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In this paper, we analyse theoretical properties of the slice sampler. We find that
the algorithm has extremely robust geometric ergodicity properties. For the case
of just one auxiliary variable, we demonstrate that the algorithm is stochasti-
cally monotone, and deduce analytic bounds on the total variation distance from
stationarity of the method using Foster-Lyapunov drift condition methodology.

1. Introduction.

This paper considers the use of slice samplers to sample from a complicated d-

dimensional probability distribution. Slice samplers are a form of auxiliary variable tech-

nique, which introduces auxiliary random variables Y1, . . . , Yk to facilitate the design of an

improved Markov chain Monte Carlo (MCMC) sampling algorithm.

The idea of using auxiliary variables for improving MCMC was introduced for the

Ising model by Swendsen and Wang (1987). Edwards and Sokal (1988) generalised the

Swendsen-Wang technique, and since then, their use in statistical problems has gradually

increased, partly as a result of Besag and Green (1993). In recent years there has been a

large amount of activity on this topic, including a very clear discussion of auxiliary variable

techniques by Higdon (1996), a variety of examples of uses of auxiliary variable techniques

in statistical problems by Damien et. al. (1997), and some theoretical progress by Mira

and Tierney (1997) and Fishman (1996). The slice sampler is a particularly interesting
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algorithm from a practical point of view, since it frequently allows very straightforward

implementation (see for example Damien et. al., 1997, and Neal, 1997).

However, except for the original Swendsen-Wang method (which has been shown to

be superior to more naive Gibbs methods for sub-critical Ising models), rather little is

known about the theoretical properties of auxiliary variable algorithms. In this paper, we

concentrate on the slice sampler, an important special case of an auxiliary variable method.

We give a number of results that demonstrate that the algorithms have extremely good

theoretical properties.

In Section 2, we introduce the algorithm, demonstrate that apparently more general

versions of the algorithm can be reduced to the problem of sampling from a uniform density

on a particular region. For the simplest case where the number of auxiliary variables is

one (the simple slice sampler), this can be seen as sampling from the uniform density in

the region bounded above by the density of interest (see Figure 2.1). In Section 3 we prove

that the Markov chain induced by the algorithm has other useful invariance properties,

and also that the simple slice sampler is stochastically monotone under an appropriate

ordering on its state space.

In Section 4, we shall show that the simple slice sampler is nearly always geometri-

cally ergodic using Foster-Lyapunov drift condition techniques. This result is interesting

though rather surprising considering the fact that very few other MCMC algorithms ex-

hibit comparably robust properties (see especially Roberts and Rosenthal, 1997 in this

context).

Moreover, the stochastic monotonicity properties of the algorithm allow us to give

useful rigorous quantitative bounds on the total variation distance from stationarity after

a given number of iterations. Results of this type are described in Section 5, including a

rather general statement that all distributions satisfying (5.4) (this condition is similar to

requiring log-concavity of the density) converge to stationarity in less than 530 iterations

(Theorem 12). The techniques used in Section 5 involve quantitative bounds recently

developed by Roberts and Tweedie (1998).

In Section 6, we consider further properties of the so-called product slice sampler,

corresponding to k ≥ 2 above. We give conditions which ensure geometric ergodicity
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of the algorithm in this case. The conditions given here are sufficient, but we suspect

far from necessary. Certainly, further work is required here to understand further the

combined effect of a collection of auxiliary variables.

Finally in Section 7, a special case of the product slice sampler (the opposite slice

sampler) is analysed, and conditions given for its geometric ergodicity.

2. Slice samplers: definitions and preliminaries.

Suppose that π : Rd → [0,∞) is a density (i.e., a non-negative measurable function

which is not a.e. 0) with respect to d-dimensional Lebesgue measure. Such a density gives

rise to a probability measure νπ(·), by

νπ(A) =

∫
A

π(x)dx∫
Rd

π(x)dx
, A ⊆ Rd .

Typically, π is a complicated function, and d is reasonably large. The slice sampler then

provides a Markov chain algorithm which can be used to sample from νπ(·).

Specifically, suppose π can be written as π(x) =
∏k

i=0 fi(x), for some functions fi :

Rd → [0,∞). The f0-slice sampler, Pf0 , proceeds as follows. Given Xn, we sample k inde-

pendent uniform random variables Yn+1,1, Yn+1,2, . . . , Yn+1,k, with Yn+1,i ∼ U (0, fi(Xn)).

We then sample Xn+1 from the truncated probability distribution having density propor-

tional to f0(·)1L(Yn+1)(·), where

L(y) =
{
x ∈ Rd ; fi(x) ≥ yi , i = 1, 2, . . . , k

}
.

As a motivating example, consider the following. Suppose π(x) = exp{−‖x‖2/2} ×

(1 + ‖x− x0‖4)× (1 + ‖x− x1‖2) for constants x0 and x1 ∈ Rd. The form of π suggests

the following decomposition: f0(x) = exp{−‖x‖2/2}, f1(x) = 1 + ‖x− x0‖4 and f2(x) =

1 + ‖x − x1‖2, that is set up for an f0-slice sampler with k = 2. This is a particularly

appealing factorisation since each of the functions f1 and f2 are invertible, so that the

sets {L(y); y ∈ R2} are easy to identify. Implementation of the algorithm is therefore

straightforward by iterating between
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(1) sampling from the truncated normal distribution, N(0, Id) conditioned on being in the

set L(Y1, Y2) = {x; (1 + |x− x0|4) ≥ Y1, (1 + |x− x1|4) ≥ Y2} (perhaps done by rejection

sampling); and

(2) sampling new values Yi from U (0, fi(X)) independently, i = 1, 2.

Returning to the general case, the algorithm gives rise to a Markov chain {Xn}∞n=0,

having transition probabilities Pf0(x, A) ≡ P(Xn+1 ∈ A |Xn = x). This Markov chain has

νπ(·) as a stationary distribution. To see this, just note that the Markov chain (X,Y) is a

Gibbs sampler on the distribution with density f0(x) with respect to Lebesgue measure on

the region {(x,y); x ∈ L(y)}. By conditional independence of the elements of Y given X,

X is also a Markov chain, and by integrating out y, its marginal stationary distribution is

νπ(·). Figure 2.1 illustrates a typical sample path for the case d = k = 1.

Figure 2.1 The simple slice sampler. This carries out a Gibbs sampler
on the area beneath the curve of the density of π.

Furthermore, it is easily seen that the Markov chain induced by the slice sampler is

νπ-irreducible and aperiodic. Thus, from standard Markov chain theory (see e.g. Tierney,

1994) it follows that from νπ-almost every starting point, the law of Xn will converge to

νπ(·) as n →∞.

The algorithms as they have been described in this section are all constructed for

densities with respect to Lebesgue measure. There are no complications in extending the

algorithm to discrete distributions. This was shown by Fishman (1996), who goes on to

give characterisations for the eigenvalues of the Markov chain. This can, in turn, be used

to give guidelines as to the construction of slice samplers. Other work on trying to choose
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particularly effective slice samplers appears in Mira and Tierney (1997), where some results

on the best way of choosing the factorisation π(x) =
∏k

i=1 fi(x) are given.

3. Characterising the convergence properties.

It turns out that as far as analysing the Markov chains induced by these algorithms,

it is sufficient to consider the case where f0 is constant. See the appendix for a formal jus-

tification of this. All the statements we make from now on have corresponding statements

for the case where f0 is not constant.

As a result of this, we concentrate from now on on the uniform slice sampler, i.e. on

the case when f0 takes on only the values 0 and 1. In this case, we shall write the slice

sampler Markov chain transition probabilities as Pssl (for “simple slice”) when k = 1, and

as Ppsl (for “product slice”) when k ≥ 2.

For Pssl we shall write L(y) = {x ∈ Rd ; π(x) ≥ y}, and shall write Q(y) for m(L(y)),

where m is d-dimensional Lebesgue measure. The algorithm then proceeds by alternately

updating Yn+1 ∼ U [0, π(Xn)], and Xn+1 ∼ U(L(Yn+1)). Therefore by integrating out the

distribution of Yn+1 we can write down the transition probabilities of X as

P (π(Xn+1) < z | π(Xn) = y) =
1
y

y∫
0

max
(

1− Q(z)
Q(w)

, 0
)

dw . (3.1)

Note that the behaviour of the simple slice sampler is completely determined by the function

Q; indeed, two different densities which gave rise to the same function Q would have

identical simple-slice-sampler convergence properties. This is also true for constant scaling,

as the following proposition records.

Proposition 1. Let π and π̃ be two different densities, of dimension d and d̃ respectively.

Suppose there exists a > 0 such that their corresponding functions Q and Q̃ satisfy Q(y) =

Q̃(ay), for all y > 0. Then the convergence properties of the (uniform) simple slice sampler

Pssl for π and for π̃ are identical. Specifically, we have

P (π(Xn+1) < z | π(Xn) = y) = P
(
π̃(X̃n+1) < az | π̃(X̃n) = ay

)
, y, z > 0 .
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Proof. Substituting into (3.1) y by ay, and z by az, and Q by Q̃, and finally rescaling

the integrated variable w by aw, the result follows.

Remarks.

1. This proposition shows that, for theoretical purposes, an arbitrary simple slice sam-

pler is equivalent to the one-dimensional simple slice sampler on the density f(x) =

inf{w > 0;Q(w) ≤ x} for x > 0 (with f(x) = 0 for x ≤ 0), since such a density has the

appropriate value for Q(y). This is often a helpful way to think about slice samplers.

2. This proposition clearly also applies if f0 is not uniform, provided we use the more

general definition Q(y) =
∫

L(y)

f0(z)dz instead of the uniform-specific definition Q(y) =

m(L(y)). However, it does require that we are in the simple slice sampler case k = 1;

in general we will need a k-dimensional function Q to completely specify the slice

sampler convergence properties in this case.

To continue, we define a partial ordering on Rd based on values of π. That is, we say

that x1 � x2 if and only if π(x1) ≤ π(x2), and that x1 ≺ x2 if and only if π(x1) < π(x2).

Now, recall (Daley, 1968) that a Markov chain X on a partially ordered space is said to

be stochastically monotone if for all fixed z, we have that P(X1 � z|X0 = x1) ≥ P(X1 �

z|X0 = x2) whenever x1 � x2, or equivalently that P(X1 ≺ z|X0 = x1) ≥ P(X1 ≺ z|X0 =

x2) whenever x1 � x2. (Stochastically monotone chains are usually easier to analyse than

more general classes of chains.) We have

Proposition 2. With the ordering on Rd given above, Pssl is stochastically monotone.

Proof. We see (as in the previous proof) that for i = 1, 2, setting z = π(z), we have

from (3.1)

P(X1 ≺ z |X0 = xi) = P(π(X1) < z |X0 = xi)

=
1

π(xi)

π(xi)∫
0

max
(

1− Q(z)
Q(w)

, 0
)

dw ,
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i.e. is an average of the function f(w) = max
(
1− Q(z)

Q(w) , 0
)
, averaged over the interval

[0, π(xi)]. But clearly f is non-increasing. Hence, if π(x1) ≤ π(x2), then P(X1 ≺ z |X0 =

x1) ≥ P(X1 ≺ z |X0 = x2), as required.

Although the Markov chain {π(Xn), n ∈ N} is a non-trivial simplification of {Xn, n ∈

N}, the convergence properties of the two chains are identical, since by the construction

of the algorithm, the conditional distribution of Xn given that π(Xn) = y is uniformly

distributed, for all n ≥ 1.

To end this section, we mention a result which is presented in Mira and Tierney (1997),

using a theorem of Peskun (1973; see also Tierney, 1995, Section 3). We therefore omit

the proof.

Proposition 3. Suppose π is bounded and supp(π) has finite Lebesgue measure. Then

Pssl is uniformly ergodic, with principal eigenvalue being bounded above by the rate of

convergence of the independence sampler with uniform proposal distribution.

4. Geometric ergodicity of slice samplers.

In this section, we consider the geometric ergodicity of slice samplers. We concentrate

on the case Pssl, i.e. on the case where f0 is an indicator function and k = 1. For some of

our results, we shall further assume that π is a bounded function. In that case, since the

slice-sampler is scale-invariant (Proposition 1), it suffices to assume that π ≤ 1, i.e. that π

is bounded by 1.

Recall (see e.g. Nummelin, 1984; Meyn and Tweedie, 1993) that a Markov chain P (x, ·)

on a state space X , having stationary distribution ν(·), is geometrically ergodic if there is

ρ < 1 and a ν-a.e.-finite function V : X → [1,∞], such that

‖P(Xn ∈ · |X0 = x)− ν(·)‖ ≡ sup
A⊆X

|P(Xn ∈ A |X0 = x)− ν(A)| ≤ V (x)ρn , x ∈ X .

Recall further that this is equivalent to the existence of a π-a.e. finite function V : X →

[1,∞], a subset C ⊆ X , a probability measure µ(·) on X , and constants ε > 0, λ < 1,

and b < ∞, such that (a) P (x, ·) ≥ εµ(·) for all x ∈ C (i.e., the set C is small); and
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(b) PV (x) ≤ λV (x) + b1C(x) for all x ∈ X (i.e., V satisfies a drift condition). We shall

examine these two conditions separately.

Condition (a) above is fairly straightforward. Indeed, we have the following.

Proposition 4. Consider the slice sampler Pssl on a density π. For any fixed y∗ > y∗ > 0,

define the subset C ⊆ Rd by

C =
{
x ∈ Rd ; y∗ ≤ π(x) ≤ y∗

}
.

Then we have

Pssl(x, ·) ≥ y∗
y∗

µ(·) , x ∈ C ,

where

µ(A) = y−1
∗

y∗∫
0

m(A ∩ L(y))
Q(y)

dy .

That is, the set C is small with ε = y∗/y∗. In particular, if π is bounded (without loss of

generality by 1 say), then L(y∗) is small with ε = y∗.

Proof. If we start the slice sampler at some Xn ∈ C, then we clearly have

L(Yn+1 |Xn) ≥ y∗
y∗
U([0, y∗]).

But since L(Xn+1 |Yn+1) = U (L(Yn+1)), the result follows immediately.

To continue, we need to establish a drift condition (i.e., condition (b) above) for

Pssl. This is somewhat more difficult. We shall need the following well known stochastic

approximation result (the “FKG inequality”), which we state in a way relevant to our

current context. Briefly, it states that ifM1 has non-decreasing Radon-Nikodym derivative

with respect toM2, then any non-decreasing function will have larger conditional expected

value with respect toM1 than with respect toM2. For a similar application to conditional

expectations, and discussion of the result, see Roberts (1991).
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Lemma 5. Suppose that M1 and M2 are two probability measures on R, such that

there is a version of the Radon-Nikodym derivative R(x) = M2(dx)/M1(dx), which is a

non-decreasing function. Suppose also that f is a non-decreasing function from R into

R+. Let Ei, i = 1, 2 denote expectations with respect to the two measures Mi, i = 1, 2.

Then for any set A for which the following conditional expectations exist,

E1[f(X)|X ∈ A] ≤ E2[f(X)|X ∈ A] .

Using this lemma, we are now able to establish a drift condition for Pssl.

Proposition 6. Consider the slice sampler Pssl on a density π ≤ 1. Suppose its cor-

responding function Q(y) = m(L(y)) is differentiable, and that there exists a constant

α > 1 such that Q′(y)y1+ 1
α is non-increasing, at least for y ≤ Y . Then, for any β with

0 < β < min
(

α−1
α , 1

α

)
, and for any y∗ ∈ (0, Y ), we have

PsslV (x) ≤ λV (x) + b1L(y∗)(x) ,x ∈ Rd ,

where V (x) = π(x)−β , and where

λ ≡ 1
(1− β)(1 + αβ)

+
αβ(y∗/Y )β

1 + αβ

and

b =
Y −β(1 + αβ(1− β))

(1− β)(1 + αβ)
− λ .

(Since (1− β)(1 + αβ) > 1 for 0 < β < α−1
α , it follows that by choosing y∗ > 0 sufficiently

small, we can insure that λ < 1.) Furthermore, if Y = 1 then the formula for b may be

simplified to

b =
αβ(1− yβ

∗ )
(1 + αβ)
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Proof. We note that if x ∈ Rd is such that π(x) ≤ Y , then

PsslV (x) =
1

π(x)

∫ π(x)

0

1
Q(y)

∫
L(y)

π(z)−βdz dy

=
1

π(x)

∫ π(x)

0

1
Q(y)

∫ ∞

y

w−β(−Q′(w))dw dy

=
1

π(x)

∫ π(x)

0

(∫ Y

y
+
∫∞

Y

)
w−β(−Q′(w))dw(∫ Y

y
+
∫∞

Y

)
(−Q′(w))dw

dy

≤ 1
π(x)

∫ π(x)

0

∫ Y

y
w−β(−Q′(w))dw∫ Y

y
(−Q′(w))dw

dy

≤ 1
π(x)

∫ π(x)

0

∫ Y

y
w−(1+β+α−1)dw∫ Y

y
w−(1+α−1)dw

dy

=
1

1 + αβ

1
π(x)

(∫ π(x)

0

y−βdy +
∫ π(x)

0

Y −α−1
(y−β − Y −β)

y−α−1 − Y −α−1 dy

)

≤ V (x)
(1− β)(1 + αβ)

+
αβY −β

1 + αβ

Here the first equality follows simply from writing out the definition of PV (x), and the

second equality then follows from rewriting the inner integral with respect to the measure

−Q′(w)dw. The first inequality follows from the fact that w−β is a non-increasing function.

The second inequality follows from Lemma 5 with M2(dy) ∝ y−(1+α−1)dy and M1(dy) ∝

(−Q′(y))dy. The third inequality follows from the fact that (y−β−Y −β)/(y−α−1−Y −α−1
)

is a non-decreasing function of y ∈ (0, Y ), at least when βα < 1 as we’ve stipulated; this

can be checked by differentiating with respect to y and then maximising over Y . Hence

an upper bound for this function is obtained by taking the limit as y → Y .

For π(x) ≥ Y , we note that by stochastic monotonicity (Proposition 2), it follows that

PsslV (x) is non-increasing according to the ordering � on Rd. Therefore, if x is such that

π(x) ≥ Y , then we must have PsslV (x) ≤ PsslV (x′) where π(x′) = Y . Hence, from the

above bound on PsslV (x′), we have that

PsslV (x) ≤ Y −β 1 + αβ(1− β)
(1 + αβ)(1− β)

, π(x) ≥ Y .

Now let λ and b be as in the statement of the proposition. Then it is easily verified
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(by considering separately the cases π(x) < y∗, y∗ < π(x) < Y , and π(x) > Y ) that

PsslV (x) ≤ λV (x) + b1L(y∗)(x), as required.

The final statement of the proposition follows because, if Y = 1, then there is no

case π(x) > Y to consider. Hence, in this case it is easily verified that we still have

PsslV (x) ≤ λV (x) + b1L(y∗)(x) with the new, simpler formula for b.

Putting Propositions 4 and 6 together, and using the standard Markov chain theory

discussed at the beginning of this section, we obtain

Theorem 7. Consider the slice sampler Pssl on a bounded density π. Suppose its corre-

sponding function Q(y) = m(L(y)) is differentiable, and that there exists a constant α > 1

such that Q′(y)y1+ 1
α is non-increasing, at least on an open set containing 0. Then Pssl is

geometrically ergodic.

Remarks.

(1) These conditions are really rather weak. For instance, for X = R the condition on

Q′(y)y1+ 1
α can be loosely stated as saying that π has tails that are at least as light as

x−α. A couple of examples illuminate this.

(i) Suppose that X = R+ and that π is a positive continuous density. Suppose

also that π ∝ e−γx, at least in the right hand tail. Then for small y, L(y) =

(0, log(y−1)/γ+constant). Therefore Q′(y)y1+ 1
α = −y

1
α which is non-increasing

for all values of α (because of the minus sign).

(ii) Again suppose X = R+ and that π is continuous and positive. Now suppose that

π ∝ x−δ, at least in the right hand tail. For small y, L(y) = (0, y−δ−1×constant).

Q′(y)y1+ 1
α ∝ yα−1−δ−1

, so the condition holds for α ≤ δ.

(2) The existence of the derivative of Q has been assumed in this theorem. This condition

can certainly be weakened slightly by expressing the key condition on Q′(y)y1+ 1
α in

terms of a suitable Radon-Nikodym derivative for the measure R defined by R((a, b]) =

Q(a)−Q(b).

(3) The condition β < 1/α will be slightly restrictive for us in Section 5, when we consider
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quantitative bounds. Indeed, for exponentially-decreasing densities π we have that

Q′(y)y1+ 1
α is non-increasing for any α > 0, however Proposition 6 unfortunately does

not allow us to use α larger than 1/β. Now, it is possible to get around this restriction

in the proof of that proposition; for example, if αβ = M ∈ N and Y = 1, then

we can instead compute the integral
π(x)∫
0

Y −α−1
(y−β−Y −β)

y−α−1−Y −α−1 dy exactly, by recalling that

y−β−1

y−α−1−1
= 1+y−α−1

+y−2α−1
+ . . .+y−(M−1)α−1

. It is not difficult to carry out these

calculations; however, they do not appear to substantially improve the quantitative

bounds that we study in Section 5. Therefore, we do not pursue this idea further.

Finally, we consider the case where π(·) is unbounded. In this case, we have Q(y) > 0

for arbitrarily large values of y, and it is important how quickly Q(y) → 0 as y → ∞.

To examine this, we consider the function Q−1(w) ≡ inf{y > 0;Q(y) ≥ w}. By applying

Proposition 6 twice, we obtain the following.

Theorem 8. Consider the slice sampler Pssl on a density π. Suppose π is unbounded

with infinite support, but that there exists a constant α > 1 such that Q′(y)y1+ 1
α is

non-increasing for y in an open set containing 0, and furthermore that (Q−1)′(w)w1+ 1
α is

non-increasing for w in an open set containing 0. Then Pssl is geometrically ergodic.

Proof. It is no longer true that L(y) is small for any y, though by Proposition 4, sets

on which π is bounded above and away from zero are still small. Geometric excursions

into either tail (π(X) close to 0 or ∞) are now possible. The tail π(X) ≈ 0 can be dealt

with as in Proposition 6, and an identical calculation deals with the tail π(X) ≈ ∞ (using

drift function (Q(π(X)))−β). Therefore, by using Proposition 6 twice, we see that Pssl

has geometric drift away from any fixed neighbourhood of X = ∞ and also away from any

fixed neighbourhood of X = 0. The result now follows similarly to Theorem 7.
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5. Quantitative convergence bounds.

In this section we consider quantitative bounds on the convergence of Pssl to its sta-

tionary distribution νπ(·). We recall that we have verified minorisation and drift conditions

in the previous section. We further recall that we have verified that Pssl is stochasti-

cally monotone (Proposition 2). From these ingredients, there are well-known quantitative

bounds on the distance of L(Xn) to stationarity. For optimal results, we use the following

recent result of Roberts and Tweedie (1998), which builds on the analysis in Rosenthal

(1995) and Lund and Tweedie (1996). For notation, we write Eνπ∧δx(V ) for the expected

value of V under the stochastic minorant (with respect to the ordering �) of the stationary

distribution νπ(·) and the point mass δx(·). That is,

Eνπ∧δx(V ) = V (x)νπ{· � x}+ Eνπ

(
V 1{·�x}

)
,

so that using the fact that V ≥ 1 for the first inequality and Meyn and Tweedie, 1993,

Proposition 4.3 (i) for the second:

Eνπ∧δx(V ) = Eνπ∧δx(V − 1) + 1

≤ (V (x)− 1) + Eπ(V − 1) + 1

= V (x) + Eπ(V )− 1

≤ V (x)− 1 +
b

1− λ
. (5.1)

Theorem 9. Consider the slice sampler Pssl on a density π ≤ 1. Set V (x) = π(x)−β .

Then for n log(λ−1) > log (Eνπ∧δx(V )), we have

‖Pn
ssl(x, ·)− π(·)‖ ≡ sup

A⊆Rd

|Pn
ssl(x, A)− π(A)| ≤ K(n + η − ξ)ρn .

Here

K =
eε(1− ε)−ξ/η

η
,

ξ =
log (Eνπ∧δx(V ))

log(λ−1)
, η =

log
(

λs+b−ε
λ(1−ε)

)
log(λ−1)

,

s = y−β , and ρ = (1− ε)η−1
, where the values of ε, λ, and b are as in Propositions 4 and 6.
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Proof. The result follows immediately from Roberts and Tweedie (1997), in light of

Proposition 2.

Example 5.1. Let π(x) = e−x1x>0 be the density of the exponential distribution Exp(1).

We can take α as large as we like (provided that αβ ≤ 1), and can set Y = 1. Now

suppose for illustration that Eνπ∧δx(V ) ≤ 3, and that we choose β = 0.1, α = 1/β = 10,

and ε = y∗ = 0.1. Then from Proposition 6, we have λ = 0.95272 and b = 0.102836

(so that b/(1 − λ) = 2.17502). The bound of Theorem 9 then applies. We compute that

K = 0.0548648, η = 6.97809, ξ = 22.6824, s = 1.25893, and ρ = 0.985015. We thus obtain

that, for n ≥ 23,

‖Pn
ssl(x, ·)− π(·)‖ ≤ 0.054865 (0.985015)n(n− 15.7043) .

For example, with n = 530, we obtain

‖P 530
ssl (x, ·)− π(·)‖ < 0.0095 .

Hence, for this example, just 530 iterations suffices to make the total variation distance

to stationarity provably less than 1% (a convergence criterion suggested in Cowles and

Rosenthal, 1996).

Now, it follows immediately from Proposition 1 that this same bound applies when

π(x) = e−ax is the (un-normalised) density of the exponential distribution Exp(a) for any

a > 0, not just for a = 1. Specifically, writing the transition kernel of the simple slice

sampler for Exp(a) as Pa, and letting Va(x) = eaβx, we have that

PaVa(x) ≤ λVa(x) + b1Va(x)≤y−β
∗

(5.2)

with the parameters all as given in the above example. The bound from Theorem 9 follows

directly therefore.

However, it is surprising that this same bound applies to any density π such that

yQ′(y) is non-increasing, (5.3)
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as the following theorem shows. We give the result under the same conditions on initial

conditions as in the previous example. Analogous results are clearly possible for all different

initial conditions.

Theorem 10. Let π be a bounded density such that its corresponding function Q(y) =

m(L(y)) is differentiable, and satisfies (5.3). Assume as in the previous example that

Eνπ∧δx(V ) ≤ 3. Then the simple slice sampler algorithm for π satisfies

‖Pn
ssl(x, ·)− π(·)‖ ≤ 0.054865 (0.985015)n(n− 15.7043) , n ≥ 23 .

Proof. By renormalising if necessary, we can (and do) assume that supx∈X π(x) = 1.

The proof shall proceed by comparing the slice sampler for π, i.e. Pssl, to the slice sampler

for the Exp(1) distribution (as studied in the above example). To that end, let y∗ and β

be as given in the example, and define the function V (·) = π(·)−β . By Proposition 4, the

set L(y∗) is small for Pssl, with ε = y∗. The proof will be complete if we can show that

the drift equation PsslV (x) ≤ λV (x) + b1L(y∗)(x) is satisfied by Pssl, for the same values

of λ and b as in the example.

Fix x. We can write

PsslV (x) =
1

π(x)

∫ π(x)

0

∫ 1

y
w−β(−Q′(w))dw∫ 1

y
(−Q′(w))dw

dy

≤ 1
π(x)

∫ π(x)

0

∫ 1

y
w−β−1dw∫ 1

y
w−1dw

dy = PaVa(z) .

where z and a are positive scalars related via π(x) = e−az. Here the inequality follows

from Lemma 5 and (5.3). Hence from (5.2) it follows that PsslV (x) ≤ λV (x) + b1L(y∗)(x)

as required.

This theorem leads to the question of what densities π give rise to functions Q(y) such

that Q′(y)y1+ 1
α is non-increasing, for some α > 1. Note that, since Q′(y) ≤ 0, if yQ′(y) is

itself non-increasing then this condition is satisfied for every α > 1.
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Observe that if Q−1(w) is a (one-dimensional) log-concave function, then it is easily

checked that yQ′(y) is in fact non-increasing. Indeed, this follows since d
dw log Q−1(w)

equals the reciprocal of Q′(y)y evaluated at y = Q−1(w). Hence, if the former is non-

increasing as a function of w, then the latter is non-decreasing as a function of w and

therefore is non-increasing as a function of y (since Q′ ≤ 0).

However connections between the condition and more familiar Euclidean concepts are

more complicated in higher dimensions. We give a condition which relates properties of π

along one-dimensional rays from its mode, to the condition on yQ′(y).

We assume without loss of generality that π has its mode at the origin. We let

S = {x ∈ Rd; ‖x‖ = 1} be the usual L2 unit (d − 1)-sphere in Rd. For θ ∈ S and y > 0,

we let D(y; θ) = sup{t > 0;π(tθ) ≤ y}. Note that the condition we impose in Proposition

11 is sufficient to guarantee unimodality of π.

Proposition 11. Let π be a d-dimensional density such that for all θ ∈ S,

yD(y; θ)d−1 ∂

∂y
D(y; θ) is a non-increasing function of y > 0 . (5.4)

Then the corresponding Q-function satisfies that yQ′(y) is non-increasing.

Proof. We can write

Q(y) =
∫
S

D(y; θ)d

d
dθ ,

where dθ is (d− 1)-dimensional Lebesgue measure on the (curved) space S.

For d ≥ 2, we note that

yQ′(y) =
∫
S

yD(y; θ)d−1 ∂

∂y
D(y; θ)dθ .

(Here the differentiation under the integral sign is justified by e.g. Folland, 1984, Theorem

2.27.) The result follows by the condition imposed on the integrand.
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Remarks.

1. In one dimension, (5.4) is weaker than log-concavity. However this is not the case when

d ≥ 2. On the other hand, it can be shown that for all log-concave densities, and for

all choices of α > 0, there exists a compact (and therefore small) set outside of which π

satisfies that y1+ 1
α Q′(y) is a non-decreasing function. The results of Proposition 6 and

Theorem 7 therefore apply, and moreover quantitative results analogous to Theorem

10 are available.

2. Since the function Q completely specifies the slice sampler, and since Q is unaffected

by isometries, it suffices that π be isometric to a function satisfying (5.4). That is,

it suffices that there exists a mapping T : Rd → Rd, which preserves d-dimensional

Lebesgue measure, such that π ◦ T satisfies (5.4).

Putting the previous two results together (and allowing for isometries as in the pre-

vious remark), we obtain finally the following.

Theorem 12. Suppose π is a d-dimensional density which is (isometric to) a function

satisfying condition (5.4) above. Let Pssl be the corresponding simple slice sampler for π.

Then Pssl is geometrically ergodic, and in fact

‖Pn
ssl(x, ·)− π(·)‖ ≤ 0.054865 (0.985015)n(n− 15.7043) , n ≥ 23 ,

at least for all x such that Eνπ∧δx(V ) ≤ 3.

In particular, this Theorem shows that for any density π satisfying (5.4), we have

that ‖P 530
ssl (x, ·) − π(·)‖ < 0.0095, i.e. that the simple slice sampler converges after 530

iterations, at least for starting points near the mode.

It is natural to ask how condition Eνπ∧δx(V ) ≤ 3 translates to a more direct condition

on x itself. From (5.1), and using the values for λ and b from Example 5.1 (which are also

valid in the more general setting of Theorem 12), a straightforward calculation gives that

we require
π(x)

π(xmax)
≥ 0.0025
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where xmax denotes the mode of π. In fact more careful explicit calculations using the

exponential Example 5.1 together with a stochastic comparison argument can considerably

reduce this restriction still further.

6. Product slice samplers.

In this section, we shall investigate the geometric ergodicity of product slice sam-

plers. Suppose π(x) = f1(x)f2(x) . . . fk(x). Recall that the product slice sampler Ppsl

on (X, Y1, Y2, . . . , Yk) ∈ Rd × R × . . . × R proceeds, given Xn, by updating Yn+1,i ∼

U [0, fi(Xn)] for 1 ≤ i ≤ k conditionally independently, and then updating Xn+1 ∼

U (L(Y)), where L(Y) = L(Y1; f1) ∩ . . . ∩ L(Yk; fk) (here L(y; f) = {x ∈ Rd; f(x) ≥ y}).

We let Q(y) denote m(L(y)), where m is d-dimensional Lebesgue measure.

Before we give our first result about geometric ergodicity of the product slice sampler,

we need the following lemma. The hypothesis of this lemma states, roughly, that all of the

functions fi are decreasing in the same direction.

Lemma 13. Suppose there exists Y > 0 such that for all x1 and x2 such that f1(x1) ≤

f1(x2) ≤ Y , we have

fi(x1) ≤ fi(x2) , 2 ≤ i ≤ k . (6.1)

Then there exists a function c : Rd → R+ such that c(y) ≥ y1 for all y and

L(y) ∩ L(Y, f1)c = {z; c(y) ≤ f1(z) < Y } . (6.2)

Proof. Denote the set on the left hand side of (6.2) by S. Now suppose there

exists z1 ∈ S and z2 ∈ Sc with f1(z1) ≤ f1(z2) < Y . Then it follows from (6.1)

that fi(z1) ≤ fi(z2), 2 ≤ i ≤ k. Since z1 ∈ S, fi(z1) ≥ yi, 1 ≤ i ≤ k so that

fi(z2) ≥ yi, 1 ≤ i ≤ k and so z2 ∈ S for a contradiction. Therefore S can be ex-

pressed as an interval such as the right hand side of (6.2). The constraint on c follows from

L(y) ⊆ L(y1, f1). The result is therefore proved.

We now prove a result about the geometric ergodicity of product slice samplers. Like

the lemma, it requires that the functions fi all be decreasing in the same direction.
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Theorem 14. Suppose that for each i, fi is bounded. Set Q1(y) = m(L(y; f1)), and

suppose that Q1 is differentiable with Q′
1(y)y1+α−1

non-increasing, at least in some open

set containing 0. Suppose that for all ε > 0, the set {z : f1(z) ≥ ε} is compact, and for

each 1 ≤ i ≤ k, the function fi is bounded away from zero on compact intervals. Finally,

suppose that (6.1) holds for the functions {fi}. Then the product slice sampler Ppsl is

geometrically ergodic.

Proof. We shall assume without loss of generality that we take Y small enough so

that Q′
1(y)y1+α−1

is non-increasing on (0, Y ). Set V (x) = f1(x)−β . Choose x such that

f1(x) < Y . Then

PV (x) =
1∏k

i=1 fi(x)

∫ f1(x)

0

. . .

∫ fk(x)

0

1
Q(y)

∫
L(y)

f1(z)−βdz dy .

Now partition L(y) = A(y) ∪ B(y), where A(y) = L(y) ∩ L(Y, f1), and B(y) = L(y) ∩

L(Y, f1)c. Now V (z) is greater than or less than or equal to Y −β according as z is in B(y)

or A(y) respectively. Therefore we can write

PV (x) =
1∏k

i=1 fi(x)
×
∫ f1(x)

0

. . .

∫ fk(x)

0

1
Q(y)

(∫
A(y)

+
∫

B(y)

)
f1(z)−βdz dy ,

≤ 1∏k
i=1 fi(x)

×
∫ f1(x)

0

. . .

∫ fk(x)

0

1
m(B(y))

∫
B(y)

f1(z)−βdz dy ,

≤ 1∏k
i=1 fi(x)

×
∫ f1(x)

0

. . .

∫ fk(x)

0

1
m(L(y1, f1))

∫
L(y1,f1)

f1(z)−βdz dy ,

=
1

f1(x)

∫ f1(x)

0

1
m(L(y1, f1))

∫
L(y1,f1)

f1(z)−βdz dy1 . (6.3)

The first inequality in the above is a straightforward application of the FKG inequality

(Lemma 5); and the equality and the second inequality both follow from (6.2) and Lemma

5 again. The expression in the right hand side of (6.3) has therefore been reduced to the

form of the expressions manipulated in Proposition 6. It follows therefore that

lim sup
‖x‖→∞

PV (x)
V (x)

< 1
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(at least for appropriate choices of β).

Geometric ergodicity will follow if we can demonstrate that all compact sets are small

(cf. arguments in Roberts and Tweedie, 1996). To see this, note that the transition density

of the Markov chain {Xn, n ∈ Z+}, p(x, z) say, can be written

p(x, z) =
1∏k

i=1 fi(x)
×
∫ f1(x)

0

. . .

∫ fk(x)

0

1
Q(y)

1L(y)(z)dy .

Now suppose that C is a compact set and ε and M are positive constants with ε ≤ fi(w) ≤

M for 1 ≤ i ≤ k, w ∈ C. (The existence of these constants is guaranteed by hypothesis.)

Then for x, z ∈ C

p(x, z) ≥ 1∏k
i=1 fi(x)

×
∫ f1(x)

ε/2

. . .

∫ fk(x)

ε/2

1
Q(y)

1L(y)(z)dy

=
1∏k

i=1 fi(x)
×
∫ f1(x)

ε/2

. . .

∫ fk(x)

ε/2

1
Q(y)

dy

≥
( ε

2M

)k 1
m(L(ε/2, f1))

> 0 .

Therefore all compact sets are small and geometric ergodicity follows.

7. Opposite slice samplers

Finally, we consider product slice samplers whose component functions fi are not all

decreasing in the same direction. For simplicity, we restrict ourselves to dimension d = 1,

and to a number of component functions k = 2 which are decreasing in opposite directions.

Specifically, let X ⊂ R, and π(x) = f1(x)f2(x), where f1 is a non-decreasing function

and f2 is a non-increasing function. Then we shall call this special form of the product

slice sampler the opposite monotone sampler with transitions Poms. We shall assume that

f1 and f2 are invertible, so that we can write Poms as follows. Given Xn, sample Yn+1,i

from U(0, fi(Xn)) conditionally independently for i = 1, 2. Xn+1 is then sampled from

U(f−1
1 (Yn+1,1), f−1

2 (Yn+1,2)).

Although in general the product slice sampler is not stochastically monotone, Poms

regains monotonicity properties from the total-orderedness of R. Specifically we have
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Proposition 15. Poms is stochastically monotone with respect to the usual ordering on

R.

Proof. Given arbitrary x1 ≤ x2, it is enough to show that there is a joint probabil-

ity construction of two processes, one started at each of x1 and x2, which almost surely

preserves their order. However, given U1, U2 and U3, all independently U(0, 1), we can

produce the construction as follows. Start the two processes off at Xj
0 = xj , j = 1, 2.

Let Y j
i = fi(xj) Ui, i, j = 1, 2 (so that j indexes the two processes, and i continues to

index the auxiliary variables). Now set Xj
1 = f−1

1 (Y j
1 ) + (f−1

2 (Y j
2 ) − f−1

1 (Y j
1 ))U3. Now

by the respective monotonicity of f1 and f2 it follows that f−1
i (Y 1

i ) ≤ f−1
i (Y 2

i ), i = 1, 2.

Therefore X1
1 ≤ X2

1 and so the result follows.

We turn now to the problem of proving the geometric ergodicity of Poms. The inter-

esting case for Poms is the case where one (or both) the functions f1, f2 are unbounded,

though π is still bounded. The case of bounded fi is virtually identical to the case of Pssl

and we omit any formal statement of the result except to note that a very weak decay

condition on the fi’s will be needed as in Proposition 7. Instead we shall deal with the

case where both f1 and f2 are unbounded and non-zero.

Theorem 16. Suppose X is a (possibly infinite) interval, (X−,X+) ⊂ R, and that f1 and

f2 are unbounded and non-zero on X , with f1 increasing and f2 decreasing. Let β be a

positive constant such that fβ
1 and fβ

2 are convex functions. Suppose there exists 0 < γ <

(1 + 2β)−1 such that uγf1f
−1
2 (u) and uγf2f

−1
1 (u) are both non-decreasing functions for u

in some neighbourhood of 0. Then Poms is geometrically ergodic.

Proof. Let V1(x) = f1(x)β . Suppose k1 is such that f1f
−1
2 (u) is non-decreasing for

21



u ≤ f2(k1). Then for x ≥ k1,

PomsV1(x) =
1

π(x)

∫ f1(x)

0

∫ f2(x)

0

1
f−1
2 (y2)− f−1

1 (y1)

∫ f−1
2 (y2)

f−1
1 (y1)

V1(z) dz dy1 dy2

=
∫ 1

0

∫ 1

0

1
f−1
2 (f2(x)u2)− f−1

1 (f1(x)u1)

∫ f−1
2 (f2(x)u2)

f−1
1 (f1(x)u1)

f1(z)β dz du1 du2

≤ 1
2

∫ 1

0

∫ 1

0

[
f1(x)βuβ

1 + f1(f−1
2 (u2f2(x)))βdu1 du2

]
=

f1(x)β

2(1 + β)
+

1
2

∫ 1

0

f1(f−1
2 (u2f2(x)))βdu2 , (7.1)

the inequality following from the convexity condition on fβ
1 . Now,

f1(f−1
2 (v)) ≤ (f2(x))γf1(x)/vγ

for v ≤ f2(x), so that the second term in (7.1) may be bounded by

1
2

∫ 1

0

f1(x)β

uβγ
du =

f1(x)β

2(1− βγ)

since γ < (1 + 2β)−1 implies that βγ < 1. Hence, for x ≥ k1,

PomsV1(x) ≤ V1(x)
2

(
1

1 + β
+

1
1− βγ

)
≡ λV1(x)

say, where λ < 1, because γ < (1 + 2β)−1. Furthermore, by stochastic monotonicity,

PomsV1(x) ≤ λV1(k1) for x ≤ k1.

Similarly we can prove that if V2(x) = f2(x)β , there exists k2 such that PomsV2(x) ≤

λV2(x) for x ≤ k2 with PomsV2(x) ≤ λV2(k2) for x ≥ k2.

Geometric drift now follows with drift function V (x) = V1(x) + V2(x). Indeed, from

the above bounds on PomsV1(x) and PomsV2(x), it follows that for large enough M > 0,

we will have PomsV (x) ≤ λ′V (x) whenever |x| > M , for some λ′ < 1. Furthermore the set

[−M,M ] is easily seen to be small for Poms. Hence, the result follows just as in Theorem

7.

Unfortunately, in general, although Poms is stochastically monotone, it is not possible

to calculate bounds on convergence using Theorem 9 if (X−,X+) = R since it is not true
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that either (−∞, x) or (x,∞) are small for any x. Computable bounds are still possible

from the calculations in the proof of Theorem 16 (see Roberts and Tweedie, 1997) but will

not be as tight as those in Theorem 10. However if either X− or X+ are finite, then it will

be possible to use the techniques of Theorem 9. The example below is an illustration of

this.

Note that some of the estimates in the proof of Theorem 16 are fairly crude. Various

refinements are possible and the conditions imposed on f1 and f2 can be significantly

weakened, especially in more specific contexts. We do not pursue this in here, but content

ourselves with a simple example to illustrate its application.

Example 7.1. Suppose we consider the Gamma density where f1(x) = xδ and f2(x) =

e−x, both densities on (0,∞). We’ll assume that δ > 0. Now f1(f−1
2 (u)) = (log u−1)δ and

f2(f−1
1 (u)) = exp{−u1/δ}. It is easy to check that for all γ > 0, and for small enough

u, both functions uγf1(f−1
2 (u)) and uγf2(f−1

1 (u)) are non-decreasing. Moreover, we can

just take β ≥ δ−1 to ensure convexity of f1(x)β and f2(x)β . Therefore by Theorem 16 the

algorithm is geometrically ergodic.

8. Discussion and conclusions.

In this paper, we have studied theoretical properties of slice samplers. We have shown

that under some rather general hypotheses, these samplers have some very nice convergence

properties.

In particular, we have proved geometric ergodicity for all simple slice samplers on

densities with asymptotically polynomial tails. This covers virtually all distributions of

interest. We have also extended this result to product slice samplers, albeit under more

restrictive conditions.

We have also proved quantitative bounds on the convergence of these samplers, for

certain classes of densities. In particular, for all multi-dimensional densities satisfying our

condition (5.4) herein, which includes all one-dimensional log-concave densities, we have

established a uniform bound of 530 iterations required to achieve 1% accuracy in total

variation distance. Previous rigorous quantitative bounds for MCMC samplers have gen-

erally been established only for very specific models (Meyn and Tweedie, 1994; Rosenthal,
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1995) or have involved large undetermined constants (Polson, 1996). Indeed, we know of

no comparable result which gives a reasonable uniform bound on the convergence rate of

a realistic sampling algorithm, over such a broad class of distributions.

Of course, it may not always be easy to implement a slice sampler for a particular

problem. For example, the sets L(y) and the measures Q(y) may be difficult or impossible

to compute. However, the results of this paper suggest that, if it is possible to run a

slice sampler algorithm on a given density, then the sampler will probably have excellent

convergence properties.

Appendix

As defined in Section 2, the f0-slice sampler involves sampling from a density propor-

tional to f0(·)1L(Yn+1)(·). Throughout the paper, we have assumed that f0 is constant

thereby reducing all the simulations to uniform distributions on various shaped regions.

In this appendix, we demonstrate that there is no loss of generality in doing this, since

by a suitable transformation, the general f0-slice sampler can be written in terms of the

algorithms considered in the statements of our main results.

As a consequence of the following proposition therefore, all previous results in the

paper have corresponding statements for the f0-slice sampler.

Proposition 17. Let T : Rd → Rd be a differentiable injective transformation. Let J be

its Jacobian (assumed to be positive everywhere). Then Pf0(x,A) = Pf0/J(T (x), T (A)).

That is, the f0-slice sampler on f0(x)f1(x) . . . fk(x) behaves identically to the (f0◦T−1/J ◦

T−1)-slice sampler on
(
f0(T−1(x))/J(T−1(x))

)
f1(T−1(x)) . . . fk(T−1(x)) (where we take

f0(T−1(x)) = 0 if x is not in the range of T ). Furthermore, it is always possible to find

such a transformation T for which the quotient f0/J is equal to the indicator function of

a (possibly infinite) subset of Rd.

Proof. The first statement follows directly from the multi-dimensional change of variable

formula (see e.g. Marsden, 1974, Section 9.3); specifically, sampling T (x) from the density(
f0(T−1(·))/J(T−1(·))

)
1T (L(Y))(·) is equivalent to sampling x from the density f0(·)1L(Y).

For the final statement, we define T1(x) =
∫ x1

0
f0(t, x2, . . . , xd)dt. We further define

Ti(x) = xi for i ≥ 2. We then set T = (T1, T2, . . . , Td). It is easily verified that this gives
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J(x) = f0(x), so that f0(T−1(x))/J(T−1(x)) is equal to the indicator function of the range

of T .

25



Remark. We note that T (Rd) has finite Lebesgue measure if and only if
∫

f0(x)dx < ∞;

in fact, in that case the Lebesgue measure of T (Rd) is precisely equal to
∫

f0(x)dx.
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