
CONVERGENCE OF RESTARTED KRYLOV SUBSPACESTO INVARIANT SUBSPACESCHRISTOPHER BEATTIE�, MARK EMBREEy, AND JOHN ROSSI�Abstrat. The performane of Krylov subspae eigenvalue algorithms for large matries an bemeasured by the angle between a desired invariant subspae and the Krylov subspae. We developgeneral bounds for this onvergene that inlude the e�ets of polynomial restarting and impose norestritions onerning the diagonalizability of the matrix or its degree of non-normality. Assoiatedwith a desired set of eigenvalues is a maximum \reahable invariant subspae" that an be developedfrom the given starting vetor. Convergene for this distinguished subspae is bounded in termsinvolving a polynomial approximation problem. Elementary results from potential theory lead toonvergene rate estimates and suggest restarting strategies based on optimal approximation points(e.g., Leja or Chebyshev points); exat shifts are evaluated within this framework. Computationalexamples illustrate the utility of these results. Origins of superlinear e�ets are also desribed.Key words. Krylov subspae iteration, Arnoldi methods, restarts, perturbation theory, eigen-values, pseudospetra, potential theory, invariant subspaes.AMS subjet lassi�ation. 15A18, 15A42, 31A15, 41A25, 65F151. Setting. Let A be an n�n omplex matrix with N � n distint eigenvaluesf�jgNj=1 with orresponding eigenvetors fujgNj=1. (We do not label multiple eigen-values separately and make no assertion regarding the uniqueness of the uj .) Eahdistint eigenvalue �j has geometri multipliity nj and algebrai multipliity mj (sothat 1 � nj � mj and PNj=1mj = n). We aim to ompute an invariant subspaeassoiated with L of these eigenvalues, whih for brevity we all the good eigenvalues,labeled f�1; �2; : : : ; �Lg: We intend to use a Krylov subspae algorithm to approx-imate this invariant subspae, possibly with the aid of restarts as desribed below.The remaining N � L eigenvalues, the bad eigenvalues, are not of interest and wewish to avoid exessive expense involved in inadvertently alulating the subspaesassoiated with them.The lass of algorithms onsidered here draw eigenvetor approximations fromKrylov subspaes generated by the starting vetor v1 2 C n ,K`(A;v1) = spanfv1;Av1; : : : ; À �1v1g:Suh algorithms, inluding the Arnoldi and bi-orthogonal Lanzos methods reviewedin x1.1, di�er in their mehanisms for generating a basis for K`(A;v1) and selet-ing approximate eigenvetors from this Krylov subspae. Though these approximateeigenvetors may appear to be obvious objets of study, their onvergene an begreatly ompliated by eigenvalue multipliity and defetiveness; see [21℄. The boundsdeveloped in the following setions avoid these diÆulties by instead studying on-vergene of the Krylov subspae to an invariant subspae assoiated with the goodeigenvalues as the dimension of the Krylov subspae is inreased.�Department of Mathematis, Virginia Polytehni Institute and State University, Blaksburg,VA 24061{0123, USA (beattie�math.vt.edu, rossi�math.vt.edu),yOxford University Computing Laboratory, Wolfson Building, Parks Road, Oxford OX1 3QD,United Kingdom (mark.embree�omlab.ox.a.uk). Supported in part by UK Engineering and Phys-ial Sienes Researh Counil Grant GR/M12414.1



2 CHRISTOPHER BEATTIE, MARK EMBREE, AND JOHN ROSSIGiven two subspaes,W and V of C n , the proximity of one to the other is measuredby the ontainment gap (or just gap), de�ned asÆ(W;V) = sup infx2W y2V ky� xkkxk = sin(#max):Here #max is the largest anonial angle between W and a \losest" subspae bV of Vhaving dimension equal to dimW. (Throughout, k � k denotes the vetor 2-norm andthe matrix norm it indues.) Notie that if dimV < dimW then Æ(W;V) = 1, whileÆ(W;V) = 0 if and only if W � V. The gap an be expressed diretly as the norm ofa omposition of projetions: If �W and �V denote orthogonal projetions onto Wand V, respetively, then Æ(W;V) = k(I��V)�Wk (see, e.g., Chatelin [7, x1.4℄).The objetive of this paper then is to measure the gap between Krylov subspaesand anm-dimensional invariant subspae U ofA assoiated with the good eigenvalues.We explore how quikly Æ(U;K`(A;v1)) an be driven to zero, reeting the speedof onvergene, and how this behavior is inuened by the distribution of eigenvaluesand non-normality of A. Note that Æ(U;K`(A;v1)) = 1 when ` < m. For ` � m, ourbounds ultimately take the formÆ(U;K`(A;v1)) � C0 C1 C2 min�2P̀ �m maxfj�(z)j : z 2 
badgminfj�(z)j : z 2 
goodg ;(1.1)where P` is the set of degree-` polynomials, and 
good and 
bad are disjoint ompatsubsets of C ontaining the good and bad eigenvalues, respetively. Here C0 andC2 are onstants depending on the non-normality of A, while the onstant C1 alsoinorporates starting vetor biases. In x2 we identify the subspae U, whih in om-mon situations will be the entire invariant subspae of A assoiated with the goodeigenvalues, but will be smaller when A is derogatory or the starting vetor v1 isde�ient. The basi bound (1.1) is derived in x3. Setion 4 addresses the polynomialapproximation problem embedded in (1.1), desribing those fators that determinelinear onvergene rates and an lead to superlinear e�ets. Setion 5 analyzes theonstants C1 and C2, and x6 provides omputational examples illustrating the bounds.Sine it beomes prohibitively expensive to onstrut and store a good basisfor K`(A;v1) when the dimension of A is large, pratial algorithms typially limitthe maximum dimension of the Krylov subspae to some p � n. If satisfatoryeigenvetor estimates annot be extrated from Kp(A;v1), then the algorithm isrestarted by replaing v1 with some new v 2 Kp(A;v1) that is, hopefully, enrihedin the omponent lying in the subspae U. Sine this v is hosen from the Krylovsubspae, we an write v =  (A)v1 for some polynomial  with deg( ) < p. Ourbounds also apply to this situation, and ideas from potential theory, outlined in x4,motivate partiular hoies for the polynomial  .The results presented here omplement and extend earlier onvergene theory.Saad bounded the gap between a single eigenvetor and the Krylov subspae for amatrix with simple eigenvalues [34℄. Jia generalized this result to invariant subspaesassoiated with a single eigenvalue for a defetive matrix, but these bounds involvethe Jordan form of A and derivatives of approximating polynomials [20℄. Simoniniuses pseudospetra to desribe blok Arnoldi onvergene for defetive matries [39℄.Interpreting restarted algorithms in terms of subspae iteration, Lehouq developed



CONVERGENCE OF RESTARTED KRYLOV SUBSPACES 3an invariant subspae onvergene theory for matries with simple eigenvalues [26℄.Calvetti, Reihel, and Sorensen have studied single eigenvetor onvergene for Hermi-tian matries using elements of potential theory [6℄. A key feature of our approah isits appliability to general invariant subspaes, whih may be better onditioned thanindividual eigenvetors (see, e.g., [42, Ch.V℄). Notably, we estimate onvergene ratesfor defetive matries without introduing any speial hoie of basis and withoutrequiring knowledge of the Jordan form or any related similarity transformation.Finally, we note that other measures of onvergene may be more appealing inertain situations. Alternatives inlude Ritz values [20, 24℄, although onvergenebehavior might be obsure for matries that are defetive (or nearly so). The subspaeresidual is omputationally attrative beause it doesn't require a priori knowledge ofthe good invariant subspae. This measure an be related to gap onvergene [17, 41℄.1.1. Arnoldi and Bi-orthogonal Lanzos Algorithms. Suppose V is ann� n unitary matrix that redues A to upper Hessenberg form; i.e., V�AV = H forsome upper Hessenberg matrix, H. For any index 1 � ` � n, let H` denote the `thprinipal submatrix of H:H` = 26664h11 h12 � � � h1`�2 h22 � � � h2`. . . . . . ...�` h`` 37775 2 C `�` :The Arnoldi method [2, 34℄ builds up the matries H and V one olumn at a timestarting with the unit vetor v1 2 C n , although the proess is typially stopped wellbefore ompletion, with ` � n. The algorithm only aessesA through matrix-vetorproduts, making this approah attrative when A is large and sparse.Di�erent hoies for v1 produe distint outomes forH`. The de�ning reurrenemay be derived from the fundamental relationAV` = V`H` + �`+1v`+1e�̀;where e` is the `th olumn of the `�` identity matrix. The `th olumn of H` is deter-mined so as to fore v`+1 to be orthogonal to the olumns of V`, and �`+1 then is de-termined so that kv`+1k = 1. After ` steps, the olumns of V` onstitute an orthonor-mal basis for the order-` Krylov subspae K`(A;v1) = spanfv1; Av1; : : : ; A`�1v1g.Sine V�̀AV` = H`, the matrix H` is a Ritz{Galerkin approximation of A on thissubspae, as desribed by Saad [35℄. The eigenvalues of H` are alled Ritz values andwill, in many irumstanes, be reasonable approximations to some of the eigenvaluesof A. An eigenvetor of H` assoiated with a given Ritz value �j an be used toonstrut an eigenvetor approximation for A. Indeed, if H`yj = �jyj , then the Ritzvetor buj = V`yj yields the residualkAbuj � �jbujk = j�`+1j je�̀yj j:When j�`+1j � 1, the olumns of V` nearly span an invariant subspae of A. Smallresiduals more often arise from negligible trailing entries of the vetor yj , indiatingthe most reent Krylov diretion ontributed negligibly to the Ritz vetor buj .



4 CHRISTOPHER BEATTIE, MARK EMBREE, AND JOHN ROSSIAlternatively, suppose bV is an n � n invertible matrix that transforms A viasimilarity to tridiagonal form; i.e., bV�1A bV = T for some tridiagonal matrix T. Forany index 1 � ` � n, let T` denote the `th prinipal submatrix of T:T` = 26664�1 2Æ2 �2 . . .. . . . . . `Æ` �` 37775 2 C `�` :Let bV̀ = [v1; v2; : : : ; v`℄ denote a matrix ontaining the �rst ` olumns of bV; andfor W� = bV�1, let W` = [w1; w2; : : : ; w`℄ denote a matrix ontaining the �rst `olumns of W.The bi-orthogonal Lanzos algorithm [25℄ builds up the matries T, bV, and Wone olumn at a time starting with the unit vetors v1 and w1, aessing A andA� only through matrix-vetor produt operations. Di�erent hoies for v1 and w1produe distint outomes for T, if all goes well. Reovering from situations wherenot all goes well is a fundamental aspet of later re�nements of the algorithm; twosuh approahes are disussed in [16℄ and [30℄.At the `th step, the basi reursion isA bV̀ = bV̀ T` + Æ`+1v`+1e�̀;A�W` = W`T�̀ + `+1w`+1e�̀:Typially, normalization is determined so that jj j = jÆj j and v�jwj = 1. With exatarithmeti, the �rst `� 1 steps yield matries bV̀ and W` that satisfy� W�̀ bV̀ = I;� Ran( bV̀ ) = spanfv1; Av1; : : : ; À �1v1g = K`(A;v1), and� Ran(W`) = spanfw1; A�w1; : : : ; (A�)`�1w1g = K`(A�;w1).Notie that T` = W�̀A bV̀ , and so the eigenvalues for T` (also alled Ritz values)are Petrov{Galerkin approximations to the eigenvalues of A [35℄. In both the Arnoldiand bi-orthogonal Lanzos methods, approximations to the (right) invariant subspaesof A are drawn from the same subspae K`(A;v1), though with respet to di�erentbases: V` vs. bV̀ . However, bi-orthogonal Lanzos's T` is not in general similar toArnoldi's H`; indeed, the bi-orthogonal Lanzos eigenvalue approximations typiallydi�er onsiderably from those provided by Arnoldi.Our fous here will remain �xed on how well a good invariant subspae U is ap-tured by K`(A;v1) without regard to how a basis for K`(A;v1) has been generated.Further algorithmi details of partiular methods an be found in [4℄.1.2. Polynomial Restarts. The ost of proeeding through p steps of theArnoldi reurrene is roughly the ost of p matrix-vetor produts of the form Avkon top of the net 2np2 oating point operations neessary for orthogonalization. Bi-orthogonal Lanzos requires 2p matrix-vetor produts (of the form Avk and A�wk)and also on the order of np2 oating point operations to enfore bi-orthogonality. Ifn is very large and A is very sparse (say, with a maximum number of nonzero entriesper row very muh smaller than n), then the ost of orthogonalization an quikly



CONVERGENCE OF RESTARTED KRYLOV SUBSPACES 5dominate as p grows. One general approah for alleviating the growing ost of or-thogonalization is known as polynomial restarting. At the end of p + 1 steps of thereurrene, one selets some \best" vetor v+1 2 Kp+1(A;v1) and restarts the reur-rene from the beginning using v+1 . Di�erent restart strategies di�er essentially inhow they attempt to ondense progress made in the last p+1 steps into the vetor v+1 .Sine any vetor in Kp+1(A;v1) an be represented as  p(A)v1 for some polynomial p of degree p or less, a restart of this type an be expressed asv+1   p(A)v1:(1.2)If subsequent restarts our (relabeling v+1 as v(1)1 ) thenv(1)1   [1℄p (A)v1 (�rst restart)v(2)1   [2℄p (A)v(1)1 (seond restart)...v(�)1   [�℄p (A)v(��1)1 (�th restart);and we an ollet the e�et of the restarts into a single aggregate polynomial ofdegree �p: v(�)1  	�p(A)v1;(1.3)where 	�p(�) =Q�k=1  [k℄p (�).Evidently, the restart vetors should retain and amplify omponents of the goodinvariant subspae while damping and eventually purging omponents of the bad in-variant subspae. One obvious way of enouraging suh a trend is to hoose the poly-nomial 	�p(�) to be as large as possible when evaluated on the good eigenvalues whilebeing as small as possible on the bad eigenvalues. If the bad eigenvalues are situatedwithin a known ompat set 
bad (not ontaining any good eigenvalues), Chebyshevpolynomials assoiated with 
bad are often a reasonable hoie. When integrated withthe Arnoldi algorithm, this results in the Arnoldi{Chebyshev method [36℄ (f. [18℄).Saad introdued a di�erent restart strategy that may appear more diret and in-volves less a priori information about bad eigenvalue loations [34℄. In this strategy,one omputes the eigenvalues of H` and sorts the resulting ` = k + p Ritz valuesinto disjoint sets Sgood and Sbad. The k Ritz values in Sgood are regarded as approx-imations to the good eigenvalues of A, and the restart vetor is de�ned as a linearombination of good Ritz vetors, v+1  kXj=1 jbuj :(1.4)Saad proposed using either a seleted Ritz vetor by itself, or forming a linear ombi-nation that is weighted to favor Ritz vetors that yield large residuals, so as to providebalaned onvergene to the good invariant subspae [34℄. Sine eah Ritz vetor bujis in K`(A;v1), one may interpret either of these strategies as polynomial restarting,as in (1.2) above.



6 CHRISTOPHER BEATTIE, MARK EMBREE, AND JOHN ROSSISorensen introdued a related strategy, alled exat shifts [40℄, that has provedextremely suessful in pratie. As before, one omputes the eigenvalues of H`and sorts the resulting ` = k + p Ritz values into two disjoint sets Sgood and Sbad.But instead of using any expliitly determined linear ombination of Ritz vetorsassoiated with the k good Ritz values, the remaining p Ritz values in the setSbad are used to de�ne the restart polynomial  p(�) = Qk+pj=k+1(� � �j). Morgandisovered a remarkable onsequene of this restart strategy: The updated Krylovsubspae, K`(A;v+1 ) generated by the new starting vetor v+1 in (1.2) using exatshifts satis�es K`(A;v+1 ) = spanfbu1; bu2; : : : ; buk;Abuj ;A2buj ; : : : ;Apbujg for eah in-dex j = 1; 2; : : : ; k [28℄. Thus, Sorensen's exat shifts will provide, in the stagefollowing a restart, a subspae ontaining every possible Krylov subspae of dimen-sion p that Saad's expliit Ritz vetor restart ould generate. Furthermore, Sorensenshowed how to apply shifts impliitly, regenerating the Krylov subspae K`(A;v+1 )with only p matrix-vetor produts in a numerially stable way. Analogous featuresan be veri�ed for the restarted bi-orthogonal Lanzos method using bad Lanzosvalues as polynomial roots. Suh a strategy has been explored in [16, 9℄.In all that follows we assume the Arnoldi or bi-orthogonal Lanzos proess hasproeeded ` steps past the last of � restarts, eah of whih (for the sake of simpliity)has the same order p. For the jth restart, with j = 1; 2; : : : ; �, we use a set of shiftsf�jkgpk=1. De�ne 	�p(�) = �Yj=1 pYk=1(�� �jk)to be the aggregate restart polynomial after � restarts. An iteration without restartswill have p = � = 0 and 	�p(�) = 1.Let K� (A;v(�)1 ) denote the Krylov subspae of order � generated by the start-ing vetor v(�)1 that is obtained after � restarts. The following basi result followsimmediately from the observation that v(�)1 = 	�p(A)v1.Lemma 1.1. For all � � 0, K� (A;v(�)1 ) = 	�p(A)K� (A;v1):2. Reahable Invariant Subspaes. If the good eigenvalues are all simple,then the assoiated invariant subspae is uniquely determined as the span of all thegood eigenvetors. However, if some of these eigenvalues are multiple, there ouldbe a variety of invariant subspaes assoiated with them. Nonetheless, single-vetorKrylov eigenvalue algorithms with polynomial restarts are only apable of revealingone of the many possible invariant subspaes for any given initial vetor. Beforedeveloping onvergene bounds, our �rst task is to haraterize this distinguishedinvariant subspae preisely.Let M be the yli subspae generated by the initial starting vetor v1,M = spanfv1;Av1;A2v1; : : : g:M is evidently an invariant subspae of A and s � dim(M) � n. Sine any invariantsubspae of A that ontains v1 must also ontain A�v1 for eah integer � > 0, Mis the smallest invariant subspae of A that ontains v1. The �rst s vetors of theKrylov sequene fv1;Av1;A2v1; : : : ;As�1v1g are linearly independent, and so mustonstitute a basis for M.



CONVERGENCE OF RESTARTED KRYLOV SUBSPACES 7Reall that a linear transformation is non-derogatory if eah eigenvalue has geo-metri multipliity equal to one, i.e., eah distint eigenvalue has preisely one eigen-vetor assoiated with it, determined up to saling.De�ne AjM to be the restrition of A to M.Lemma 2.1. AjM is non-derogatory and K� (A;v(�)1 ) = K� (AjM;v(�)1 ) �M:Proof. Consider the matrix representation of AjM with respet to the basisfv1;Av1;A2v1; : : : ;As�1v1g. Sine M is s-dimensional,AjMAs�1v1 = Asv1= s�1Xj=0 jAjv1for some onstants 0; : : : ; s�1. Thus,AjM � 26664 0 � � � 0 01 . . . ... .... . . 0 s�21 s�1 37775 = bH:That is, AjM is similar to an irreduible upper Hessenberg matrix, whih is neessarilynon-derogatory sine rank( bH � �) � s � 1 for all �. The seond assertion followsimmediately from v(�)1 2M.De�ne �j to be the asent (or index) of the eigenvalue �j , i.e., the minimumpositive integer � suh that Ker (A��j)� = Ker (A��j)�+1. This �j is the maximumdimension of the nj di�erent Jordan bloks assoiated with �j and Ker (A � �j)�jthen is the span of all generalized eigenvetors assoiated with �j .The spetral projetion onto eah subspae Ker (A��j)�j an be onstruted inthe following oordinate-free manner; see, e.g., [23, xI.5.3℄. For eah eigenvalue �j ,j = 1; : : : ; N , let �j be some positively-oriented Jordan urve in C ontaining �j in itsinterior and all other eigenvalues �k 6= �j in its exterior. Then the spetral projetionis de�ned as Pj � 12�i Z�j (z �A)�1 dz:Pj is a projetion onto the span of all generalized eigenvetors assoiated with �j . Inpartiular, Pjv1 will be a generalized eigenvetor assoiated with �j and will generatea yli subspae K�j (A;Pjv1) � Ker (A��j)�j . Let b�j be the minimum index b� sothat Kb�(A;Pjv1) = Kb�+1(A;Pjv1). This b�j is alled the asent with respet to v1 ofthe eigenvalue �j . Notie that 1 � b�j � �j andKb�j (A;Pjv1) is the smallest invariantsubspae of A that ontains Pjv1. Furthermore, Pjv1 is a generalized eigenvetorof grade b�j assoiated with �j and b�j < �j only if v1 is de�ient in all generalizedeigenvetors of maximal grade �j assoiated with �j .De�ne spetral projetions Pgood and Pbad having ranges that are the maximalinvariant subspaes assoiated with the good and bad eigenvalues, respetively:Pgood = LXj=1Pj and Pbad = NXj=L+1Pj :



8 CHRISTOPHER BEATTIE, MARK EMBREE, AND JOHN ROSSINote that Pgood +Pbad = I.The following result haraterizes M. The �rst statement, inluded for ompari-son, is well-known; the seond is also understood, though we are unaware of its expliitappearane in the literature. Related issues are disussed in [1℄, [13, Ch. VII℄.Lemma 2.2. C n = �Nj=1Ker(A� �j)�j with PNj=1 �j � n, andM = �Nj=1Kb�j (A;Pjv1) with PNj=1 b�j = dimM.Proof. Sine PNj=1Pj = I, any x 2 C n an be written as x = Ix = PNj=1Pjx,whih shows that C n � �Nj=1Ker(A��j)�j . The reverse inlusion is trivial and yieldsthe �rst statement.For the seond statement, use PNj=1Pj = I to get, for any integer � > 0,v1 = NXj=1Pjv1; Av1 = NXj=1APjv1; : : : ; A�v1 = NXj=1A�Pjv1:Thus, for eah integer � > 0, K� (A;v1) � �Nj=1Kb�j (A;Pjv1), and,in partiular, for� suÆiently large this yields M � �Nj=1Kb�j (A;Pjv1).To show the reverse inlusion, note that for every j = 1; : : : ; N , one an on-strut a polynomial pj suh that pj(A) = Pj . (This polynomial interpolates zero ateigenvalues �k 6= �j , one at �j , and has �j � 1 zero derivatives at �j ; see, e.g., [19,x6.1℄ for related information.) Thus for any x 2PNj=1Kb�j (A;Pjv1), one an writex = NXj=1 gj(A)Pjv1 = NXj=1 gj(A)pj(A)v1 2Mfor polynomials gj with degree not exeeding b�j � 1. Thus �Nj=1Kb�j (A;Pjv1) �M,and so M = �Nj=1Kb�j (A;Pjv1).Let Xgood and Xbad be the invariant subspaes of A assoiated with the goodand bad eigenvalues, respetively. Then de�ne Ugood � M \ Xgood and Ubad �M \ Xbad. The following lemma develops a representation for Ugood and Ubad; itshows that Ugood is the maximum reahable invariant subspae assoiated with thegood eigenvalues that an be obtained from a Krylov subspae algorithm started withv1. \Maximum reahable invariant subspae" means that any invariant subspae Uassoiated with the good eigenvalues and stritly larger than Ugood is unreahable:The angle between U and any omputable subspae generated from v1 is boundedaway from zero independent of `, p, �, and hoie of �lter shifts f�jkg.Lemma 2.3.Ugood = �Lj=1Kb�j (A;Pjv1);dim Ugood = LXj=1 b�j � m; and Ubad = �Nj=L+1Kb�j (A;Pjv1);dim Ubad = NXj=L+1 b�j = s�m:Furthermore, for any subspae U of Xgood that properly ontains Ugood,Ugood � U � Xgood;



CONVERGENCE OF RESTARTED KRYLOV SUBSPACES 9onvergene in gap annot our: For all integers ` � 1,Æ(U;K`(A;v(�)1 )) � 1kPgoodk > 0:Proof. Sine Kb�j (A;Pjv1) � Ker(A � �j)�j , Lemma 2.2 leads to M \ Xgood =�Lj=1Kb�j (A;Pjv1). Furthermore, dimKb�j (A;Pjv1) = b�j implies that dimUgood =m as de�ned above. The analogous results for Ubad follow similarly.Note that Xbad = �Nj=L+1Ker(A� �j)�j so, for all ` � 0,K`(A;v(�)1 ) �M � Ugood �Xbad:Thus any v 2 K`(A;v(�)1 ) an be deomposed as v = w1 +w2 for some w1 2 Ugoodand w2 2 Xbad. When Ugood is a proper subspae of U, there exists an bx 2 U so thatbx ? Ugood and kbxk = 1. Note that kbx�w1k � kbxk = 1. Now,minv2K`(A;v(�)1 ) kv� bxk � minw12Ugoodw22Xbad kw1 +w2 � bxk� minw12Ugoodw22Xbad kw2 � (bx�w1)kkbx�w1k� miny2Xgoodw22Xbad kw2 � ykkyk� 0� maxy2Xgoodw22Xbad kPgood(w2 � y)kkw2 � yk 1A�1 = 1kPgoodk :Thus, Æ(U;K`(A;v(�)1 )) = maxx2U minv2K`(A;v(�)1 ) kv � xkkxk� minv2K`(A;v(�)1 ) kv � bxk � 1kPgoodk :This means that we have no hope of apturing any invariant subspae that ontainsa (generalized) eigenspae assoiated with multiple Jordan bloks | at least whenusing a single vetor iteration in exat arithmeti. On the other hand, onvergene anour to the good invariant subspae Ugood, with a rate that depends on propertiesof A, v1, and the hoie of �lter shifts f�jkg, as we shall see.Almost every vetor in an invariant subspae is a generalized eigenvetor of maxi-mal grade and so almost every starting vetor will apture maximally defetive Jordanbloks. While easily aknowledged, this fat an have perplexing onsequenes for theasual Arnoldi or bi-orthogonal Lanzos user, sine eigenvetors of other Jordan bloksmay be unexpetedly \washed out."



10 CHRISTOPHER BEATTIE, MARK EMBREE, AND JOHN ROSSISuppose A is de�ned as A = 266664 1 0 0 0 01 1 0 0 00 0 1 0 00 0 1 1 00 0 0 1 1 377775 :A is in Jordan anonial form and has eigenvetors e2 and e5 assoiated with theeigenvalue 1. (ej denotes the jth olumn of the 5�5 identity matrix.) The eigenvalue1 also has generalized eigenvetors of grade 1 given by e1 and e4 assoiated with the2� 2 and 3� 3 Jordan bloks, respetively, and a generalized eigenvetor of grade 2given by e3 assoiated with the 3� 3 Jordan blok.Let � 2 C be arbitrary and note that the vetor v1 = [1 � 1 1 1 ℄T generates ayli subspae spanned by the �rst three vetors in the Krylov sequene,v1 = 266664 1�111 377775 ; v2 = Av1 = 266664 11 + �122 377775 ; and v3 = A2v1 = 266664 12 + �134 377775 :By hoosing j�j to be large, the starting vetor v1 an be made to have an arbitrarilylarge omponent in the diretion of e2, the eigenvetor assoiated with the 2 � 2Jordan blok.De�ning M = [v1; v2; v3℄ and bH = 24 0 0 11 0 �30 1 3 35; a simple alulation revealsAM =M bH:The Jordan form of bH is easy to alulate:R�1 bHR = 24 1 0 01 1 00 1 1 35 ; where R = 24 1 �1 10 1 �20 0 1 35 :(2.1)The yli subspae generated by the single vetor v1 has aptured a three-dimensional invariant subspae, assoiated with the maximally defetive 3�3 Jordanblok. But this subspae is not the expeted spanfe3; e4; e5g. Using the hange ofbasis de�ned by R in (2.1), one may alulate A(MR) = (MR)(R�1 bHR), whih is266664 1 0 0 0 01 1 0 0 00 0 1 0 00 0 1 1 00 0 0 1 1 377775266664 1 0 0� 1 01 0 01 1 01 1 1 377775 = 266664 1 0 0� 1 01 0 01 1 01 1 1 37777524 1 0 01 1 00 1 1 35 :Note that e5 alone is revealed as the eigenvetor assoiated with the eigenvalue 1;e2 has been washed out in spite of v1 having an arbitrarily large omponent in that



CONVERGENCE OF RESTARTED KRYLOV SUBSPACES 11diretion. Indeed the eigenvetor e2 (and so any subspae ontaining it) is unreahablefrom any starting vetor v1 for whih e�3v1 6= 0. In this example, v1 itself emerges asa generalized eigenvetor of grade 2. Note that every vetor v in C 5 with e�3v 6= 0 isa generalized eigenvetor of grade 2 assoiated with the eigenvalue 1.We lose this setion with a omputational example that both on�rms the gapstagnation lower bound for derogatory matries given in Lemma 2.3 and illustratesother onvergene properties explored in future setions. Consider two matries A1and A2, eah of dimension n = 150 with eigenvalues spaed uniformly in the interval[0; 1℄. In both ases, all the eigenvalues are simple exept for the single good eigen-value � = 1, whih has algebrai multipliity �ve. In the �rst ase, the geometrimultipliity also equals �ve, so the matrix is diagonalizable but derogatory. In theseond ase, there is only one eigenvetor assoiated with � = 1, so it is defetivebut not derogatory. Both matries are onstruted so that kPgoodk � 104. Figure 2.1illustrates the gap onvergene for the Krylov subspae to the invariant subspaeXgood assoiated with � = 1. The starting vetor v1 has 1=pn in eah omponent;no restarting is used here. Convergene annot begin until the �fth iteration, whenthe Krylov subspae dimension mathes the dimension of Xgood. This initial periodof stagnation is followed by a sublinear phase of onvergene leading to a seondstagnation period. This is the end of the story for the derogatory ase, but for thenonderogatory ase, the seond stagnation period is transient and the onvergenerate eventually settles towards a nearly linear rate. In fat, this rate improves slightlyover the �nal iterations shown here, yielding so-alled \superlinear" onvergene, thesubjet of x4.3. These onvergene phases resemble those observed for the GMRESiteration, as desribed by Nevanlinna [29℄.
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Fig. 2.1. The Krylov subspae an never apture Xgood when this subspae is assoiated witha derogatory eigenvalue; onvergene is possible, however, when the assoiated eigenvalues are de-fetive but not derogatory, as desribed by Lemma 2.3.



12 CHRISTOPHER BEATTIE, MARK EMBREE, AND JOHN ROSSI3. Basi Estimates. Sine all reahable subspaes are ontained inM andAjMis non-derogatory, heneforth we assume without loss of generality thatA itself is non-derogatory so that n = dimM, and v1 is not de�ient in any generalized eigenvetorof maximal grade. To summarize the urrent situation: A is an n � n matrix withN � n distint eigenvalues, f�jgNj=1, eah having geometri multipliity 1 and al-gebrai multipliity mj , so that PNj=1mj = n. We seek L (1 � L < N) of theseeigenvalues f�1; �2; : : : ; �Lg (the \good" eigenvalues) together with the orrespond-ing (maximal) invariant subspae Ugood of dimension m = PLj=1mj , whih is nowthe net algebrai multipliity of good eigenvalues sine A is non-derogatory.We begin by establishing two lemmas that are used to develop a bound for thegap in terms of a polynomial approximation problem in the subsequent theorems.Lemma 3.1. Given U;V � C n , suppose bu 2 U (kbuk = 1) and bv 2 V satisfyÆ(U;V) = maxu2U minv2V ku� vkkuk = kbu� bvk:Then bu� bv ? V and bu� bv � Æ(U;V)2bu ? U.Proof. The �rst assertion is a fundamental property of least squares approxima-tion. To show the seond, onsider an arbitrary unit vetor u 2 U and take " > 0.Letting�V denote the orthogonal projetion onto V, the optimality of bu and bv implieskbu� bvk2 � k(I��V)(bu+ "u)k2kbu+ "uk2 :Expanding this inequality, noting bv =�Vbu, and using the �rst assertion givesÆ(U;V)2(1 + 2"Re(bu�u) + "2) � Æ(U;V)2 + 2"Re((bu� bv)�u) + "2k(I��V)uk2:Colleting terms quadrati in " on the left hand side,"2(Æ(U;V)2 � k(I��V)uk2) � 2"Re((bu� bv � Æ(U;V)2bu)�u):Note that the left hand side must be non-negative. Repeating the above argumentwith u multiplied by a omplex salar of unit modulus, we an replae the right handside with 2" j(bu� bv � Æ(U;V)2bu)�uj. Thus for any unit vetor bu 2 U," (Æ(U;V)2 � k(I��V)uk2) � 2 j(bu� bv � Æ(U;V)2bu)�uj � 0:Taking "! 0, we onlude that bu�bv�Æ(U;V)2bu is orthogonal to every u 2 U.As the gap between subspaes loses (Æ(U;V) ! 0), notie that bu � bv beomes\almost" orthogonal to U in the sense that the projetion of bu� bv onto U has normÆ(U;V)2.Lemma 3.2. Let Pm�1 denote the spae of polynomials of degree m � 1 or less.The mapping { : Pm�1 ! Ugood de�ned by{( ) =  (A)Pgoodv1(3.1)is an isomorphism between Pm�1 and Ugood. Furthermore, there exist positive on-stants 1 and 2 so that1 k kPm�1 � k (A)Pgoodv1k � 2 k kPm�1 ;(3.2)



CONVERGENCE OF RESTARTED KRYLOV SUBSPACES 13uniformly for all  2 Pm�1 for any �xed norm k � kPm�1 de�ned on the spae Pm�1.Proof. { is learly linear. To see that { maps Pm�1 onto Ugood, observe that forany given y 2 Ugood, there exist polynomials fgj(�)gLj=1 with deg(gj) � mj � 1 suhthat y = LXj=1 gj(A)Pjv1:The L polynomials fgjgLj=1 provide L separate \slies" of a single polynomial thatan be reovered by (generalized) Hermite interpolation. Let  be a polynomialinterpolant that interpolates gj and its derivatives at �j : (k)(�j) = g(k)j (�j)for k = 0; 1; : : : ;mj � 1 and j = 1; 2; : : : ; L. Theorem VIII.3.16 of [11℄ leads us �rstto observe that  (A)Pj = gj(A)Pj for eah j = 1; : : : ; L. Then sine deg( ) �PLj=1mj � 1 = m� 1, we have from (3.1) thaty = LXj=1  (A)Pjv1 =  (A)Pgoodv1 = {( ):Sine dim(Pm�1) = dim(Ugood), nullity({) = 0 and { is bijetive from Pm�1 to Ugood.The last statement is an immediate onsequene of the fat that linear bijetions arebounded linear transformations with bounded inverses.Theorem 3.3. Suppose that A and v1 satisfy the assumptions of this setion,and that none of the �lter shifts f�jkg oinides with any of the good eigenvaluesf�jgLj=1. For all indies ` � m, the gap between the good invariant subspae, Ugood,and the Krylov subspae of order `, K`(A;v(�)1 ), generated from the �-fold restartedvetor, v(�)1 satis�esÆ(Ugood;K`(A;v(�)1 )) � C0 max 2Pm�1 min�2P̀ �m k�(A) (A)	�p(A)Pbadv1kk�(A) (A)	�p(A)Pgoodv1k ;where C0 � 1 if Ugood ? Ubad and C0 � p2 otherwise.Proof. First, suppose Ugood ? Ubad. This implies that Pgood and Pbad areorthogonal projetions, Ugood is an invariant subspae for both 	�p(A) and [	�p(A)℄�,and, as we will see, that Æ(Ugood;K`(A;v(�)1 )) < 1. Indeed, suppose instead thatÆ(Ugood;K`(A;v(�)1 )) = 1. Then there is a vetor bu 2 Ugood with kbuk = 1 suh thatbu ? K`(A;v(�)1 ). De�ne by � [	�p(A)℄�bu 2 Ugood, and note that by Lemma 3.2,there exists a polynomial b 2 Pm�1 suh that by = b (A)Pgoodv1. Now, for eahj = 1; 2; : : : ; ` we have0 = hbu; Aj�1v(�)1 i = hbu; Aj�1	�p(A)v1i= hby; Aj�1Pgoodv1i= h b (A)Pgoodv1; Aj�1Pgoodv1i:



14 CHRISTOPHER BEATTIE, MARK EMBREE, AND JOHN ROSSISine ` � m, this implies �rst that k b (A)Pgoodv1k = 0 and then bu = 0. (Reall that[	�p(A)℄� is bijetive on Ugood sine 	�p has no roots in ommon with good eigenval-ues.) But bu was given to be a unit vetor, so it must be that Æ(Ugood;K`(A;v(�)1 )) < 1.Now, there are optimal vetors bv 2 K`(A;v(�)1 ) and bx 2 Ugood with kbxk = 1 thatsatisfy Æ(Ugood;K`(A;v(�)1 )) = maxx2Ugood minv2K`(A;v(�)1 ) kv� xkkxk = kbv � bxk:(3.3)Sine Æ(Ugood;K`(A;v(�)1 )) < 1, it must be that bv 6= 0. Furthermore, optimality forbv means bv� bx ? K`(A;v(�)1 ) (viz., Lemma 3.1) and in partiular, bv�(bv� bx) = 0. So,bv 6= 0 implies bv 62 Ubad. There is a polynomial �`�1 2 P`�1 suh thatbv = �`�1(A)v(�)1 = �`�1(A)	�p(A)v1:De�ne Q = Ugood \ Ker(�`�1(A)) and let bq be the minimum (moni) annihilatingpolynomial for Q.1 Evidently, �`�1 must ontain bq as a fator.Sine bv 62 Ubad, �`�1 annot be an annihilating polynomial for Ugood, so Q 6=Ugood and deg(bq) � m� 1. One may fator �`�1 as the produt of a polynomial, �,of degree `�m and a polynomial, q, of degree m� 1 ontaining bq as a fator,�`�1(�) = �(�)q(�):Observing that Ugood is invariant for both �(A) and �(A)�, we may deompose bxas bx = �(A)by + n for some by 2 Ugood and some n 2 Ker(�(A)�) \ Ugood. Notiethat bv��(A)by = bv�bx = bv�bv > 0, so �(A)by 6= 0. However, we'll see that it musthappen that n = 0. Indeed, Lemma 3.1 shows that if z 2 Ugood is orthogonal to bx,bx�z = 0, then bv�z = 0 as well. In partiular, for z = knk2�(A)by � k�(A)byk2n wehave bx�z = 0. Sine Ker�(A)� = Ran�(A)? implies bv�n = 0, we have0 = bv�z = knk2bv��(A)by:We have already seen that bv��(A)by > 0, and so n = 0. Thus we an safely exludefrom the maximization in (3.3) all x 2 Ugood exept for those vetors having thespeial form x = �(A)y for y 2 Ugood and � as de�ned above.We an now begin our proess of bounding the gap. Note thatÆ(Ugood;K`(A;v(�)1 )) = maxx2Ugood minv2K`(A;v(�)1 ) kv� xkkxk= maxx2Ugood min�2P̀ �m minq2Pm�1 k	�p(A)�(A)q(A)v1 � xkkxk= maxy2Ugood min�2P̀ �m minq2Pm�1 k	�p(A)�(A)[q(A)v1 � y℄kk	�p(A)�(A)yk ;(3.4)where we are able to justify the substitution x = 	�p(A)�(A)y sine 	�p(A) is aninvertible map of Ugood to itself.1That is, bq is the minimum degree moni polynomial suh that bq(A)r = 0 for all r 2 Q.



CONVERGENCE OF RESTARTED KRYLOV SUBSPACES 15Now by Lemma 3.2, y 2 Ugood an be represented as y =  (A)Pgoodv1 for some 2 Pm�1. Sine I = Pbad +Pgood, one �nds (A)v1 � y =  (A)Pbadv1:Continuing with (3.4), assign q �  2 Pm�1. ThenÆ(Ugood;K`(A;v(�)1 )) � maxy2Ugood(y= (A)Pgoodv1) min�2P̀ �m k	�p(A)�(A)[ (A)v1 � y℄kk	�p(A)�(A)yk= max 2Pm�1 min�2P̀ �m k	�p(A)�(A) (A)Pbadv1kk	�p(A)�(A) (A)Pgoodv1k ;as required, onluding the proof when Ugood ? Ubad.Now, if the two subspaes Ugood and Ubad are not orthogonal, introdue a newinner produt on C n with respet to whih they are orthogonal. For any u;v 2 C n ,de�ne hu;vi� � hPgoodu;Pgoodvi+ hPbadu;Pbadvi;and de�ne the gap with respet to the new norm k � k� =ph�; �i� to beÆ�(W;V) = sup infx2W y2V ky� xk�kxk� :Notie that for any vetor w 2 C n ,kwk2 = kPgoodw +Pbadwk2 � 2 �kPgoodwk2 + kPbadwk2� = 2kwk2�;kPgoodwk� = kPgoodwk; and kPbadwk� = kPbadwk:In partiular, for any x 2 Ugood and y 2 C n these relationships diretly implyky� xkkxk � p2 ky � xk�kxk� ;and so Æ(Ugood;K`(A;v(�)1 )) � p2 Æ�(Ugood;K`(A;v(�)1 )). Sine Ugood and Ubad areorthogonal in this new inner produt, we an apply the previous argument to onludeÆ(Ugood;K`(A;v(�)1 )) � p2 max 2Pm�1 min�2P̀ �m k�(A) (A)	�p(A)Pbadv1k�k�(A) (A)	�p(A)Pgoodv1k�= p2 max 2Pm�1 min�2P̀ �m k�(A) (A)	�p(A)Pbadv1kk�(A) (A)	�p(A)Pgoodv1k ;as required.22A more preise value for C0 an be found as1 � C0 =s 2 kI� 2Pgoodk21 + kI� 2Pgoodk2 � p2;however the marginal improvement in the �nal bound would not appear to merit the substantialomplexity added.



16 CHRISTOPHER BEATTIE, MARK EMBREE, AND JOHN ROSSIIf N is a square matrix with an invariant subspae V, de�nekNkV � maxv2V kNvkkvk = kN�Vk;where �V here denotes the orthogonal projetion onto V.Theorem 3.4. Suppose A, v1, and the shifts f�jkg satisfy the onditions ofTheorem 3.3. Then for ` � m,Æ(Ugood;K`(A;v(�)1 )) � C0 C1 min�2P̀ �m k[�(A)	�p(A)℄�1kUgood k�(A)	�p(A)kUbad ;where C0 is as de�ned in Theorem 3.3 andC1 � max 2Pm�1 k (A)Pbadv1kk (A)Pgoodv1k(3.5)is a onstant independent of `, �, p, or the �lter shifts f�jkg.Proof. Let �good and �bad denote the orthogonal projetions onto Ugood andUbad, respetively. Thenk	�p(A)�(A)Pbad (A)v1k = k	�p(A)�(A)�badPbad (A)v1k� k	�p(A)�(A)�badk kPbad (A)v1kand, assuming for the moment that �(A) is invertible,kPgood (A)v1k = k[	�p(A)�(A)℄�1�goodPgood	�p(A)�(A) (A)v1k� k[	�p(A)�(A)℄�1�goodk kPgood	�p(A)�(A) (A)v1k:Hene,k	�p(A)�(A)Pbad (A)v1kk	�p(A)�(A)Pgood (A)v1k� k[	�p(A)�(A)℄�1kUgoodk	�p(A)�(A)kUbad k (A)Pbadv1kk (A)Pgoodv1k :Minimizing with respet to � and maximizing with respet to  yields the on-lusion provided the expression for C1 is �nite. This is assured sine, as an immediateonsequene of (3.2), k (A)Pgoodv1k = 0 an our only when  = 0.It is instrutive to onsider the situation where we seek only a single good eigen-value, �1, whih is simple. In this ase m = dimUgood = 1; the onlusion of Theo-rem 3.3 may be stated asÆ(Ugood;K`(A;v(�)1 )) � C0 C1 min�2P̀ �1 k�(A)	�p(A)wkj�(�1)	�p(�1)j ;where w = Pbadv1=kPbadv1k and C1 = kPbadv1k=kPgoodv1k. Elementary geometrionsiderations yield an alternate expression for C1:C1 =s� 1kPgoodk sin�(Ugood;v1)os�(U?bad;v1) �2 +�1� 1kPgoodk os�(Ugood;v1)os�(U?bad;v1) �2;



CONVERGENCE OF RESTARTED KRYLOV SUBSPACES 17where �(Ugood;v1) and �(U?bad;v1) are the smallest angles between v1 and the one-dimensional subspaes Ugood and U?bad, respetively. This speial ase is stated asProposition 2.1 of [18℄.3Our next step is to redue the onlusion of Theorem 3.4 to an approximationproblem in the omplex plane. Let U be an invariant subspae of A assoiated witha ompat subset 
 � C (that is, 
 ontains only those eigenvalues of A assoiatedwith U and no others). De�ne �(
) as the smallest onstant for whih the inequalitykf(A)kU � �(
)maxz2
 jf(z)j(3.6)holds uniformly over all f 2 H(
), where H(
) denotes the funtions analyti on 
.4Evidently, the value of the onstant �(
) depends on the partiular hoie of 
 (aset ontaining, in any ase, those eigenvalues of A assoiated with U). The followingproperties of �(
) are shared by the generalized Kreiss onstant eK(
) of Toh andTrefethen [44℄ (de�ned for U = C n ). �(
) is monotone dereasing with respet to setinlusion on 
. Indeed, if 
1 � 
2, then for eah funtion f analyti on 
2,kf(A)kUmaxfjf(z)j : z 2 
1g � kf(A)kUmaxfjf(z)j : z 2 
2g :Thus, 
1 � 
2 implies �(
1) � �(
2).Sine the onstant funtions are always among the available analyti funtions on
, �(
) � 1. If A is normal, �(
) = 1. Indeed, if A is normal and � denotes the setof eigenvalues of A assoiated with the invariant subspae U, then1 � �(
) = supf2H(
) kf(A)kUmaxfjf(z)j : z 2 
g = supf2H(
) maxfjf(�)j : � 2 �gmaxfjf(z)j : z 2 
g � 1:If any eigenvalue assoiated with the invariant subspae U is defetive, then somehoies of 
 will not yield a �nite value for �(
). For example, letA = � 0 10 0 �and take U = C 2 as an invariant subspae assoiated with the defetive eigenvalue� = 0. If 
 onsists of the single point f0g and f(z) = z then evidently kf(A)kU = 1but maxz2
 jf(z)j = 0. So, no �nite value of �(
) is possible (see [33, p. 440℄). Moregenerally, if 
 is the spetrum of a defetive matrix A, then the moni polynomialonsisting of a single linear fator for eah distint eigenvalue of A is zero on 
 butannot annihilate A, as it has lower degree than the minimum polynomial of A.We now use � to adapt Theorem 3.4 into a more approahable approximationproblem. In partiular, if 
good is a ompat subset of C ontaining all the goodeigenvalues of A but none of the bad, thenk[�(A)	�p(A)℄�1kUgood � �(
good)maxfj[�(z)	�p(z)℄�1j : z 2 
goodg= �(
good)minfj�(z)	�p(z)j : z 2 
goodg :3[18℄ ontains an error amounting to the tait assumption that Pgood is an orthogonal projetion,whih is true only if Ugood ? Ubad. Thus the results oinide only in this speial ase (note C0 = 1).4For given k � 1, the sets 
 that (i) ontain all eigenvalues of A, and (ii) satisfy �(
) � k arealled k-spetral sets and �gure prominently in dilation theory of operators [31℄.



18 CHRISTOPHER BEATTIE, MARK EMBREE, AND JOHN ROSSIApplying a similar bound to k�(A)	�p(A)kUbad , we obtain the following result, theenterpiee of our development.Theorem 3.5. Suppose A and v1 satisfy the onditions of Theorem 3.3. Let
good and 
bad be disjoint ompat subsets of C that ontain, respetively, the goodand bad eigenvalues of A, and suppose that none of the �lter shifts f�jkg lies in 
good.Then, for ` � m,Æ(Ugood;K`(A;v(�)1 )) � C0 C1 C2 min�2P̀ �m maxfj	�p(z)�(z)j : z 2 
badgminfj	�p(z)�(z)j : z 2 
goodg ;where C0 and C1 are the onstants introdued in Theorems 3.3 and 3.4, respetively,and C2 � �(
good)�(
bad).Evidently, Theorem 3.5 an be implemented with a variety of hoies for 
goodand 
bad, whih a�ets both the polynomial approximation problem (disussed in thenext setion) as well as the onstant C2 (onsidered in x5.3). A key feature of thisdevelopment, whih beomes more evident in the next setion, is the limited role theloation of the good eigenvalues play in the approximation problem.4. The Polynomial Approximation Problem. Theorem 3.5 suggests the gapbetween a Krylov subspae and an invariant subspae will onverge to zero at a ratedetermined by how small polynomials of inreasing degree an beome on 
bad whilemaintaining a minimal uniform magnitude on 
good. How an this manifest as alinear onvergene rate? Consider the ansatzmin�2P̀ � maxf j�(w)j : w 2 
badgminf j�(z)j : z 2 
goodg = r`�;for some 0 < r � 1. Pik a �xed � 2 P`� , say with exat degree `�. Thenlog�maxf j�(w)j : w 2 
badgminf j�(z)j : z 2 
goodg � � `� log(r):(4.1)Introduing U�(z;
bad) � 1̀� log� j�(z)jmaxfj�(w)j : w 2 
badg�, (4.1) is equivalent tominz2
good U�(z;
bad) � � log(r):Evidently, the size of r will be related to how large U�(z;
bad) an be made uniformlythroughout 
good; larger U� values allow smaller r (faster rates). U�(z;
bad) has thefollowing properties� U�(z;
bad) is harmoni at z where �(z) 6= 0;� U�(z;
bad) = log jzj+ + o(1) for a �nite onstant  as jzj ! 1;� U�(z;
bad) � 0 for all z 2 �
bad.Potential theory provides a natural setting for studying suh approximation prob-lems. It is entral to the analysis of Krylov subspae methods for linear systems [10,29℄, and has been used by Calvetti, Reihel, and Sorensen to analyze the Hermi-tian Lanzos algorithm with restarts [6℄. We will apply similar tehniques to studyU�(z;
bad), and thus begin by presenting some fundamental bakground.



CONVERGENCE OF RESTARTED KRYLOV SUBSPACES 194.1. Potential Theory Bakground. Consider the Dirihlet problem:Suppose G is an open region with ompat losure in C and suppose f(z) isa ontinuous funtion on the boundary �G. Find u(z) suh that�u = 0 on G,u = f on �G.(4.2)Solutions to this problem exist for eah ontinuous f on �G provided the set G is a\Dirihlet region" [8, xX.4℄. This holds, for example, when G has a pieewise smoothboundary with no isolated points. For our purposes here, suh sets are suÆient; thee�et of isolated points is addressed in x4.3.Suppose, then, that G is a bounded Dirihlet region ontaining the origin, 0 2 G.Assign f(z) = log jzj in (4.2) and let u(z) denote the assoiated solution to theDirihlet problem. De�ne the Green's funtion of G with pole at 0 by�g(z;G) = u(z)� log jzj for z 2 G.The following relevant properties of �g(z;G) are straightforward:(i) �g is harmoni in Gnf0g;(ii) limz!0�g(z;G) + log jzj = �nite onstant;(iii) limz!bz�g(z;G) = 0 for all bz 2 �G;(iv) �g(z;G) > 0 for all z 2 G.Properties (i) and (iii) are elementary. Property (ii) is a onsequene of theontinuity of u(z) at 0. Property (iv) follows from (i), (ii), the fat that (ii) impliesthat �g > 0 in any suÆiently small neighborhood of 0, and the maximum priniplefor harmoni funtions. The maximum priniple also shows that �g(z;G) is the onlyfuntion satisfying (i){(iv).The Green's funtion of an unbounded region with pole at in�nity an be de�nedand understood in terms of �g . Let D � C be a ompat set whose omplement C nD isa onneted Dirihlet region (say, D has a pieewise smooth boundary and no isolatedpoints). The onformal hange of variable z 7! z�1 maps C nD to a bounded regionG with 0 2 G. The Green's funtion of C nD with pole at 1 then is then de�ned asg[z;D℄ = �g(z�1;G) for z 2 C nD.Harmoniity is preserved under this hange of variable, and one an see that properties(i){(iv) hold for g[z;D℄, replaing 0 by 1, log jzj by � log jzj, and G by C nD.Example 4.1. If C nD is simply onneted, one is assured (from the Riemannmapping theorem; see, e.g., [8, xVII.4℄) of the existene of a funtion F (z) that mapsC nD onformally onto the exterior of the losed unit disk C nB1 = fz : jzj > 1g suhthat F (1) =1. Suh an F must behave asymptotially as �z+O(1) as jzj ! 1 forsome onstant �, sine it must remain one-to-one in any neighborhood of 1. Sinelog jzj is harmoni for any z 6= 0, one may hek that u(z) = log jF (z)j is a solutionto (4.2) with f = 0 and u(1) = 1. Notie that log jzj itself is the Green's funtionwith pole at in�nity for C nB1 . Thus, log jF (z)j is the Green's funtion with pole atin�nity for C nD. Evidently, limjzj!1 u(z)� log jzj ! log j�j.Even for more ompliated ompat sets D, the ondition that g[z;D℄ is harmonieverywhere outside D with a pole at 1 restrits the rate of growth of g[z;D℄ near1.Loosely speaking, as jzj beomes very large, the ompat set D beomes less and less



20 CHRISTOPHER BEATTIE, MARK EMBREE, AND JOHN ROSSIdistinguishable from a disk entered at 0 (say, with radius ), and so g[z;D℄ beomesless and less distinguishable from g[z;B ℄ = log jz=j = log jzj � log , whih is theGreen's funtion with pole at in�nity for C nB = fz : jzj > g. From property (ii)(with 1 now replaing 0), we onlude that g[z;D℄ has growth at in�nity satisfyinglimjzj!1 g[z;D℄� log jzj = � log (4.3)for some onstant  > 0 known as the logarithmi apaity of the set D. This  anbe thought of as the e�etive radius of D in the sense we've just desribed.Example 4.2. Suppose �`(z) is a moni polynomial of degree ` and letD"(�`) = fz 2 C : j�`(z)j � "gbe a family of regions whose boundaries are the "-lemnisates of �`(z). D"(�`) isompat for eah " > 0, though it need not be a onneted region. With an easyalulation one may verify that D"(�`) has the Green's funtion (f. [38, p. 164℄)g[z;D"(�`)℄ = 1̀ log� j�`(z)j" � :Equipped with the Green's funtion g[z;D℄, we an return our attention to thefuntion U�(z;D) desribing the error in our approximation problem. The followingresult is a simpli�ed version of the Bernstein{Walsh lemma (see [38, xIII.2℄).Proposition 4.3. Let D be a ompat set with pieewise smooth boundary �D.Suppose u is harmoni outside D and that u(z) � 0 for z 2 �D. If u(z) = log jzj+ + o(1) for some onstant  as jzj ! 1, then u(z) � g[z;D℄. In partiular, if �(z)is any polynomial of degree `, thenU�(z;D) = 1̀ log� j�(z)jmaxfj�(w)j : w 2 Dg� � g[z;D℄(4.4)for eah z 2 C nD.Proof. De�ne v(z) � u(z) � g[z;D℄ for z 2 C nD. Note that v is harmoni inC nD, limz!�D v(z) � 0, and v is bounded at in�nity. We will show this implies v � 0throughout C nD. Consider any w 2 C nD. Without loss of generality, suppose Dontains the unit disk entered at the origin. For any " > 0, v"(z) � v(z) � " log jzjis harmoni in C nD with limz!�
 v"(z) � 0. Sine v is bounded in C nD, there existsR > jwj suh that v"(z) � 0 on the irle jzj = R. By the maximum priniple,v"(w) � 0. Letting "! 0, we see that v(w) � 0, and so u(w) � g[w;D℄.When � has all its roots in D and is of exat degree `, then U�(z;D) satis�esthe hypotheses on u(z), giving (4.4). If � has exat degree ` but roots outside D,then U�(z;D) has singularities in C nD. Enlose these singularities in a set B on-sisting of the union of losed disks with radius , with  > 0 suÆiently small thatU� < 0 throughout the interior of B . Now limz!�D[�B U�(z;D)� g[z;D℄ � 0 andU�(z;D)� g[z;D℄ is harmoni on C nfD [Bg. By the above arguments, (4.4) holdsthroughout C nfD [ Bg and remains true as  > 0 is made arbitrarily small.If deg(�) < `, replae ` in the de�nition of U� by deg(�). Apply the argumentabove to prove this new funtion is bounded by g[z;D℄; sine this funtion is largerthan U�, (4.4) holds.



CONVERGENCE OF RESTARTED KRYLOV SUBSPACES 21For ertain speial hoies of D = 
bad, the polynomial approximation problemof Theorem 3.5 an be solved exatly.Theorem 4.4. Suppose �`�(z) is a moni polynomial of degree `�. Let 
bad =D"(�`�) be an assoiated "-lemnisati set as de�ned in Example 4.2 and suppose
good is a ompat subset of C suh that 
good \D"(�`�) = ;. Thenmin�2P̀ � maxf j�(w)j : w 2 
badgminf j�(z)j : z 2 
goodg = "minf j�`�(z)j : z 2 
goodg :Proof. Using the Green's funtion for D"(�`�) desribed in Example 4.2, we anrearrange (4.4) to show that for any � 2 P`� ,j�(z)jmaxfj�(w)j : w 2 D"(�`�)g � j�`�(z)j"holds for all z 2 
good. Equality is attained for every z 2 C whenever � = �`� .Minimizing over z 2 
good and then maximizing over � 2 P`� yieldsmax�2P̀ � minfj�(z)j : z 2 
goodgmaxfj�(w)j : w 2 D"(�`�)g � minfj�`�(z)j : z 2 
goodg" :(4.5)In fat, equality must hold in (4.5) sine � = �`� is inluded in the lass of fun-tions over whih the maximization ours. The onlusion then follows by taking thereiproal of both sides.More general hoies of D = 
bad will not typially yield an exatly solvable poly-nomial approximation problem, at least for �xed (�nite) polynomial degree. However,the following asymptoti result an be obtained as the polynomial degree is allowedto inrease.Theorem 4.5. Let 
bad and 
good be two disjoint ompat sets in the omplexplane suh that C n
bad is a Dirihlet region. Thenlim`�!1 min�2P̀ � �maxfj�(w)j : w 2 
badgminfj�(z)j : z 2 
goodg �1=`� = e�minfg[z;
bad℄ : z2
goodg(4.6)where g[z;
bad℄ is the Green's funtion of C n
bad with pole at in�nity.Proof. The theorem is proved in [27, p. 236℄, where the left hand side of (4.6) isreferred to as the (`�; 0) Zolotarjov number. We give here a brief indiation of theproof suÆient to support later disussion. The inequality (4.4) an be manipulatedto yield � j�`�(z)jmaxfj�`�(w)j : w 2 
badg�1=`� � eg[z;
bad℄;whih in turn implies�maxfj�`�(w)j : w 2 
badgminfj�`�(z)j : z 2 
goodg �1=`� � e�minfg[z;
bad℄ : z2
goodg:



22 CHRISTOPHER BEATTIE, MARK EMBREE, AND JOHN ROSSIFurthermore, one may onstrut polynomials Lk that have as their zeros pointsdistributed on the boundary �
bad, the Leja points f�1; �2; : : : ; �kg, de�ned reur-sively so that �k+1 = arg max� kYj=1 jz � �j j : z 2 
bad�;see [38, xV.1℄. This sequene of Leja polynomials satis�es asymptoti optimality,limk!1� jLk(z)jmaxfjLk(w)j : w 2 
badg�1=k = eg[z;
bad℄(4.7)for eah z 2 C n
bad . Convergene is uniform on ompat subsets of C n
bad . Thus wean reverse the order of the limit with respet to polynomial degree and minimizationwith respet to z 2 
good, then take reiproals to �ndlimk!1�maxfjLk(w)j : w 2 
badgminfjLk(z)j : z 2 
goodg �1=k = e�minfg[z;
bad℄ : z2
goodg:(4.8)Sine �maxfjL`�(w)j : w 2 
badgminfjL`�(z)j : z 2 
goodg �1=`� � min�2P̀ � �maxfj�(w)j : w 2 
badgminfj�(z)j : z 2 
goodg �1=`�� e�minfg[z;
bad℄ : z2
goodg;equality must hold throughout and thus (4.6) holds.In the ontext of Example 4.1, where F (z) was a onformal map taking theexterior of 
bad to the exterior of the losed unit disk with F (1) =1, Theorem 4.5redues to (f. [10, Thm. 2℄)lim`�!1 min�2P̀ � �maxfj�(w)j : w 2 
badgminfj�(z)j : z 2 
goodg �1=`�= maxz2
good 1jF (z)j :4.2. E�etive restart strategies. The usual goal in onstruting a restartstrategy is to limit the size of the Krylov subspae (restriting the maximum degree ofthe polynomial �) without degrading the asymptoti onvergene rate. Demonstratingequality in (4.6) pivoted on the onstrution of an optimal family of polynomials|inthis ase, Leja polynomials. There are other possibilities, however. Fekete polynomi-als are the usual hoie for the onstrution in Theorem 4.5; see [38, xIII.1℄. Chebyshevpolynomials and Faber polynomials o�er familiar alternatives. (For Hermitian ma-tries, a pratial Leja shift strategy has been developed by Calvetti, et al. [3, 6℄.Heuveline and Sadkane advoate numerial onformal mapping to determine Faberpolynomials for restarting non-Hermitian iterations [18℄.) One some optimal familyof polynomials is known that solves (4.6), e�etive restart strategies beome evident.Theorem 4.6. Let 
good and 
bad be two disjoint ompat sets in the om-plex plane ontaining, respetively, the good and bad eigenvalues of A, and suh thatC n
bad is a Dirihlet region. Suppose that 	�p(z) is the aggregate restart polynomial



CONVERGENCE OF RESTARTED KRYLOV SUBSPACES 23representing � restarts eah of order p.(a) If polynomial restarts are performed using roots of optimal polynomials for
bad (i.e., 	�p(z) are optimal polynomials of degree �p), thenlim�!1 min�2P̀ ��maxfj	�p(w)�(w)j : w 2
badgminfj	�p(z)�(z)j : z 2
goodg� 1�p+`�= e�minfg[z;
bad℄:z2
goodg;(4.9)where g[z;
bad℄ is the Green's funtion of 
bad with pole at in�nity.(b) If the boundary of 
bad is a lemnisate of 	�p�`� ,
bad = D"(	�p�`�) = fz 2 C : j	�p(z)�`�(z)j � "g ;for some degree-`� moni polynomial �`� and some " > 0, thenmin�2P̀ � maxfj	�p(w)�(w)j : w 2 
badgminfj	�p(z)�(z)j : z 2 
goodg = "minfj	�p(z)�`�(z)j : z 2 
goodg :Proof. Part (b) follows immediately from Theorem 4.4. Part (a) an be seen byobserving that sine 	�p(z) is an asymptotially optimal family for 
bad,maxfj	�p(w)j : w 2 
badgminfj	�p(z)j : z 2 
goodg � min�2P̀ � �maxfj	�p(w)�(w)j : w 2 
badgminfj	�p(z)�(z)j : z 2 
goodg �� �e�minfg[z;
bad℄ : z2
goodg��p+`�:Now �xing p and `�, the onlusion follows from (4.8) by following the subsequenegenerated by � = 1; 2; : : : .Reall that the desired e�et of the restart polynomial is to retain the rapidonvergene rate of the full (unrestarted) Krylov subspae without requiring the di-mension `� to grow without bound. We have seen here that restarting with optimalpolynomials for 
bad reovers the expeted linear onvergene rate for 
bad (presum-ing one an identify this set, not a trivial matter in pratie). Still, the unrestartedproess may take advantage of the disrete nature of the spetrum, aelerating on-vergene beyond the expeted linear rate. Designing a restart strategy that yieldssimilar behavior is more elaborate.4.3. Superlinear e�ets from assimilation of bad eigenvalues. In a varietyof situations, the gap appears to onverge superlinearly. True superlinear onvergeneis an asymptoti phenomenon that has a nontrivial meaning only for nonterminatingiterations. Thus one must be autious about desribing superlinear e�ets relatingto (unrestarted) Krylov subspaes, sine Ugood is eventually ompletely aptured bythe Krylov subspae as disussed in x2. Here our point of view follows that of [49,51℄, showing the estimated gap may be bounded by a family of linearly onvergingproesses exhibiting inreasingly rapid linear rates. The next result mimis the Ritzvalue bounds for Hermitian matries developed by van der Sluis and van der Vorst [50,x6.6℄. We assume here that 
bad onsists of the union of s disrete points, potentiallywith some additional Dirihlet region. That is, some bad eigenvalues (typially thoselosest to the good eigenvalues, or distant outliers) are treated as disrete points,while any leftovers are olleted in the Dirihlet region.



24 CHRISTOPHER BEATTIE, MARK EMBREE, AND JOHN ROSSITheorem 4.7. Let 
good and 
bad be disjoint ompat subsets of C and suppose
bad ontains s isolated points, z1; z2; : : : ; zs. De�ne a sequene of s + 1 nestedsubsets as 
k = 
k+1 [ fzkg for k = 1; : : : ; s with 
1 � 
bad, so that eah set
k � 
k+1 6= ; di�ers from adjaent sets in the sequene by single points. De�nealso the assoiated diametersek � max fjw � zkj : w 2 
kg and dk � min fjz � zkj : z 2 
goodg :Then for r = 1; : : : ; s and eah `� > r,min�2P̀ � max fj�(w)j : w 2 
badgmin fj�(z)j : z 2 
goodg � � rYj=1 ejdj� min�2P̀ ��r max fj�(w)j : w 2 
r+1gmin fj�(z)j : z 2 
goodg :Proof. Fix an integer k � 1 and observe thatmin�2P̀ � maxw2
k j�(w)jminz2
good j�(z)j � min�2P̀ ��1 maxw2
k j(w � zk)�(w)jminz2
good j(z � zk)�(z)j= min�2P̀ ��1 maxw2
k+1 j(w � zk)�(w)jminz2
good j(z � zk)�(z)j� ekdk min�2P̀ ��1 maxw2
k+1 j�(w)jminz2
good j�(z)j :The onlusion follows by applying the argument repeatedly for k = 1; 2; : : : ; r.Asymptotially, the disrete points in 
bad have no e�et on the onvergene rate.Corollary 4.8. In the notation of Theorem 4.7, suppose 
s+1 is a Dirihletregion. Thenlim`�!1 min�2P̀ � �max fj�(w)j : w 2 
badgmin fj�(z)j : z 2 
goodg �1=`� � e�minfg[z;
s+1℄ : z2
goodg;where g[z;
s+1℄ is the Green's funtion with pole at in�nity assoiated with C n
s+1 .Proof. e Sine 
r+1 � 
onvr+1 , The result follows by applying the asymptotiapproah of Theorem 4.5 to the result of Theorem 4.7 for r = s.To demonstrate suh superlinear e�ets, we onsider a parameterized diago-nal matrix A� having 100 bad eigenvalues spaed uniformly in the unit interval[�1� �;��℄ and 4 good eigenvalues uniformly spaed in [0; 1℄. Figure 4.1 illustratesonvergene of the gap Æ(Ugood;K`(A�;v1)) for � = 0:1, 0:01, 0:05, and 0:001, alwayswith the starting vetor v1 having 1=pn in eah omponent (n = 104). Above eahonvergene urve are bounds from Theorem 3.5 and Theorem 4.7. (The alulationof C1 is addressed in x5.1.) For the superlinear bounds, take 
bad to be the set ofbad eigenvalues and set 
r to be 
bad less the r � 1 rightmost bad eigenvalues. Weapproximate the optimal polynomial in Theorem 4.7 by Chebyshev polynomials for
onvr+1 (see [37, xIV.4.1℄ for details). Notie the envelope produed by the aggregatedlinear rates reates a superlinear onvergene e�et to an extent determined by the\granularity" of bad eigenvalues as viewed from the nearest good eigenvalue. Greatergranularity (smaller �) auses poor initial rates due to nearby bad eigenvalues, thatrapidly dissipate as these eigenvalues are assimilated, yielding to improved rates de-termined by more remote bad eigenvalues. The same phenomenon is observed in x6.4



CONVERGENCE OF RESTARTED KRYLOV SUBSPACES 25
0 20 40 60 80 100 120

10
−15

10
−10

10
−5

10
0

10
5

0 20 40 60 80 100 120
10

−15

10
−10

10
−5

10
0

10
5

0 20 40 60 80 100 120
10

−15

10
−10

10
−5

10
0

10
5

0 20 40 60 80 100 120
10

−15

10
−10

10
−5

10
0

10
5

Krylov subspae dimension, ` Krylov subspae dimension, `
Æ(U good;K `(A �;
v 1))

Æ(U good;K `(A �;
v 1)) � = 0:1

� = 0:01
� = 0:05
� = 0:001Fig. 4.1. Aggregate linear rates produe a superlinear e�et. Observed gap onvergene (brokenline) and aggregate bounds (solid lines) predited by Theorem 3.5 and Theorem 4.7 for 
r withr = 1; : : : ; 50.for a Markov hain eigenvalue problem. But assimilation of nearby bad eigenvaluesis not the only mehanism for superlinear onvergene. In x5.3, we desribe hownon-normality an also give rise to suh behavior, illustrated experimentally in x6.2.5. Analysis of Constants. This setion ontains a more detailed disussion ofthe onstants C1 and C2 that arise in the onvergene bounds given in Theorems 3.4and 3.5. The magnitude of these onstants ontrols the predited start of the linearphase of onvergene: larger onstants suggest delayed linear onvergene. Thus weseek an appreiation of those matrix and starting vetor properties that lead to moreor less favorable onvergene bounds.5.1. Bounding C1. Notie thatC1 = max 2Pm�1 k (A)Pbadv1kk (A)Pgoodv1k = maxv2Km(A;v1) kPbadvkkPgoodvk = maxx2Cm kPbadVmxkkPgoodVmxk ;where the olumns of Vm form a basis for Km(A;v1). This last expression for C1is simply the largest generalized singular value of the pair of matries PbadVm andPgoodVm (see, e.g., [14, x8.7.3℄). This is how we determine C1 for our omputationalexamples.The dependene of C1 on the starting vetor v1 is ritial. If v1 is biased againstUgood, then C1 will be large and our bounds predit a delay in onvergene. Likewise,a good starting vetor aelerates onvergene as expeted.5 We will investigate this5Though our bounds expliitly inorporate restart e�ets into the polynomial approximationproblem, an alternative approah ould instead handle restarts via the onstant C1, whih we expetto shrink as restarts enrih the starting vetor in Ugood.



26 CHRISTOPHER BEATTIE, MARK EMBREE, AND JOHN ROSSIbehavior with an illustrative example, but �rst give bounds for C1 that relate itsmagnitude to the orientation of Km(A;v1) relative to the invariant subspaes Ugoodand Ubad.Proposition 5.1. Under the onditions of Theorem 3.4,1kPgoodk Æ(Km(A;v1);Ugood)Æ(Km(A;v1);Ubad) � C1 � kPgoodk Æ(Km(A;v1);Ugood)1� kPgoodk Æ(Km(A;v1);Ugood) ;where the seond inequality holds provided kPgoodk Æ(Km(A;v1);Ugood) < 1.Proof. If �good denotes the orthogonal projetion onto Ugood then I ��good =(I��good)(I �Pgood), and sok(I��good) (A)v1k � k(I�Pgood) (A)v1k = k (A)Pbadv1k:Thus,Æ(Km(A;v1);Ugood) = max 2Pm�1 minu2Ugood ku�  (A)v1kk (A)v1k= max 2Pm�1 k(I��good) (A)v1kk (A)v1k= max 2Pm�1 k (A)Pgoodv1kk (A)v1k k(I��good)(I�Pgood) (A)v1kk (A)Pgoodv1k� max 2Pm�1 k(I�Pbad)(I��bad) (A)v1kk (A)v1k kPbad (A)v1kk (A)Pgoodv1k� kI�Pbadk max 2Pm�1 k(I��bad) (A)v1kk (A)v1k k (A)Pbadv1kk (A)Pgoodv1k� kPgoodk Æ(Km(A;v1);Ubad)C1:This gives the �rst inequality. For the seond, note that for any  2 Pm�1,k (A)Pbadv1kk (A)Pgoodv1k = k(I�Pgood) (A)v1kk (A)v1k k (A)v1kk (A)Pgoodv1k= k(I�Pgood)(I��good) (A)v1kk (A)v1k k (A)(Pgood +Pbad)v1kk (A)Pgoodv1k� kI�Pgoodk k(I��good) (A)v1kk (A)v1k �1 + k (A)Pbadv1kk (A)Pgoodv1k� :(A more frugal inequality leads to a sharper but rather intriate upper bound for C1.)Maximizing over  2 Pm�1 and noting that kI�Pgoodk = kPgoodk [22℄ yieldsC1 � kPgoodk Æ(Km(A;v1);Ugood)(1 + C1):When kPgoodk Æ(Km(A;v1);Ugood) < 1, this expression an be rearranged to give thedesired upper bound.The bounds given in Proposition 5.1 an be disparate when kPgoodk is large orÆ(Km(A;v1);Ugood) is lose to one. To obtain alternative lower bounds, approximate



CONVERGENCE OF RESTARTED KRYLOV SUBSPACES 27the maximizing polynomial  in (3.5). Some intuitively appealing hoies for theroots of  2 Pm�1 inlude the Ritz values or harmoni Ritz values generated fromKm�1(A;Pgoodv1). (This is motivated by the fat that taking  to be a degree-mpolynomial with the m Ritz values from Km(A;Pgoodv1) as roots would zero thedenominator of the expression (3.5) for C1.)5.2. An Illustration of Starting Vetor Inuene. Consider a Hermitianmatrix A 2 C 128�128 with eight good eigenvalues uniformly distributed in the inter-val [1; 2℄. The remaining eigenvalues uniformly �ll the interval [�1; 0℄. Sine A isnormal, the onstants C0 and C2 are trivial, C0 = C2 = 1. Theorem 3.5 thus boundsgap onvergene as the produt of the onstant C1, whih depends on the startingvetor, and a polynomial approximation problem, whih is independent of it. Taking
bad = [�1; 0℄ and 
good = [1; 2℄, Theorem 4.5 yields an asymptoti onvergenefator of 3 � p2 � 0:1716, an expedient rate due to the good separation of 
goodfrom 
bad. To study the role of C1, we onstrut seven di�erent starting vetors v1that form angles of � = 10�15; 10�12; 10�9; 10�6; 10�3; 1 radians with Ugood. (Eahstarting vetor has equal omponents in eah unwanted eigenvetor diretion.) Fig-ure 5.1 shows the result of this experiment. The gap onvergene urves are solidlines; the dotted lines show bounds from Theorem 3.5. For the �nite-degree poly-nomial approximation problem in Theorem 3.5, we use Chebyshev polynomials for
bad = [�1; 0℄. (Sine Æ(Ugood;K`(A;v1)) = 1 when ` < m = dim Ugood = 8, weshow the omplementary measure Æ(K`(A;v1);Ugood) for the �rst seven iterations.)As predited by our bounds, the asymptoti onvergene rate appears largely inde-pendent of the orientation of v1. Interestingly, even a onsiderable starting vetor biastoward Ugood yields only a modest improvement in onvergene, whih may appeareven less signi�ant for problems with slower onvergene rates.

0 5 8 10 15 20 25 30 35
10

−15

10
−10

10
−5

10
0

10
5

� = 10�15� = 10�12� = 10�9� = 10�6� = 10�3� = 1 Theorem 3.5 for � = 1Krylov subspae dimension, `min[Æ(U good;K `
);Æ(K `;U good)℄

Fig. 5.1. The e�et of a biased starting vetor on gap onvergene. The solid lines denote theomputed gap onvergene urves for starting vetors v1 that form angles of � radians with Ugood.The dotted lines show the bound derived from Theorem 3.5 for eah value of �. The blak dotsdenote the values of C1. In the vertial axis label, K` is a shorthand for K`(A;v1).



28 CHRISTOPHER BEATTIE, MARK EMBREE, AND JOHN ROSSI5.3. Bounding C2. In ontrast to C1, whih was strongly linked to the ori-entation of the starting vetor v1 with respet to the good invariant subspae, theonstant C2 has a somewhat more di�use interpretation. C2 aptures the e�et ofthe non-normality of A, yet ambiguity in the seletion of 
good and 
bad injets widevariability to the values C2 an ahieve. Generally speaking, hoosing the sets 
goodand 
bad to be overly large yields a small onstant C2 at the expense of a slow onver-gene rate for the polynomial approximation problem. Shrinking these sets inreasesthe onstant but improves the predited onvergene rate. The smallest possible setsthat an be hosen for 
good and 
bad are the sets of good and bad eigenvalues,respetively. If A is diagonalizable, it is possible to pose the approximation problemover these disrete point sets, at the expense of a potentially large C2 term arisingfrom eigenvetor onditioning.Lemma 5.2. Suppose � is a subset of the spetrum of A onsisting only of non-defetive eigenvalues, and let U denote the maximal invariant subspae assoiated witheigenvalues in �. If the olumns of X are eigenvetors of A forming a basis for U,then �(�) � ond2(X):(The ondition number ond2(�) is the ratio of the maximum to the minimum nonzerosingular value.)Proof. Observe that � � X (X�X)�1X� de�nes an orthogonal projetion ontoU, and suppose � is a diagonal matrix with entries in � suh that AX = X�. Thenfor any funtion f that is analyti on �, f(A)X = Xf(�), andkf(A)kU = kf(A)X (X�X)�1X�k= kXf(�) (X�X)�1X�k� kXk k (X�X)�1X�k kf(�)k= ond2(X) max�2� jf(�)j:Now if 
good and 
bad in Theorem 3.5 are preisely the sets of good and badeigenvalues of A, respetively, Lemma 5.2 leads to a bound on C2.First Corollary to Theorem 3.5. To the onditions of Theorem 3.5, addthe assumption that A is diagonalizable,A[Xgood;Xbad℄ = [Xgood;Xbad℄ diag(�good; �bad):Then Æ(Ugood;K`(A;v(�)1 )) � C0 C1 bC2 min�2P̀ � maxj=L+1;::: ;N j�(�j )	�p(�j)jmink=1;::: ;L j�(�k)	�p(�k)j ;(5.1)where C0 and C1 are as de�ned in Theorems 3.3 and 3.4 andbC2 � ond2(Xgood) ond2(Xbad):When A is far from normal, the onstant bC2 will typially be large; it growsin�nite as A tends towards a defetive matrix. However, suh extreme situations are



CONVERGENCE OF RESTARTED KRYLOV SUBSPACES 29not neessarily assoiated with severe degradation in onvergene behavior, and sothe bound (5.1) will be most appropriate when A is either normal or nearly so.Non-normality an ompliate invariant subspae omputation in a variety ofways. The good eigenvalues an be individually ill-onditioned, with ond2(Xgood)�1, while the assoiated invariant subspae is perfetly onditioned. In other ases, onemay �nd the desired eigenvalues are well-onditioned, while the bad eigenvalues arehighly non-normal (as when ond2(Xbad) � ond2(Xgood) � 1).6 In either ase, thegood invariant subspae may still have physial signi�ane, and we would like tounderstand how this ill-onditioning a�ets the rate at whih we an ompute it.Sine non-normal matries are of speial interest, onsideration of pseudospetrayields a natural approah that often an provide sharper, more desriptive onvergenebounds. Reall that the "-pseudospetrum [45, 46℄ is the set�"(A) � fz 2 C : k(z �A)�1k � "�1g;or, equivalently, �"(A) = fz 2 �(A+E) : kEk � "g, where �(M) denotes the set ofeigenvalues of a matrixM.For a �xed ", �"(A) is a losed set in the omplex plane onsisting of the union ofno more thanN onneted sets, eah of whih must ontain at least one eigenvalue. As"! 0, �"(A) tends toN disjoint disks (whose radii depend on eigenvalue onditioningand defetiveness) entered at and shrinking around the N distint eigenvalues.Lemma 5.3. Let U be an invariant subspae of A and suppose � is the set ofeigenvalues assoiated with U.(a) Let 
 be a set ontaining � but no eigenvalues of A outside �, and supposethe boundary �
 is the �nite union of positively-oriented Jordan urves. Then�(
) � 12� Z�
 k(z �A)�1kU jdzj:(5.2)(b) Let �" ontain the union of those onneted omponents of �"(A) that inlude� 2 �, and suppose further that �" ontains no eigenvalues outside of � and itsboundary ��" is the �nite union of positively-oriented Jordan urves. Then�(�") � L(��")2�" ;(5.3)where L(��") is the length of the boundary of �":Proof. For part (a), let � be the orthogonal projetor onto the given invariantsubspae U and let P be the spetral projetor for A assoiated with U. For anyfuntion f analyti on 
, kf(A)kU = kf(A)�k = kf(A)P�k � kf(A)Pk: Now,f(A)P = 12�i Z�
 f(z)(z �A)�1 dz:Thus for any vetor x 2 U,kf(A)xk � 12� Z�
 jf(z)j k(z �A)�1xk jdzj� � 12� Z�
 k(z �A)�1kU jdzj� maxz2�
 jf(z)j kxk:6This is the ase for the Markov hain example desribed in x6.4. Trefethen desribes anotherexample, the Gauss{Seidel iteration matrix for the entered di�erene disretization of the seondderivative [46, Example 10℄.



30 CHRISTOPHER BEATTIE, MARK EMBREE, AND JOHN ROSSIBut sine f is analyti on 
, maxz2�
 jf(z)j = maxz2
 jf(z)j. Part (b) follows from (a)by assigning 
 = �".Pseudospetral bounds were developed by Trefethen to bound the GMRES resid-ual norm [45℄, and Simonini has used a similar approah to analyze blok-Arnoldionvergene [39℄. In the single eigenvetor ase, her Theorem 3.1 losely resem-bles our (5.6) below. (Lemma 5.3 ould easily be sharpened to instead involve�"(U�AU), where the olumns of U form an orthonormal basis for Ugood; note that�"(U�AU) � �"(A) [43℄.)The pseudospetral approah leads to a robust alternative to the eigenvetor-based bound (5.1).7 Suppose " is suÆiently small that the omponents of the "-pseudospetrum enlosing the good eigenvalues are disjoint from those omponentsenlosing the bad eigenvalues. �"(A) an then be ontained in the two disjoint sets�good" and �bad" , leading to an alternative bound.Seond Corollary to Theorem 3.5. Assume the onditions of Theorem 3.5and suppose that " > 0 is suÆiently small that �good" \ �bad" = ;. Then, provided	�p(z) has no roots in �good" , and the boundaries of �good" and �bad" are �nite unionsof positively-oriented Jordan urves,Æ(Ugood;K`(A;v(�)1 )) � C0 C1 eC2(") min�2P̀ � maxfj�(z)	�p(z)j : z 2 �bad" gminfj�(z)	�p(z)j : z 2 �good" g ;(5.4)where C0 and C1 are as de�ned in Theorems 3.3 and 3.4, andeC2(") � L(��good" )L(��bad" )4�2"2 :(5.5)L(��good" ) and L(��bad" ) are the boundary lengths of �good" and �bad" , respetively.This pseudospetral bound holds for a range of "-values, providing a naturalmehanism for adjusting the sets 
good and 
bad. As " gets smaller, eC2(") generallyinreases, but the onvergene rate indued by the polynomial approximation problemimproves, sine the sets on whih the approximation problem is posed reede from oneanother. For the most desriptive onvergene bound, take the envelope of individualbounds orresponding to a variety of "-values; see Figures 6.1 and 6.3. Of ourse, thebound (5.4) is only meaningful when " is suÆiently small that �good" \�bad" = ;. Theneed to take " partiularly small to satisfy this ondition may signal an ill-onditionedproblem; onsider enlarging the set of good eigenvalues.In some situations, one may wish to use di�erent values of " for the good and badpseudospetra, in whih ase (5.4) hanges in the obvious way. Furthermore, whenthe good eigenvalues are normal (i.e., one an take ond2(Xgood) = 1), it is best toombine the pseudospetra and eigenvetor approahes to obtainÆ(Ugood;K`(A;v(�)1 )) � C0 C1 L(�bad" )2�" min�2P̀ �maxfj�(z)	�p(z)j : z 2 �bad" gmink=1;::: ;L j�(�k)	�p(�k)j :(5.6)We lose this setion by pointing out one non-normal situation where the eigenve-tor-based bound (5.1) an be dramatially superior to the pseudospetral bound (5.4).7Note that Greenbaum has demonstrated how more lever use of eigenvetor information ansometimes be superior to estimating integrals of the resolvent norm [15℄.



CONVERGENCE OF RESTARTED KRYLOV SUBSPACES 31Suppose for simpliity that dimUgood = dimUbad with Ugood � Ubad for some diag-onalizable A. It is possible for the basis vetors in Xgood and Xbad to be perfetlyonditioned on their own, but terribly onditioned if taken together, e.g.,Xgood = 2664 1 00 10 00 03775 ; Xbad = 2664 1 00 1 00  3775 ;with 0 < jj � 1. This results in bC2 = 1 but eC2(")� 1 for usefully small values of ".(This an be remedied by onsidering the pseudospetra of A orthogonally projetedonto Ugood and Ubad.) What is happening here? The more alike Ugood and Ubadare, the more prominent their general orientation is in the Krylov subspae, possiblyresulting in an initial period of rapid sublinear onvergene. Disriminating the �nedi�erene between Ugood and Ubad may still be hallenging.6. Some Examples. How well does the mahinery onstruted in the previoussetions work? Here we demonstrate our bounds for a variety of examples. Thesetest problems are ontrived to illustrate the e�ets we have desribed as leanly aspossible. Eigenvalue problems from appliations inevitably involve more ompliatedspetral struture.6.1. Inuene of Non-normality on Predited Rates. We begin with twoexamples involving non-diagonalizable matries where pseudospetral onvergenebounds an be used to good e�et. (While the examples in this subsetion and thenext are defetive, we emphasize that the pseudospetral bound an also be useful fordiagonalizable matries with large values of bC2.) De�neA = �Dgood 00 J58(�1)� ;(6.1)where Dgood is a 6 � 6 diagonal matrix ontaining good eigenvalues uniformly dis-tributed in [1; 2℄, and J58(�1) is a Jordan blok of dimension 58 with the bad eigen-value � = �1 on the main diagonal and ones on the �rst superdiagonal. Note thatUgood ? Ubad, so C0 = 1. Sine the good eigenvalues are normal, we apply the hybridpseudospetral bound (5.6). The pseudospetra of a diret sum of matries is theunion of the pseudospetra of eah omponent matrix [48℄, so we need only fous onthe pseudospetra of the Jordan blok, whih are irular disks for all " > 0 [32℄; seeFigure 6.1. It follows that eC2(") = r"=", where r" is the radius of �bad" = �"(J58(�1)),determined numerially. For � 2 P`� we take the Chebyshev polynomial for �bad" ,�(z) = (z + 1)`� . For all " suh that r" < 2, (5.6) givesÆ(Ugood;K`(A;v1)) � C1r"" �r"2 �̀ �;(6.2)where we have used the fat that j�(�)j � 2 for all good eigenvalues �. The onver-gene urve and orresponding bounds are shown in Figure 6.1 for the starting vetorv1 with 1=pn in eah omponent; no restarting is performed. Interestingly, for smallvalues of " the bound (5.6) aurately aptures the �nite termination that must ourwhen ` = n = 64, a trait exhibited by pseudospetral bounds in other ontexts.
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Fig. 6.1. On the left, good eigenvalues (�) and pseudospetral boundaries ��bad" for " = 10�2,10�5, 10�15, and 10�100, where A is given by (6.1). (The bad eigenvalue (�) is obsured by the" = 10�100 boundary.) On the right, gap onvergene (solid line) together with the bound (6.2) (dottedlines) for eah of the pseudospetral urves shown on the left. For small values of ", (6.2) apturesthe �nite termination that must our at the 64th iteration.Our seond example is the same, exept the good eigenvalues are now replaedwith a Jordan blok, A = �J6( 32 ) 00 J58(�1)� ;(6.3)where J6( 32 ) is a 6�6 Jordan blok with 32 on the main diagonal and ones on the �rstsuperdiagonal; J58(�1) is as before. Again note that Ugood ? Ubad, implying C0 = 1.Sine both the good and bad eigenvalues are defetive, apply the pseudospetralbound (5.4). Realling the pseudospetra of Jordan bloks are irular disks, letrbad" and rgood" denote the radii of �bad" = �"(J58(�1)) and �good" = �"(J6( 32 )),respetively; see the left plot of Figure 6.2. The Seond Corollary to Theorem 3.5holds whenever rbad" + rgood" < 52 . For suh ", eC2(") = rbad" rgood" ="2 andÆ(Ugood;K`(A;v1)) � C1 rbad" rgood""2  rbad"52 � rgood" !̀ �;(6.4)where again we have taken for � 2 P`� the Chebyshev polynomial for �bad" , �(z) =(z + 1)`� . The onvergene urve and orresponding bounds are shown in Figure 6.2for the starting vetor v1 with 1=pn in eah omponent; no restarting is performed.6.2. Superlinear E�ets Due to Non-normality. Our �nal example of pseu-dospetral bounds addresses the matrixA = � 0 00 F � ;(6.5)where there is a single good eigenvalue � = 0 (with multipliity one) and a badeigenvalue � = � 13 assoiated with the 63� 63 bidiagonal matrix F, whih has � 13 in
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Fig. 6.2. On the left, bad eigenvalue (�), good eigenvalue (�), and pseudospetral boundaries��bad" and ��good" for A given by (6.3) and " = 10�2, 10�3, and 10�5. On the right, gap onver-gene (solid line) with the bound (6.4) (dotted lines) for the three " values used in the left plot.the main diagonal entries and 1=j in the (j; j + 1) entry of the superdiagonal. Likethe Jordan bloks desribed before, the pseudospetra of F are irular disks [32℄, butthe radii of these disks shrink muh more rapidly as " dereases than observed for theJordan blok. As a result, the onvergene rate steadily improves as " gets smaller;this is ompensated by growing eC2(") values. Taking �(z) = (z + 13 )`� , we obtainÆ(Ugood;K`(A;v1)) � C1r"" (3r")`�;(6.6)provided r" < 13 , where r" is the radius of �bad" . Figure 6.3 shows the spetrum of Aand pseudospetra of F. As " gets smaller, the bound (6.6) traes out an envelopethat predits early stagnation followed by improving linear onvergene rates. Thisis \superlinear" onvergene, but of a di�erent nature from that desribed in x4.3.Figure 6.3 shows these bounds along with the gap onvergene urve for a vetorv1 with real entries drawn from the standard normal distribution. Pseudospetralbounds for GMRES exhibit similar superlinear behavior for matries like F [10, 12℄.Although all the examples here have used defetive matries, these bounds are alsoappropriate for diagonalizable matries with a large eigenvetor ondition number.6.3. Shift Seletion for Restarted Algorithms. The results of x4 indiatethat e�etive restart strategies an be onstruted using optimal polynomials assoi-ated with sets ontaining the bad eigenvalues. In this setion, we give some examplesof how hoies for 	�p based on partial information (or misinformation) about badeigenvalue loation a�ets the observed onvergene rates and illustrate how well ourbounds an predit this.Consider the 200� 200 upper triangular matrixA = � Dgood C0 Dbad �;where Dgood is a 16� 16 diagonal matrix of good eigenvalues, distributed uniformlyaround the irle in the omplex plane entered at 3 with radius 1; Dbad is a diagonal
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Fig. 6.3. On the left, bad eigenvalue (�), good eigenvalue (�), and pseudospetral boundaries��bad" for A given by (6.5) and " = 10�2, : : : , 10�12. On the right, gap onvergene (solid line)with the bound (6.4) (dotted lines) for the eleven " values shown in the left plot.matrix ontaining the bad eigenvalues distributed uniformly along the line segment(designated Ibad) parallel to the imaginary axis onneting the points �1� 5i; C isa full (row) rank matrix saled so that kPgoodk � 1000. The starting vetor, v1,has normally distributed random omplex entries. (The same v1 was used for allexperiments shown in this subsetion.)Figure 6.4 ompares the predited and observed onvergene urves for the un-restarted iteration, where the Krylov subspae grows without bound. The left plotdisplays the equipotentials of g(z; Ibad)|the physial analog is the potential �eldgenerated by a ontinuous (line) harge distribution spread over Ibad. The olor baris alibrated to show exp(�g(z; Ibad)), giving the predited onvergene rates at lo-ations in the omplex plane if good eigenvalues were present there. In partiular,the lowest equipotential ontour passing through a good eigenvalue is shown; it leadsvia (4.6) to a predited onvergene rate of �0:566. The right plot shows the iterationhistory of Æ(Ugood;K`(A;v1)) versus the iteration index `. After an early sublinearsurge that attens out near 1=kPgoodk, an observed linear rate of � 0:539 emerges.In separate experiments (not shown), we have varied the magnitude of kCk (in ef-fet hanging kPgoodk) and have observed variations in the sublinear stagnation levelroughly proportional to 1=kPgoodk, onsistent with the disussion surrounding Fig-ure 2.1. The onvergene bound is derived from the First Corollary to Theorem 3.5,using for � Chebyshev polynomials for Ibad. (For all experiments in this subsetion,C0 = p2, C1 � 4:4325� 1011, bC2 � 1:2439� 103.)Figure 6.5 shows results for polynomial restarts using fast Leja points [3℄ assoi-ated with Ibad. These appear as a dense line of white dots atop the blak band of badeigenvalues. The base dimension is 20 and restarts are eah of order 5. (The Krylovsubspae dimension never exeeds 25.) The left plot displays the e�etive potential,g(z;
bad), generated by 180 fast Leja points|
bad is the smallest polynomial lem-nisate generated by the aggregate �lter polynomial that ontains all bad eigenvalues.The lowest equipotential ontour passing through a good eigenvalue is shown; it leads
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Fig. 6.4. Unrestarted Subspae. On the left, good and bad eigenvalues are shown in the \poten-tial �eld" generated by the bad eigenvalues. The olorbar is alibrated to show e�etive onvergenerates for di�erent omponents of Ugood. The right plot shows the observed gap history (solid line)together with a bound (dashed) derived from the First Corollary to Theorem 3.5.

1.0  

0.576     

0.4  

−8 −4 0 4 8
−8

−4

0

4

8

0 50 100 150 200
10

−14

10
−10

10
−5

10
0

Leja Shifts
Thm. 3.5
No Restartsiteration, �p+ `Æ(U good;K `(A;	

�p(A)v 1)) 1=kPgoodk Observedrate � 0:562Preditedrate � 0:576���� ���
Fig. 6.5. Polynomial restarts at fast Leja points of Ibad (white dots). The base dimension is 20and restarts are eah of degree p = 5 (so the subspae dimension never exeeds 25).via (4.6) and Example 4.2 to a predited onvergene rate of � 0:576. The boundon the right was obtained from the First Corollary to Theorem 3.5, using Chebyshevpolynomials for Ibad up to the base dimension, then inluding the shift polynomials.The next two �gures show the e�et of poorer hoies for the �lter shifts. Supposewe mistakenly believe the bad eigenvalues to be onentrated toward the ends of theinterval Ibad and hoose �lter shifts aordingly grouped in two subintervals that omitthe entral portion of Ibad (whih we believe to be devoid of bad eigenvalues). We usefast Leja points again but this time for pairs of disjoint intervals that in fat overonly 60% and 20%, respetively, of the bad eigenvalues. These are asymptotiallyoptimal �lter shifts for misguided guesses of the bad eigenvalue distribution. 
bad isagain the smallest polynomial lemnisate generated by 180 fast Leja points that on-tains all bad eigenvalues. Here it takes on a more pronouned dumb-bell appearane,reeting the absene of zeros from the middle of Ibad. As before, the base dimensionis 20 and restarts are eah of order 5. The onvergene rate is seen to deteriorate to



36 CHRISTOPHER BEATTIE, MARK EMBREE, AND JOHN ROSSI
1.0  

0.743

0.566

0.4  

−8 −4 0 4 8
−8

−4

0

4

8

0 50 100 150 200
10

−14

10
−10

10
−5

10
0

Leja Shifts
Thm. 3.5
No Restartsiteration, �p+ `Æ(U good;K `(A;	

�p(A)v 1)) 1=kPgoodk Observedrate � 0:707
Preditedrate � 0:743��	PPPi ���

Fig. 6.6. Polynomial restarts with fast Leja points (white dots) for two subintervals overingonly 60% of the bad eigenvalues. The subspae dimensions are as in Figure 6.5.
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Fig. 6.7. Polynomial restarts with fast Leja points (white dots) for two subintervals overingonly 20% of the bad eigenvalues. The subspae dimensions are as in Figure 6.5.
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Fig. 6.8. Polynomial restarts using exat shifts (white dots) determined by hoosing Ritz valueswith real part smaller than 1. The subspae dimension never exeeds 20.



CONVERGENCE OF RESTARTED KRYLOV SUBSPACES 37� 0:707 and � 0:807, respetively, and is predited to within an auray of roughly3%{5.2%. By omparing the equipotential ontours of Figures 6.4 and 6.5 with thoseof Figures 6.6 and 6.7, notie the �lter shifts in the latter ases reate a potential sig-ni�antly di�erent from what either the bad eigenvalues or optimal �lter shifts wouldgenerate. Figure 6.8 shows the result of using Sorensen's exat shifts. The subspaedimension is limited to be no larger than 20, and a Ritz value is used as a shift if ithas real part smaller than 1. (The early onvergene plateaus our when the sub-spae is ompressed to have dimension smaller than the number of good eigenvalues.)The potential plot on the left is based on 180 exat shifts. Although these shifts falloutside the onvex hull of the bad eigenvalues, they e�etively reover the potentialgenerated by those eigenvalues. The onvergene rate is predited to within 2% ofthe observed rate. The use of exat shifts yields a onvergene rate within 25% ofthe rate for the unrestarted iteration (Figure 6.4) at a lower omputational ost andwithout requiring a priori loalization of bad eigenvalues to determine optimal shifts(as in Figure 6.5 for good loalization and Figures 6.6 and 6.7 for poor loalization).6.4. Markov Chain Example. We lose by examining a more realisti eigen-value problem, takingA to be the transition matrix for a Markov hain that desribesa random walk on a triangular lattie. See Saad [37, xII.5.1℄ for details of this exam-ple, a ommon test problem for iterative eigenvalue algorithms. Sine all the rows ofa transition matrix sum to one, A must have an eigenvalue � = 1, and the Perron{Frobenius theorem assures this eigenvalue is simple (see, e.g., [5, Thm. 1.4℄). The lefteigenvetor orresponding to � = 1 determines a stationary distribution of the Markovhain, so we are interested in the onvergene of Æ(Ugood;K`(A�;v1)), where Ugood isthe invariant subspae of A� for � = 1. Here we onsider a lattie with a base andheight of 50 nodes, yielding a transition matrix of dimension n = 1275. This matrixexhibits a signi�ant degree of non-normality, mostly assoiated with ill-onditionedeigenvalues far from � = 1, as one an infer from the pseudospetra illustrated inFigure 6.9. Unlike the previous examples in this setion, the good eigenvalue is quitelose to bad eigenvalues, as highlighted by the lose-up on the right of Figure 6.9.The eigenvalues of A appear to be real with � = 0 having algebrai and geometri
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Fig. 6.10. Gap onvergene for the random walk example, n = 1275 (solid line). The dashedlines represent the bound (5.1). The best result is obtained when the bad eigenvalues are treated asa disrete point set for the approximation problem, while a slower rate is predited when the badeigenvalues are treated as an interval. The dotted lines utilize the superlinear bounds of Theorem 4.7for r = 1; : : : ; 10.multipliity 25. (Though we formally stipulate that A be non-derogatory in x3,our proofs only require the good eigenvalues be non-derogatory.) The bound (5.1)based on the onditioning of the matries of good and bad eigenvetors is simplest toevaluate. We have C0 = p2, and ompute bC2 � 3:546� 109; for a partiular startingvetor with normally distributed real random entries, C1 � 9:933. Labeling theeigenvalues from right to left, the polynomial approximation problem in (5.1) reduesin this single eigenvetor ase to a minimax approximation on �bad = f�2; : : : ; �ngsubjet to normalization at �1 = 1: Bounding this approximation problem usingChebyshev polynomials on [�n; �2℄ gives a pessimisti result, as an be seen in theonvergene plot in Figure 6.10. The superlinear bounds of Theorem 4.7 yield amarked improvement. In the language of Theorem 4.7, we take 
k = f�jgnj=k+1 andredue to an approximation problem over 
r+1 for r = 1; : : : ; 10, for whih we useChebyshev polynomials on [�n; �r℄. An even better bound is obtained by treating�bad ompletely as a disrete point set. One approahable way of doing this is to take�good = f�1g and note thatmin�2P̀ � maxfj�(�)j : � 2 �badgminfj�(�)j : � 2 �goodg = min�2P̀ ��(�1)=1 max�2�bad j�(�)j � min�2P̀ ��(0)=1 k�(S)rk;(6.7)where S = diag(�2 � �1; : : : ; �n � �1) and r = [1; 1; : : : ; 1℄T. The right hand sideof (6.7) an be omputed as the residual norm of the GMRES algorithm applied tothe matrix S with initial residual r; this is no more than a fator of pn worse than theleft hand side of (6.7). The resultant bound in shown in Figure 6.10. Alternatively,the minimax problem on the left hand side of (6.7) ould be solved diretly via alinear program.
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