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CONVERGENCE OF SPECTRAL METHODS FOR NONLINEAR
CONSERVATION LAWS*

EITAN TADMORY

Abstract. We discuss the convergence of Fourier methods for scalar nonlinear conservation laws that
exhibit spontaneous shock discontinuities. Numerical tests indicate that the convergence may (and in fact
in some cases we prove it must) fail, with or without post-processing of the numerical solution. Instead, we
introduce here a new kind of spectrally accurate vanishing viscosity to augment the Fourier approximation
of such nonlinear conservation laws. Using compensated compactness arguments augmented by the assump-
tion of L% -stability, we show for the inviscid Burgers’ model equation that this spectral viscosity method
prevents oscillations, and convergence to the unique entropy solution follows.
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1. Introduction. In this paper we study the convergence of spectral methods for
nonlinear conservation laws. Specifically, we consider what is accepted by now as the
universal model problem for such scalar laws, namely, the inviscid Burgers’ equation

(1.1) , f;u(x, t)+a%<@>:0

subject to given initial data u(x, t =0). Among the basic features of solutions to this
problem [6], we recall the following: that they may develop spontaneous jump discon-
tinuities (shock waves), and hence the class of weak solutions must be admitted; that
within this class, there are many possible solutions; and that in order to single out the
unique “physically relevant” solution among them, (1.1) is augmented with an addi-
tional entropy condition that requires

I w0\, 8 (Wx D)
(1.2) at( 2 >+ax< 3 )ZO'

The existence of physically relevant shock waves in the solution is reflected by the
strict (distributional) inequality in (1.2).

We want to solve the 2m-periodic problem (1.1), (1.2) by the spectral-Fourier
method. To this end, we approximate the spectral-Fourier projection of u(x, t),

N k

(1.3) Pau(x, t)= Y d(kt)e™, ﬁ(k,t)=2ij u(x, t) e ™ dx,
ki

k=—N

-

by an N-trigonometric polynomial, uy(x, ¢},

N
(1.4) unix, ty=3 (1) e™.
k=—N
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Starting with
(15) uN(x5 O):PNu(x’ O)a

the classical Fourier method [3] lets uyn(x, t) evolve at a later time according to the
approximate model

J 3 (1
(1.6) 5 un(x, t)+a_x<5 Paui(x, t)) =0.

Noting that Py commutes with differentiation, we can rewrite (1.6) in the equivalent
form:

1.7) l%u,\,(x, t)+(—f;<% wh(x, t)> —(I-Py) %(% w2 (x, t)>.

Let us multiply (1.7) by un(x, t): since un(x, £) is orthogonal to the right-hand side
of (1.7), we find after integration that

1d ("~ v a1
(1.8) 2 J:W un((x, t) dx= —J:w un(x, t) £<5 un(x, t)> dx
ICA | R
3 x=—1

Thus [ ux(x, t) dx is conserved in time

(1.9) J un(x, 1) dx :J uy(x,0) dxéj u?(x, 0) dx,

and this yields the existence of a weak limit #(x, ) = w lim n_ o Un(x, t). Does @(x, 1)
solve our problem? Unfortunately the answer is no. For otherwise, if @#(x, ) is a weak
solution of (1.1), then Pyun(x, t), and hence un(x, t) should tend weakly to @*(x, t),
and consequently, #(x, t) should be the strong limit of uy (x, t); but then (1.9) implies
that |7 @°(x, t) dx is also conserved in time, and by (1.2) this contradicts the appearance
of physically relevant shock waves in our solution.

In practical applications, spectral methods are often augmented with smoothing
procedures in order to give a helping hand toward their spectral convergence. Indeed,
convergence for smoothed versions of spectral (and in particular pseudospectral)
methods, was established in the linear case, e.g., [5], [7], [13]. However, arguments
similar to the above show that with nonlinear problems, convergence of the Fourier
method fails despite the additional smoothing of its solution. We leave the details for
the Appendix. Instead, we propose here a different way to enforce the convergence of
the spectral-Fourier method without sacrificing spectral accuracy. This is accomplished
by introducing, in § 2, a new type of spectral vanishing viscosity. In §3 we use
compensated compactness arguments augmented with the assumption of L™-stability
in order to prove the convergence of the proposed method to a weak solution of (1.1),
and in § 4 we show that this weak solution respects the entropy condition (1.2). This
proves that if the spectral viscosity solutions are uniformly bounded, then they will
converge to the unique entropy solution of Burgers’ equation. In § 5 we extend our
discussion to systems of conservation laws, and we show how the spectral vanishing
viscosity can be used to enforce the correct entropy dissipation in such a case. Finally,
numerical experiments with the proposed method of spectral regularization are presen-
ted in § 6.
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2. The spectral vanishing viscosity. It is well known [6] that the unique entropy
solution of (1.1), (1.2) is the one identified with the small viscosity limit of the
regularized problem

(2.1) %ug(x, t)+58; (% ul(x, t)) = si[Qé u (x, t)] , £l0.

0x

With the vanishing viscosity method [9], we replace the exact derivatives in (2.1) by
their discrete counterpart, the viscosity coefficient Q is chosen as (a nonlinear) positive
grid dependent quantity, and the role of & is played by some fixed power of the
vanishing grid size, ¢ ~(Ax)", in order to yield an s-order accurate approximation of
(1.1). Yet in order to respect spectral accuracy, a more delicate viscous regularization
is required. To this end we consider viscosity coefficients of the form Q=1—P,,. The
resulting viscosity terms are of spectrally small order of magnitude in the sense that
for any s> 0 we have

d a
Sa—x [(I—Pm)a u(x, l‘)]

in fact these terms are exponentially small in the analytic case [10]. Together with this
kind of spectral vanishing viscosity, the spectrally accurate Fourier approximation of
(1.1) amounts to

L% )g 8””” H(x) " m™*,
X

(2.2) %uN(x, t)+£(% P (x, t)) - gi[(I—Pm) % i (x, t)],

and we raise the question of its convergence as N tends to infinity. Here £ = £(N)|0
and m=m(N) < N are free parameters that are yet to be determined, subject to the
spectral accuracy restriction m(N)10. In the next two sections we find such admissible
parameters that provide a positive answer to the convergence question.

3. Spectral convergence to a weak solution. We consider the approximate Fourier
method (2.2), which we rewrite as

3 3 (1 3 1 3 3
31) —un+—|-ud | =—|(I-Py)~ 2}+ —[ I-P,)— ]EH-H.
(3.1) a1 N ax(zuN) ax[( N)zuN ©ox ( )ax Un

In order to prove convergence of this method, we need a couple of a priori estimates
on its solution. To this end, we multiply (3.1) by uy,

8 (1 d {1 d 1 9 3
5(5 u‘:‘,) +a—x(g ui,) = MNEI:(I—PN) 5 ui,] +£uNa—x|:(I—Pm) a—x uN:|

=J[[1+1V

and integrate over the 27 period: the integrals of the second and third terms vanish
by periodicity and orthogonality, and we are left with

1d
(3.3) EEHMN("t)HiZ(x)+E
This gives us the a priori bound on the amplitudes of the solution we had before in

(1.9), and even a little more. More precisely, temporal integration of (3.3) yields

1 5 z
EHUN(', 120t e
=0

2
=0.

L*(x)

0
(I_Pm)a_xuN('at)

t

dr

L2(x)

(I=Po) (-, 7)
ax
(3.4)

lun(-,t= O)HiZ(x)a

SR
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and hence for un(x, 1) =Y =y fc(t) e™™ we have

(3.5)  un(:, Ol iz = ‘k‘EN |, (t)]> = Const,, Const, = Ju(-, t =0)[|32x);

equality (3.4) also gives us the second a priori estimate

oUpn
—p, )N
( ) o

(3.6) e

2
P J Y Kl (1) dt = Const,.
LEg(x0) t m<lk|=N

Equipped with these estimates we may now turn to the convergence proof of the
Fourier method (2.2). We will establish spectral convergence for an admissible set of
parameters &(N)|0, m(N)1oo, using Tartar’s div-curl lemma [14]. In order to apply
the latter in our case, we have to verify that the four expressions appearing on the
right-hand sides of (3.1) and (3.2) are “‘nice” ones, namely, that these expressions are
the sum of terms, each of which lies either in a compact subset of H.(x, 1), or, by
Murat’s lemma, in a bounded set of L, (x, t). In the following lemmas we collect the
necessary estimates in this direction.

We begin with the first term on the right of (3.1). Here, the following estimate,
the proof of which is postponed to the end of this section, is essential.

LEMMA 3.1. There exists a constant Const,, (depending on Const, and Const;)
such that for m <3N we have

_9 07 1,2
H =8x[(l PN)2“N]

Next, we use the a priori estimate (3.6) to conclude that, as e tends to zero, the
second term on the right of (3.1) belongs to a compact subset of H \(x, t).
LEMMA 3.2. The following estimate holds:

g d
‘Ilss—[(I—Pm)ﬂ]
0x ax

1
g“([—PN)Euiv

Higelx,1) Lc(xt)

(3.7)

=Const,, - (eN)™ "2

a3 0
L (-p,)N
ox X

=e¢

Hige(x,t) Lio(x,1)

(3.8)

=(e- Const,)"/? =0, l0.

To treat the expressions on the right of (3.2), we must first do some preparation.
LEMmMA 3.3. There exist constants Const; and Const,, (depending on Const, and
Const,) such that

3'u
(3.9) SN =Const; - m®,
9x Ll%yc(xyf)
Ju _ '
(3.10) —N =Const,; - (e *+m).
0X 1.2 (x.0)

Proof. The inequality (3.9) follows immediately in view of || P,, 8"un/0x" ) 12 (xn =
m® - flun| L2,y and the a priori estimate (3.5). To prove (3.10) we invoke the identity

2 2 2
ad
(I-P,) 2N

0x

8uN
ax

dup
™ 9x

>
2 2 2
Lioe(x,1) Lioe{x,1) Lioe(x,1)

and use the a priori estimate (3.6) to upper bound the first norm, and (3.9) for the
second one.
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In the next two lemmas we turn to deal with the right-hand side of (3.2). For its
first member, which we express as

3 1 a 1 du 1
- HI=uy—" [(I—Pw)ilﬁv} =a—x[uN(I—PN)§u3v} —a—xN(I—PN)Euil
311

= II1,+ 111,

we have the following lemma.
LEMMA 3.4. There exists a constant Const,,; (depending on Const,, and Const,;)

such that the following estimates hold:

=Constyp; * ”uN || LO(x,0) (SN)_I/Z,
Higt(x,1)

(3.12)

0 1

=Constyp - (¢ 72+ m) - (eN) V2
Lige(x,0)

Proof. The first estimate, (3.12), follows from Lemma 3.1:
WL | b1y = lun (T = Pr)aunll Lz ooen
= fluwll 2 * 1= Pzl L2y

= COI’IStlZ . ”uN || LOO(X, ,)(EN)HI/Z;

9 1
(3.13) ‘ L=~ Py) = u?,
ax 2

together with Lemma 3.3 we also have

Jup

ox

'“u—PN)-;—uZN

L] L ey =

2
2 2
Lioe(x,1) Lioelx, 1)

and the second estimate, (3.13), follows with C,,; = Const;, - Const,;.
Finally, the second member on the right of (3.2),

azuN i) 8“]\/} SUN 8uN
IV= I1-P, =g— I-P,)—|—-e—{{-P,)—
eun( ) ax? sax[uN( ) ax ®ox ( ) ox

(3.14)
=JIV,+1V,,
is estimated as follows.
LeEMMA 3.5. There exists a constant Consts, (depending on Const, and Const;)

such that the following estimates hold:

" 9 du
(3.15) ‘IVIEE—[uN(I_Pm)—N:l = Consty, * Jlun | 120 - €7,
ax ax H;,i(x,t) ?
ou ou
(3.16) “IVZE—e—N(I—Pm)—N = Consts, (1+£"%m).
ax 0% Il Li(xn)

Proof. The first inequality, (3.16), follows from the a priori estimate (3.6):

JUN
ax

= ”uN || L1 " (Const2 N 8)1/2.
Lize(x1)

Vil broien = €llun =g - “(I_Pm)

To prove the second inequality we upper bound

un|?
V2l L n =€ ||(T = Py) ——
90X | L2.(x0
ou ou
+Ve| P, — Ve|(I-P,)— ,
0X Il L2.(x0) 0% 1l L2xn
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and use the a priori estimates (3.6) and (3.9) to obtain (3.16) with Const;, =
Const, - (Consty+1).

We are now ready to find the admissible parameters, € = £(N), m = m(N), which
meet the assumptions of the div-curl ilemma. By (3.16), the term IV, is bounded in
Lis(x,t) if €Y?m=Const.; choosing & ~Const./m? then by (3.13) the term III, is
bounded in Lj,(x, t) provided m’ N~"?= Const.; choosing m =min (Const. N'/* 1N)
we conclude by Lemma 3.1 and Lemma 3.2, that the terms I and II belong to a
compact subset of Hiow(x, t). Moreover, if uy is uniformly bounded,

(3.17) ||uN n Lw(&,)éconst.,

then by Lemmas 3.4 and 3.5 we have with this choice of parameters that the terms
III, and IV, are also in a compact subset of H,.(x, t). This completes our study of
the expressions on the right of (3.1), (3.2) and the div-curl lemma applies in our case.
We summarize by stating Theorem 3.6.

THEOREM 3.6. Consider the spectral approximation (2.2) with parameters (e, m)
that satisfy

(3.18) e=e(N)~Const. N>, m=m(N)~Const. N°, 0<p=}

Assume that its solution, uy(x, t), remains uniformly bounded, (3.17). Then un(x, t)
converges boundedly almost everywhere to a weak solution of the conservation law (1.1).
Proof. Let u'”(x, t) denote the weak limit of u’y(x, 1),

wlim u'n(x, t) = u"(x, 1).
N-co

Applying the div-curl lemma to (3.1), (3.2) we have the relation
(3.19) U@ =4uM -y -3(u?)?
which implies strong convergence. To establish this implication, we follow the argument

of Tartar [15] (see also [14]), who suggests considering the weak limit of (uy —u'n))*,

w lim (up — u(4))4: u<4)—4u(3)u<l)+6u(2)(u<1))2—4(u(1))4+(u(”)";
N =00

using (3.19) and rearranging, we find

w lim (un — 2 V) = —3[u®@ — (V)P =0,
N o0

and hence u'® = (u'")2. Consequently, un (x, 1) converges strongly to @(x, 1) = u"(x, 1)
in L], (x, t), and by (3.1), (3.7), and (3.8), @(x, t) is a weak solution of (1.1).

We do not claim that our parametrization (3.18) is optimal. In particular, the
restrictive choice of m(N) could be improved as indicated by the numerical tests
described in § 6. On the other hand, we note that the £ parametrization (3.18) such
that em®~ Const. yields, in view of inequality (3.10),

Uy,
ax

(3.20a) Ve

= Const.,
LE(x,0)

which is in complete agreement with the behavior of the viscous regularization model
(2.1), where

ou,

= Const.
Lix0n

(3.20b) Ve

ox
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Our choice of parameters in (3.18) depends heavily on the essential estimate (3.7),
and we conclude this section with its proof.
Proof of Lemma 3.1. We should upper bound the norm of

1,7 1 N _ 2
(I_PN)EuN :EJ Y W (t)yd,_ (1)
3 21) leoc(X,’) t N<p=2N |k=p—N
( ) 1 N+p _ 2
+EJ % Y (i, (1) .
{ —2N=p<—-N | k=—N

The first integral on the right does not exceed

p/2 N 2
1J > [( 5oy )fak<r>|-fap_k<r>|]

2 N<p=2N k=p—-N k=p/2
N 2
:2J. % ,: Y (o) - |ﬁp—k(t)|:] )
t N<p=2N Lk=p/2
and using Cauchy-Schwartz inequality this is less than
N 24 A 2 N 1 A 2
2| v (5 Raor S S o).
t N<p=2N \k=p/2 k=p/2

According to our assumption m <;N. Hence for p> N we have p/2> m, and by the
a priori estimates (3.5), (3.6), the last expression is bounded from above by

2-max< y iz~%|ﬁp_k(t)|2)-J g K|, (1))

! N<p=2N D k>m
4 dunf|’
=2 z —Z'maX”uN('at)||iz(x)' ’(I_Pm)_
N<p=2N P f 9x Lie(x,0)
8 Const,
=—"- Const, - .
N ! £

The second integral on the right of (3.21) can be treated similarily and Lemma 3.1
follows with Const,, =4 - (Const, - Const,)"/2. 0

4. Spectral convergence to the entropy solution. In the last sections we have seen
that the spectral approximation, uy(x, t), has a strong limit, Lj,.— s lim n_ o un(x, ) =
i(x, t), which is a weak solution of (1.1). In this section we show that this limit is in
fact the unique entropy solution of (1.1) satisfying the entropy inequality (1.2).

THEOREM 4.1. Consider the spectral approximation (2.2) with parameters (e, m)
that satisfy

(4.1) e=¢e(N)~Const. N **, m=m(N)~Const. N°, 0<pB <l

Assume that its solution, uy(x,t) remains uniformly bounded (3.17). Then un(x,t)
converges boundedly almost everywhere to the unique entropy solution of the conservation
law (1.1).

Proof. Consider the right-hand side of (3.2), which consists of the sum of two
terms, IIT+1V. We will show that this sum tends weakly to a negative measure and
hence convergence to the entropy inequality (1.2) follows.

As in (3.11) we write Il = III, + III,, where by Lemma 3.4

(4.2) NI || oo = Const. JJun || =ry - N#712 0,
and in view of our slightly strengthened parametrization (5.1) (compared with (3.18)),
(4.3) ”IIIZH L,‘UC(x,/)éCOHSt- NZB?I/ZQO, 0<p <?lt-
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Consequently, the first term on the right of (3.2), III, tends weakly to zero, and
we turn to deal with the second one, which is given in (3.14) as IV=1V,+IV,. By
Lemma 3.5 we have

(4.4) ITV\|| 1, 0 = Const. [Jun || =x,) - N7 >0,

and hence the term IV, also tends weakly to zero. Finally we are left with the term
IV, = —¢e(dun/dx)(I — P, )(dun/dx), which we write as

oun\> . 9o du 9
(45) IV,=—¢ (—N) + e—[uNPm —N] — eunPy N = [V, + IVyy+ IVis.

ax ax ax ox

It follows from (3.20a), that —e(9uy/dx)* tends weakly to a negative measure,

a 2
(4.6) w lim [IVZI = (ﬂ) ] =0.
N->co ax

Also, the pessimistic bound

3 dun
—g—| unP,, —
ax[ N '"ax]

yields by Lemma 3.3,
d d

IVyy=e— [uNPm LN]
ax

and hence weak convergence to zero. We conclude with

FN
P —_
™ ax

e funllr=cn -
Higt(x,t)

2
Lic(x,0)

= COnSt. || Un || L®(x,1) NﬁB d 0,
Hige(x,)

(4.7)

& u 8’u 8’u
(4.8)  IVoy=—eunP, aTzN: —eapmaTzN— e(uy — a)Pm—é;z’—Vs Vs + IVsss.
Here we have

_ azuN
IVy, = —suP,,,—a—z——> 0 (weakly),
x

and by Lemma 3.3,

P 3 Unf
™ ax?

ERTN
ax?

=S¢ lun — 8l L2000 -
Lig{x.1)

=Const. N7*#- N?* - luy — i 12.on 0.

“IV232= —e(un—u)P,

2
Lioe(x,1)

(4.10)

In summary, we have by (4.2)-(4.10) that the right-hand side tends in the sense
of distributions to a negative measure, while the (weak) limit on the left gives us

(1 ,\ (1 _,
—| =@ )+—|5 @) =0,
9t\2 ax\3

5. Systems of conservation laws. It is instructive to make a comparison between
the spectral methods before and after spectral vanishing viscosity was added. Before
viscosity was added we had, in (1.6}, a coupled system of ODE’s in the Fourier space,
which amounts to

as asserted.

d 1
u()+-ik Y d4,(0)d,(1)=0, |k|= N.

(5.1) r ik
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In this case the total quadratic entropy was conserved, (1.9), which is responsible to
the divergence of the method. After viscosity was added in (2.2), the resulting system
in the Fourier space reads

d 1
(5.2a) d—ﬁk(t)+—ik Y a,(n)a,(t)=0, |k|=m,
t 2 ptg=k
d . 1, u N 2
(5.2b) ;uk(t)+§lk Y d,(0)a, (1) = —ekh (1), |k| > m.
t ptg=k

An increasing portion of the spectrum is treated here as in the diverging case (5.1).
Yet, the added viscosity for the high Fourier modes in (5.2b) is responsible for the
correct rate of entropy dissipation (3.6), which in turn implies convergence in the
scalar case. In this section we show how to enforce similar entropy dissipation by
spectral vanishing viscosity in systems of conservation laws. To this end we proceed
as follows.

Consider the conservative system

(5.3) = u(, 0+ [fulx, 0)]1=0,

which is assumed to be equipped with an entropy function U(u), i.e., a convex function
whose Hessian U, symmetrizes the Jacobian matrix f,, e.g., [2], [11]. Using the entropy
variables

(5.4a) va(u)z—U(u),
u
the conservative system (5.3) takes the equivalent symmetric form (see [4], [8], [12])
(5.4b) o u(x, t)+i [g(v(x, ))]=0,  g(v)=f(u(v)).
ot ax

The Fourier approximation of (5.3) will be based on this formulation: together with
additional vanishing spectral viscosity we arrive at

(5.5a) %uN(x, r>+£[PNg<vN(x, )] = afx[(l—m aﬁx on(, r)]

where vy (x, t) is the projected vector of entropy variables
(5.5b) un(x, 1) = Pylo(un(x, 1))].

Multiply (5.5a) by vn(x, t) and integrate over the 2m-period: taking into account
orthogonality we have

d

o j: Uun(x, 1)) dx+J

kg

on (3 1)~ [g(on(x, 1))] dx
0x

-

—e F on (x, 1) %[(I—Pm) % on (-, t)] dx.

The second integrand on the left is a perfect derivative of the associated entropy flux,
and hence its integral vanishes. Integration by parts on the right yields

d |7 9
(5:6) EL Uun(x, 0) dx+ e [(1=Po) -~ o (-, D130 =0,
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which shows that entropy dissipates at the correct rate. In particular, arguing along
the lines of Lemma 3.3 and and using the strict convexity of U(u), we conclude that

(5.7) Ve

Uy

=Const., em”~ Const.
ox

2
Lige(x,1)

This is analogous to the behavior of the viscous regularization for (5.3) (compare (3.20)
in the scalar case).

6. Numerical experiments. The Fourier method with spectral vanishing viscosity
was applied to the periodic Burgers’ equation (1.1) with u(x, t =0)=sin x as initial
data. The resulting ODE system for the Fourier coefficients (see (5.2))

d 1 a
(6.1a) Eﬁk(t)+5 ik Z-k a,(0)d,(1) = —ek>Q(k) i (1), |k| = N,
A _ 05 |k|§ma
(6.15) Q(k)—{l, |k|>m,

was integrated up to time ¢ = 1.5, using the fourth-order Runge-Kutta method.

The number of significant modes was chosen as a fraction of the total number,
m = @N. The numerical experiments indicate, as expected, that the quality of the results
is more sensitive to the dependence of ¢ on m; further investigation is necessary in
order to settle.this point. In the following examples we have, em ~0.25, based on
considerations of minimizing the total-variation of the numerical solution. With this
choice of parameters, Figure 6.1 shows that the numerical solution converges strongly
(but not uniformly) to the entropy solution of (1.1). This is in sharp contrast to the
oscillatory behavior of the viscosity-free Fourier method in Fig. 6.2, where é(k) =0,
Other parameterizations of &, quoted in Figs. 6.3 and 6.4, demonstrate the sensitivity
of the computed solution mentioned earlier.

To improve the quality of these results, the proposed method (6.1a) was imple-
mented with a spectral vanishing viscosity @(k) that is smoothly varying between zero
and one, say, for m/3=|k| <m. Figures 6.5 and 6.6 show that this kind of viscosity
prevents the propagation of the Gibbs phenomenon into the whole computational
domain that was noticed earlier. This is analogous to the spectral recovery in shadowed
regions between propagating linear discontinuities described in [7].

Appendix A. Failure of convergence with post-processing. In practical applica-
tions the classical Fourier method is often coupled with certain smoothing procedures
the purpose of which is to gain spectral convergence that otherwise might be lost. In
a typical case, the solution is post-processed via a convolution with a smoothing kernel

Qn=0n(x)
N ik

(A.1) Onv*un(x, )= X G (t)e™, 0=G=g§,=1, 9k = qi,N-
k=—N

In order to maintain spectral accuracy, the convolution with such smoothing kernel
should be highly accurate with that of Dirac’s §-distribution. We shall make a minimal
assumption in this direction, requiring that for all functions ¢(x) in the Wiener class,
Yo o |¢(k) <o, we have

(A2) “(3_QN) * ‘P(x)”t”(x)gk ZN |1 _ék,N| ’ |‘»3(k)| —;:: 0.

"1n fact, a slight amount of dissipation was introduced in this case due to the time integrator.
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Such smoothing procedure enables, for example, spectral recovery of solutions to linear
hyperbolic problems in the presence of propagating initial discontinuities (e.g.,[1],[7]).

We will show that the smoothed version of the Fourier approximation to the
nonlinear inviscid Burgers’ equation (1.1),

(A.3) %u,\,(x, t)+aix[% Py (Qn * un(x, t))z] =0,

where the solution (rather than the flux) is convolved with kernels satisfying (A.2),
does not converge to the entropy solution of (1.1).
To this end we convolve (A.3) with Qy to find that wx (x, t) = QN * ux(x, 1) satisfies

3 a1l
(A.4) 5 wa(x, 1)+ Qn * a_xl:i Puwi(x, t):l =0.

Multiplying (A.4) by un(x, t) and integrating over the 2sr-period, we obtain

9 a1
J uNﬂdx=—J‘ Qn * uN—[— PNwi,:l dx,
x x ax 2

or, in view of orthogonality,
1d all
Thus with QX * @ =Y, _ 4> #(k) we have

(A5) QN un (-, Ol 72 = z Gl (1) = Const.

This implies that our smoothed approximation wy(x, t) = Qu * un(x, t) converges to
a weak limit w lim . wn (X, 1) = w(x, t}). Now, suppose that w(x, ¢) is a weak solution
of (1.1); this will lead us to the conservation of jx w2(x, t) dx, which shows that Ww(x, t)
is not the entropy solution (1.1). Indeed, if w(x, t) satisfies (1.1), then by (A4),
O~ * Pawi(x, 1) = Qn * wi(x, 1) tends weakly to w(x, t)

(A.6) vy\llim On * Pawi(x, 1) =w(x, 1).

It follows from (A.5) that |wx(-, t)| 1k is bounded, and together with (A.2) this
implies that for all Cg’-test functions ¢(x) we have

(A7) J ‘P(X)((S —Qu)* W%\/('xa 1) dx = Const. ”(5 —Qn)* QD(X)” L¥(x) —N: 0.
Adding this to (A.6), we conclude that Pywx(x, t), and hence wi(x, t) tends weakly

to w(x, t). Consequently w(x, t) is the L*-strong limit of our smoothed approximation
(A.8) s}\llim On *un(x, t)=w(x, t).
Finally, in view of (A.5) we can apply (A.2) to find that
N
(A9) ||Qn *un(x, t)— Q%Z * Uy (X, t)HZLZ(x) = X ’1 —é}/i,lz “Gin ’ﬁk(t)lzN_—) 0.
k=—N >

From (A.8) and (A.9) it follows that w(x, t) is the strong limit of QX>* un(x, t), and
the strong limit of (A.5) tells us that | _ w’(x, ) dx is conserved in time, which completes
our asserted contradiction. We summarize by stating the following theorem.
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THeoREM Al. The Fourier method (A.3) which employs any smoothing kernel
satisfying (A.2) does not converge 1o the entropy solution of (1.1), (1.2).
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