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1 Introduction 

In this paper we study convergence of the iteration 

(1.1) xi = T2,(xi-1), i =  1,2 . . . . .  

where T~,'s are chosen from a finite pool of nonlinear operators T1, T 2 , . . . ,  T, 
acting on the Euclidean space IR k, and the convergence of a parallel asynchronous 
version of (1.1). Such iterations appear in applications to signal processing, system 
theory, computed tomography and other areas (see, for example, Koltracht and 
Lancaster l-4], and Ortega and Rheinboldt [6], and references contained therein). 

In Sect. 2 we introduce a class of operators which we call paracontracting, 
namely, continuous operators T: IRk ~ IRk such that for any fixed point y = T(y) 
a n d  a n y  x e IRk e i t h e r  II T(x)  - y I1 < II x - y II o r  T(x )  = x, T h i s  c lass  c o n t a i n s ,  i n  

* Research supported in part by Sonderforschungsbereich 343 "Diskrete Strukturen in der 
Mathematik" 
** Research supported in part by NSF Grant DMS-9007030 and by Sonderforschungsbereich 

343 "Diskrete Strukturen in der Mathematik", Fakult/it f/Jr Mathematik at the Universit/it 
Bielefeld 
*** Research supported in part by U.S. Air Force Grant AFOSR-88-0047, by NSF Grants 
DMS-8901860 and DMS-9007030, and by Sonderforschungsbereich 343 "Diskrete Strukturen in 
der Mathematik", Fakult/it ffir Mathematik at the Universit/it Bielefeld 
Correspondence to: L. Eisner 



306 L. Eisner et al. 

particular, all strictly nonexpansive operators studied in [4] and a certain subclass 
of the strictly nonexpansive operators studied by De Pierro and Iusem in [2]. In 
the case when Tis linear our definition coincides with that of Nelson and Neumann 
[5]. We also give some examples of useful paracontractions. One such example is 
T: IR k ~ IR k, where 

S ( x ) - f S , ( x )  if S(x) > f  
T: x ~ x --o9 IIS'(x)ll~ 

x if S(x) < f  

and where S: IR k ----r]R is a convex continuously differentiable function and ~o e (0, 2). 
In this case T is the relaxed Gauss-Newton iteration operator for S as defined in 
Ortega and Rheinboldt, see [6, Sect. 8.5]. 

In Sect. 3 we prove our main results concerning the convergence of (1.1) for 
paracontracting operators. First we show in Theorem 1 that the iteration (1.1) 
converges if and only if there is a common fixed point of those Ti's which appear 
infinitely often in the sequence {T~,}F=I and that in this case the limit is one such 
fixed point. In Theorem 2 we prove a similar result for an asynchronous version of 
the iteration which is useful for practical implementations on multiple instruction 
multiple data (MIMD) parallel computers. 

In Sect. 4 we demonstrate how Theorems 1 and 2 can be used for computing 
a solution of a linear system of equations which also belongs to an intersection of 
finitely many convex sets. The convex sets can be defined either by explicitly given 
projection operators or by the condition {x: S ( x ) < f } ,  where S is a convex 
continuously differentiable function a n d f i s  a number. In Sect. 5 we give our first 
result (Theorem 3) for the convergence of (1.1) for an infinite pool of operators. We 
introduce the notion of an asymptotically paracontracting sequence of nonlinear 
operators for which the statement of Theorem 1 remains valid. Our Theorem 3 is of 
the same flavor as a recent result of Youla [7], for an infinite pool of relaxed linear 
projection operators. 

We would like to add that our results apply to operators acting in the complex 
space C k, and that some of them can be reproduced in the Hilbert space setting. We 
also indicate in this paper lines for future research. 

2 Paracontracting operators 

Definition 1. A continuous operator T: IRk ~ IRk is paracontracting (with respect to 

a vector norm I[" II on IR~), if for any fixed point (f.p.) y E IRk, y = T(y)  and any x e IRk 

II T(x) - y I[ < II x - y l[ or T(x )  = x .  

We remark that for T linear this coincides with the definition given in [5]. 
A somewhat stronger notion for nonlinear operators is used in [4]: 

Definition 2. An operator T: IRR_...~ ]Rk is strictly nonexpansive, if for any pair 
x, y ~  iRk 

11 T(x )  -- T(y)II < 11 x - y 11 or T(x )  - T ( y )  = x - y 

holds. 
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Obviously, a strictly nonexpansive operator  is paracontracting,  while the inverse 
implication does not hold, see Example 4 below. The definition of a paracontract-  
ing operator  does not imply the existence of a fixed point, so that any continuous 
operator  without fixed points has to be considered paracontracting. A product  of 
two or more paracontract ing operators need not be paracontract ing itself. On  the 
other hand a product  of a finite number  of strictly nonexpansive operators is 
strictly nonexpansive. Let us consider some examples: 

E x a m p l e  1. Let r, 9 E ]R k, r :z[= 0, 0 < (2) < 2, and 

rrT, 
r x : =  1 - - , . w r )  x + o .  

Then T is strictly nonexpansive and hence paracontract ing with respect to the 

Euclidean vector norm It" ll2. 

E x a m p l e  2. Let B c IR k be a closed convex set and Q the projection onto B, i.e., 
for any x: 

Q ( x ) e B ,  [Ix - Q(x)[I2 < Ilx - yl12 for all y ~e Q(x), y ~ B .  

We claim that the relaxed projection operator  

Q,o: x --, (1 - + coQ(x) 

is strictly nonexpansive for o~ e (0, 2). To see this we have to show that for vectors 
x, y such that Q~(x) - Q,o(y) 4: x - y, or equivalently 

(2.1) y -  x -  Q(y )  + Q(x) * O,  

the inequality 

(2.2) II Qo,(y) - QoAx)112 < Ily - xtl= 

holds. An easy calculation shows that 

(2.3) [[Y - xll 2 - II Qo~(y) - Qo,(x)l] 2 = 09(2 - e))e + o)2fl, 

where ct = (y - x - Q(y )  + O(x), y - x) and fl = (y - x - Q(y)  + a(x) ,  Q ( y ) -  

Q(x)). For  t e l 0 ,  1], tQ(x)  + (1 - t ) Q ( y ) e B  and hence 

9(t) = I t Y -  (1 - t ) Q ( y ) -  tQ(x)[I 2 - I l y -  Q(y)It~ > 0 .  

From g(0) = 0 it follows that 

0 < 9'(0) = 2(y - Q(y) ,  O(y )  - Q ( x ) ) .  

Interchanging x, y and adding gives fl > 0. By (2.1) we get that ct - fl > 0, and 
hence e > 0. The inequality (2.2) follows now from (2.3). In the special case when 
B is a closed halfspace 

B = {Z ~ IRk: aTz <= b}, a +- O, b e IR , 

Qo,(x) is given by 

(a~x - b)+ 
(2.4) Q~,(x) = x - ~o a ,  aTa 
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where we use the abbreviation t+ = max(0, t). We remark that we have not used 
the finiteness of the dimension of the underlying space. Therefore the above result 
holds, in fact, in any Hilbert space (see also I-7]). 

In the next example we consider the case when the convex set is given implicitly 
as a level set of a convex function. 

E x a m p l e  3. Let S: IRk ..~ IR be a convex continuously differentiable function and let 
B = {X~IRk: S(X) < f }  4= ~ where f is a number. We claim that the operator  
T defined by 

(2.5) 

S(x) - f  
x - 09 S ' (x )  if S(x)  > f 

T: x ~  IIS'(x)dl:: 

x if S(x)  < f  

is paracontract ing for any 09 = (0, 2). For  notat ional  convenience we consider the 
gradient S ' (x )  as a vector in IR k. Since S attains its minimum in B it follows that 
S ' (x )  4 : 0  for x C B  and hence B is the set of all fixed points of T. To see that T is  

paracontract ing it suffices to show that 11T(x) - y II 2 < [I x - y II 2 for any x r B and 
y s B. The inequality 

(x - 09o~S'(x) - y, x - 09ctS'(x) - y )  < (x - y, x - y)  , 

where 

S(x)  - f 
~ = - - > 0 ,  

II S'(x)I[ 

is equivalent to the inequality 

092~2 [I S'(x)IIz  z - 2~oa(S'(x), x - y) < 0 

and, after substituting the expression for ct to the inequality 

09(S(x) - f )  < 2(S'(x), x - y) .  

Since S is convex and continuously differentiable, it follows that for any x r B and 

any y e B  

S ( x )  - S ( y )  <_ ( S ' ( x ) ,  x - y )  . 

Hence for any 09 ~ (0, 2), 

09(S(x) - - f )  < o~(S(x) - S ( y ) )  < 2(S(x) - S ( y ) )  < 2(S'(x), x - y ) .  

We remark that  if S ( x ) > f  then also S ( T ( x ) ) > f  for any to __< 1. Indeed, 
S ( T ( x ) )  = S ( x  - 09aS'(x)) > S(x )  - (S'(x) ,  coaS'(x))  = S(x)  - 09(S(x) - f )  = 09f+ 

(1 - 0 9 ) S ( x ) > f .  Therefore it follows, for example, from Theorem 1 in the next 
section that  for o2 < 1, the iteration xl = T(x~_ 1) will converge to some point  on 
the boundary  of B, O B =  {yeiRk: S ( y ) = f } ,  from any initial Xo. The above 
argument  implies that  as long as the iterate x~_ 1 is not  on aB then the next iterate xi 
will be strictly closer to each element of  B than x~_ 1. We remark that the operator  
(2.5) is, in fact, a relaxed version of the Newton-Gauss  iteration operator  of S as 

defined in [6, Sect. 8.5]. 
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As a particular case let, for example, S(x) = � 8 9  -F gTx where A is a positive 
definite matrix. Then 

�89 + gTx - - f  
T: x ~  I x - CO(A x + g)T(A x + g)(Ax + g) if �89 + gTx  > f  

x if �89 + gTx ~ f  

Example 4. Let T: IR ~ IR be defined by T(x) = sin(x2). Since T(0) = 0 is the only 
fixed point  of T and I T(x) I < Ix l, for x ~ 0, it follows that  T is paracontract ing.  But 
as there are points where I T'(x)l > 1, T is not  strictly nonexpansive.  

3 Main results 

In this section we follow quite closely the ideas of [3, Sect. 2]. Given n paracon-  
tracting operators  T1 . . . . .  Tn, we want  to find a common  fixed point  (c.f.p.) u s IRk, 
i.e. 

(3.1) u = Tj(u), j = 1 . . . . .  n .  

We can think of two possible iterative schemes for finding such a point. The first 
scheme is 

(3.2) x, = Tj,(x,-1), i=  1,2 . . . . .  

where Xo is a given start ing vector and the sequence {ji}~~ with 1 < j i  < n is 
admissible. This means that  for any 1 < r < n there are infinitely many  integers 
i such that  ji = r. The second scheme is derived from parallel asynchronous 
computa t ion  models, see [3] or I-1] for special cases. It is determined by three 
sequences of integers 

{hl,ji, r i }~T+ l  , 
where 

(a) l < h i < m , l < j i < n , l < r i < T + l  

(3.3) (b) {1 . . . . .  n} = {j , , j ,+l  . . . . .  j , + T - I }  for a l l / >  T 

(c) hi = 1 ~ r i = 1 . 

Here m > 2 and T > 1 are given integers. Condi t ion (b) shows that, in the language 
of 1-1], {Ji} is a regulated sequence on {1 . . . . .  n} with a computa t ion  cycle T. The 
i teration scheme is now given by 

Xo O < _ i < T  
(3.4) xi = 

ah, Xi-1 + (1 -- o~h,)Tj,(xi-r,) i > T 

where 0q = 0 and aie(0,  1), i = 2 . . . . .  m, are given numbers.  

Theorem 1. Let Tj, j = 1 . . . . .  n be n paracontracting operators with respect to 
some norm [1" II in IR k. Let {ji}~~ 1 be an admissible sequence and XoeIR k be given. 
Then the sequence {xi} defined by (3.2), namely, 

x i =  Tj,(xi-1), i =  1,2 . . . . .  
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conver#es i f  and only i f  the operators T1, T2 . . . . .  Tn have a common f i xed  point. 

Moreover,  in this case the limit 

(3.5) l im xi = x 
i ~ o o  

is one o f  such common f ixed  points, namely, 

(3.6) Tj(x) = x, j = 1 . . . .  n .  

Proof. Let  (3.5) h o l d  and  cons ide r  some  fixed Tk. Since the  sequence  {ji} is 
admiss ib l e  it  fo l lows tha t  there  exists  a subsequence  {xip } such tha t  xlp = Tk(Xip - 1). 
As Tk is c o n t i n u o u s  a n d  the subsequences  {xi~} a n d  {x;,_ 1 } conve rge  to x it fo l lows 

tha t  Tk(X) = x. 

Let  n o w  y be a c o m m o n  fixed point .  As  the Tj's are  p a r a c o n t r a c t i n g ,  the 

sequence  { II x, - y II } satisfies 

(3.7) II x~ --  y It < II x~_ 1 --  Y II, i > t , 

and  is hence  convergen t .  P u t  

(3.8) 2 = l im II x~ - y II 

Since {x~} is b o u n d e d ,  it has  an  a c c u m u l a t i o n  po in t ,  say, x. W e  c la im tha t  x is 
a c.f.p, a n d  tha t  limi~oo x~ = x. There  exists  a subsequence  {Pl}T=I such t ha t  

l im xp, = x . 
i ~ o o  

If  x is no t  a c.f.p., t hen  there  is (after even tua l ly  r e n u m b e r i n g  the T~) an index  r, 

1 -< r_< n such t ha t  

(3.9) Tj(x) = x for  j < r, Tj(x) :4= x for  j > r .  

F o r  any  i the re  is a m i n i m a l  ql > Pi such tha t  jq, + 1 > r because  { j i  }~~ x is admiss ib le .  

As j r  < r for  Pi <= V ~ ql,  it fo l lows t ha t  Ilxq, - xll = II T j , ( X q , - 1 )  - Zj , (x) l l  < . . .  
< II xp, - x II and  hence  a lso  

l im xq, = x .  
i ~ o o  

N o w  there  exists  s > r such t ha t  jq ,+ 1 = S for  inf ini tely m a n y  i. Let  us r e n a m e  the 
subsequence  of  {xq,} def ined  by  those  indices  by  {Yl}. W e  obse rve  tha t  T~(yl) is an  
e lement  of  the  sequence  {x~},~l  for  all  i a n d  hence  

2 = l im II T,(yi)  - y II = II T~(x) - y II �9 
i---~ cr 

Also 

~, = l im II x q ,  - y II = II x - y 11 �9 

i ~ c O  

Since Ts is p a r a c o n t r a c t i n g ,  it  fo l lows t ha t  Ts(x) = x. This  c o n t r a d i c t s  (3.9) so x is 

a c.f.p. S u b s t i t u t i n g  y by  x in  (3.7) we see t ha t  l im xl = x. [ ]  

C o r o l l a r y  1. Le t  T i, j = 1 . . . . .  n be n paracontractin9 operators with a common 

f i xed  point. Le t  T = TI T2 �9 �9 �9 Tn. Then x is a f i x ed  point o f  T i f  and only i f  x is 

a common f i xed  point o f  T1, Tz  . . . . .  Tn. 
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Proof  If T~(x)= x for i =  1 . . . . .  n then clearly T ( x ) =  x. Assume now that 
T(x) = x. Consider the iteration Xo = x and 

X i = T i (modn) (X i -1 )  , i =  1,2 . . . . .  

Since the sequence of indices {i(mod n)}~% 1 is admissible it follows that lim x~ exists. 
Since xk, = Tk(xo) = Xo = x it follows that the sequence {xl} has a subsequence 
whose entries are all equal to x. Thus limx~ = x which by Theorem 1 must be 
a common  fixed point of  T1 . . . .  T.. [] 

Remark. The assumption in the above theorem that the sequence {ji}F=l is 
admissible is not  essential. Without  this assumption the limit x will be a common  
fixed point of those operators which appear infinitely often in the sequence. Indeed, 
if we start with an index io large enough such that each operator  which appears for 
indices larger than i0 appears there infinitely many times, then Theorem 1 applies 
to the subset of T~ . . . . .  T, consisting of such operators. 

Remark. It is easy to see that there exist discontinuous operators T which possess 
a fixed point and which satisfy the condition of paracontractness, namely, that for 
any fixed point  y =  T(y)  and any point x either [ [ T ( x ) - y l l  < I l x - y l [  or 
T(x) = x. Such an example is given by T: IR ~ IR, with 

1 if x >  1 

T : x ~  0 i f x < l  

It would be interesting to know whether for a finite pool of possibly discontinuous 
paracontract ions with a common  fixed point, the iteration (3.2) still converges. 

We turn now to the second iteration scheme (3.4). Here we can prove: 

Theorem 2. Let  II �9 II be a strictly convex vector norm on IR k, X o ~ x  k, and Tj, 

j = 1 . . . . .  n, paracontracting operators. The sequence {xi}•=o defined by 

Xo if O<_i<_ T 
X i ~ 

O~hiXi_ 1 q- (1 - -  O~h,)Zj,(Xi_r, ) i f  i > T 

where {hi,ji, ri}~=r+l satisfies (3.3), converges if and only if the operators 

T1, T2 . . . . .  T, have a common f ixed point. Moreover, in this case the limit 

(3.10) x = lim x~ 

is one of  the common f ixed points, namely, 

(3.11) x=T~(x) ,  i = l , . . . , n .  

Proof. As in the proof of  Theorem 1 the existence of x = tim xi implies that x is 
a c o m m o n  fixed point of T1 . . . . .  T,. Suppose now that y is a common  fixed point 

of T1 . . . . .  T,. For  i > T let 

x' I ~i = xi-1 ~]R~r+l  ) 

X i - T /  
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T h e n  

(3.12) r = n i ( ~ i -  1) 

where  Bi  = B ( h i , j i ,  r~) is the  o p e r a t o r  g iven by  

r / =  i 

r/T+1 

Set 

~h, nl + (1 - ~h,)Tj,(,1,,) \ 

~/1. ) . 

t /r  

a n d  

Ci = B i + T - 1  ~ �9 �9 . ~  ~  a n d  Ci = B I + 2 T - 1  o . . . o B i  = C i + T O C i .  

W e  define a n o r m  on IR k(r+l)  by  II[~/lll = maxil lr / i l l  a n d  show tha t  for a g iven 
~ I R k ( T +  1), 

(!) (3.13) I l l d i~ / -  :PIll < l i l t / -  YlII or  Cirl = , x a c . f .p .  

F i rs t ,  e i ther  

o r  

II(B~(r/) - ~), II < 11[~/- ~[11 

[I ~h,(r/1 - Y) + (1 - ~h,)[Tj , (r l , , )  - -  y-I II = maxv II ~ - y II �9 

In the  l a t t e r  case,  if Cth, > 0, then  by  the s t r ic t  convex i ty  of  II �9 II a n d  by  the fact  t ha t  
Tj, is p a r a c o n t r a c t i n g ,  it  fo l lows t ha t  

r/1 - y = Tj,(r/,,) - y = t/,~ --  y 

a n d  hence  

rll = l'lri = 7ji(Flri) ,  ( n l ( n ) ) l  = / 1 1  �9 

The  las t  equa l i t i es  a re  a l so  t rue  if ~th, = 0 because  then  ri = 1. In  any  case  the  first 
two  ent r ies  of  B ,  (r/) a re  e q u a l  to  r/1 a n d  Tj , ( th)  = rh .  P r o c e e d i n g  in this  m a n n e r  we 
have  t ha t  e i the r  there  exists  v < T such t h a t  

or 
ll(Bi+v ~ . . .  ~ - -  Y)I II < III ~] -- y[n 

t x ) C i r l =  , r h = x ,  T j ( x ) = x ,  j =  1 . . . . .  n .  

X 

In the fo rmer  case after  at  mos t  T m o r e  steps all subvec tors  have a n o r m  less than  

I l l~/-  YIll a n d  hence  tll t~i(r/) - YIII < l i l t / -  YlII. Thus  (3.13) is p roved .  
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Returning to the sequence (3.12) we see that 

(3.14) lilly - YlII _-< IIIL-I - ~111 

and hence that limit 

(3.15) 2 = lim IIlCv - YlII 
v ~ o o  

exists. Now consider the sequence {~}~=1 with 

~i = ~ir ,  i > l . 

It has an accumulation point, say ~, and by choosing a suitable subsequence 
{si}~% 1, we have that 

(3~16) l im~s,=~,  S l ~ s , = ~ l + ~ , ,  $2~1+~,=~2+,,, i = 1 , 2  . . . . .  
i ~ o o  

for some operators $1 and $2 which are products of T consecutive Bj's. This is 
possible as there are only finite many different products of BSs of length T. But then 
from (3.16) 

lim (1 +~, = Sl(,  lim (2+s, = $2S1( 
and by (3.15) 

2 = III(-Ylll = IIIS2SI(0-YlII .  

By (3.13) we have, as $2S1  = C~ and S1 = C~ for a suitable i, that 

(') $ 1 ( 0 =  " , T j ( x )  = x,  j =  1 . . . . .  n . 

X 

In particular 

lim III G +~, - 51 (~)111 = 0 

and, by (3.14), on choosing now 37 = $1(0 

lim II1~, - Sa(0111 = 0 .  
r--* oo 

Thus (3.10) has been proved. [] 

R e m a r k .  If h~ = 1, i = 1, 2 . . .  then the iteration scheme (3.4) becomes the scheme 
(3.2). When this is the case, Theorem 1 is stronger than Theorem 2 as it only 
requires the sequence {Ji}~=l to be admissible, but not necessarily regulated. 

R e m a r k .  The proof of Theorem 2 is similar to the proof of Theorem 2 of [3] with 
one considerable difference. Whereas in [3] the embedding of the multi-step 
method (3.4) as a one-step method in higher dimensions is done in the nk-  

dimensional space, here the embedding is done in the (T + 1)k-dimensional space. 
The analysis we have done is yet another instance that convergence analysis of the 
parallel asynchronized iteration models can be achieved by transforming them to 
asynchronized sequential models in higher dimensional spaces. 
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4 Applications to the solution of linear systems of equations with constraints 

We consider a consistent linear system of equations 

(4.1) Ax=f , ,  A =  " , A ~ I I ~  n x k  

/ 

with infinitely many solutions. Suppose that on the basis of some prior information 
it is desired to find a solution which belongs to the intersection of given convex sets 
BI . . . . .  Bin. Theorems 1 and 2 can be used for this purpose as follows. With each 
row of the matrix A we associate the paracontraction of the Example l, namely 

(4.2) 

where 

( Ti= l--COlrTrl / + gl 

f, 
gi=coi~s ,  ri, o)i s (0, 2), and f = ( f l , f 2  . . . . .  f~)T. 

r i  r i  

It is well known that the set of solutions of Ax = f coincides with the set of all 
common fixed points of T1 . . . . .  T,. In order to define paracontracting operators 
whose sets of fixed points coincide with the convex sets B~ . . . . .  Bm, we consider 
two separate cases. 

Case 1: Suppose that the projection operators Q 1 , . . . ,  Qm onto the sets 
B1 . . . .  ,Bm are explicitly computable. This is the case, for example, when the B;s 
are of the type of a "box", 

B =  {x~iRk: ~i < xi < i l l , i =  1 . . . . .  k} 
or a ball, 

S = { x ~ l R k : l [ x - a ] l  < r } .  

It is obvious that for these types of convex sets the values of the corresponding 
projection operators Q can be computed explicitly. The corresponding relaxed 
projection operators as defined in Example 2 are strictly nonexpansive and hence 
paracontracting. In this case for i -- 1 . . . . .  m, we let 

Tn+i: x ~ (1 -ogn+i)x + o ) n + i Q i ( x  ) . 

Case 2: Suppose that the convex sets B1 . . . . .  B,, are defined by convex continu- 
ously differentiable functions Sl(X) . . . . .  Sin(x) as in Example 3. Then we associate 
with each convex set Bi the paracontracting operator defined by (2.5). In this case 
for i = 1 . . . . .  m, we let 

S , ( x ) - f S ; ( x )  if S,(x) > f  
Tn+i: x--. X - -  O~.+i  I l S ; ( x ) l l ~  

x if Si(x) < f 

We remark that  the combinat ion of both  cases when some of the projection 
operators are given explicitly and some are as in (2.5) is considered in the follow- 
ing algorithm: 
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Algorithm. Choose an admissible sequence of indices {jl}~=l with 1 < j l  < n + m 

and an arbitrary Xo, and compute recursively 

xl = Tj,(xi-1), i =  1,2 . . . . .  

1. If a given convergence criterion is satisfied then accept the last iterate as 
a common fixed point of the operators Tx . . . . .  T,+,,, that is as a solution of 
A x  = f w h i c h  belongs to the intersection of BI . . . . .  B,,. 

2. If a given divergence criterion is satisfied then conclude that there is no 
solution of A x  = f which belongs to this intersection. 

For  efficient implementations on multiple instruction multiple data (MIMD) 
parallel computer architectures one can use a similar algorithm with a regulated 
sequence {j~} and the recursion (3.2) replaced by the recursion (3.4). 

Remark.  There are many different possibilities for the choice of iteration schemes 
(3.2) or (3.4). For example, the one considered in [4] is of the form 

x ,  = 9 _ . ( T ( x i - 1 ) )  

where T = T, T,_,  . . .  T1 and Q = T, +, is a projection on a "box", as described 
earlier in this section. This iteration, called the ART (Algebraic Reconstruction 
Technique) algorithm with constraints, is useful for tomographic reconstruction 
from incomplete data. Here are two asynchronous analogues of the last iteration 
scheme, namely, 

(4.3) xi = Q(a~,xi_,  + (1 - ai,)Tj ,(xi_, ,))  

and 

(4.4) xi = aa, Xi-1 + (1 - aa,)Q(Tj,(x,-r,))  

where {J~}F=I is a regulated sequence. An asynchronous iteration of this type for 
solving A x  = f without constraints was studied in [3]. 

Since the number of processors of a parallel computer may be much smaller 
than the number of operators T1 . . . . .  T., then for the efficient implementation of 
the processes of the type (4.3) and (4.4) one can group these operators into several 
disjoint groups whose number coincides with the number of processors. With each 
group one associates a strictly nonexpansive operator which is the product of all 
operators in this group taken in some order (recall that the operators T1 . . . . .  T,, 
given by (4.2), are strictly nonexpansive). The new pool of strictly nonexpansive 
operators has now the same cardinality as the set of processors and the iteration 
(4.3) or (4.4) can be applied to this new pool. Since it is assumed that T~ . . . . .  T, 
have a common fixed point it follows from Corollary 1 that the limit will be 
a common fixed point of the original pool of operators. 

Remark.  Various other iteration schemes for a finite pool of paracontracting 
operators can be written. Optimal choices of the sequence of indices {Ji}~= 1 and the 
relaxation parameters a~ in the operators of Examples 1, 2, and 3 which would give 
as fast convergence as possible remain an open problem. Some results in this 
direction for linear paracontractions can be found in [5]. The effects of round-off 
errors on the convergence of the proposed iteration schemes also remain to be 
investigated. 
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Remark. It is also possible to apply Theorem 1 to the approximate solution of 
inconsistent systems with constraints. For  example, the operator T which is 
a product of the operators / '1  . . . . .  T, given by (4.2) and taken in some order, will 
always have a fixed point even if there is no common fixed point o f / '1  . . . .  , T,. 
Therefore the iteration x~ = T(xi_ ~) will always converge to some approximate 
solution of A x  = f. If  in addition, there is a common fixed point of Q and T, then the 
iteration x~ = Q(T(x~_~)) will converge to an approximate solution of A x  = b 

which is in the convex set B = ImQ (see [4] for details). 

Remark. The proposed sequential and asynchronous iteration schemes can also be 
used, at least in principle, for the solution of convex optimization problems, where 
the pool of paracontractions consists of relaxed projection operators on convex 
sets and operators of the form (2.5) only. In this case a point in the intersection (on 
the boundary of the intersection if co < 1) of the corresponding convex sets will be 
found. Since a linear equation can be replaced by a pair of projections onto 
corresponding complementary halfspaces, the solution of a linear system of equa- 
tions with constraints can be viewed similarly. 

As in the linear case, the iteration of Theorem 1 can be used to find some 
approximate solution of the inconsistent convex optimization problem. We have in 
mind the following situation. Suppose that T~ = (1 - co~)I + o~Pi, i = 1 . . . . .  n, 
are relaxed projection operators on bounded convex sets B1 . . . . .  B, which may 
have an empty intersection. Let T = T h T~ 2 . . .  Ti, be a product of the operators 
T1 . . . . .  T, taken in some order. It is easy to see that Tmaps  the closed convex hull 
of B1 . . . .  , B, into itself and hence by the Brouwer fixed point theorem it must 
have a fixed point (see, for example, I-6, Sect. 6.3]). Since T is strictly nonexpansive 
it follows from Theorem 1 that the iteration 

xi = T (x i -  1) 

will converge to a limit point which belongs to the set Bi~. A certain characteriza- 
tion of this limit point for ~oi = 1 can be found in Youla and Velasco 1-8"1, where 
such point is called a minimizer. 

A similar argument applies to the case when T~x is a projection on a bounded 
convex set and Ti~ . . . . .  T~, are arbitrary strictly nonexpansive operators. 

5 Infinite pool of iteration operators 

In this section we apply the techniques which were developed in earlier sections to 
the important,  but little investigated, case of an infinite pool of iteration operators 
(see [7] for discussion). We give here our first result on the convergence of the 
sequential iteration 

Xi = S i ( x i -  1) ,  i = 1, 2 . . . . .  

where {S~}i~ 1 is a union of a finite number of convergent subsequences whose 
limits are paracontracting operators. This result can be viewed as a generalization 
of a recent result of Youla (I-7, Theorem 21) for an infinite pool of relaxed 
projection operators. 



Convergence of sequential and asynchronous nonlinear paracontractions 317 

We say that a nonlinear operator  T acting in IRk is strongly bounded if there 
exists fl > 0 such that tt T(x)ll < flmax(l, llx[1) for any x~ iR k. The infimum of all 
such fl's is denoted by II T II where, clearly, 

II T(x) II 
II T[I = sup 

~ ,  max( l ,  Ilxtl) 

Definition 3. A sequence {Si}i%~ of continuous operators mapping IR k into IR k is 
called asymptotically paracontracting, (with respect to a vector norm I1" II on IRk), if 
there exist paracontract ing operators T~, T2 . . . . .  Tn and a mapping 
J: iN ~ {1, 2 , . . . ,  n} such that S~ - Tj,) is strongly bounded for any i > M where 
M is a positive integer, and 

(5.1) ~ II Si - Tj(o II < oo . 
i = M  

In order to prove our convergence theorem we need the following lemma: 

Lemma 1. Let ~i > O, ~ = 1  ~i < oo and a sequence {ei}P=o be given. Suppose that 

ei < ei-~ + ~ti, i = 1 , 2  . . . . .  

Then {el}~= 1 is convergent (and hence bounded). 

Proof. Obviously, for i > j 
i 

ei_-<e~+ ~ ~ .  
k = j + l  

Hence for e > 0 there exists N(e) such that for i > j > N(e) 

e i < e j + e .  

This shows that the sequence {e~}~%1 is bounded and each of its accumulation 
points is less or equal to lim infei.Hence there is only one accumulation point and 
{ei}i%o is convergent. [] 

Theorem 3. Let {S~}~%1 be an asymptotically paracontracting sequence. Then the 

sequence o f  iterates 

x~=Si(x i_x) ,  i = 1 , 2  . . . . .  

converges if and only if there exists a common fixed point of  those operators among 
T1, T2 . . . . .  T, whose indices appear infinitely often in the sequence {J(i)}~~ 
Moreover, in this case the limit 

(5.2) lim xi = x 

is a common fixed point o f  such Tk'S. 

Proof. Suppose that x = l imit |  x~ and let Tk be such that  k = J(ip), p = 1, 2 . . . . .  
Then 

II S,,- Tk II < ~ �9 
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Let 

Xip = S i p ( X i p -  1 ) .  

Both {xip }p% 1 and { x i p -  1 }p~ z converge to x and hence are bounded.  Therefore for 
p large enough, 

l l x i ~ -  Tk(x)l l  < I l S i ~ ( x i ~ - l ) -  Tk(Xil , -1)l l  + II T k ( X i p - 1 ) -  Zk(X) tl 

< I l S i , -  Tkllmax(1, I l x i ~ - i  I t ) +  II T k ( X i , - l ) -  Tk(X)tl ~ 0 ,  

when p ~ ~ .  Hence Tk(X) = x.  

N o w  let y be a c o m m o n  fixed point of those Tk'S whose indices appear  infinitely 
often in the sequence { J(i))T=I. Let ei = I l x i -  yll and 

(5.3) ai = II Si - Zsti)tl �9 

Then for i large enough, 

I l x , -  Yl[ < [IS~(x~-x)-  Zs,)(x,-x)ll  + II Z s ~ i ) ( x i - x ) -  Tj~i)(y)l[ 

< fl S t  - Zj,)II max( l ,  II x , _  a II) + H x l -  1 - y IJ 

= almax(1, I lx i -a  It) + e i - a  < a i r  + (1 + a i ) e i -a  , 

where 3 = max(llyll ,  1). Therefore the sequence {e~}, with e~ = eiI-IJ<__i(1 + a i), 

i = 0,1 . . . . .  satisfies the inequality 

' <  ' + 6 a ~ I - I ( l + a j ) =  ' + ' ei  = e i -  1 e l -  1 ai  �9 
j < i  

Since ~a~  < ~ it follows f rom the preceeding lemma that  {e~} and hence {ei} is 
convergent.  This in turn implies that  the sequence {x~} is bounded.  Let us choose 
a number  7 such that  for all i, II x~ II _-< 7 and 1 < 7. Let x be an accumulat ion point  
of {xl}, so that  

lim xp, = x 
i--+ ct3 

for some infinite sequence of positive integers {Pg}?~=l. We can assume (after 
a possible reordering) that  T~, Tz  . . . . .  T .  where u < n, are those opera tors  whose 
index appears  infinitely often in the sequence { J(i)}. We claim that  T~(x) = x for 
i = 1 . . . . .  u. Assume there is r ~ u such that  T~(x) = x for i < r while Ti (x )  * x for 
i => r (r = 1 is a possibility). Then there is a minimal  qi >= Pi such that  J ( q l  + 1) > r, 
J ( q i )  < r . . . . .  J ( P i  + 1) < r (q~ = p~ is a possibility). Then for i large enough, 

I I x q , -  xll < [ISq,(xq, -a)-  Ta~q,)(xq,-1)ll + II T s ~ q , ) ( x , , - 1 ) -  Ts~q,)(x)ll 

<= a~,7 + Ilxo,-~ - xll _-<'" �9 _-< (a~, + "  "" + a ~ + ~ ) 7  + IIx,~ - xll �9 

Therefore also l imi .  ~ xq, = x exists. There is some index, say v > r, which appears  
infinitely often in the sequence { J ( q ~  + 1)} and hence, for this subsequence, 
denoted by {q;}, the sequence {Sq;+l(xq;)} is a subsequence of {x~} and 
Tj~q) + l, = I v .  Thus 

I[ T~(x)  - Y[I = Illim To(xq~) - -  YI[ = [llimSq~ + l(Xq~) - y]} = l lx  - Yll �9 

Since To is paracont rac t ing  we conclude that  T~(x) = x .  This contradict ion shows 
that  x is a fixed point  of Ta . . . . .  T,. Finally, substituting x for y in the definition of 
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{e~} we see that  lim el = 0, as a subsequence of {ei} converges to zero. Therefore 
(5.2) holds. [] 

Remark. If  the boundedness  of the sequence {x~} can be establ ished a-pr ior i  by 
some means  other  than those used in the above proof  (for example,  if all S{s are 
nonexpansive),  then it is possible to show that  the condi t ion  (5.1) can be replaced 
by weaker  condit ions.  F o r  example,  Theorem 3 remains true in this case if the 
sequence { J(i)} is regulated and if the sequence {~tl} defined in (5.3) converges to 
zero. The above  theorem should  be considered as only one of the star t ing points  for 
the s tudy of convergence proper t ies  of an  infinite pool  of operators .  
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