CONVERGENCE OF RESTARTED KRYLOV SUBSPACES
TO INVARIANT SUBSPACES
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Abstract. The performance of Krylov subspace eigenvalue algorithms for large matrices can be
measured by the angle between a desired invariant subspace and the Krylov subspace. We develop
general bounds for this convergence that include the effects of polynomial restarting and impose no
restrictions concerning the diagonalizability of the matrix or its degree of non-normality. Associated
with a desired set of eigenvalues is a maximum “reachable invariant subspace” that can be developed
from the given starting vector. Convergence for this distinguished subspace is bounded in terms
involving a polynomial approximation problem. Elementary results from potential theory lead to
convergence rate estimates and suggest restarting strategies based on optimal approximation points
(e.g., Leja or Chebyshev points); exact shifts are evaluated within this framework. Computational
examples illustrate the utility of these results. Origins of superlinear effects are also described.
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1. Setting. Let A be an n X n complex matrix with N < n distinct eigenvalues
{A;}}L, with corresponding eigenvectors {u;}_,. (We do not label multiple eigen-
values separately and make no assertion regarding the uniqueness of the u;.) Each
distinct eigenvalue \; has geometric multiplicity n; and algebraic multiplicity m; (so
that 1 < nj; < m; and Zjvzl mj; = n). We aim to compute an invariant subspace
associated with L of these eigenvalues, which for brevity we call the good eigenvalues,
labeled {A1,Aa,...,Ar}. We intend to use a Krylov subspace algorithm to approx-
imate this invariant subspace, possibly with the aid of restarts as described below.
The remaining N — L eigenvalues, the bad eigenvalues, are not of interest and we
wish to avoid excessive expense involved in inadvertently calculating the subspaces
associated with them.

The class of algorithms considered here draw eigenvector approximations from
Krylov subspaces generated by the starting vector v; € C”,

Ki(A,vy) = span{vy, Avy,... ,A’Z*lvl}.

Such algorithms, including the Arnoldi and bi-orthogonal Lanczos methods reviewed
in §1.1, differ in their mechanisms for generating a basis for K,(A,vy) and select-
ing approximate eigenvectors from this Krylov subspace. Though these approximate
eigenvectors may appear to be obvious objects of study, their convergence can be
greatly complicated by eigenvalue multiplicity and defectiveness; see [21]. The bounds
developed in the following sections avoid these difficulties by instead studying con-
vergence of the Krylov subspace to an invariant subspace associated with the good
eigenvalues as the dimension of the Krylov subspace is increased.
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Given two subspaces, W and V of C", the proximity of one to the other is measured
by the containment gap (or just gap), defined as

e lly=x||
§(W,V) = sup inf “——— = sin(Yyax)-
( ) xe% yev ||x|| ( )

Here Y2  is the largest canonical angle between W and a “closest” subspace Vof V
having dimension equal to dim 'W. (Throughout, || - || denotes the vector 2-norm and
the matrix norm it induces.) Notice that if dimV < dim'W then §(W,V) = 1, while
0(W,V) =0 if and only if W C V. The gap can be expressed directly as the norm of
a composition of projections: If II\y and ITy denote orthogonal projections onto W
and V, respectively, then (W, V) = ||(I — IIy)IIw|| (see, e.g., Chatelin [7, §1.4]).

The objective of this paper then is to measure the gap between Krylov subspaces
and an m-dimensional invariant subspace U of A associated with the good eigenvalues.
We explore how quickly §(U, K¢(A,v1)) can be driven to zero, reflecting the speed
of convergence, and how this behavior is influenced by the distribution of eigenvalues
and non-normality of A. Note that 6(U,XK,(A,v1)) =1 when £ < m. For £ > m, our
bounds ultimately take the form

. max{|p(2)|: 2 € Qpaa}
. <
(]. ].) 5(u, :Kl(Aavl)) = CO Cl 02 ¢€nf]1’i{1m mln{|¢(2’)| cz € ngod},

where Py is the set of degree-£ polynomials, and go0q and aq are disjoint compact
subsets of C containing the good and bad eigenvalues, respectively. Here Cp and
Cs are constants depending on the non-normality of A, while the constant C also
incorporates starting vector biases. In §2 we identify the subspace U, which in com-
mon situations will be the entire invariant subspace of A associated with the good
eigenvalues, but will be smaller when A is derogatory or the starting vector v is
deficient. The basic bound (1.1) is derived in §3. Section 4 addresses the polynomial
approximation problem embedded in (1.1), describing those factors that determine
linear convergence rates and can lead to superlinear effects. Section 5 analyzes the
constants C and C5, and §6 provides computational examples illustrating the bounds.

Since it becomes prohibitively expensive to construct and store a good basis
for K¢(A,v1) when the dimension of A is large, practical algorithms typically limit
the maximum dimension of the Krylov subspace to some p <« n. If satisfactory
eigenvector estimates cannot be extracted from X,(A,vi), then the algorithm is
restarted by replacing vi with some new v € X,(A,vy) that is, hopefully, enriched
in the component lying in the subspace U. Since this v is chosen from the Krylov
subspace, we can write v = 1(A)vy for some polynomial ¢ with deg(y)) < p. Our
bounds also apply to this situation, and ideas from potential theory, outlined in §4,
motivate particular choices for the polynomial .

The results presented here complement and extend earlier convergence theory.
Saad bounded the gap between a single eigenvector and the Krylov subspace for a
matrix with simple eigenvalues [34]. Jia generalized this result to invariant subspaces
associated with a single eigenvalue for a defective matrix, but these bounds involve
the Jordan form of A and derivatives of approximating polynomials [20]. Simoncini
uses pseudospectra to describe block Arnoldi convergence for defective matrices [39].
Interpreting restarted algorithms in terms of subspace iteration, Lehoucq developed
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an invariant subspace convergence theory for matrices with simple eigenvalues [26].
Calvetti, Reichel, and Sorensen have studied single eigenvector convergence for Hermi-
tian matrices using elements of potential theory [6]. A key feature of our approach is
its applicability to general invariant subspaces, which may be better conditioned than
individual eigenvectors (see, e.g., [42, Ch. V]). Notably, we estimate convergence rates
for defective matrices without introducing any special choice of basis and without
requiring knowledge of the Jordan form or any related similarity transformation.
Finally, we note that other measures of convergence may be more appealing in
certain situations. Alternatives include Ritz values [20, 24], although convergence
behavior might be obscure for matrices that are defective (or nearly so). The subspace
residual is computationally attractive because it doesn’t require a priori knowledge of
the good invariant subspace. This measure can be related to gap convergence [17, 41].

1.1. Arnoldi and Bi-orthogonal Lanczos Algorithms. Suppose V is an
n X n unitary matrix that reduces A to upper Hessenberg form; i.e., V*AV = H for
some upper Hessenberg matrix, H. For any index 1 < ¢ < n, let H, denote the /th
principal submatrix of H:

hir hia - hag
By hoy -+ hag

H,= | T et
Be  hee

The Arnoldi method [2, 34] builds up the matrices H and V one column at a time
starting with the unit vector vi € C", although the process is typically stopped well
before completion, with £ < n. The algorithm only accesses A through matrix-vector
products, making this approach attractive when A is large and sparse.

Different choices for v, produce distinct outcomes for Hy. The defining recurrence
may be derived from the fundamental relation

AV, = ViH; + Be11virrep,

where ey is the /th column of the £ x £ identity matrix. The ¢th column of Hy is deter-
mined so as to force v,41 to be orthogonal to the columns of Vy, and S,41 then is de-
termined so that ||ve41|| = 1. After £ steps, the columns of V; constitute an orthonor-
mal basis for the order-¢ Krylov subspace X,(A,v;) = span{vy, Avy, ..., Aé_lvl}.
Since V, AV, = Hy, the matrix Hy is a Ritz—Galerkin approximation of A on this
subspace, as described by Saad [35]. The eigenvalues of Hy are called Ritz values and
will, in many circumstances, be reasonable approximations to some of the eigenvalues
of A. An eigenvector of H, associated with a given Ritz value 6; can be used to
construct an eigenvector approximation for A. Indeed, if H;y; = 6;y;, then the Ritz
vector u; = Vyy; yields the residual

[AY; — 0;1;]] = |Bet1] |efy;l-

When |fB¢41] < 1, the columns of V; nearly span an invariant subspace of A. Small
residuals more often arise from negligible trailing entries of the vector y;, indicating
the most recent Krylov direction contributed negligibly to the Ritz vector u;.



4 CHRISTOPHER BEATTIE, MARK EMBREE, AND JOHN ROSSI

Alternatively, suppose V is an_n X n_invertible matrix that transforms A via
similarity to tridiagonal form; i.e., V"' AV = T for some tridiagonal matrix T. For
any index 1 < /¢ < n, let Ty denote the fth principal submatrix of T:

a2
T, = O o2 . e Ctxe,
IR e 14
de
Let V, = [vi, Va, ..., v¢] denote a matrix containing the first £ columns of \7; and
for W* = V1 let Wy = [wy, wa, ..., wy] denote a matrix containing the first £

columns of W. .

The bi-orthogonal Lanczos algorithm [25] builds up the matrices T, {7, and W
one column at a time starting with the unit vectors v; and wy, accessing A and
A” only through matrix-vector product operations. Different choices for vi and wy
produce distinct outcomes for T, if all goes well. Recovering from situations where
not all goes well is a fundamental aspect of later refinements of the algorithm; two
such approaches are discussed in [16] and [30].

At the fth step, the basic recursion is

A{/g = V[T[ + 5{+1Vg+1ez,
A*Wg = WgTZ* + ’)/g+1Wg+1eZ.

Typically, normalization is determined so that |y;| = |;] and vjw; = 1. With exact
arithmetic, the first £ — 1 steps yield matrices \7@ and \/7\\7@ that satisfy
e WV, =1,

. Ran(\Afg) = span{vy, Avy, ..., A’Z*lvl} = XK¢(A,vy), and
. Ran(Wg) =span{wy, A*wy, ..., (A Twi} = KA, wy).

Notice that Ty, = {7\\72* A\?g, and so the eigenvalues for T, (also called Ritz values)
are Petrov—Galerkin approximations to the eigenvalues of A [35]. In both the Arnoldi
and bi-orthogonal Lanczos methods, approximations to the (right) invariant subspaces
of A are drawn from the same subspace X;(A,vy), though with respect to different
bases: Vp vs. \A/'g. However, bi-orthogonal Lanczos’s Ty is mot in general similar to
Arnoldi’s Hy; indeed, the bi-orthogonal Lanczos eigenvalue approximations typically
differ considerably from those provided by Arnoldi.

Our focus here will remain fixed on how well a good invariant subspace U is cap-
tured by X,(A,v;) without regard to how a basis for X;(A,v;) has been generated.
Further algorithmic details of particular methods can be found in [4].

1.2. Polynomial Restarts. The cost of proceeding through p steps of the
Arnoldi recurrence is roughly the cost of p matrix-vector products of the form Avy,
on top of the net 2np? floating point operations necessary for orthogonalization. Bi-
orthogonal Lanczos requires 2p matrix-vector products (of the form Avy and A*wy)
and also on the order of np? floating point operations to enforce bi-orthogonality. If
n is very large and A is very sparse (say, with a maximum number of nonzero entries
per row very much smaller than n), then the cost of orthogonalization can quickly
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dominate as p grows. One general approach for alleviating the growing cost of or-
thogonalization is known as polynomial restarting. At the end of p + 1 steps of the
recurrence, one selects some “best” vector vi" € K,41(A,v;) and restarts the recur-

rence from the beginning using vi". Different restart strategies differ essentially in

how they attempt to condense progress made in the last p+ 1 steps into the vector vf.
Since any vector in K41 (A, vy) can be represented as 1, (A)vy for some polynomial

¥, of degree p or less, a restart of this type can be expressed as

(1.2) v U, (A)vy.

If subsequent restarts occur (relabeling vi~ as vgl)) then

v P (A)vy (first restart)
v§2) - ¢z[>2] (A)vgl) (second restart)

v AWV (wth restart),

and we can collect the effect of the restarts into a single aggregate polynomial of
degree vp:

(1.3) v e W, (A,

where ¥,,(\) = [Tj_, ¥ (V).

Evidently, the restart vectors should retain and amplify components of the good
invariant subspace while damping and eventually purging components of the bad in-
variant subspace. One obvious way of encouraging such a trend is to choose the poly-
nomial ¥,,(A) to be as large as possible when evaluated on the good eigenvalues while
being as small as possible on the bad eigenvalues. If the bad eigenvalues are situated
within a known compact set Qpaq (not containing any good eigenvalues), Chebyshev
polynomials associated with .4 are often a reasonable choice. When integrated with
the Arnoldi algorithm, this results in the Arnoldi-Chebyshev method [36] (cf. [18]).

Saad introduced a different restart strategy that may appear more direct and in-
volves less a priori information about bad eigenvalue locations [34]. In this strategy,
one computes the eigenvalues of H, and sorts the resulting ¢ = k + p Ritz values
into disjoint sets Sgood and Shada. The k Ritz values in Sgooq are regarded as approx-
imations to the good eigenvalues of A, and the restart vector is defined as a linear
combination of good Ritz vectors,

k
j=1

Saad proposed using either a selected Ritz vector by itself, or forming a linear combi-
nation that is weighted to favor Ritz vectors that yield large residuals, so as to provide
balanced convergence to the good invariant subspace [34]. Since each Ritz vector u;
is in K;(A, v1), one may interpret either of these strategies as polynomial restarting,
as in (1.2) above.
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Sorensen introduced a related strategy, called ezact shifts [40], that has proved
extremely successful in practice. As before, one computes the eigenvalues of Hy,
and sorts the resulting £ = k + p Ritz values into two disjoint sets Sgooa and Shad.
But instead of using any explicitly determined linear combination of Ritz vectors
associated with the k& good Ritz values, the remaining p Ritz values in the set
Shaa are used to define the restart polynomial ¢,(\) = Hf;’: +1(A —0;). Morgan
discovered a remarkable consequence of this restart strategy: The updated Krylov
subspace, K(A,v]) generated by the new starting vector v in (1.2) using exact
shifts satisfies K,(A,v]") = span{d,, Uz, ... ,us, Alj, A’4j, ... ,A’t;} for each in-
dex j = 1,2,...,k [28]. Thus, Sorensen’s exact shifts will provide, in the stage
following a restart, a subspace containing every possible Krylov subspace of dimen-
sion p that Saad’s explicit Ritz vector restart could generate. Furthermore, Sorensen
showed how to apply shifts implicitly, regenerating the Krylov subspace K;(A,v{)
with only p matrix-vector products in a numerically stable way. Analogous features
can be verified for the restarted bi-orthogonal Lanczos method using bad Lanczos
values as polynomial roots. Such a strategy has been explored in [16, 9].

In all that follows we assume the Arnoldi or bi-orthogonal Lanczos process has
proceeded £ steps past the last of v restarts, each of which (for the sake of simplicity)
has the same order p. For the jth restart, with j =1, 2, ..., v, we use a set of shifts

{wjr}r_,. Define

T,,(\) =[] TTO = wis)
j=1 k=1

to be the aggregate restart polynomial after v restarts. An iteration without restarts
will have p=v =0 and ¥,,(\) = 1.

Let X, (A,vgy)) denote the Krylov subspace of order 7 generated by the start-
ing vector vly) that is obtained after v restarts. The following basic result follows
immediately from the observation that v{*) = ¥, (A)v;.

LEMMA 1.1. For all 7 > 0, X-(A,v{") = ¥,,(A) X, (A, v1).

2. Reachable Invariant Subspaces. If the good eigenvalues are all simple,
then the associated invariant subspace is uniquely determined as the span of all the
good eigenvectors. However, if some of these eigenvalues are multiple, there could
be a variety of invariant subspaces associated with them. Nonetheless, single-vector
Krylov eigenvalue algorithms with polynomial restarts are only capable of revealing
one of the many possible invariant subspaces for any given initial vector. Before
developing convergence bounds, our first task is to characterize this distinguished
invariant subspace precisely.

Let M be the cyclic subspace generated by the initial starting vector vy,

M = span{vy, Av;, A’vy,... }.

M is evidently an invariant subspace of A and s = dim(M) < n. Since any invariant
subspace of A that contains vi; must also contain A"vy for each integer 7 > 0, M
is the smallest invariant subspace of A that contains vi. The first s vectors of the
Krylov sequence {v, Avy, A’vy,..., A 'v;} are linearly independent, and so must
constitute a basis for M.
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Recall that a linear transformation is non-derogatory if each eigenvalue has geo-
metric multiplicity equal to one, i.e., each distinct eigenvalue has precisely one eigen-
vector associated with it, determined up to scaling.

Define A|n¢ to be the restriction of A to M.

LEMMA 2.1. Aly¢ is non-derogatory and fK-,—(A,VEU)) = fKT(A|M,V§V)) C M.

Proof. Consider the matrix representation of Ay with respect to the basis
{vi,Av;,A’v,... ,A* v, }. Since M is s-dimensional,

Al Ay = Al

s—1
= Z Cj A]V1
j=0
for some constants cg,...,cs_1. Thus,
0 -+ 0 ¢
1 . . . ~
A|7v[ ~ . ) ’ = H.
0 ¢
1 cs1

That is, A is similar to an irreducible upper Hessenberg matrix, which is necessarily
non-derogatory since rank(H — A) > s — 1 for all A\. The second assertion follows

immediately from ng) e M. O

Define a; to be the ascent (or index) of the eigenvalue )j, i.e., the minimum
positive integer a such that Ker (A—);)® = Ker (A—)\;)**!. This «; is the maximum
dimension of the n; different Jordan blocks associated with A; and Ker (A — \;)®
then is the span of all generalized eigenvectors associated with A;.

The spectral projection onto each subspace Ker (A — ;) can be constructed in
the following coordinate-free manner; see, e.g., [23, §1.5.3]. For each eigenvalue JA;,
Jj=1,...,N,let I'; be some positively-oriented Jordan curve in C containing A; in its
interior and all other eigenvalues A\, # A; in its exterior. Then the spectral projection
is defined as

_ 1 -1
Pj:% F.(Z—A) dz.
J

P; is a projection onto the span of all generalized eigenvectors associated with A;. In
particular, P;v; will be a generalized eigenvector associated with A; and will generate
a cyclic subspace Ko, (A, P;vi) C Ker (A —\;)% . Let &; be the minimum index & so
that K5 (A,P;jvq) = Ka+1 (A, Pjvy). This @; is called the ascent with respect to vy of
the eigenvalue A;. Notice that 1 < a; < a; and K, (A, P;vy) is the smallest invariant
subspace of A that contains Pjv;. Furthermore, P;v; is a generalized eigenvector
of grade @; associated with A\; and &; < a; only if vy is deficient in all generalized
eigenvectors of maximal grade a; associated with ;.

Define spectral projections Pgooq and Phaq having ranges that are the maximal
invariant subspaces associated with the good and bad eigenvalues, respectively:

L N
Pyood = Z P, and Ppg= Z P;.
j=1 j=L+1
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Note that Pgoodq + Ppaa = 1.

The following result characterizes M. The first statement, included for compari-
son, is well-known; the second is also understood, though we are unaware of its explicit
appearance in the literature. Related issues are discussed in [1], [13, Ch. VII].

LEMMA 2.2. C* = @;-V:lKer(A — X)) with Z;VZI aj <n, and

M = &l Ks, (A, Pjvy) with 31| &; = dim M.

Proof. Since Z;VZI P; =1, any x € C" can be written as x = Ix = Zjvzl P;x,
which shows that C* C @é-v:lKer(A— A;j)% . The reverse inclusion is trivial and yields
the first statement.

For the second statement, use Z;VZI P; =1 to get, for any integer 7 > 0,

N N N
vV = ZPle, AV1 = ZAPle, ceey ATV1 = ZATPjvl-
j=1 j=1 j=1

Thus, for each integer 7 > 0, K, (A, v1) C Y, Ks; (A, Pjvy), and,in particular, for
7 sufficiently large this yields M C @;-V:lﬂ(faj (A,Pjvq).

To show the reverse inclusion, note that for every j = 1,..., N, one can con-
struct a polynomial p; such that p;(A) = P;. (This polynomial interpolates zero at
eigenvalues Ay # Aj, one at \;, and has a; — 1 zero derivatives at A;; see, e.g., [19,
§6.1] for related information.) Thus for any x € Z;\le Xa;(A,P;vy), one can write

N N
x =Y gi(A)Pjvi =Y gj(A)pj(A)vi €M
j=1 j=1

for polynomials g; with degree not exceeding &; — 1. Thus 69;-\’:19(&]. (A,Pjvy) C M,
and so M = & K5, (A, Pjvy). 0

Let Xgooa and Xpaqa be the invariant subspaces of A associated with the good
and bad eigenvalues, respectively. Then define Ugooa = M N Xgooa and Upaa =
M N Xpaa. The following lemma develops a representation for Ugooa and Upaa; it
shows that Ugooa is the mazimum reachable invariant subspace associated with the
good eigenvalues that can be obtained from a Krylov subspace algorithm started with
vi. “Maximum reachable invariant subspace” means that any invariant subspace U
associated with the good eigenvalues and strictly larger than Ugooa is unreachable:
The angle between U and any computable subspace generated from v; is bounded
away from zero independent of ¢, p, v, and choice of filter shifts {su;;}.

LEMMA 2.3.
ugood = @lexaj (A7 Pjvl)a ubad = @;'V:L-l,-lxaj (A7 Ple),
L N
and
dim Ugooa = Z&j =m, dim Upaq = Z a; =s—m.
Jj=1 j=L4+1

Furthermore, for any subspace U of Xgo0a that properly contains Ugood,

ugood cu g xgooda
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convergence in gap cannot occur: For all integers £ > 1,

v 1
S(U, Ko (A, v)) > 0.

—_—
"~ Pgooall

Proof. Since Xz, (A,P;vi) C Ker(A — X;)%, Lemma 2.2 leads to M N Xgo0a =
@JL:liKaj (A, Pjvy). Furthermore, dim X3, (A, P;vy) = @; implies that dim Ugpea =
m as defined above. The analogous results for Up,q follow similarly.

Note that Xpaa = G 1, Ker(A — X;)® so, for all £ >0,

j{g(A, VY/)) - M - ugood D xbad-

Thus any v € :K[(A,ng)) can be decomposed as v = wi + wy for some wi € Ugood
and wy € Xpaa. When Ugooq is a proper subspace of U, there exists an X € U so that
X L Ugooa and ||X|| = 1. Note that ||X — wy|| > [|X|| = 1. Now,

min lv—x|l> min |jw; 4+ w; —x]|
VEKZ(A7V1V)) v:vlzegrl&g::c[li
> min s :(X_W1)H
T w1 €Ugood ||X - Wl”
w2 EXbad

. w2 —yl|
min ———

¥€Xgood  ||¥I|
w2 EXpad

v

-1
e PPaa(ws — )l 1

YEXgooa  [|W2 — ¥ ~ [IPgoodll’
w2 € Xpad

Thus,

6(u,ng(A,v§"))) = max min llv = x|
x€U yex,(A,v{) ||X||
. - 1
> min v —-X|| > —.
veK,(A,v{) ||Pg00d||

This means that we have no hope of capturing any invariant subspace that contains
a (generalized) eigenspace associated with multiple Jordan blocks — at least when
using a single vector iteration in exact arithmetic. On the other hand, convergence can
occur to the good invariant subspace Ugood, With a rate that depends on properties
of A, vy, and the choice of filter shifts {1}, as we shall see.

Almost every vector in an invariant subspace is a generalized eigenvector of maxi-
mal grade and so almost every starting vector will capture maximally defective Jordan
blocks. While easily acknowledged, this fact can have perplexing consequences for the
casual Arnoldi or bi-orthogonal Lanczos user, since eigenvectors of other Jordan blocks
may be unexpectedly “washed out.”
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Suppose A is defined as

10 0 0 O
110 0 0
A=|0 01 0 0
0 01 10
0 00 11

A is in Jordan canonical form and has eigenvectors e; and e5 associated with the
eigenvalue 1. (e; denotes the jth column of the 5 x 5 identity matrix.) The eigenvalue
1 also has generalized eigenvectors of grade 1 given by e; and e4 associated with the
2 x 2 and 3 x 3 Jordan blocks, respectively, and a generalized eigenvector of grade 2
given by es associated with the 3 x 3 Jordan block.

Let B € C be arbitrary and note that the vector vi = [1 811 1]T generates a
cyclic subspace spanned by the first three vectors in the Krylov sequence,

1+5 2

1 1
+ +0
, Vo=Av, = 1 , and vy = A’y = 1
2 3
2 4

V] =

e e N

By choosing |3] to be large, the starting vector v; can be made to have an arbitrarily
large component in the direction of ey, the eigenvector associated with the 2 x 2
Jordan block.

0 0 1
Defining M = [vy, Vo, v3] and H= { 1 0 -3 } , a simple calculation reveals
01 3

AM = MH.

The Jordan form of H is easy to calculate:

(2.1) R 'HR =

O = =

0 0 1 -1 1
1 0|, whereR=|0 1 -2
11 0 0 1

The cyclic subspace generated by the single vector vy has captured a three-
dimensional invariant subspace, associated with the maximally defective 3 x 3 Jordan
block. But this subspace is not the expected span{es, e4, e5}. Using the change of
basis defined by R in (2.1), one may calculate A(MR) = (MR)(R_lﬁR), which is

100 00 1 00 1 0 0
110 0 0 g 1 0 g 1 0 100
0 01 0O 1 0 0|=(1 00 1 10
0 01 10 1 10 1 10 011
0 00 11 1 11 1 1 1

Note that e; alone is revealed as the eigenvector associated with the eigenvalue 1;
es has been washed out in spite of v; having an arbitrarily large component in that
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direction. Indeed the eigenvector es (and so any subspace containing it) is unreachable
from any starting vector vy for which e3v; # 0. In this example, vy itself emerges as
a generalized eigenvector of grade 2. Note that every vector v in C° with efv # 0 is
a generalized eigenvector of grade 2 associated with the eigenvalue 1.

We close this section with a computational example that both confirms the gap
stagnation lower bound for derogatory matrices given in Lemma 2.3 and illustrates
other convergence properties explored in future sections. Consider two matrices Ay
and As, each of dimension n = 150 with eigenvalues spaced uniformly in the interval
[0,1]. In both cases, all the eigenvalues are simple except for the single good eigen-
value A\ = 1, which has algebraic multiplicity five. In the first case, the geometric
multiplicity also equals five, so the matrix is diagonalizable but derogatory. In the
second case, there is only one eigenvector associated with A = 1, so it is defective
but not derogatory. Both matrices are constructed so that ||Pgooal| ~ 10%. Figure 2.1
illustrates the gap convergence for the Krylov subspace to the invariant subspace
Xgooa associated with A = 1. The starting vector v has 1/y/n in each component;
no restarting is used here. Convergence cannot begin until the fifth iteration, when
the Krylov subspace dimension matches the dimension of Xgo04. This initial period
of stagnation is followed by a sublinear phase of convergence leading to a second
stagnation period. This is the end of the story for the derogatory case, but for the
nonderogatory case, the second stagnation period is transient and the convergence
rate eventually settles towards a nearly linear rate. In fact, this rate improves slightly
over the final iterations shown here, yielding so-called “superlinear” convergence, the
subject of §4.3. These convergence phases resemble those observed for the GMRES
iteration, as described by Nevanlinna [29].

100 T T T T T T ]
diagonalizable
but derogatory
T 10t ! .
4" HPgoodH
\g/ defective,

A not derogatory
8 107 -
5

10715 L | 1 1 1
0 5 20 40 60 80 100

Krylov subspace dimension, £

F1c. 2.1. The Krylov subspace can never capture Xgo04 when this subspace is associated with
a derogatory eigenvalue; convergence is possible, however, when the associated eigenvalues are de-
fective but not derogatory, as described by Lemma 2.3.
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3. Basic Estimates. Since all reachable subspaces are contained in M and A|x¢
is non-derogatory, henceforth we assume without loss of generality that A itself is non-
derogatory so that n = dim M, and v; is not deficient in any generalized eigenvector
of maximal grade. To summarize the current situation: A is an n X n matrix with
N < n distinct eigenvalues, {/\j}é.v:l, each having geometric multiplicity 1 and al-
gebraic multiplicity m;, so that Z;VZI mj = n. Weseek L (1 < L < N) of these
eigenvalues {1, A2, ..., Ap} (the “good” eigenvalues) together with the correspond-
ing (maximal) invariant subspace Ugooa of dimension m = ZJLZI m;j, which is now
the net algebraic multiplicity of good eigenvalues since A is non-derogatory.

We begin by establishing two lemmas that are used to develop a bound for the
gap in terms of a polynomial approximation problem in the subsequent theorems.

LEMMA 3.1. Given U,V C C", suppose u € U (||u]| = 1) and v € V satisfy
[lu—v]|

o(U, V) = max min

max min o =Vl

Thenda —v LV andd—v —6(U,V)%a L U

Proof. The first assertion is a fundamental property of least squares approxima-
tion. To show the second, consider an arbitrary unit vector u € U and take £ > 0.
Letting ITy denote the orthogonal projection onto V, the optimality of i and v implies

I(T - Ty) (@ + eu)||”
[ + ul|2

~

o - >

Expanding this inequality, noting v = ITyu, and using the first assertion gives
S(U, V)*(1 + 22 Re(t*u) + &%) > §(U, V)? 4 2e Re((1 — ¥)*u) + 2||(T — Iy)ul]>.
Collecting terms quadratic in € on the left hand side,
2(5(U, V)? — ||(T = IIy)ul|?) > 2eRe((ti — ¥ — §(U, V)*1d)*u).

Note that the left hand side must be non-negative. Repeating the above argument
with u multiplied by a complex scalar of unit modulus, we can replace the right hand
side with 2¢|(d — v — §(U, V)?1)*u|. Thus for any unit vector u € U,

e(O(U, V) = |(T-Ty)ul?) > 2|(@ - v - 6(U, V)*@)"u| > 0.

Taking ¢ — 0, we conclude that u—v —&(U, V)21 is orthogonal to every u € U. O
As the gap between subspaces closes (6(U, V) — 0), notice that U — ¥ becomes
“almost” orthogonal to U in the sense that the projection of 1 — v onto U has norm
(U, V)2.
LEMMA 3.2. Let P,,—1 denote the space of polynomials of degree m — 1 or less.
The mapping v: Prm—1 = Ugooa defined by

(31) Z(/‘/}) = "/}(A)Pgoodvl

is an isomorphism between Pp_1 and Ugeoda. Furthermore, there exist positive con-
stants ¢; and cy so that

(3.2) 1 [[Yll 9y < [[P(A)Pgooavi|l < 2 19l s,
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uniformly for all yp € Pp_1 for any fived norm || - ||p,,_, defined on the space Pp_1.

Proof. @ is clearly linear. To see that 2 maps P,,—1 onto Ugeod, observe that for
any given y € Ugood, there exist polynomials {g;(\) ]Lzl with deg(g;) < m; — 1 such
that

L

y =Y gi(A)Pvi.

=1

The L polynomials {gj}]L:1 provide L separate “slices” of a single polynomial that
can be recovered by (generalized) Hermite interpolation. Let ¢ be a polynomial
interpolant that interpolates g; and its derivatives at A;:

PB ) =g ()
for k=0,1,...,m; —land j=1,2,...,L. Theorem VIIL.3.16 of [11] leads us first

to observe that ¥ (A)P; = g;(A)P; for each j = 1,...,L. Then since deg(y)) <
Zle mj —1=m — 1, we have from (3.1) that

L

y = Z¢(A)Pjvl = "p(A)PgoodVl = Z(¢)

Jj=1

Since dim(Pp,—1) = dim(Ugooa), nullity(2) = 0 and ¢ is bijective from P, —1 to Ugood-
The last statement is an immediate consequence of the fact that linear bijections are
bounded linear transformations with bounded inverses. O

THEOREM 3.3. Suppose that A and vy satisfy the assumptions of this section,
and that none of the filter shifts {u;r} coincides with any of the good eigenvalues
{/\j}le. For all indices £ > m, the gap between the good invariant subspace, Ugood,

and the Krylov subspace of order /, Kg(A,vy')), generated from the v-fold restarted
vector, vgy) satisfies

v . A)1/)(A)‘I’u (A)Pbadvln
N A v < llo( »
OUgood Ke(A, Vi) < Co o i A 0(A) Ty (A) Pyoavi|

where Cy = 1 if Ugooa L Upbaa and Cy = V2 otherwise.
Proof. First, suppose Ugood L Upad. This implies that Pyooq and Ppaq are
orthogonal projections, Uggod is an invariant subspace for both ¥,,(A) and [¥,,(A)]*,

and, as we will see, that 6(ug00d,ﬂ<g(A,v§"))) < 1. Indeed, suppose instead that
5(ug00d,ﬂ<g(A,vgy))) = 1. Then there is a vector U € Ugooa with |[t|] = 1 such that
i L K(A,v\”). Define § = [¥,,(A)]*li € Ugood, and note that by Lemma 3.2,
there exists a polynomial @Z € Ppn—1 such that y = &(A)Pgoodvl. Now, for each
j=1,2,...,¢ we have

0=(0, A~y =@, AT, (A)vy)
= <3’\7 Aj_ngood"l)
= <7:[J\(A)Pg00dv17 Ajingood"l)-
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Since ¢ > m, this implies first that ||1Z(A)Pg00dv1|| = 0 and then 1 = 0. (Recall that
[W,p(A)]* is bijective on Uggoq since ¥, has no roots in common with good eigenval-

ues.) But u was given to be a unit vector, so it must be that 6(Ugood, Ke(A, ng))) < 1.
Now, there are optimal vectors v € Ky(A, vgy)) and X € Ugooa with [|X|| = 1 that

satisfy

v —x|| _

(3.3)  0(Ugooas Ke(A,v1")) = max min v - ||

800 ! x€Ugooa VGKe(A,Vly)) ||X||
Since 6(ug00d,ﬂ<g(A,v§"))) < 1, it must be that v # 0. Furthermore, optimality for
Vv means V—X 1 K, (A, vgy)) (viz., Lemma 3.1) and in particular, v*(v —X) = 0. So,
v # 0 implies Vv € Upaq. There is a polynomial m,_1 € P,_1 such that

V=m 1 (AVY) =11 (A)T,,(A)v,.

Define Q = Ugooa N Ker(my—1(A)) and let g be the minimum (monic) annihilating
polynomial for Q.! Evidently, 7,_; must contain 7 as a factor.

Since V ¢ Upad, m¢—1 cannot be an annihilating polynomial for Ugeod, so Q #
Ugooa and deg(q) < m — 1. One may factor m,_; as the product of a polynomial, ¢,
of degree £ — m and a polynomial, ¢, of degree m — 1 containing ¢ as a factor,

m-1(A) = ¢(N)a(A).

Observing that Ugeoa is invariant for both ¢(A) and ¢(A)*, we may decompose X
as X = ¢(A)y + n for some y € Ugooa and some n € Ker(¢(A)*) N Ugooa. Notice
that V*¢(A)y = vV*X = v*V > 0, so ¢(A)y # 0. However, we'll see that it must
happen that n = 0. Indeed, Lemma 3.1 shows that if z € Ugooa is orthogonal to X,
X*z = 0, then v*z = 0 as well. In particular, for z = ||n||>¢(A)y — ||#(A)¥]|’n we
have x*z = 0. Since Ker ¢(A)* = Ran ¢(A)*+ implies v*n = 0, we have

0=z = [n¥"4(A)5.

We have already seen that v*¢(A)y > 0, and so n = 0. Thus we can safely exclude
from the maximization in (3.3) all x € Ugooa except for those vectors having the
special form x = ¢(A)y for y € Ugooa and ¢ as defined above.

We can now begin our process of bounding the gap. Note that

v : v —x|l
(U d,j([(A,V( ))) = max min -
800 ! x€Ugood ves,(A,v{") ||X||
R, (A)(A)(A: x|
x€Ugood PEP—m ¢EPm—_1 ||X||
: ¥ (A)e(A)lg(A)vi — ]l

34 = max min min ,
34 DT . N [ MO NFIPN]

where we are able to justify the substitution x = ¥,,(A)¢(A)y since ¥,,(A) is an
invertible map of Uggoa to itself.

!That is, g is the minimum degree monic polynomial such that g(A)r = 0 for all r € Q.
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Now by Lemma 3.2, y € Ugooa can be represented as y = ¢(A)Pgoq vy for some
Y € Pmy—_y1. Since I = Paq + Pgood, one finds

Y(A)vi —y = Y(A)PpagVvi.

Continuing with (3.4), assign ¢ = ¢ € Pp,—1. Then

) 19, (A)(A) (A — ]|
Ugood, KelAviT) < max i A A)y ]
(y d’(A) goodvl)
_ 1T, (A)(A)S(A) Praavi |
T I 11T, (A)G(A) (A) Pygoavi |

as required, concluding the proof when Ugooa L Ubad.

Now, if the two subspaces Ugooa and Upaq are not orthogonal, introduce a new
inner product on C® with respect to which they are orthogonal. For any u,v € C”,
define

<11, V>* = (Pgoodua Pgoodv> + <Pbadua Pbadv>:

and define the gap with respect to the new norm || - ||« = 1/(:, )« to be

3.(W,V) = sup inf M
xew yev  [|x]l

Notice that for any vector w € C",
W[ = [[PgooaW + Poaaw||* < 2 (|[Pgooaw||* + [[Poaawl®) = 2[|w]IZ,
IPgooaW ||« = ||Pgooawl|, and |[[Ppaawlls = |[Poaawl].
In particular, for any x € Ugooqa and y € C* these relationships directly imply

— X
ly ==l 5 lly =l
B 1]«

and 50 6(Ugood, Ke(A, Vi) < v/2 6, (Ugood, Ke(A, vi"))). Since Ugooq and Upaq are
orthogonal in this new inner product, we can apply the previous argument to conclude

[¢(A)Y(A)Tyy(A)Ppaavi]|
d(Ugood, Ke (A, V1 )) <V2 wgéixl ¢€rr:'1>1nm (A )¢(A)‘Pu:(A)PgoodV1||*

=+v2 max min lp(A)p(A) ¥y (A)Phaavi |l
YEPm_1 0€P_m ||P(A )¢(A)@VP(A)Pg00dV1||,

as required.? 0
2 A more precise value for Cy can be found as

2| I—-2P,
1< CO ” good“

< ZIE=2Pgood P 5
1+H172 oodH

however the marginal improvement in the final bound would not appear to merit the substantial
complexity added.
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If N is a square matrix with an invariant subspace V, define

N
INTe = max NV ey,
vev ||v]|

where ITy here denotes the orthogonal projection onto V.
THEOREM 3.4. Suppose A, vi, and the shifts {p;r} satisfy the conditions of
Theorem 3.3. Then for £ > m,

8 (Ugood, Ke(A, i) < Co Oy S D(A) Ty (A [ty 10(A) T ()1t

where Cy is as defined in Theorem 3.3 and

_ [1¥(A)Ppaavi |
3.5 C, = T AD
( ) ! wgi%’?nx—l ||¢(A)Pgoodvl ||

is a constant independent of ¢, v, p, or the filter shifts {p;r}
Proof. Let Ilzo0q4 and Il,aq denote the orthogonal projections onto Ugeoq and
Upad, respectively. Then

[%0p(A)P(A)Phaatp(A) Vi = [| W0, (A)P(A)Thaa Phaat)(A) V1 |
< [10p(A)P(A) b | [[Praatp (A)vi ||

and, assuming for the moment that ¢(A) is invertible,

Peooats (Al = [[[T0p(A)H(A)] ™ TheooaPeona Lup(A)H(A) (A)v: |
< 11%0p(A) (AN Thgool| [Pgooa Tup(A)$(A) 1) (A)vy .

Hence,
||\I’VP(A)¢(A)Pbadw(A)V1 ||
||lI’Vp(A)¢(A)Pgood¢(A)V1 ||
< ||[\Pup<A)¢<A>]-1||uw||wup<A)¢(A>||ubad%m.

Minimizing with respect to ¢ and maximizing with respect to ¢ yields the con-
clusion provided the expression for C] is finite. This is assured since, as an immediate
consequence of (3.2), |[t)(A)Pgooavi|| = 0 can occur only when ¢ = 0. O

It is instructive to consider the situation where we seek only a single good eigen-
value, A1, which is simple. In this case m = dim Uzooa = 1; the conclusion of Theo-
rem 3.3 may be stated as

v . A)\I’,, (A)W”
8 (Uood, Ke (A, v")) < 0y C ll9€ P ,
(Ugooa, Ke(Avi 7)) < Co o i XY, 000

where W = Ppaqvi/||Ppaavi]|| and C1 = ||Ppaavil|/||PgooaVi||. Elementary geometric
considerations yield an alternate expression for Cf:

o= < ! sin@(ugood,v1)>2+<l_ ! cos@(ugm,vl)f
! I Pgoodl| cos O(UL, 4, v1) IPgooall cos O(Up,q,v1) /'
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where ©(Ugooa, vi) and O(Uy, 4, v1) are the smallest angles between v; and the one-
dimensional subspaces Ugooa and uﬁad, respectively. This special case is stated as
Proposition 2.1 of [18].

Our next step is to reduce the conclusion of Theorem 3.4 to an approximation
problem in the complex plane. Let U be an invariant subspace of A associated with
a compact subset Q C C (that is, 2 contains only those eigenvalues of A associated
with U and no others). Define x(f2) as the smallest constant for which the inequality

(3.6) 1 (A)lhe < () max | (2)]

holds uniformly over all f € H(f2), where H () denotes the functions analytic on Q.%
Evidently, the value of the constant x(€2) depends on the particular choice of Q (a
set containing, in any case, those eigenvalues of A associated with U). The following
properties of () are shared by the generalized Kreiss constant K(€2) of Toh and
Trefethen [44] (defined for U = C™). k() is monotone decreasing with respect to set
inclusion on 2. Indeed, if 21 C 5, then for each function f analytic on s,

I|.f(A)llu S £ (A) ||l
max{|f(z)] : z € Y} ~ max{|f(z)]: 2z € D}

Thus, Q; C Qs implies k(1) > &(Q2).

Since the constant functions are always among the available analytic functions on
2, k(2) > 1. If A is normal, k() = 1. Indeed, if A is normal and ¥ denotes the set
of eigenvalues of A associated with the invariant subspace U, then

B @A max{lfO)]:AeT)
Len) = o ma([f ()2 €0 o max([f()] 2 ey =&

If any eigenvalue associated with the invariant subspace U is defective, then some
choices of 2 will not yield a finite value for (). For example, let

01
A=)

and take U = C? as an invariant subspace associated with the defective eigenvalue
A = 0. If Q consists of the single point {0} and f(z) = z then evidently ||f(A)|ju =1
but max.ecq |f(2)] = 0. So, no finite value of () is possible (see [33, p. 440]). More
generally, if ) is the spectrum of a defective matrix A, then the monic polynomial
consisting of a single linear factor for each distinct eigenvalue of A is zero on (2 but
cannot annihilate A, as it has lower degree than the minimum polynomial of A.

We now use k to adapt Theorem 3.4 into a more approachable approximation

problem. In particular, if Q400q is a compact subset of C containing all the good
eigenvalues of A but none of the bad, then

||[¢(A)‘I’UP(A)]_1||ugood < K'(ngod) max{|[¢(z)wl’p(z)]_1| 1z € QgOOd}
_ N(ngod)
min{[¢(z)¥up(2)] : 2 € Qgooa}

3[18] contains an error amounting to the tacit assumption that Pgo04 is an orthogonal projection,
which is true only if Ugooqa L Upaq. Thus the results coincide only in this special case (note Cp = 1).

4For given k > 1, the sets Q that (i) contain all eigenvalues of A, and (ii) satisfy () < k are
called k-spectral sets and figure prominently in dilation theory of operators [31].
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Applying a similar bound to ||¢(A)¥,p(A)||1,.., We obtain the following result, the
centerpiece of our development.

THEOREM 3.5. Suppose A and vy satisfy the conditions of Theorem 3.3. Let
Qgood and Qpaq be disjoint compact subsets of C that contain, respectively, the good
and bad eigenvalues of A, and suppose that none of the filter shifts { i} lies in Qgood.
Then, for £ > m,

y . U,,(2)p(2)] : 2 € Qbad}
v A (v) < max{| )
6(Ugood, Ke(A,vi")) < Co C1 Cy S T[Ty ()0(2)] - 2 € Dpoa]”

where Cy and Cy are the constants introduced in Theorems 3.3 and 3.4, respectively,
and Ca = k(Qgood) £(Qbad)-

Evidently, Theorem 3.5 can be implemented with a variety of choices for 2g60a
and Qpad, which affects both the polynomial approximation problem (discussed in the
next section) as well as the constant Cy (considered in §5.3). A key feature of this
development, which becomes more evident in the next section, is the limited role the
location of the good eigenvalues play in the approximation problem.

4. The Polynomial Approximation Problem. Theorem 3.5 suggests the gap
between a Krylov subspace and an invariant subspace will converge to zero at a rate
determined by how small polynomials of increasing degree can become on Qp,q while
maintaining a minimal uniform magnitude on go0a. How can this manifest as a
linear convergence rate? Consider the ansatz

)

. max{|p(w)|: w € Qpaa} 4
min —, =r
pePp min{ |4(2)] : 2 € Qgood }

for some 0 < r < 1. Pick a fixed ¢ € P+, say with exact degree £*. Then

(max{ |p(w)| : w € Qpaal
min{ [¢(2)] : z € Qgooa}

(4.1) > > 0" log(r).

1 lp(2)]
7= 108 (max{ 16(w)] : w € Qoaa)

min U¢(Z, Qbad) S — IOg(T).

2E€Qgood

Introducing Uy (2, Qpad) = ), (4.1) is equivalent to

Evidently, the size of r will be related to how large U, (2, Qpaq) can be made uniformly
throughout Qgo0da; larger Uy values allow smaller r (faster rates). Uy (2, Qpaa) has the
following properties

o Uy (2, Qpad) is harmonic at z where ¢(z) # 0;

o Us(2,Qpaa) = log|z| + ¢+ o(1) for a finite constant c as |z| = oo;

[ Ud)(z, Qbad) < 0 for all 2 € Ipaq.

Potential theory provides a natural setting for studying such approximation prob-
lems. It is central to the analysis of Krylov subspace methods for linear systems [10,
29], and has been used by Calvetti, Reichel, and Sorensen to analyze the Hermi-
tian Lanczos algorithm with restarts [6]. We will apply similar techniques to study
Ugs (2, Qbad), and thus begin by presenting some fundamental background.
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4.1. Potential Theory Background. Consider the Dirichlet problem:
Suppose G is an open region with compact closure in C and suppose f(z) is
a continuous function on the boundary 0S. Find u(z) such that

Au =0 on G,

(4.2) u = f on 0G.

Solutions to this problem exist for each continuous f on 9G provided the set G is a
“Dirichlet region” [8, §X.4]. This holds, for example, when G has a piecewise smooth
boundary with no isolated points. For our purposes here, such sets are sufficient; the
effect of isolated points is addressed in §4.3.

Suppose, then, that G is a bounded Dirichlet region containing the origin, 0 € G.
Assign f(z) = log|z| in (4.2) and let u(z) denote the associated solution to the
Dirichlet problem. Define the Green’s function of G with pole at 0 by

§(2,9) = u(z) —log|z| for z € G.

The following relevant properties of §(z,G) are straightforward:
(i) ¢ is harmonic in G\{0};
(i) lim,—0 g(2,G) + log|z| = finite constant;

(iii) lim, 2 g(2,G) =0 for all Z € 9G;

(iv) g(2,9) >0 for all z € G.

Properties (i) and (iii) are elementary. Property (ii) is a consequence of the
continuity of u(z) at 0. Property (iv) follows from (i), (ii), the fact that (ii) implies
that ¢ > 0 in any sufficiently small neighborhood of 0, and the maximum principle
for harmonic functions. The maximum principle also shows that §(z,§) is the only
function satisfying (i)—(iv).

The Green’s function of an unbounded region with pole at infinity can be defined
and understood in terms of §. Let D C C be a compact set whose complement C\D is
a connected Dirichlet region (say, D has a piecewise smooth boundary and no isolated
points). The conformal change of variable z — 2z~ maps C\D to a bounded region
G with 0 € G. The Green’s function of C\D with pole at oo then is then defined as

glz,D] = g(z7',G) for z € C\D.

Harmonicity is preserved under this change of variable, and one can see that properties
(i)—(iv) hold for g[z, D], replacing 0 by oo, log |z| by —log|z|, and § by C\D.

EXAMPLE 4.1. If C\D is simply connected, one is assured (from the Riemann
mapping theorem; see, e.g., [8, §VIL.4]) of the existence of a function F(z) that maps
C\D conformally onto the exterior of the closed unit disk C\B; = {z : |z| > 1} such
that F(c0) = co. Such an F must behave asymptotically as az + O(1) as |z| = oo for
some constant «, since it must remain one-to-one in any neighborhood of co. Since
log|z| is harmonic for any z # 0, one may check that u(z) = log|F(z)| is a solution
to (4.2) with f = 0 and u(co) = co. Notice that log|z| itself is the Green’s function
with pole at infinity for C\By. Thus, log|F'(z)| is the Green’s function with pole at
infinity for C\D. Evidently, lim|.|,o u(2) — log|z| — log|a|. O

Even for more complicated compact sets D, the condition that g[z, D] is harmonic
everywhere outside D with a pole at oo restricts the rate of growth of g[z, D] near co.
Loosely speaking, as |z| becomes very large, the compact set D becomes less and less
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distinguishable from a disk centered at 0 (say, with radius 7), and so g[z, D] becomes
less and less distinguishable from g[z, B,] = log|z/v| = log|z| — log~y, which is the
Green’s function with pole at infinity for C\B, = {z : |z| > v}. From property (ii)
(with co now replacing 0), we conclude that g[z, D] has growth at infinity satisfying

(4.3) ‘ l‘im glz,D] —log |z| = —log~y
Z|—00
for some constant v > 0 known as the logarithmic capacity of the set D. This v can
be thought of as the effective radius of D in the sense we’ve just described.
EXAMPLE 4.2. Suppose ®,(z) is a monic polynomial of degree £ and let

D(®g) ={2€ C :|Pi(2)| <&}

be a family of regions whose boundaries are the e-lemniscates of ®4(z). D.(®,) is
compact for each ¢ > 0, though it need not be a connected region. With an easy
calculation one may verify that D.(®;) has the Green’s function (cf. [38, p. 164])

ol D-(®1)] =+ log (M) D

Equipped with the Green’s function g[z, D], we can return our attention to the
function Uy(z, D) describing the error in our approximation problem. The following
result is a simplified version of the Bernstein—Walsh lemma (see [38, §III.2]).

PROPOSITION 4.3. Let D be a compact set with piecewise smooth boundary 0D.
Suppose u is harmonic outside D and that u(z) < 0 for z € 9D. If u(z) = log|z| +
¢+ o(1) for some constant ¢ as |z| = oo, then u(z) < g[z,D]. In particular, if ¢(z)
is any polynomial of degree £, then

1 [#(2)]

(4.4 Us(z,D) = 7 log (maxﬂ el @}) < glz, D]

for each z € C\D.

Proof. Define v(z) = u(z) — g[z,D] for z € C\D. Note that v is harmonic in
C\D, lim,_,sp» v(z) <0, and v is bounded at infinity. We will show this implies v < 0
throughout C\D. Consider any w € C\D. Without loss of generality, suppose D
contains the unit disk centered at the origin. For any £ > 0, v.(z) = v(z) — elog|z|
is harmonic in C\'D with lim,_, 50 v-(z) < 0. Since v is bounded in C\D, there exists
R > |w| such that v.(z) < 0 on the circle |z| = R. By the maximum principle,
ve(w) < 0. Letting € — 0, we see that v(w) <0, and so u(w) < g[w, D].

When ¢ has all its roots in D and is of exact degree ¢, then Uy(z,D) satisfies
the hypotheses on u(z), giving (4.4). If ¢ has exact degree ¢ but roots outside D,
then Ug(z, D) has singularities in C\D. Enclose these singularities in a set B, con-
sisting of the union of closed disks with radius -y, with v > 0 sufficiently small that
Uy < 0 throughout the interior of B,. Now lim. ,spuss, Us(2,D) — gz, D] < 0 and
Us(z,D) — g[z, D] is harmonic on C\{D U B, }. By the above arguments, (4.4) holds
throughout C\{D U B,} and remains true as v > 0 is made arbitrarily small.

If deg(¢) < ¢, replace ¢ in the definition of Uy by deg(¢). Apply the argument
above to prove this new function is bounded by g[z,D]; since this function is larger
than Uy, (4.4) holds. O
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For certain special choices of D = .4, the polynomial approximation problem
of Theorem 3.5 can be solved exactly.

THEOREM 4.4. Suppose ®p«(2) is a monic polynomial of degree £*. Let Qpaq =
D (Py+) be an associated e-lemniscatic set as defined in Ezample 4.2 and suppose
Qgooa is a compact subset of C such that Qgooa N De(Pp<) = 0. Then

max{ |p(w)| : w € Qpaq} _ €
6€Ppe min{ |p(2)] : 2 € Qgooa}  min{ [P« (2)]| : 2 € Qgooa}

Proof. Using the Green’s function for D (®,+) described in Example 4.2, we can
rearrange (4.4) to show that for any ¢ € Py«

|¢(2)] < [2e(2)]
max{|p(w)| : w € D(®p+)} — €

holds for all z € Qgo0q- Equality is attained for every z € C whenever ¢ = ®y-.
Minimizing over z € {2go0q and then maximizing over ¢ € Pp- yields

min{|@(z)| : 2 € Qgood } min{|®(z)| : 2 € Qgood }
(45)  max )] W € D (0] -

In fact, equality must hold in (4.5) since ¢ = &« is included in the class of func-
tions over which the maximization occurs. The conclusion then follows by taking the
reciprocal of both sides. O

More general choices of D = Qp,,q will not typically yield an exactly solvable poly-
nomial approximation problem, at least for fixed (finite) polynomial degree. However,
the following asymptotic result can be obtained as the polynomial degree is allowed
to increase.

THEOREM 4.5. Let Qpaq and Qgooa be two disjoint compact sets in the complex
plane such that C\Qpaa s a Dirichlet region. Then

-
(4.6) lim min (maxﬂ‘/’(“’)' "W € Qbad})” — o= min{g[z.Qbna] : 2€200a}
o0 pePp \ MIn{|p(2)] : 2 € Qgooa }

where gz, Qpad] is the Green’s function of C\Qaq with pole at infinity.

Proof. The theorem is proved in [27, p. 236], where the left hand side of (4.6) is
referred to as the (£*,0) Zolotarjov number. We give here a brief indication of the
proof sufficient to support later discussion. The inequality (4.4) can be manipulated
to yield

|¢l* (Z)| s < 907 bad]
max{|¢e (w)| : w € Dbada } - ’

which in turn implies

o
<maX{|¢e* (w)| Tw e Qbad}>l/ > e~ min{g[z7Qbad]:zEnggd}-
min{|ge (2)| : 2 € Qgooa }
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Furthermore, one may construct polynomials Lj that have as their zeros points
distributed on the boundary 09,4, the Leja points {1, po, - .., pr}, defined recur-
sively so that

k
fgt1 = arg maX{H |z — pj|: z € Qbad};

j=1

see [38, §V.1]. This sequence of Leja polynomials satisfies asymptotic optimality,

1/k
|Li(2)] >/ _ oo 0]

(47) kli}[l'olo (max{|Lk(w)| Tw E Qbad}

for each z € C\Qpaq. Convergence is uniform on compact subsets of C\Qpaq. Thus we
can reverse the order of the limit with respect to polynomial degree and minimization
with respect to z € Qgo0d, then take reciprocals to find

(4.8) ti ((max{|Ly(w)] s w € Qpaa} Hh — o= min{g[z,Qaa] -2 €000}
' min{|Lg(2)| : 2 € Qgood } :

k—o0

Since

> min
GE P~

<max{|Lg* (w)|| cw e Qbad}>1/z*

(max{|¢(w)| ‘we Qbad}>1/ “
min{|L¢+(2)] : 2 € Qgood }

min{|¢(z)] : 2 € Qgooa }

Z e~ min{g[z,Qbad] : ZGngod},
equality must hold throughout and thus (4.6) holds. 0

In the context of Example 4.1, where F(z) was a conformal map taking the
exterior of Qpaq to the exterior of the closed unit disk with F'(co) = 0o, Theorem 4.5
reduces to (cf. [10, Thm. 2])

Hm  min <max{|¢(w)| Lw e Qbad}>1/l* B )

= max .
o0 peP \ mIn{|p(2)] : 2 € Qgood } 2€Qgo0a |F'(2)]

4.2. Effective restart strategies. The usual goal in constructing a restart
strategy is to limit the size of the Krylov subspace (restricting the maximum degree of
the polynomial ¢) without degrading the asymptotic convergence rate. Demonstrating
equality in (4.6) pivoted on the construction of an optimal family of polynomials—in
this case, Leja polynomials. There are other possibilities, however. Fekete polynomi-
als are the usual choice for the construction in Theorem 4.5; see [38, §III.1]. Chebyshev
polynomials and Faber polynomials offer familiar alternatives. (For Hermitian ma-
trices, a practical Leja shift strategy has been developed by Calvetti, et al. [3, 6].
Heuveline and Sadkane advocate numerical conformal mapping to determine Faber
polynomials for restarting non-Hermitian iterations [18].) Once some optimal family
of polynomials is known that solves (4.6), effective restart strategies become evident.

THEOREM 4.6. Let Qgooa and Qpaq be two disjoint compact sets in the com-
plex plane containing, respectively, the good and bad eigenvalues of A, and such that
C\Qbaa is a Dirichlet region. Suppose that U,,(z) is the aggregate restart polynomial
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representing v restarts each of order p.
(a) If polynomial restarts are performed using roots of optimal polynomials for
Qbaa (i-e., ¥, p(2) are optimal polynomials of degree vp), then

(4.9) lim min

V—00 pEPy=

1
(max{|\1’yp(w)¢(w)| cw e Qbad}> vPHE - min{g[z.Qbnal:2€ Q000 }
min{|¥,,(2)¢(2)] : 2 € Qgood } ’

where g[z, Qpad] is the Green’s function of Qnaa with pole at infinity.
(b) If the boundary of Qpaa is a lemniscate of W, ,® -,

Dbad = De(TppPp) = {2 € C: | U, (2) P (2)| <€},
for some degree-* monic polynomial ®,« and some € > 0, then

i max{|¥,,(w)p(w)| : w € Npaa} _ €
PE Py m1n{|‘1’up(2)¢’(z)| HEAS ngod} min{m’l’p(z)@l* (Z)| tz € ngod}-

Proof. Part (b) follows immediately from Theorem 4.4. Part (a) can be seen by
observing that since ¥,,(z) is an asymptotically optimal family for Qpad,

max{|¥,,(w)| : w € Qpaa} > min (max{|\Ifl,p(w)¢(w)| Tw € Qbad}>
min{|¥,,(2)| : 2 € Qgood} — #€Pe» \ Min{|¥,p(2)P(2)] : 2 € Qgood }
)up+f*

> (67 min{g[z,Qpaa] : 2EQgood }

Now fixing p and £*, the conclusion follows from (4.8) by following the subsequence
generated by v =1,2,.... d

Recall that the desired effect of the restart polynomial is to retain the rapid
convergence rate of the full (unrestarted) Krylov subspace without requiring the di-
mension £* to grow without bound. We have seen here that restarting with optimal
polynomials for (},,4 recovers the expected linear convergence rate for (.4 (presum-
ing one can identify this set, not a trivial matter in practice). Still, the unrestarted
process may take advantage of the discrete nature of the spectrum, accelerating con-
vergence beyond the expected linear rate. Designing a restart strategy that yields
similar behavior is more elaborate.

4.3. Superlinear effects from assimilation of bad eigenvalues. In a variety
of situations, the gap appears to converge superlinearly. True superlinear convergence
is an asymptotic phenomenon that has a nontrivial meaning only for nonterminating
iterations. Thus one must be cautious about describing superlinear effects relating
to (unrestarted) Krylov subspaces, since Ugooq is eventually completely captured by
the Krylov subspace as discussed in §2. Here our point of view follows that of [49,
51], showing the estimated gap may be bounded by a family of linearly converging
processes exhibiting increasingly rapid linear rates. The next result mimics the Ritz
value bounds for Hermitian matrices developed by van der Sluis and van der Vorst [50,
§6.6]. We assume here that Qpaq consists of the union of s discrete points, potentially
with some additional Dirichlet region. That is, some bad eigenvalues (typically those
closest to the good eigenvalues, or distant outliers) are treated as discrete points,
while any leftovers are collected in the Dirichlet region.
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THEOREM 4.7. Let Qgo0a and Qpaq be disjoint compact subsets of C and suppose
Qbaa contains s isolated points, z1, za, ...,zs. Define a sequence of s + 1 nested
subsets as Qp = Qg1 U {zr} for k = 1,...,s with Q1 = Qbad, o that each set
Qr D Qa1 # O differs from adjacent sets in the sequence by single points. Define
also the associated diameters

ep =max{|lw—zx| w e Q} and dy =min{|z — 2| 1 2 € Qgooa} -
Then forr =1,...,s and each £* > r,

max {|¢(w)] : w € Daa} _ - max {|¢(w)] s w € i1}
: <(I13) .

z2 € Qgood} — ETZ*_, min {|¢(2)| : 2 € Qgood}

min
¢eP min {|P(2)

Proof. Fix an integer k > 1 and observe that

maxyeq, [p(w)| _ maxyeq, |(w — zx)p(w)|

$EP MiNzeq,,.q [#(2)] T ¢€Pr1 Minzeq,..q |(2 — 21)9(2)]

C mavsen, [ - 20)(w)]
min T

$EP 1 MiNzeq,,.q [(2 = 21) ()]

< €k MaXweQp 41 |¢7(U})|

min
dk PEPex 1 mlanngod |¢( )|

The conclusion follows by applying the argument repeatedly for k =1,2,... 7. d
Asymptotically, the discrete points in (2,,q have no effect on the convergence rate.
COROLLARY 4.8. In the notation of Theorem 4.7, suppose Qsy1 is a Dirichlet

region. Then

. 1/¢*
lim min (max{|¢(w)| Tw e Qbad}) <e~ min{g[z7Qs+1]:zEngod}’
mln{|¢(z)| HFAS ngod}

where g[z,Qs11] is the Green’s function with pole at infinity associated with C\Qg11 .

Proof. e Since Q.41 C Q57Y, The result follows by applying the asymptotic
approach of Theorem 4.5 to the result of Theorem 4.7 for r = s. d

To demonstrate such superlinear effects, we consider a parameterized diago-
nal matrix A, having 100 bad eigenvalues spaced uniformly in the unit interval
[-1 — a, —a] and 4 good eigenvalues uniformly spaced in [0, 1]. Figure 4.1 illustrates
convergence of the gap 0(Ugood, Ke(Aq,vi)) for @ = 0.1, 0.01, 0.05, and 0.001, always
with the starting vector v; having 1/4/n in each component (n = 104). Above each
convergence curve are bounds from Theorem 3.5 and Theorem 4.7. (The calculation
of C; is addressed in §5.1.) For the superlinear bounds, take Qpaq to be the set of
bad eigenvalues and set 2, to be Qp,q less the r — 1 rightmost bad eigenvalues. We
approximate the optimal polynomial in Theorem 4.7 by Chebyshev polynomials for
Q997 (see [37, §IV.4.1] for details). Notice the envelope produced by the aggregated
linear rates creates a superlinear convergence effect to an extent determined by the
“granularity” of bad eigenvalues as viewed from the nearest good eigenvalue. Greater
granularity (smaller «) causes poor initial rates due to nearby bad eigenvalues, that
rapidly dissipate as these eigenvalues are assimilated, yielding to improved rates de-
termined by more remote bad eigenvalues. The same phenomenon is observed in §6.4
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F1G. 4.1. Aggregate linear rates produce a superlinear effect. Observed gap convergence (broken
line) and aggregate bounds (solid lines) predicted by Theorem 3.5 and Theorem 4.7 for Q. with
r=1,...,50.

for a Markov chain eigenvalue problem. But assimilation of nearby bad eigenvalues
is not the only mechanism for superlinear convergence. In §5.3, we describe how
non-normality can also give rise to such behavior, illustrated experimentally in §6.2.

5. Analysis of Constants. This section contains a more detailed discussion of
the constants C; and C> that arise in the convergence bounds given in Theorems 3.4
and 3.5. The magnitude of these constants controls the predicted start of the linear
phase of convergence: larger constants suggest delayed linear convergence. Thus we
seek an appreciation of those matrix and starting vector properties that lead to more
or less favorable convergence bounds.

5.1. Bounding C;. Notice that

o = 1Y (A)Ppaavi|| |Poaavil || Pbaa VinX||
| = max -2 badflll S0 L = max e
$EPm_1 |[V(A)PgoodVi|l  vEKm(Av1) ||PgooaV]l  *x€C™ [|Pyood VinX||

where the columns of V,,, form a basis for X,,(A,vy). This last expression for C
is simply the largest generalized singular value of the pair of matrices Pp,qV,, and
Pyooa Vi (see, e.g., [14, §8.7.3]). This is how we determine C; for our computational
examples.

The dependence of C; on the starting vector vy is critical. If v; is biased against
Ugood, then Cy will be large and our bounds predict a delay in convergence. Likewise,
a good starting vector accelerates convergence as expected.” We will investigate this

5Though our bounds explicitly incorporate restart effects into the polynomial approximation
problem, an alternative approach could instead handle restarts via the constant C, which we expect
to shrink as restarts enrich the starting vector in Ugooq-
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behavior with an illustrative example, but first give bounds for C; that relate its
magnitude to the orientation of X, (A, v;) relative to the invariant subspaces Ugood
and ubad.

PROPOSITION 5.1. Under the conditions of Theorem 3.4,

1 6(g<m (A7 Vl)a ugood) <O < ||Pg00d|| 6(g<m (A—7 Vl): ugood)
>~ L1 > )
IPgoodll 0(XKim (A, v1), Ubaa) 1 — [|Pgooal| 6(Km (A, v1), Ugooa)

where the second inequality holds provided ||Pgood|| §(Km (A, v1), Ugood) < 1.
Proof. If IIz00a denotes the orthogonal projection onto Ugeea then I —Ilzo0q =
(I- Hgood)(I - Pgood): and so

(T = Tgooa) ¥ (A)vi || < [(T = Pgooa)(A) V1|l = [[(A)Ppaqvil.
Thus,

TN
m A7 b) 00 =
O(%m(A, Vi), Ugooa) = max - min e vl

[1(T ~ Mgo0a) ) (A) V1|

T e, T (A)vill
— max ||¢(A)Pgoodvl|| ||(I_Hgood)(l Pgood)"p(A)Vl”
v A 16(A)Pgooavi]
= Pa) (= TSV | [[Poatb(A)vi
< B 6A)vil] 16(A)Pgooavil]
1T = M) (A1 [[$(A)Praav |

< ||I — Pbad” max

Prn—1 ||¢(A)V1H ||¢(A)Pgoodvl||
S ||Pg00d|| 5(me(A, Vl); ubad) Cl-

This gives the first inequality. For the second, note that for any ¢ € P, _1,

(A Poavill I~ Peoo) (Al [lo(A)va]
A Pyl ~ AW T0(A)Pgonavil]
T = Panod) (X~ Moo b(AIVi]] [(A)(Pona + Prac)vi
oA 10(A)Pynav |
10— Moo (AA ]| (¢ [(A)Praavi |
< = Pooall =0 5] (HIWJ( A)P goodwn)

(A more frugal inequality leads to a sharper but rather intricate upper bound for C.)
Maximizing over ¢ € Pp,—1 and noting that ||I — Pgood|| = ||Pgooal| [22] yields

Cl S ||Pg00d|| 6(:Km(AaV1)augood)(]- + Cl)

When ||Pgoodl| 6(Kim (A, v1), Ugooa) < 1, this expression can be rearranged to give the
desired upper bound. a

The bounds given in Proposition 5.1 can be disparate when ||Pgooal| is large or
(Km (A, v1), Ugooda) is close to one. To obtain alternative lower bounds, approximate
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the maximizing polynomial ¢ in (3.5). Some intuitively appealing choices for the
roots of ¢ € P,,_1 include the Ritz values or harmonic Ritz values generated from
Km—1(A, Pgooavi). (This is motivated by the fact that taking ¢ to be a degree-m
polynomial with the m Ritz values from K, (A, Pgo0aVv1) as roots would zero the
denominator of the expression (3.5) for C}.)

5.2. An Illustration of Starting Vector Influence. Consider a Hermitian
matrix A € C'28%128 with eight good eigenvalues uniformly distributed in the inter-
val [1,2]. The remaining eigenvalues uniformly fill the interval [—1,0]. Since A is
normal, the constants Cy and Cs are trivial, Cop = Cy = 1. Theorem 3.5 thus bounds
gap convergence as the product of the constant C;, which depends on the starting
vector, and a polynomial approximation problem, which is independent of it. Taking
Qpaa = [—1,0] and Qgooa = [1,2], Theorem 4.5 yields an asymptotic convergence
factor of 3 — /2 ~ 0.1716, an expedient rate due to the good separation of Qgood
from Qy,,q- To study the role of C7, we construct seven different starting vectors vy
that form angles of # = 1071%,10712,107?,107%,1073,1 radians with Ugpoa. (Each
starting vector has equal components in each unwanted eigenvector direction.) Fig-
ure 5.1 shows the result of this experiment. The gap convergence curves are solid
lines; the dotted lines show bounds from Theorem 3.5. For the finite-degree poly-
nomial approximation problem in Theorem 3.5, we use Chebyshev polynomials for
Mpaa = [—1,0]. (Since §(Ugood, Ke(A,v1)) = 1 when £ < m = dim Ugeoa = 8, we
show the complementary measure §(K;(A, v1), Ugooa) for the first seven iterations.)
As predicted by our bounds, the asymptotic convergence rate appears largely inde-
pendent of the orientation of v;. Interestingly, even a considerable starting vector bias
toward Ugooaq yields only a modest improvement in convergence, which may appear
even less significant for problems with slower convergence rates.

min[(s(ugood: :KZ): 6(:KZ > ugood)}

107 e SN\ N
0 5 8 10 15 20 25 30 35

Krylov subspace dimension, ¢

Fic. 5.1. The effect of a biased starting vector on gap convergence. The solid lines denote the
computed gap convergence curves for starting vectors vi that form angles of 0 radians with Ugyoq-
The dotted lines show the bound derived from Theorem 3.5 for each wvalue of 6. The black dots
denote the values of C1. In the vertical azis label, K, is a shorthand for K,(A,v1).
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5.3. Bounding C5. In contrast to Cy, which was strongly linked to the ori-
entation of the starting vector v; with respect to the good invariant subspace, the
constant Cy has a somewhat more diffuse interpretation. Cy captures the effect of
the non-normality of A, yet ambiguity in the selection of Qgo04 and Qpaq injects wide
variability to the values Cy can achieve. Generally speaking, choosing the sets Qg004d
and Qpaq to be overly large yields a small constant Cs at the expense of a slow conver-
gence rate for the polynomial approximation problem. Shrinking these sets increases
the constant but improves the predicted convergence rate. The smallest possible sets
that can be chosen for 004 and Qpaq are the sets of good and bad eigenvalues,
respectively. If A is diagonalizable, it is possible to pose the approximation problem
over these discrete point sets, at the expense of a potentially large C> term arising
from eigenvector conditioning.

LEMMA 5.2. Suppose X is a subset of the spectrum of A consisting only of non-
defective eigenvalues, and let U denote the mazimal invariant subspace associated with
eigenvalues in X. If the columns of X are eigenvectors of A forming a basis for U,
then

k(%) < conds(X).

(The condition number conds(+) is the ratio of the maximum to the minimum nonzero
singular value.)

Proof. Observe that IT = X (X*X) ™' X* defines an orthogonal projection onto
U, and suppose A is a diagonal matrix with entries in ¥ such that AX = XA. Then
for any function f that is analytic on ¥, f(A)X = Xf(A), and

1 (Al = IIf (A)X (X*X) ™" X7
= [IXf(A) (X"X) ' X7|
< X X=X) T XA F(A)]
= condz(X) Iiléi,%(|f(A)| O

Now if Qgo0a and Qpaq in Theorem 3.5 are precisely the sets of good and bad
eigenvalues of A, respectively, Lemma 5.2 leads to a bound on Cj.

FIRST COROLLARY TO THEOREM 3.5. To the conditions of Theorem 3.5, add
the assumption that A is diagonalizable,

A[Xgooda Xbad] = [Xgooda Xbad] diag(Agood: Abad)-

Then

5.1 0(Ugood, K A,v() < (CpCyC5 min ma>.c3 Lt N 1O oy (A ,
(5-1) (Ugood, Xe(A,vi7)) < Co C1 2 min ming_r .1, [6(Ae) Yoy (Ar)]

where Cy and Cy are as defined in Theorems 3.3 and 3.4 and

52 = conds (Xgood) conds (Xpad).

When A is far from normal, the constant Cs will typically be large; it grows
infinite as A tends towards a defective matrix. However, such extreme situations are
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not necessarily associated with severe degradation in convergence behavior, and so
the bound (5.1) will be most appropriate when A is either normal or nearly so.

Non-normality can complicate invariant subspace computation in a variety of
ways. The good eigenvalues can be individually ill-conditioned, with conds(Xgaoa) >
1, while the associated invariant subspace is perfectly conditioned. In other cases, one
may find the desired eigenvalues are well-conditioned, while the bad eigenvalues are
highly non-normal (as when conds(Xpaq) 3> conda(Xgood) & 1).6 In either case, the
good invariant subspace may still have physical significance, and we would like to
understand how this ill-conditioning affects the rate at which we can compute it.

Since non-normal matrices are of special interest, consideration of pseudospectra
yields a natural approach that often can provide sharper, more descriptive convergence
bounds. Recall that the e-pseudospectrum [45, 46] is the set

A(A)={z€C: [z —A)"| =),

or, equivalently, A.(A) = {z € A(A + E) : |E|| < ¢}, where A(M) denotes the set of
eigenvalues of a matrix M.

For a fixed €, A.(A) is a closed set in the complex plane consisting of the union of
no more than N connected sets, each of which must contain at least one eigenvalue. As
e = 0, A:(A) tends to N disjoint disks (whose radii depend on eigenvalue conditioning
and defectiveness) centered at and shrinking around the N distinct eigenvalues.

LEMMA 5.3. Let U be an invariant subspace of A and suppose ¥ is the set of
eigenvalues associated with U.

(a) Let Q be a set containing X but no eigenvalues of A outside X, and suppose
the boundary 0N is the finite union of positively-oriented Jordan curves. Then

(5.2) k() <

<o [N = A)Hheldz.
™ Joq

(b) Let ¥. contain the union of those connected components of A-(A) that include
A € X, and suppose further that X. contains no eigenvalues outside of ¥ and its
boundary 0% is the finite union of positively-oriented Jordan curves. Then

£(O5.)
2me

where L(0X.) is the length of the boundary of X..

Proof. For part (a), let IT be the orthogonal projector onto the given invariant

subspace U and let P be the spectral projector for A associated with U. For any
function f amalytic on ©, [[£(A)|lw = |Lf(A)TI| = || f(A)PTI] < ||f(A)P]. Now,

1

f(AP = 5 f(2)(z—=A)"dz.
Tl 50

(5.3) K(3e) <

)

Thus for any vector x € U,

1
Ira< g [

1 -
<g RS |dz|) max |(2)] ]|

6This is the case for the Markov chain example described in §6.4. Trefethen describes another
example, the Gauss—Seidel iteration matrix for the centered difference discretization of the second
derivative [46, Example 10].

[f(2)I1I(z — A) "' x| |dz|

IN
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But since f is analytic on 2, max,cgq | f(2)| = max.cq |f(2)|. Part (b) follows from (a)
by assigning Q0 = X.. d

Pseudospectral bounds were developed by Trefethen to bound the GMRES resid-
ual norm [45], and Simoncini has used a similar approach to analyze block-Arnoldi
convergence [39]. In the single eigenvector case, her Theorem 3.1 closely resem-
bles our (5.6) below. (Lemma 5.3 could easily be sharpened to instead involve
A.(U*AU), where the columns of U form an orthonormal basis for Ugeed; note that
A-(U*AU) C A(A) [43].

The pseudospectral approach leads to a robust alternative to the eigenvector-
based bound (5.1).” Suppose ¢ is sufficiently small that the components of the e-
pseudospectrum enclosing the good eigenvalues are disjoint from those components
enclosing the bad eigenvalues. A.(A) can then be contained in the two disjoint sets
ygoed and ¥P2d| Jeading to an alternative bound.

SECOND COROLLARY TO THEOREM 3.5. Assume the conditions of Theorem 3.5
and suppose that € > 0 is sufficiently small that $8°°4 N $P2d = (. Then, provided
T,,(2) has no roots in $8°°% and the boundaries of £8°°4 and $°* are finite unions
of positively-oriented Jordan curves,

~ . bad
(5.4)  §(Ugooa, Ke(A, V) < Co €1 Ga(e) min XU Tup(2)] 22 € 2]
¢€Pe+ min{|p(2)¥,,(2)| : z € TE°°7}

where Cy and Cy are as defined in Theorems 3.3 and 3.4, and

L(oxgo0d) L(xhad)
4m2¢2 '

(5.5) Cs(e)

L(0%8°°d) and L(0XP*) are the boundary lengths of £8°°9 and £229 . respectively.

This pseudospectral bound holds for a range of e-values, providing a natural
mechanism for adjusting the sets Qgooa and Qpaa. As e gets smaller, C»(e) generally
increases, but the convergence rate induced by the polynomial approximation problem
improves, since the sets on which the approximation problem is posed recede from one
another. For the most descriptive convergence bound, take the envelope of individual
bounds corresponding to a variety of e-values; see Figures 6.1 and 6.3. Of course, the
bound (5.4) is only meaningful when ¢ is sufficiently small that 284N ¥Pad = (). The
need to take e particularly small to satisfy this condition may signal an ill-conditioned
problem; consider enlarging the set of good eigenvalues.

In some situations, one may wish to use different values of e for the good and bad
pseudospectra, in which case (5.4) changes in the obvious way. Furthermore, when
the good eigenvalues are normal (i.e., one can take conds(Xgooa) = 1), it is best to
combine the pseudospectra and eigenvector approaches to obtain

Co CL L(ZP2) max{|p(2)P,,(2)| : z € TPad}
6)  6(Ugooa, Ke(A,vi"))) < 2L 2e Z :
(5:6) 9(Ugooa, Xe(A, V1)) < == i = 60Ty O]

We close this section by pointing out one non-normal situation where the eigenvec-
tor-based bound (5.1) can be dramatically superior to the pseudospectral bound (5.4).

"Note that Greenbaum has demonstrated how more clever use of eigenvector information can
sometimes be superior to estimating integrals of the resolvent norm [15].
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Suppose for simplicity that dim Ugeoq = dim Upaq with Ugeoa & Upag for some diag-
onalizable A. It is possible for the basis vectors in Xgo04 and Xpaq to be perfectly
conditioned on their own, but terribly conditioned if taken together, e.g.,

1 0 1 0

0 1 0 1
Xgood— 0 0l Xbad— 7y ol

0 0 0 v

with 0 < |y|] < 1. This results in 62 =1 but Cy (€) > 1 for usefully small values of .
(This can be remedied by considering the pseudospectra of A orthogonally projected
onto Ugooa and Upaa.) What is happening here? The more alike Uggoa and Upaa
are, the more prominent their general orientation is in the Krylov subspace, possibly
resulting in an initial period of rapid sublinear convergence. Discriminating the fine
difference between Ugooa and Upaqg may still be challenging.

6. Some Examples. How well does the machinery constructed in the previous
sections work? Here we demonstrate our bounds for a variety of examples. These
test problems are contrived to illustrate the effects we have described as cleanly as
possible. Eigenvalue problems from applications inevitably involve more complicated
spectral structure.

6.1. Influence of Non-normality on Predicted Rates. We begin with two
examples involving non-diagonalizable matrices where pseudospectral convergence
bounds can be used to good effect. (While the examples in this subsection and the
next are defective, we emphasize that the pseudospectral bound can also be useful for
diagonalizable matrices with large values of C>.) Define

_ Dgood 0
(6.1) A= Jss(—1)

where Dygooq is a 6 x 6 diagonal matrix containing good eigenvalues uniformly dis-
tributed in [1, 2], and Jss(—1) is a Jordan block of dimension 58 with the bad eigen-
value A = —1 on the main diagonal and ones on the first superdiagonal. Note that
Ugood L Upbaa, so Cp = 1. Since the good eigenvalues are normal, we apply the hybrid
pseudospectral bound (5.6). The pseudospectra of a direct sum of matrices is the
union of the pseudospectra of each component matrix [48], so we need only focus on
the pseudospectra of the Jordan block, which are circular disks for all € > 0 [32]; see
Figure 6.1. Tt follows that Ca(e) = r. /e, where r. is the radius of ¥”2d = A_(J55(—1)),
determined numerically. For ¢ € Py we take the Chebyshev polynomial for ¥4,
#(z) = (z+1)¥". For all € such that r. < 2, (5.6) gives

o
(62) Usoon, Ke(A,v1)) < = (2
where we have used the fact that |¢(\)| > 2 for all good eigenvalues A. The conver-
gence curve and corresponding bounds are shown in Figure 6.1 for the starting vector
vy with 1/4/n in each component; no restarting is performed. Interestingly, for small
values of € the bound (5.6) accurately captures the finite termination that must occur
when £ = n = 64, a trait exhibited by pseudospectral bounds in other contexts.
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F1G. 6.1. On the left, good eigenvalues (X) and pseudospectral boundaries 62?“ fore=10"2,
1073, 10715, and 107190, where A is given by (6.1). (The bad eigenvalue (-) is obscured by the
e = 107190 poundary.) On the right, gap convergence (solid line) together with the bound (6.2) (dotted
lines) for each of the pseudospectral curves shown on the left. For small values of €, (6.2) captures
the finite termination that must occur at the 64th iteration.

Our second example is the same, except the good eigenvalues are now replaced
with a Jordan block,

_[3s(3) o
(6.3) A=170"" 3.-1)

where Jﬁ(%) is a 6 x 6 Jordan block with % on the main diagonal and ones on the first
superdiagonal; J55(—1) is as before. Again note that Ugood L Ubad, implying Cop = 1.
Since both the good and bad eigenvalues are defective, apply the pseudospectral
bound (5.4). Recalling the pseudospectra of Jordan blocks are circular disks, let
rPad and rg°°d denote the radii of 2% = A,(J55(—1)) and $&°%°4 = A (J6(2)),
respectively; see the left plot of Figure 6.2. The Second Corollary to Theorem 3.5
holds whenever r?2d 4 r8°°d < 3. For such &, Cs(g) = rP»d r8°0d /2 and

rbad rgood rbad e

(6.4) O(Ugooa, Kr(A, V1)) < Cr=— 5 good |
2 g

where again we have taken for ¢ € Py the Chebyshev polynomial for P24 ¢(z) =

(z 4+ 1)¢". The convergence curve and corresponding bounds are shown in Figure 6.2

for the starting vector vq with 1/4/n in each component; no restarting is performed.

6.2. Superlinear Effects Due to Non-normality. Our final example of pseu-
dospectral bounds addresses the matrix

(6.5) A:[g g]

where there is a single good eigenvalue A = 0 (with multiplicity one) and a bad

eigenvalue A = —% associated with the 63 x 63 bidiagonal matrix F, which has —% in
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F1G. 6.2. On the left, bad eigenvalue (-), good eigenvalue (X), and pseudospectral boundaries

oxzbad gnd 82§00d for A given by (6.3) and € = 102, 10™2, and 1075, On the right, gap conver-
gence (solid line) with the bound (6.4) (dotted lines) for the three € values used in the left plot.

the main diagonal entries and 1/j in the (j,j + 1) entry of the superdiagonal. Like
the Jordan blocks described before, the pseudospectra of F are circular disks [32], but
the radii of these disks shrink much more rapidly as € decreases than observed for the
Jordan block. As a result, the convergence rate steadily improves as ¢ gets smaller;
this is compensated by growing C>(e) values. Taking ¢(2) = (z + +)¢", we obtain

(6.6) 5 (Ugood, Ke(A, v1)) < 01;6 3r.)",
provided r. < %, where 7. is the radius of £224. Figure 6.3 shows the spectrum of A
and pseudospectra of F. As e gets smaller, the bound (6.6) traces out an envelope
that predicts early stagnation followed by improving linear convergence rates. This
is “superlinear” convergence, but of a different nature from that described in §4.3.
Figure 6.3 shows these bounds along with the gap convergence curve for a vector
vi with real entries drawn from the standard normal distribution. Pseudospectral
bounds for GMRES exhibit similar superlinear behavior for matrices like F [10, 12].
Although all the examples here have used defective matrices, these bounds are also
appropriate for diagonalizable matrices with a large eigenvector condition number.

6.3. Shift Selection for Restarted Algorithms. The results of §4 indicate
that effective restart strategies can be constructed using optimal polynomials associ-
ated with sets containing the bad eigenvalues. In this section, we give some examples
of how choices for ¥,, based on partial information (or misinformation) about bad
eigenvalue location affects the observed convergence rates and illustrate how well our
bounds can predict this.

Consider the 200 x 200 upper triangular matrix

Doood C
A= goo
{ 0 Dbada ] ’

where Dgq0q is a 16 x 16 diagonal matrix of good eigenvalues, distributed uniformly
around the circle in the complex plane centered at 3 with radius 1; Dpaq is a diagonal
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F1G. 6.3. On the left, bad eigenvalue (-), good eigenvalue (X), and pseudospectral boundaries

axbad for A given by (6.5) and ¢ = 10~2, ..., 10~'2. On the right, gap convergence (solid line)
with the bound (6.4) (dotted lines) for the eleven e values shown in the left plot.

matrix containing the bad eigenvalues distributed uniformly along the line segment
(designated Jpaq) parallel to the imaginary axis connecting the points —1 + 5i; C is
a full (row) rank matrix scaled so that ||Pgeodl| &~ 1000. The starting vector, vy,
has normally distributed random complex entries. (The same v; was used for all
experiments shown in this subsection.)

Figure 6.4 compares the predicted and observed convergence curves for the un-
restarted iteration, where the Krylov subspace grows without bound. The left plot
displays the equipotentials of g(z,Jpaq)—the physical analog is the potential field
generated by a continuous (line) charge distribution spread over J,,4. The color bar
is calibrated to show exp(—g(z,Jpad)), giving the predicted convergence rates at lo-
cations in the complex plane if good eigenvalues were present there. In particular,
the lowest equipotential contour passing through a good eigenvalue is shown; it leads
via (4.6) to a predicted convergence rate of ~0.566. The right plot shows the iteration
history of 0(Ugood, Ke(A,v1)) versus the iteration index . After an early sublinear
surge that flattens out near 1/||Pgq0d||, an observed linear rate of ~ 0.539 emerges.
In separate experiments (not shown), we have varied the magnitude of ||C|| (in ef-
fect changing ||Pgoodl|) and have observed variations in the sublinear stagnation level
roughly proportional to 1/||Pgaoal|, consistent with the discussion surrounding Fig-
ure 2.1. The convergence bound is derived from the First Corollary to Theorem 3.5,
using for ¢ Chebyshev polynomials for Jpaq. (For all experiments in this subsection,
Co = V2, C) ~ 4.4325 x 10", C ~ 1.2439 x 10°.)

Figure 6.5 shows results for polynomial restarts using fast Leja points [3] associ-
ated with J,,4. These appear as a dense line of white dots atop the black band of bad
eigenvalues. The base dimension is 20 and restarts are each of order 5. (The Krylov
subspace dimension never exceeds 25.) The left plot displays the effective potential,
9(z, Qpaq), generated by 180 fast Leja points—paq is the smallest polynomial lem-
niscate generated by the aggregate filter polynomial that contains all bad eigenvalues.
The lowest equipotential contour passing through a good eigenvalue is shown; it leads
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F1Gc. 6.4. Unrestarted Subspace. On the left, good and bad eigenvalues are shown in the “poten-
tial field” generated by the bad eigenvalues. The colorbar is calibrated to show effective convergence
rates for different components of Ugooa- The right plot shows the observed gap history (solid line)
together with a bound (dashed) derived from the First Corollary to Theorem 3.5.
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F1G. 6.5. Polynomial restarts at fast Leja points of Jnaq (white dots). The base dimension is 20
and restarts are each of degree p =5 (so the subspace dimension never exceeds 25).

via (4.6) and Example 4.2 to a predicted convergence rate of ~ 0.576. The bound
on the right was obtained from the First Corollary to Theorem 3.5, using Chebyshev
polynomials for Jp.q up to the base dimension, then including the shift polynomials.

The next two figures show the effect of poorer choices for the filter shifts. Suppose
we mistakenly believe the bad eigenvalues to be concentrated toward the ends of the
interval Jp,q and choose filter shifts accordingly grouped in two subintervals that omit
the central portion of J,,q4 (which we believe to be devoid of bad eigenvalues). We use
fast Leja points again but this time for pairs of disjoint intervals that in fact cover
only 60% and 20%, respectively, of the bad eigenvalues. These are asymptotically
optimal filter shifts for misguided guesses of the bad eigenvalue distribution. Qpaq is
again the smallest polynomial lemniscate generated by 180 fast Leja points that con-
tains all bad eigenvalues. Here it takes on a more pronounced dumb-bell appearance,
reflecting the absence of zeros from the middle of J,,q. As before, the base dimension
is 20 and restarts are each of order 5. The convergence rate is seen to deteriorate to
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F1G. 6.6. Polynomial restarts with fast Leja points (white dots) for two subintervals covering
only 60% of the bad eigenvalues. The subspace dimensions are as in Figure 6.5.
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F1G. 6.7. Polynomial restarts with fast Leja points (white dots) for two subintervals covering
only 20% of the bad eigenvalues. The subspace dimensions are as in Figure 6.5.
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F1G. 6.8. Polynomial restarts using exact shifts (white dots) determined by choosing Ritz values
with real part smaller than 1. The subspace dimension never exceeds 20.
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~0.707 and ~ 0.807, respectively, and is predicted to within an accuracy of roughly
3%-5.2%. By comparing the equipotential contours of Figures 6.4 and 6.5 with those
of Figures 6.6 and 6.7, notice the filter shifts in the latter cases create a potential sig-
nificantly different from what either the bad eigenvalues or optimal filter shifts would
generate. Figure 6.8 shows the result of using Sorensen’s exact shifts. The subspace
dimension is limited to be no larger than 20, and a Ritz value is used as a shift if it
has real part smaller than 1. (The early convergence plateaus occur when the sub-
space is compressed to have dimension smaller than the number of good eigenvalues.)
The potential plot on the left is based on 180 exact shifts. Although these shifts fall
outside the convex hull of the bad eigenvalues, they effectively recover the potential
generated by those eigenvalues. The convergence rate is predicted to within 2% of
the observed rate. The use of exact shifts yields a convergence rate within 25% of
the rate for the unrestarted iteration (Figure 6.4) at a lower computational cost and
without requiring a priori localization of bad eigenvalues to determine optimal shifts
(as in Figure 6.5 for good localization and Figures 6.6 and 6.7 for poor localization).

6.4. Markov Chain Example. We close by examining a more realistic eigen-
value problem, taking A to be the transition matrix for a Markov chain that describes
a random walk on a triangular lattice. See Saad [37, §II.5.1] for details of this exam-
ple, a common test problem for iterative eigenvalue algorithms. Since all the rows of
a transition matrix sum to one, A must have an eigenvalue A = 1, and the Perron—
Frobenius theorem assures this eigenvalue is simple (see, e.g., [5, Thm. 1.4]). The left
eigenvector corresponding to A = 1 determines a stationary distribution of the Markov
chain, so we are interested in the convergence of 6(Ugooa, K¢ (A", v1)), where Uggod is
the invariant subspace of A* for A = 1. Here we consider a lattice with a base and
height of 50 nodes, yielding a transition matrix of dimension n = 1275. This matrix
exhibits a significant degree of non-normality, mostly associated with ill-conditioned
eigenvalues far from A = 1, as one can infer from the pseudospectra illustrated in
Figure 6.9. Unlike the previous examples in this section, the good eigenvalue is quite
close to bad eigenvalues, as highlighted by the close-up on the right of Figure 6.9.

The eigenvalues of A appear to be real with A = 0 having algebraic and geometric

1t 0.03
0.02
0.5}
0.01
0 Ote oo . @@
-0.01
-0.5
-0.02
-1r -0.03
-15 - -0.5 0 0.5 1 15 0.96 0.98 1 1.02

F1c. 6.9. Eigenvalues and pseudospectra for the random walk transition matriz for a triangular
lattice with 1275 nodes. The left plot shows the spectrum and boundaries of e-pseudospectra for e =
10-1,...,1078. The right plot zooms around X = 1, indicating -pseudospectra for ¢ = 1072107 3.
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F1G. 6.10. Gap convergence for the random walk example, n = 1275 (solid line). The dashed
lines represent the bound (5.1). The best result is obtained when the bad eigenvalues are treated as
a discrete point set for the approximation problem, while a slower rate is predicted when the bad
etgenvalues are treated as an interval. The dotted lines utilize the superlinear bounds of Theorem 4.7
forr=1,...,10.

multiplicity 25. (Though we formally stipulate that A be non-derogatory in §3,
our proofs only require the good eigenvalues be non-derogatory.) The bound (5.1)
based on the conditioning of the matrices of good and bad eigenvectors is simplest to
evaluate. We have Cy = \/5, and compute Cy ~ 3.546 x 10?; for a particular starting
vector with normally distributed real random entries, C; ~ 9.933. Labeling the
eigenvalues from right to left, the polynomial approximation problem in (5.1) reduces
in this single eigenvector case to a minimax approximation on Apaa = {A2,... ,An}
subject to normalization at A\; = 1. Bounding this approximation problem using
Chebyshev polynomials on [A,, A2] gives a pessimistic result, as can be seen in the
convergence plot in Figure 6.10. The superlinear bounds of Theorem 4.7 yield a
marked improvement. In the language of Theorem 4.7, we take Q0 = {\;}}_;,, and
reduce to an approximation problem over ,,; for r = 1,...,10, for which we use
Chebyshev polynomials on [A,, A:]. An even better bound is obtained by treating
Apaa completely as a discrete point set. One approachable way of doing this is to take
Agooa = {1} and note that

max{|¢(/\)| tAE Abad} . .

min = min max A)| < min S)r||,

S (O A € Agooa) o ymax [0V s min [l6(S)r]
#(A1)=1 ¢(0)=1

(6.7)

where S = diag(As — A1,..., A, — A1) and r = [1,1,...,1]T. The right hand side
of (6.7) can be computed as the residual norm of the GMRES algorithm applied to
the matrix S with initial residual r; this is no more than a factor of \/n worse than the
left hand side of (6.7). The resultant bound in shown in Figure 6.10. Alternatively,
the minimax problem on the left hand side of (6.7) could be solved directly via a
linear program.
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