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ABSTRACT. Let A j, A-, • • • be dissipative sets that generate semigroups

of nonlinear contractions   T At), T St) • • « . Conditions are given on \A  } Which

imply the existence of a limiting semigroup Tit). The results include types of

convergence besides strong convergence.

As an application, it is shown that solutions of the pair of equations

„2, 2       2*u   = — aux + a. [v   — u )

and

2    2        2
vf = avx + a. (u   - u ),

a a constant, approximate the solutions of

ut = yÁ(d2/dx2) log u

as  o. goes to infinity.

1. Introduction. A general theorem concerning the convergence of sequences

of semigroups of linear operators was given in [5]. The basis of the proof was

the following corollary to the Hille-Yosida theorem.

Proposition (1.1). Let T(t) be a strongly continuous semigroup of linear

operators on a Banach space L with infinitesimal operator A.  Let M be a closed

subspace of L. If (A - A)"1: M —» M ¡or all k sufficiently large, then Tit): M—*M.

Crandall and Liggett  [3] have developed a theory for semigroups of nonlinear

operators generated by accretive sets that implies essentially the same result.

Consequently, many of the results in [5] can now be carried over to nonlinear

semigroups of this type.
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260 T. G. KURTZ

In §2, we state the relevant results of Crandall and Liggett and develop the

necessary background for the convergence theorem in §3. In §4 we consider the

corresponding discrete parameter convergence theorem. In §5, we consider an

example arising in gas kinetics and obtain a limit theorem analogous to a result

of Pinsky [11] for a related linear problem.

2. Background. We state the results of Crandall and Liggett [3] in terms of

dissipative rather than accretive sets so they will look more like the correspond-

ing results in the linear case.

Let L be a Banach space. If A C L x L define the domain of A by

3Xa) = ¡x: ix, y) e A tot some y!;

the range of A by

31(A) = iy: (x, y) eA  fot some x};

the inverse of A by

A_1 = i(y, x):(x, y) e A};

and scalar multiplication by

<xA = \ix, ay) Ax, y) e A\.

If A C L x L and B C L x L then define

A +B = {ix, yt +y2):(x, yx) e Aix, y2) e B?.

Note that ÍD(A + B) = ÍD(A) n 3)(B). For fixed x, Ax denotes {y: (x, y) e A\.

If A., A2 ... is a sequence of subsets of L x L then

îimA^n u n A„.t
"—°° f       m    n>m

where

An( h j(x, y) : 3(x, y) e Ajx - x\\, ||y - y|| < e\.

This definition of the limit of a sequence of sets is equivalent to saying (x, y) €

lim„^00An if and only if there are (*n.yn)eAn such that lin^Clx -xj + ||y -yj)

= 0. A set A C L x L is called dissipative if (xj, yj), (x2, y2)eA implies

for all a > 0.

It follows from (2.1) that / - aA has a single valued inverse satisfying

(2.2) HU - aA)"lx -il- aA)' Xy\\ <\\x- y\\

for x, y e9.il - aA), a>0.
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CONVERGENCE OF NONLINEAR SEMIGROUPS 261

Theorem (2.3) (Crandall and Liggett). Let A C L x L and w be a real num-

ber such that A -wl is dissipative. If K(/ - aA) D 33(A) for all sufficiently small

positive a, then for all x £ 33(A)

(2 4) Sit)x =  lim    (/ - - A )     x

exists; Sit)x is a strongly continuous function of t; Sit + s)x = Sit)Sis)x; and

\\Sit)x-Sit)y\\<e""\\x-y\\

allx.yeWÄ).

Corollary (2.5). // C is a closed subset of 3XÄJ and (/ - aA)-1: C -, C

for all sufficiently small positive a, then

Sit) :C -» C,    all t > 0.

A corollary to the main limit theorem (Theorem (3.2)) we will prove is the

following:

Theorem (2.6). Let {Ai be a sequence of subsets of L x L satisfying the

conditions of Theorem (2.3) with a common w, and let \T (t)\ be the correspond-

ing sequence of semigroups. Define A = lim     ^A . Then A -wl is dissipative

and if %(1 — aA) 3 33(A) for all sufficiently small positive a, then (by Theorem

(2.3)) A generates a semigroup Tit) and

Tit)x=   lim T ii)x
«    ri       n

for all x£ 33(A) and all sequences x   £ 3)(A ) with lim       x   = x.
' n fi n—»oo n

We actually will prove a more general abstract theorem which will apply to

notions of convergence other than strong convergence, as well as to "converg-

ence" of semigroups defined on different Banach spaces in the manner intro-

duced by Trotter [12]. To motivate the abstract formulation consider the following:

Let £ be the Banach space of bounded sequences {x  } C L with ||ix  !|| =

supn||xß||. For Aj, A2 ... satisfying the conditions of Theorem (2.3) with com-

mon w let

Ö- KUJ, bJ)-(x. y) £A   ; ix J, \y\ e£\.

Then Ö c£ x £ satisfies the conditions of Theorem (2.3). Consequently,

S(t)lx U  lim    (¡-Lâ)'% \

exists for all íxnÍ£3Xfi) and J(í)|xn¡ = \Tnit)xn\, where Tnit) is the semigroup

corresponding to A^. Let JÎlC £ be the subspace of strongly convergent sequences. If
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262 T. G. KURTZ

ÏWrîEnSXfl)—S nSXfl)

then defining

(2.7) Tit)x = lim  T it)x ,
„—00       n n

whenever {x^j e 3lï O 5)(ö) and x = lim^^x,,, we obtain a strongly continuous

semigroup on {x: x = limn_<(joxj2, {xj e% n ®((3)1 satisfying ||T(i)x - T(i)y|| <

ewt\\x - y\\. This expains our interest in Corollary (2.5) and motivates the follow-

ing abstract formulation of the problem which will be considered in §3.

Let £ and L be Banach spaces, and let P be a bounded linear mapping de-

fined on a closed subspace 3)(P) of £,

P: 3)(P) -» L.

Let Ö C £ x £ satisfy the conditions of Theorem (2.3) and let íT(í) be the cor-

responding semigroup. Under what conditions does

Tit)Px = PJ(/)x,     x e 3Xffi n $(P),

determine a semigroup on a subset of L? In the case of primary interest £ is the

sequence space and Pfxn! = lim^^x , the limit being the strong limit. However,

note that other notions of convergence (e.g. weak convergence) determine bounded

linear operators on subspaces of the sequence space in exactly the same way.

Similarly in Trotter's setting we have a Banach space L, a sequence of

Banach spaces Lfl, and linear maps Pn: L —*Ln satisfying limfI_>00||Pn>;|| = ||x||.

Let £ = Uxnl:xneLjixJ|| a supjxj < »|.  Define  PfcJ = x  if

limrj_,oo||Pnx - x || = 0. This defines a bounded linear operator on a subspace of £.

When this paper was in its final draft, the author learned that Professor

Jerome A. Goldstein [14] had proved a theorem virtually identical to Theorem

(2.6) using a somewhat different sequence space approach. For most purposes

Theorem (2.6) is also equivalent to the results of Brezis and Pazy [1] which in

turn generalize results in [7], [8], [9l, [10]. Most of this work assumes conver-

gence of (/ - aA )~l in some sense rather than convergence of Aß. Conditions

of one type can of course be translated into conditions of the other type.

3. Transformation of semigroups.

Lemma (3.1). Ler £ and L be Banach spaces. Let P be a continuous linear

mapping of a closed subspace 5)(P) c£ into L and let % be a Lipschitz contin-

uous (but not necessarily linear) mapping of a closed subset £¡i£) C X. into ¿L.

Let D = $($) n 2)(P).

For y y y2ePiD) define piyy y2)= inflHxj -x2||:Xj, x2 e D, yl = Pxv y2 =

Px2\ and suppose there is a constant c such that piy^, y2) < c||yj-y2|| allyvy2 €

PiD).
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CONVERGENCE OF NONLINEAR SEMIGROUPS 263

Suppose x.yeD, and Px = Py implies 53* - 53y £ 33(P) and P(53x - 53y) = 0.

Let £ = \x £ D: 53x £ 33(P)( anrf /et C be the closure of P(6. Then C =

{x £ D: Px € C], and BPx = P53x, x £ C determines a Lipschitz continuous mapping

B of C into L.

Proof. If x £ D and Px e C, then there is a sequence \zn\cC with

laan_t<xPz   = Px. Using the assumptions on p(yj, y2) we can find sequences

\yn\ and {xj in D such that Py„ = Pzn, Pxn = Px and lim„_ J|y„ - xj| o 0.

The fact that 53zn £ 3)(P) and the assumptions on P and 53 imply 53yn and 53*n -

Sx are in 3)(P).

The Lipschitz continuity of 55 implies lim)I_,(JBy   - S3*n = 0, and hence

lim (SBy -33* +53*)= lim (53y -(53* -53*)) = 53*.

Since 53yn - (53*n - 53*) £ 33(P) we must have 53* £ 3)(P), and hence * £ C (Note

we have no/ shown that P(C) is closed.)

The Lipschitz continuity of B follows from the Lipschitz continuity of 53,

the fact that B is well defined, and the assumptions on p(yj, y2).

Theorem (3.2). Let £ and L be Banach spaces, and let P be a continuous

linear mapping of a closed subspace 53(P) C £ into L.

Let U C £ x £ satisfy the conditions of Theorem (2.3) and denote the cor-

responding semigroup by J it). Suppose the conditions of Lemma (3.1) are satis-

fied taking 53 = Ju) or 33 = (/- a(?)-1. (This is always true under the conditions

of Theorem (2.6).) Define

A = \(Px, Py) : (*, y) e Q n 3)(P) x 33(P)j.

If 3U/ - aA) D 33(A) for all sufficiently small positive a, then (/ - aA)-1 can be

extended to a Lipschitz continuous map /(a) on 5v(/ - aA);

(3.3) (i-aA)-^ = PÜ-aÖ)"1*

if y = Px £ 5U/ - aA);

(3.4) T(i)y = PTWx

/or y = Px e 33(A) determines a strongly continuous semigroup of Lipschitz con-

tinuous mappings on 33(A); and

(3.5) T(i)*= um ](-)nx

/or *£ 33(A).
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264 T. G. KURTZ

Proof. Let Da = S(7 - afi) n 2)(P) and D = 3)((5) O 3)(P). By Lemma (3.1)

£a=\x eDa:il-a®)-^ e$iP)} = \x eDa:PxeCj,

where Ca is the closure of P(£a). Observe that

CaDÍR(/-aA)DÍD(A),

and

U-aQ)-1:ea^\xeD:Pxem)]^Ccea.

It follows that

(7-aA)_1Px=P(/-aa)-1x

for x 6 Ca and (7 - aA)'1 can be extended to a Lipschitz continuous map on

'Ail -aA). Since (7 - afl)"1: C -, (2, Corollary (2.5) implies

(3.6) ?(/): C -* e.

Again applying Lemma (3.1),

jx e D : J(r)x e ÍD(P)| = ¡x e 7? : Px e Crl

where C( is a closed subset of L. By (3.6) C( 0 3)(A) and (3.4) follows. The

limit in (3.5) follows from (3.3) and the corresponding limit for J it).

la the linear case the converse of Theorem (3.2) holds as a result of the fact

that the converse of Corollary (2.5) holds. Unfortunately, due to the nonuniqueness

of the dissipative set corresponding to a nonlinear semigroup (see [3]), counter-

examples to the converse exist. On the positive side, the following can also be

found in [3].

Proposition (3.7). Let Q satisfy the conditions of Theorem (2.3), and 2)(Œ)

be convex. If

(3.8) lim   f/_a.í————))    x=(7-aS)_Ix

for all x e 3)((ï), then 3"(i): C — &, C a closed convex subset of IW), implies

(7-aÖ)-1:C-^e.

We note that (3.8) is equivalent to

(3.9) lim Ö, = a n U Ktt - aS)~ 1x, x) : x e W)}

where

License or copyright restrictions may apply to redistribution; see https://www.ams.org/journal-terms-of-use



CONVERGENCE OF NONLINEAR SEMIGROUPS 265

0,-ltx, (J(í)-/)*/í):*e3Xffll,

and the limit is defined in the same way as the limit of a sequence of sets was in

§2.

4. Discrete parameter limit theorem. In the linear case [4], [5], [12], discrete

parameter limit theorems are obtained by comparing the sequence of discrete par-

ameter semigroups \Tnik)\ with a corresponding sequence of continuous parameter

semigroups generated by

An = {(*, iTAl) - ¡)x/hn): x £ 33(rn(i))l

where \hn\ is an appropriately chosen sequence of positive numbers with

lin>n_,00¿n = 0. The following, an immediate consequence of results due to Miyadera

and Oharu [10], gives the nonlinear analogue.

Theorem (4.1). Let [Tn\ be a sequence of contractions with 51(7^) C 33(Tn).

Let T (k) denote the kth power of Tn and define

a ={(*,*-Ht -/)*):xe33(r)5,
n n        n n

where lim ^Jo   = 0. Let S it) denote the contraction semigroup generated by A ,

If xnecbiTi) m 33(An) satisfies supJ|AnxJ| < oo, then

WSn{t)xn - Tn^hJ)xJ < hShn + ̂ AnXnB11   »       fi        n n     ft" —   n    n n nu

and hence

ItalS.Ok.-T.(U^ JVrJ-0.

As a consequence of the above we state the following analogue of Theorem (2.6).

Theorem (4.2). Let \T j and [A  } be as in Theorem (4.1) and define A =

lim _ooA . Then A is dissipative and if 5i(/ - o-A) D 33(A) for all sufficiently

small positive a, then A generates a semigroup Tit) and

T(/)x= lim T i[t/h„])*
„-co        « » »

for all x £ 33(A) and all sequences xn € 33(Tn) with \ioin_oaxn = x.

5. An example from gas kinetics. In [2] H. Conner considers a number of

discrete velocity models related to the Boltzmann equation. One of these, due to

Carleman,

2       2 2       2
u( = - ux + v   -a,       vt = vx + u   —v

corresponds to a semigroup generated by a dissipative set. This can be considered

as a model for a system with two types of particles, Type I particles move to the
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266 T. G. KURTZ

right on the line with speed one, Type II to the left with speed one. The local

density of Type I particles is given by a and that of Type II particles by v. When

two particles interact one Type I particle is produced and one Type II particle.

Consequently an interaction between a Type I particle and a Type II particle has

no effect on the system.

The results of this paper allow us to give a rigorous derivation of the assoc-

iated fluid equation. The fluid equation corresponds roughly to the behavior of

the'total density p - u + v when the local velocity distribution is in equilibrium

(in this case a = v). This can only be approximately true (unless a = v a constant)

but the approximation may be good if the local approach to velocity equilibrium is

sufficiently rapid.

To clarify what we mean by this, define

A(a, v) = (-s. v )    and    ß(a, v) = iv   - u , a   — v ).

Let L = LAR) x LAR) with ¡(a. v)|| = ||a||Li + \\v\\Ly and L+ = f(a, v) e L:

u>0,v>0}. Then A and B are defined and dissipative on a dense subset of

L    as is A + aB tot a > 0, and the closure of A + aß generates a semigroup

Tait) in the sense of Theorem (2.3). (See Appendix.)

If a  is large then the approach to equilibrium by the local velocity distribu-

tion is rapid. Consequently we are interested in the behavior of Tait) as a goes

to infinity. We will actually consider Taiat) which is the semigroup correspond-

ing to aA + a2B.

Theorem (5.1). Let TAt) be as defined above.  Let a > 0 and u eLj(R). Then

lim  Taiat)iu, u) = iTit)u, Tit)u)
a—«x>

where Tit) is the semigroup on \u e LAR): a > Oj generated by the closure in

LAR) of

^        1    d/Ux\      1    d2   ,
(5.2) Ca = -r— [— )=T -loga,

4 dx \ « /     4  dx2    B

with j)(C) = {a e L j(R): a > 0, a and u% absolutely continuous, id /dx )log a e

LAR) and lim|x|_00aJC/a = 0}.

Proof. Let £ be the space of mappings of [0, oo) into L with norm

|fUrf *0)}|| - sup ||(«a.»a)||.
a

Define a bounded linear operator from a subspace of £ into Lj(R) by

P|(öa,i;a)i = «    if   lim üa-a   and   lim^a=w.
ctr-»oo a—»oo
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CONVERGENCE OF NONLINEAR SEMIGROUPS 267

To apply'Theorem (3.2) we must find \iua, t/a)| ex. such that

P\iua, va)\ = u   and    PKaA + a2B)iua, va)\ = Cu

for sufficiently many u. Toward that end we prove the following lemma:

Lemma (5.3). Let u be twice continuously differentiable, (<//#*)log a£

Lj(R), u > 0, Cj/x2 < u < c2/*2 for some Cj and c2 and x sufficiently large,

and \ux\ < |M/*3| for some M.

Let *a=inf{|x|: \u (x)| >4a|a(x)|2l and define ga so that

Ax) =
|l.     \x\<xa~l>

(0,    |x|>*a,

|g¿(x)| < 2 and |g;(*)| < 4. De/¿«e

"a = u - gaux^4a^    flB¿    va"u + 8aux^4au^'

Then

(5.4) Pi(aa- va)î m u

and

(5.5) Pl(aA + a2B)(aa, va)l = Cu.

Proof. The functions ga were selected so that ua and va are nonnegative,

and so that the dominated convergence theorem would imply (5.4).

Consider

(aA + a2B)iua, i>a)

= faa - 1\ + \ë'aT + J«« ~ (if) ' " tt(«a " D«, + \ë'a f + Î*»^(t ))*
Since \u  | is bounded by  |M/*  | for some M, we can bound the L.  norm of

the first term of each component by

„Too       M    ,          aM
2a I — dx =-

J*a"l  *3 (xa-D2

The conditions on a imply xa >ca for some c > 0 and a sufficiently large, and

hence this goes to zero as a goes to infinity. The limits of the other terms are

straightforward and we have (5.5).

We must now check that Lemma (5.3) gives convergence for "sufficiently

many" a. .That is we must show that

fa - ß\iid2/dx2)log a: a satisfies the conditions of Lemma (5.3)i

is dense in \u e Lj(R): a > 0! for all sufficiently small ß. If a - id2/dx2)logu=f,
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268 T. G. KURTZ

vix) = uiax) and g(x) = fiax) then v - H/a2)id2/dx2)log v = g. Consequently it

is sufficient to consider the case ß = 4.

Lemma (5.6). Lei / èe nonnegative and continuous with compact support on

R, and not identically zero. Then there exists a solution of

(5.7) u - id2/dx2) log a = /

satisfying the conditions of Lemma (5.3).

Proof. Since the form of the equation is translation invariant we may assume

without loss of generality that /(0) > 0. Let

d = f"fiy)dy,      c-flj(y)dy.
Select a < - 2/c and b > 2/d so that the support of / is contained in [a, b\. Let

g be a positive, continuous function satisfying

2

and

Define

For x > b

jXog{y) = d-í     f0IX>b

I    giy) = c + —   for x < a.

<pix) = exp j- f*fyo ifiz) - giz))dzdy\.

const

„2
<pix) = exp {- fbo fl ifiz) - giz))dzdy} exp {- J* i dy}

Similarly $(x) = const/x 2 for x < a. We are interested in finding a solution of

(5.7) of the form a(x) = kew^x'<f>ix) where k is a constant which will be deter-

mined later. Substituting this form into the equation we obtain

(5.8) kew<p - id2/dx2)w - id2/dx2) log <f> = /.

Considering the definition of <j>, this becomes

(5.9) kew<f> - id2/dx2)w = g.

Since g > 0 and g(x) = 2/x2 fot x > b and x < a we note that g/qb is bounded

above and bounded away from zero.

Let Mj = infxg(x)/</>(*) and M2 = sup^gM/^x).

Select 0 < € < 1 and k > 0 such that

M2Ae>l,       £e~£ = (M2Ae)exp{-Ai2/M,    and    Ml/k>e€.

This is possible since making k small forces f to be small and M^k large.
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Suppose w is continuous and satisfies (<w< M2/ke. The equation

(5.10) ikewcp/w)v-id2/dx2)v = g,

has a unique bounded solution v (see Appendix, Lemma (6.4)). Define F(w) by

Fiw) = v. The solution v is twice continuously differentiable and satisfies

six)       M-, M7
v < sup wix)e-wix) -i— < — sup ze~z = —

x k(f>ix)       k     z ke

and

eix) Mi
v > inf wix)e~wM ill > fe~f -1 > e.

x k<f>ix) ~ k ~

Let T = \w: w is continuous and t < w < M2/ke\. Then F: T —+ T and is contin-

uous in the topology of uniform convergence on compact sets. Furthermore

„f M„

(5.11)      KW - fx(y)| =
¿2

-vdx   < k-\   d>dx + f   edx.
y dx2 ~      e    keJy Jy

Since <f> and g are in Lj(R) it follows that F maps T into a compact subset of

T and hence has a fixed point w. But a fixed point of the mapping F is a solu-

tion of (5.9).

We now must verify that a = kew<j> satisfies the conditions of Lemma (5.3).

Since € < w < M2/ke the fact that Cj/x2 < a < c2/x2 for some Cj and c2 and

|*| sufficiently large follows from the definition of 0.

Consider u% = kew<f>x + kew<f>wx. Again, from the definition of (f>, in order to

verify  la^J < |M/*3|  for some M it is sufficient to show that xw    is bounded.

From (5.11) it is clear that lim_twix) exists and the boundedness of w

implies the limit is zero.  Therefore

wxix)=f"ig-kew(/>)dx.

But g - kew<f> = 0(l/x2), and hence wj,x) = 0(l/x) for x —» ~. Similarly wxix) =

0(l/x) for x —♦ - oo.

Remark. General results of this type are considered in the linear case in [6].

General material on discrete velocity models for the Boltzmann equation as well

as some results related to the above for a different model can be found in [13].

The author would like to thank Professor Howard Conner and Professor

Michael Crandall for a number of helpful conversations.

6. Appendix. We verify that the operators considered in §5 are dissipative.

Lemma (6.1). Let L . Lj(R) x LX(R) with ||(a. v)\\ = ||a||Ll + IH|Ll, and

let L+= {(a, v) e L: a > 0, v > 0|. Let Biu, v) = iv2 - a2, a2 - v2) with 33(B) =

{(a, v) e L*: a2, v2 eLAK)\. Then B is dissipative.
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Proof.

||(bj, Vj) - iu2, v2) - aiBiuy Vj) - Biu2, v2))\\

+ J ki - v2 - aiu\ -u\- iv\ - v22))\dx

> J [(l + ct(aj + u2))\ux - a2| - a(t/j + v2)|fj - v2\]dx

+ J [(l + a(wj + i>2))|i>j - v2\ - a(at + a2)|aj - a2|]ax

= J |aj -a2|ax + J |fj -i/2|ax = ||(aj, i/j) - (a2, t»2)||.

Since A is dissipative and generates a linear semigroup, it follows that A +

aB is dissipative.

The fact that C is dissipative for functions satisfying the conditions of

Lemma (5.3) follows from the fact that A + aB is dissipative.

However, we will verify that C is dissipative on all of 3)(C) as defined in

Theorem (5.1).

Lemma (6.2). Let C be as defined in Theorem (5.1). Then C is dissipative.

Proof. Let a, v e 3)(C) and let Sj be the collection of intervals 7 = (a, b)

such that a - v > 0 on 7 and either a = - oo or a(a) = v(a) and either fe = » or

a(7>) = vib). Let §2 be the similar collection of intervals on which a - v < 0. For

7 e Sj, a(a) = via) implies ax(a) - vxia) > 0 and uib) = i>(6) implies ax(¿>) -

vxib) < 0.

We then have

r\ /¿2  . d2 ,      \\,I    a - v - a  —- log a- log v    dx

3 I \dx2 dx2 )\

JC                    {d2                d2 \
|a - v\dx — a j sign (a - v) (-log a-log w 1 dx

J \dx2 dx2 j

=  f|a - f|dx + a   £ -  f (—- log a--log v j ax
■* re$,     Jí \ax2 ax2 /

+ a   H   J, ( ̂ T lo8 "-r log f J rfx.
/es2 •" \¿x2 ¿x2 /

Suppose, for example, / = (a, i>) e &   a ¿ - oo and b = ~. The fact that limx_00ax/a

= lim^^^fx/t> = 0 implies
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-f 11Ja\dx

d2 \ ¡ux^      vx^
log a- log v j dx -

¡¡x2 I \ uia)        via)

(6.4)
a (a) - v Ka)

'        n >0'aun

It follows in a similar manner that all terms in the summations on the right*

hand side of (6.3) are nonnegative, and hence it is bounded below by /|a - v\ dx.

Lemma (6.4). Suppose yix) and g(x) are nonnegative, bounded and continuous

and that there exists t > 0 such that y(x) > ( for all x.  Then

(6.5) yv-Vzv^g

has a unique, bounded solution and

gix) gix)
(6.6) inf —— < v < sup ——.

x   yix) "   x    yix)

Proof. The uniqueness follows from the fact that the only bounded solution

of v  = yv is v s 0.

Since the author is a probabilist, to obtain existence we appeal to results con-

cerning Brownian motion. (See Dynkin [15, p. 46].) In particular if X(/) is stand-

ard Brownian motion, (X(0) = 0, Var(X(f)) = r) then the solution of (6.5) is

(6.7) vix) = E (f " exp j-JJ yix + Xis)) \gix + Xit)) dt\.

The inequalities in (6.6) follow immediately by making the change of variable

r = p0yix + Xis)) in (6.7).
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