in the 
omplex plane if good eigenvalues were present there. In parti
ular,the lowest equipotential 
ontour passing through a good eigenvalue is shown; it leadsvia (4.6) to a predi
ted 
onvergen
e rate of �0:566. The right plot shows the iterationhistory of Æ(Ugood;K`(A;v1)) versus the iteration index `. After an early sublinearsurge that 
attens out near 1=kPgoodk, an observed linear rate of � 0:539 emerges.In separate experiments (not shown), we have varied the magnitude of kCk (in ef-fe
t 
hanging kPgoodk) and have observed variations in the sublinear stagnation levelroughly proportional to 1=kPgoodk, 
onsistent with the dis
ussion surrounding Fig-ure 2.1. The 
onvergen
e bound is derived from the First Corollary to Theorem 3.5,using for � Chebyshev polynomials for Ibad. (For all experiments in this subse
tion,C0 = p2, C1 � 4:4325� 1011, bC2 � 1:2439� 103.)Figure 6.5 shows results for polynomial restarts using fast Leja points [3℄ asso
i-ated with Ibad. These appear as a dense line of white dots atop the bla
k band of badeigenvalues. The base dimension is 20 and restarts are ea
h of order 5. (The Krylovsubspa
e dimension never ex
eeds 25.) The left plot displays the e�e
tive potential,g(z;
bad), generated by 180 fast Leja points|
bad is the smallest polynomial lem-nis
ate generated by the aggregate �lter polynomial that 
ontains all bad eigenvalues.The lowest equipotential 
ontour passing through a good eigenvalue is shown; it leads
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Fig. 6.4. Unrestarted Subspa
e. On the left, good and bad eigenvalues are shown in the \poten-tial �eld" generated by the bad eigenvalues. The 
olorbar is 
alibrated to show e�e
tive 
onvergen
erates for di�erent 
omponents of Ugood. The right plot shows the observed gap history (solid line)together with a bound (dashed) derived from the First Corollary to Theorem 3.5.
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Fig. 6.5. Polynomial restarts at fast Leja points of Ibad (white dots). The base dimension is 20and restarts are ea
h of degree p = 5 (so the subspa
e dimension never ex
eeds 25).via (4.6) and Example 4.2 to a predi
ted 
onvergen
e rate of � 0:576. The boundon the right was obtained from the First Corollary to Theorem 3.5, using Chebyshevpolynomials for Ibad up to the base dimension, then in
luding the shift polynomials.The next two �gures show the e�e
t of poorer 
hoi
es for the �lter shifts. Supposewe mistakenly believe the bad eigenvalues to be 
on
entrated toward the ends of theinterval Ibad and 
hoose �lter shifts a

ordingly grouped in two subintervals that omitthe 
entral portion of Ibad (whi
h we believe to be devoid of bad eigenvalues). We usefast Leja points again but this time for pairs of disjoint intervals that in fa
t 
overonly 60% and 20%, respe
tively, of the bad eigenvalues. These are asymptoti
allyoptimal �lter shifts for misguided guesses of the bad eigenvalue distribution. 
bad isagain the smallest polynomial lemnis
ate generated by 180 fast Leja points that 
on-tains all bad eigenvalues. Here it takes on a more pronoun
ed dumb-bell appearan
e,re
e
ting the absen
e of zeros from the middle of Ibad. As before, the base dimensionis 20 and restarts are ea
h of order 5. The 
onvergen
e rate is seen to deteriorate to
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Fig. 6.6. Polynomial restarts with fast Leja points (white dots) for two subintervals 
overingonly 60% of the bad eigenvalues. The subspa
e dimensions are as in Figure 6.5.
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tively, and is predi
ted to within an a

ura
y of roughly3%{5.2%. By 
omparing the equipotential 
ontours of Figures 6.4 and 6.5 with thoseof Figures 6.6 and 6.7, noti
e the �lter shifts in the latter 
ases 
reate a potential sig-ni�
antly di�erent from what either the bad eigenvalues or optimal �lter shifts wouldgenerate. Figure 6.8 shows the result of using Sorensen's exa
t shifts. The subspa
edimension is limited to be no larger than 20, and a Ritz value is used as a shift if ithas real part smaller than 1. (The early 
onvergen
e plateaus o

ur when the sub-spa
e is 
ompressed to have dimension smaller than the number of good eigenvalues.)The potential plot on the left is based on 180 exa
t shifts. Although these shifts falloutside the 
onvex hull of the bad eigenvalues, they e�e
tively re
over the potentialgenerated by those eigenvalues. The 
onvergen
e rate is predi
ted to within 2% ofthe observed rate. The use of exa
t shifts yields a 
onvergen
e rate within 25% ofthe rate for the unrestarted iteration (Figure 6.4) at a lower 
omputational 
ost andwithout requiring a priori lo
alization of bad eigenvalues to determine optimal shifts(as in Figure 6.5 for good lo
alization and Figures 6.6 and 6.7 for poor lo
alization).6.4. Markov Chain Example. We 
lose by examining a more realisti
 eigen-value problem, takingA to be the transition matrix for a Markov 
hain that des
ribesa random walk on a triangular latti
e. See Saad [37, xII.5.1℄ for details of this exam-ple, a 
ommon test problem for iterative eigenvalue algorithms. Sin
e all the rows ofa transition matrix sum to one, A must have an eigenvalue � = 1, and the Perron{Frobenius theorem assures this eigenvalue is simple (see, e.g., [5, Thm. 1.4℄). The lefteigenve
tor 
orresponding to � = 1 determines a stationary distribution of the Markov
hain, so we are interested in the 
onvergen
e of Æ(Ugood;K`(A�;v1)), where Ugood isthe invariant subspa
e of A� for � = 1. Here we 
onsider a latti
e with a base andheight of 50 nodes, yielding a transition matrix of dimension n = 1275. This matrixexhibits a signi�
ant degree of non-normality, mostly asso
iated with ill-
onditionedeigenvalues far from � = 1, as one 
an infer from the pseudospe
tra illustrated inFigure 6.9. Unlike the previous examples in this se
tion, the good eigenvalue is quite
lose to bad eigenvalues, as highlighted by the 
lose-up on the right of Figure 6.9.The eigenvalues of A appear to be real with � = 0 having algebrai
 and geometri
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tra for the random walk transition matrix for a triangularlatti
e with 1275 nodes. The left plot shows the spe
trum and boundaries of "-pseudospe
tra for " =10�1; : : : ; 10�8. The right plot zooms around � = 1, indi
ating "-pseudospe
tra for " = 10�2; 10�3.
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Fig. 6.10. Gap 
onvergen
e for the random walk example, n = 1275 (solid line). The dashedlines represent the bound (5.1). The best result is obtained when the bad eigenvalues are treated asa dis
rete point set for the approximation problem, while a slower rate is predi
ted when the badeigenvalues are treated as an interval. The dotted lines utilize the superlinear bounds of Theorem 4.7for r = 1; : : : ; 10.multipli
ity 25. (Though we formally stipulate that A be non-derogatory in x3,our proofs only require the good eigenvalues be non-derogatory.) The bound (5.1)based on the 
onditioning of the matri
es of good and bad eigenve
tors is simplest toevaluate. We have C0 = p2, and 
ompute bC2 � 3:546� 109; for a parti
ular startingve
tor with normally distributed real random entries, C1 � 9:933. Labeling theeigenvalues from right to left, the polynomial approximation problem in (5.1) redu
esin this single eigenve
tor 
ase to a minimax approximation on �bad = f�2; : : : ; �ngsubje
t to normalization at �1 = 1: Bounding this approximation problem usingChebyshev polynomials on [�n; �2℄ gives a pessimisti
 result, as 
an be seen in the
onvergen
e plot in Figure 6.10. The superlinear bounds of Theorem 4.7 yield amarked improvement. In the language of Theorem 4.7, we take 
k = f�jgnj=k+1 andredu
e to an approximation problem over 
r+1 for r = 1; : : : ; 10, for whi
h we useChebyshev polynomials on [�n; �r℄. An even better bound is obtained by treating�bad 
ompletely as a dis
rete point set. One approa
hable way of doing this is to take�good = f�1g and note thatmin�2P̀ � maxfj�(�)j : � 2 �badgminfj�(�)j : � 2 �goodg = min�2P̀ ��(�1)=1 max�2�bad j�(�)j � min�2P̀ ��(0)=1 k�(S)rk;(6.7)where S = diag(�2 � �1; : : : ; �n � �1) and r = [1; 1; : : : ; 1℄T. The right hand sideof (6.7) 
an be 
omputed as the residual norm of the GMRES algorithm applied tothe matrix S with initial residual r; this is no more than a fa
tor of pn worse than theleft hand side of (6.7). The resultant bound in shown in Figure 6.10. Alternatively,the minimax problem on the left hand side of (6.7) 
ould be solved dire
tly via alinear program.
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