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Abstract
In this paper we illustrate the advantage of addressing size-intensive properties of tar-
get regionswithout first converging the ground-state energy of that region.Weuse local
occupied and virtual orbitals to separate the orbital space ofNH3 clusters into an orbital
space for the target region (a central NH3 molecule) and for the remaining cluster. Con-
vergence characteristics of theHartree–Fock (HF) energy and, indirectly, the electronic
density of the target region are shown. The calculations illustrate that although the
energy of the target region will not converge with cluster size, the electronic density
will. The convergence of the electronic density of the target region is subsequently
exploited to obtain HF dipole moments and CC2-in-HF vertical excitation energies.
For these properties convergence is seen upon the inclusion of approximately three
shells beyond the target region. This shows that local size-intensive properties of a
target region can be investigated without converging the energy.We further show that a
minimal basis description of the outer shells are sufficient to capture the correct inter-
action with the target region. The possibility of computing size-intensive properties
for a target region using a converged electronic density, without requiring convergence
in the energy itself, is currently an underexploited feature.
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1 Introduction

In 1996 Kohn [1] introduced the term “nearsightedness” of electrons in many-atom
systems. This feature describes that local electronic properties, such as the electronic
density, depend significantly on the effective external potential only at nearby points.
The convergence of the electronic density for a local region has also been discussed
by others [2–5]. The feature has been exploited to develop numerous linear-scaling
electronic structure models and embedding schemes. However, unlike the electronic
density, the ground-state electronic energy is not nearsighted. Hence, for systems such
as molecular crystals, the energy of a target region requires the infinite surroundings
to be taken into account, thus motivating the use of periodic boundary conditions. A
target region may be a unit cell, single molecule or group of molecules in the crystal.
Since the constituents of molecular crystals are molecules, wave function models
originally developed for single molecules have therefore been extended to periodic
codes. Notable examples are the plane wave periodic MP2 method [6] implemented
in VASP, the periodic divide-expand-consolidate MP2 method developed by Pedersen
et al. [7], the periodic MP2 and CCSD developed by McClain et al. [8], and the local
MP2 method [9] available in the Cryscor program.

To achieve linear-scaling wavefunctions for molecular systems, local molecular
orbital (MO) spaces are often used. Explicit localization of occupied MOs has been
a popular topic for many decades, with seminal contributions such as the widely
used Edmiston-Ruedenberg [10], Foster-Boys [11], and Pipek-Mezey [12] localiza-
tion functions. In addition to explicit localization, several approaches for generating
local virtual spaces exist such as projected atomic orbitals (PAOs) [13], pair-natural
orbitals [14–16] and correlated natural transition orbitals [17]. However, for the infi-
nitemolecular crystals orbital space locality faces two challenges (i) orthogonalization
tails and (ii) near-linear dependencies.

Orthogonalization tails compromise compactness of the description, since for a
given region in space, local MOs outside the region will be required to have com-
ponents inside the region due to the orthogonality requirement. Using high-quality
atomic orbital (AO) basis sets, there is a large number of MOs centered far outside
the given region which must have components inside the region. Parts of the orbital
space in a given region is therefore spanned byMOs centered outside the region. These
components may cause the correlation energy to converge slowly in local correlation
approaches relative to when non-orthogonal orbitals such as the PAOs are used. This is
seen in the results presented by Werner and collaborators [18] and is explicitly shown
by Hansen et al. [19]. The results of Hansen et al. indicate that some issues concerning
orthogonalization tails may be circumvented by using PAOs rather than local virtual
MOs (or Wannier orbitals).

With respect to near-linear dependencies, AOs are per construction designed to
describe atoms in free space, and for large or dense systems the concerted effect of
AOs on different atomic centers greatly enhances near-linear dependencies.

Near-linear dependencies will not appreciably affect the locality of the occupied
space, but the virtual space will be severely affected [20]. Dealing with near-linear
dependencies in a periodic framework may compromise the basis set quality, since
removingAOs from the unit cell will removeAOs from all unit cells.While near-linear
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dependencies can be avoided by using plane wave basis sets, there are other problems
with this approach, such as the need for a high energy cut-off to achieve accurate
results.

When targeting local size-intensive properties of molecular crystals, the nearsight-
edness of electrons may allow the use of cluster models. Cluster models enables
different basis sets to be used in different regions of the cluster. Hence one may use
smaller basis sets outside a target region. The problems of orthogonalization tails
and near-linear dependencies may therefore be alleviated by using cluster models.
Further, cluster models allows for any molecular wave function based scheme to be
used for its description. Due to the nearsightedness of the electronic density, local
size-intensive properties in a target region may be converged with cluster size. The
traditional approach would be to first compute the converged energy, however, the
energy of the target region will not be converged for reasonably sized clusters. There-
fore, if one does not aim to converge the energywith cluster size, any existing fragment
or orbital based correlated wave function models [21–42] can be used to compute size-
intensive properties of the target region.

In this paper, we illustrate that one may obtain converged size-intensive properties
of a target region without converging the energy of the target region. Cluster models of
various sizes gives us the opportunity to show how electronic properties converge with
increasing cluster size. Furthermore, the clustermodels allowsus to explore howchoice
of basis set outside the target region affects the computed properties. One possibility
being to choose a high-quality basis set in and around the region of interest, while
low-quality basis sets (such as minimal basis) may be used further out in the cluster
model. A minimal basis does not exhibit flexibility to describe accurate molecular
properties, but it may adequately describe long-range effects between the electronic
density of the targeted region and the electronic density far away. The aim of this
paper is therefore not to obtain accurately computed electronic properties, but rather
to illustrate fundamental concepts related to the convergent nature of the electronic
density and how it may be exploited.

The paper is organized as follows. In Sect. 2 we provide a theoretical background on
how to partition the energy in terms of a target region and the remainder of the cluster,
as well as an argument from an optimization vantage point for why the electronic
density should converge with cluster size. In Sect. 3 we present computational details
and describe the cluster models of an NH3 molecular crystal, and in Sect. 4 we present
numerical illustrations using these clustermodels.A summary and concluding remarks
is given in Sect. 5.

2 Theoretical background

In this sectionwe present equations and background for the partitioning of theHartree–
Fock electronic energy in terms of a partitioning of a fully optimized Hartree–Fock
density matrix for the cluster. The density and energy partitioning used was introduced
by Høyvik et al. [43] for multilevel Hartree–Fock.We note that the partitioning is used
to illustrate the convergence behaviour of the energy. The partitioning used here is not
a requirement for computing size-intensive properties of a target-region, as one may
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use any existing fragmentation or orbital space partitioning approach for this. The
only requirement is that the approach allows for the effective interaction of the target
region with the rest of the cluster. After presenting the partioning of the energy, we
discuss why it is reasonable to assume that the electronic density of a target region
will converge with cluster size by analyzing the optimization procedure from a local
perspective rather than a canonical (diagonalization based) perspective.

2.1 Energy partitioning

We consider a cluster model of a molecular crystal where the total electronic density
for the cluster is given by D = Dt +Dr . Dt is the density of the target region, and Dr

is the remainder of the density. The total densityD is the Hartree–Fock density matrix
for the full cluster. All three densities, D, Dt and Dr satisfy the trace, symmetry and
idempotence criteria of density matrices representing Slater determinants, i.e. Dt and
Dr can be viewed as constructed from separate subsets of orthogonal MOs describing
the full density matrix D. The electronic energy (excluding nuclear repulsion) for the
target region described by Dt , interacting with the rest of the cluster described by Dr

is given by,

Et = Tr[hDt ] + 1

4
Tr[DtG(Dt )] + 1

2
Tr[DtG(Dr )]

≡ E1-el
t + E2-el

t + E int
t ,

(1)

where we have defined E1-el
t , E2-el

t and E int
t as the one-electron, two-electron and

interaction contributions, respectively. Two-electron and interaction terms are defined
through the G matrix which in the MO basis is defined through elements

G(M)i j =
∑

kl

(2gi jkl − gilk j )Mkl , (2)

where we have introduced two-electron integrals in the Mulliken notation

gi jkl =
∫ ∫

φ∗
i (r1)φ j (r1)

1

r12
φ∗
k (r2)φl(r2)dr1dr2. (3)

The electronic part of the Hartree–Fock energy (nuclear repulsion excluded) of the
full cluster is given by

E = Et + Tr[hDr ] + 1

4
Tr[DrG(Dr )], (4)

i.e., the energy for the target region, Et , plus the contributions which only depend on
Dr . Note that all two-electron interactions between the target region and the rest of
the cluster is included in Et .

As is well-known, the energy of a target region in an infinite (or similarly, large)
system, is not a local quantity even if the target density matrixDt is localized in space.
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The reason for this is long-range interactions between the local target density and
nuclei and between the local target density and the electron density of the rest of the
system. Hence, the energy of the target region Et will not converge appreciably for
finite cluster sizes. This is well recognized and part of the motivation behind periodic
treatments of infinite systems. However, an important point here is that the lack of
convergence of the energy with system size does not necessarily reflect a lack of
convergence for the electronic density in the target region. In the next section we
present an optimization viewpoint of why the electronic density of a target region in
a finite cluster of a molecular crystal converges with cluster size.

2.2 Density convergence

For the optimization of a Hartree–Fock state, diagonalization (Roothaan–Hall) based
schemes are widely used. However, the diagonalization based schemes impose extra
restrictions on theMOs to generate a diagonal Fockmatrix (through canonical orbitals)
whereas the optimization condition only requires a block-diagonal Fock matrix. To
investigate the effect on the target electronic density by the increasing cluster size,
it is instructive to consider an optimization based scheme which does not enforce a
canonical basis. Hence, we look at a scheme based on an exponential parametrization
of MO coefficients [44, 45], where in each iteration new orbitals are generated by a
unitary transformation,

C̃ = C exp(κ). (5)

The anti-symmetric parameter matrix κ contains only non-redundant parameters, i.e.,
only the occupied-virtual blocks of κ are non-zero for a closed-shell state. A quadratic
model of the total energy for the cluster can then be constructed, giving a linear-
equation Newton based optimization scheme where in each Hartree–Fock iteration,
we solve the linear equation

Hκ = −G. (6)

Therefore, the solution in each iteration formally is given by,

κ = −H−1G, (7)

although the equations are usually solved in an reduced space (iterative) manner. H
and G are the electronic Hessian and gradient, respectively. In the (non-canonical)
orbital basis the electronic Hessian is [46]

Hai,bj = 4(δi j Fab − δabFi j + 4gaibj − gabi j − gajib), (8)

where Fpq are elements of the MO Fock matrix, and the electronic gradient is [46]

Gai = −4Fai . (9)
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Exploiting that the electronic Hessian is diagonally dominant, wemaywrite the orbital
rotation parameters approximately as

κai ≈ −H−1
ai,aiGai = 4H−1

ai,ai Fai . (10)

The diagonal Hessian elements are Hai,ai = 4(Faa − Fii +4gaiai −gaaii −gaiia) and
their magnitude is therefore dominated by the difference Faa − Fii . Hence, H

−1
ai,ai will

not be a divergent term for systems with non-vanishing HOMO–LUMO gaps, since
Faa − Fii will for such systems always be of a reasonable size. Close to convergence
of the Hartree–Fock state, the occupied-virtual Fock matrix element Fai will be small
since these are gradient terms, but far from convergence (in the initial Hartree–Fock
iterations), Fai will generally have a significant size.

For illustrative purposes, we now assume that in each Hartree–Fock iteration we
have an orbital basis of local occupied and virtualMOs. Formolecular systems (includ-
ing cluster models of molecular crystals) with non-vanishing HOMO–LUMOgaps we
know that such a basis exists, and in principle we can for each iteration use redundant
orbital rotations to generate such a basis. In each iteration the resulting new occupied
orbital i can be written as

C̃μi = Cμi +
∑

a

Cμaκai + O(κ2) (11)

Hence, for each iteration in the energy optimization, an orbital i in the target region
will get an amount of virtualMO amixed in, weighted (to first order) by themagnitude
of κai . Hence, if an occupiedMO i (and hence, the electronic density) is to be changed
by a virtual orbital a centered far away, κai must be of a significant size. If we look
at Eq. (10), we see that the size of κai will be determined by the size of Fai . For local
orbitals i and a centered far away from each other Fai exhibits a rapid decay [47]
and therefore the MOs of the target region (and thus the density of the target region)
will at some point be unchanged when increasing the cluster size. The use of local
MOs in this analysis is convenient from a conceptual point of view since local MOs
also enable a partitioning into a target density which is local. However, the density
is invariant with respect to redundant rotations, and the convergence properties of a
local part of the density with cluster size is indifferent to choice of basis.

3 Methodology

In this section we present computational details, description of the NH3 molecular
clusters used and how the active excitation space for CC2-in-HF calculations are
chosen.

3.1 Computational details

LSDalton [48] was used for the Hartree–Fock calculations and subsequent localization
of the occupied orbitals. For the Hartree–Fock calculation, the screening threshold for
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the integral evaluation was set to 10−10 and convergence threshold was set to 10−8.
The localization of the occupied orbitals is done by using the second power of the
second centralmoment localization function [49]. CC2-in-HF excitation energieswere
computed in eT [50], by using the local orbitals obtained from LSDalton. For CC2-in-
HF the CC2 wave function is constructed in a subset of the full orbital space whereas
interaction with the inactive space (frozen Hartree–Fock orbitals) enters through the
Fock matrix. For details see Ref. [50]. The frozen core approximation was used for all
CC2-in-HF calculations. The decomposition of the electron repulsion integrals [51]
threshold was set to 10−5. The energy and residual thresholds for the coupled cluster
ground state were set to 10−7, and the residual threshold for the coupled cluster excited
states were set to 10−3.

3.2 Description of NH3 molecular clusters

In this paper we look at cluster models of crystalline NH3 (crystal structure obtained
from Ref. [52]). Clusters comprised of 13, 40, 143, 324, 579 and 953 molecules are
used and the models represent a target region (central NH3 molecule) with a certain
number of shells. The clusters are depicted in Fig. 1, as well as how the cluster is

Fig. 1 The ammonia clusters used, with the regions where different basis set can be used colored. The target
region (green) is the central NH3 molecule, shell 1 (blue) is the first shell of 12 molecules, shell 2 (red) is
the second shell of 27 molecules, while shell 3+ (grey) is any shells beyond the second shell. In the target
region aug-cc-pVTZ is always used, the basis sets of shell 1 and shell 2 are variable, and STO-3G is always
used for shell 3+ (Color figure online)
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divided into regions where different basis sets may be used. In the target region we
always use the aug-cc-pVTZ basis set [53], while for shell 1 and shell 2 we vary the
choice of basis set. For shells beyond shell 2, hereby termed shell 3+, STO-3G [54] is
always used. When augmented basis sets are used, augmentation is only included for
nitrogen atoms, and the non-augmented version of the basis set is used on hydrogen
atoms.

3.3 Orbital space partitioning

We use local occupied MOs generated by a trust-region minimization [55] of the
second power of the second central moment [49] localization function. The occupied
orbital space is partitioned based on the centers, defined by the expectation value of
the orbital position vector (

〈
φi | x̂ | φi

〉
,
〈
φi | ŷ | φi

〉
,
〈
φi | ẑ | φi

〉
), of the local MOs.

An occupied MO φi belongs to the region (target, shell 1, etc.) to which it is situated
closest to, as defined by the l2 norm of the difference between the orbital position
vector and the atomic positions. For the virtual space, we use the projected atomic
orbitals (PAOs) generated for the virtual active region of the cluster (see Sect. 3.4).

3.4 The excitation space for CC2-in-HF calculations

The vertical S0 → S1 excitation energies presented here are computed using a fixed
occupied CC2 active space, where only occupied orbitals centered in the target region
is included. To be able to investigate the convergence of the excitation energies with
an increasing virtual space, in addition to cluster size, we define two different CC2
active virtual regions; target + shell 1 and target + shell 1-2. The inclusion of a larger
occupied space would allow for relaxation effects in the occupied space yielding lower
excitation energies. However, the purpose of this study is to explore the effect of cluster
size and basis set for the excitation energies. We note that the target region approach
is only useful for size-intensive (local) properties.

4 Numerical illustrations using NH3 clusters

In this section we use the NH3 clusters described in Sect. 3.2 to illustrate effects of
cluster size on the energy and the electronic density in the target region (the central
NH3 molecule). The convergence of the electronic density will indirectly be illustrated
through presenting results for the Hartree–Fock electric dipole moment and CC2
S0 → S1 vertical excitation energies for the target region. Further, we will explore
how these properties depends on the quality of the basis set outside the target region
(shell 1 and shell 2).
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4.1 Effect of cluster size

4.1.1 Target region energy versus target region electronic density

In this section we present Hartree–Fock calculations on clusters comprised of 13, 40,
143, 324, 579 and 953 NH3 molecules where an orbital space partitioning (see Sect.
3.3) of the Hartree–Fock orbital space is used to divide the system into a density for
the target region and the remainder density. The basis sets used are aug-cc-pVTZ in
the target region (central NH3 molecule), aug-cc-pVDZ for shell 1, STO-3G for shell
2 and STO-3G for shell 3+, see Sect. 3.2 for a description of the clusters.

We present the differences in energy contributions (see Sect. 2.1) to the target region
energy for increasing cluster size. I.e., we present results for

�E(m, n) = Em − En (12)

where Em is an energy (E1-el
t , E2-el

t , E int
t or Et from Eq. (1)) for a cluster containing

m molecules and En is an energy for a cluster containing n molecules. The results
are presented in Table 1. We first consider results for the one-electron contribution,
E1-el
t , to the target region. We see that the one-electron energy contribution to the

target region energy is increasing in magnitude (but is negative), due to the long-range
interaction between the electrons in the target region and all nuclei of the cluster.
For the two-electron interaction between the electrons in the target region and the
electrons outside the target region, E int

t , we see the same long-range effects, except
that here the energy contributions are increasing in magnitude and are of a positive
sign. Hence, these energy contributions do not converge with cluster size. However,
we see that �E1-el

t and �E int
t have similar values, except with opposite signs. Hence,

they nearly cancel each other out. This is seen from the total energy of the target
region Et , where we see that �Et is small, but not converged. On the other hand, we
see from Table 1 that E2-el

t is converging with cluster size. We see that the sign of
�E(m, n) for �E2-el

t switches e.g., between �E(40, 13) and �E(143, 40) and that
they are of similar order of magnitude. The same is seen for �E2-el

t of �E(324, 142)
and �E(579, 324). Furthermore, the absolute value �E(579, 324) for �E2-el

t is seen
to be larger than that of �E(324, 142) (0.00037 a.u. versus 0.00019 a.u.). However,
considering the increase in number of molecules, the energy differences in terms of
change per molecule is of the same size. Looking at�E2-el

t for the cluster sizes of 953
and 579 molecules, we see that the difference is down to 0.000008 a.u. This implies
that, beyond a given cluster size, Dt is not significantly affected by extending the
cluster further. This is a numerical illustration of the theoretical discussion in Sect.
2.2.

4.1.2 Effect of cluster size on dipole moment

In this section we investigate how the cluster size affects the Hartree–Fock electric
dipole moment of the target region (central NH3 molecule). The dipole moment of
the target region is computed using the trace of Dt and the dipole operator. The aug-
cc-pVTZ basis set is used in the target region, aug-cc-pVDZ for shell 1, STO-3G for
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Table 1 Energy differences Eq. (12) of the energy contributions, E1-el
t , E2-el

t and E int
t from Eq. (1) as well

as their sum, Et , for ammonia clusters of different sizes

Cluster sizes �E1-el
t �E2-el

t �E int
t �Et

�E(40, 13) − 243.29175 − 0.00252 243.73391 0.43964

�E(143, 40) − 632.16812 0.00242 632.30466 0.13896

�E(324, 142) − 798.07264 − 0.00019 798.07633 0.00349

�E(579, 324) − 896.23328 0.00037 896.20599 − 0.02692

�E(953, 579) − 1102.70560 0.000008 1102.70167 − 0.00392

The clusters are described using aug-cc-pVTZ in the target region (central NH3 molecule), aug-cc-pVDZ
for shell 1, STO-3G for shell 2 and STO-3G for shell 3+, see Sect. 3.2 for a description of the clusters. All
values are in a.u

Table 2 Hartree–Fock electric
dipole moments (given in
Debye) for the target region
(central NH3 molecule),
computed for cluster sizes from
13 to 953 ammonia molecules

Cluster size Dipole moment [D]

13 2.25

40 2.06

143 2.14

324 2.12

579 2.14

953 2.14

The clusters are described using aug-cc-pVTZ in the target region
(central NH3 molecule), aug-cc-pVDZ for shell 1, STO-3G for shell 2
and STO-3G for shell 3+, see Sect. 3.2 for a description of the clusters

shell 2 and STO-3G for shell 3+. The computed dipole moments are given in Table
2. Increasing the cluster size from 13 molecules to 40 molecules reduces the dipole
moment by 0.19 D, and increasing the cluster from 40 to 143 molecules increases it
by 0.08 D. Increasing the cluster size from 143 to 324 molecules reduces the dipole
moment by 0.02 D, and further increases of cluster size gives the same value for the
dipole moment as the cluster with 143 molecules. Considering that the mean absolute
error in Hartree–Fock dipole moments for molecules is found to be 0.16 D [56], these
variations are negligible. Hence, the electric dipole moment of the target region is
converged at 143 molecules (target region + 3 shells). This convergence is expected
as the results in Table 1 indicate a converged target electronic density matrix.

4.1.3 Effect of cluster size on CC2-in-HF vertical excitation energies

In Table 3 we present CC2-in-HF excitation energies for NH3 clusters containing 143,
324 and 579 molecules, with the occupied active space restricted to the target region
(central NH3 molecule) and the virtual active restricted to the target region + shell 1
(see Sect. 3.4). The basis set for the target region is aug-cc-pVTZ, whereas the basis set
for shell 2 and beyond is STO-3G. For shell 1 we present results using both STO-3G
and aug-cc-pVDZ, to see whether the choice of basis in the active virtual region yield
different convergence characteristics with cluster size.
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Table 3 CC2-in-HF S0 → S1
excitation energies (eV)
obtained for clusters of 143, 324
and 579 molecules

Basis (shell 1) 143 324 579

STO-3G 9.26 9.24 9.26

aDZ 9.03 9.01 9.03

All calculations are performed with the target region as the active
occupied region and the virtual active region set as the target region +
shell 1. The basis sets used for the target region is aug-cc-pVTZ and
the basis set for shell 2 and beyond is STO-3G

We first consider results where STO-3G was used for shell 1. From Table 3 we
see that increasing the cluster size from 143 to 324 molecules the excitation energy is
decreased from 9.26 to 9.24 eV. Increasing the cluster size further to 579 molecules
changes it back up to 9.26 eV. Using aug-cc-pVDZ for shell 1 we see that the excitation
energy is lowered as expected, since more flexibility is added in the active virtual
region. However, we see the same convergence behavior as for the calculations where
only STO-3G was employed beyond the target region. Hence, for cluster sizes beyond
143 molecules we see that excitation energies oscillates somewhat, but the change is
of only 0.02 eV. Considering the intrinsic errors in the CC2 model, the effect on the
excitation energy by increasing the cluster size beyond 143molecule can be considered
negligible. In particular, the change in excitation energy of 0.02 eV (= 0.0007 a.u.)
should be considered in contrast to the non-converged local region Hartree–Fock
energy Et of the ground state (see Table 1). The absolute differences in Et for cluster
sizes of 143, 324 and 579 molecules are 0.00349 a.u. and 0.02692 a.u. Hence, we see
that excitation energies for local excitations may converge with cluster size, even if the
ground state energy for the target region does not converge. It is important to note that
this does not mean that the presented excitation energies are converged with respect
to the chosen active occupied and virtual space. In Sect. 4.2 a study on choice of basis
sets is carried out.

4.2 Effect of basis set

4.2.1 Effect of basis set on the Hartree–Fock electric dipole moment

In this section we present how the choice of basis set for shell 1 and 2 affects the
dipole moment of the target region (central NH3 molecule), for a cluster containing
143 molecules. The basis sets of shell 1 and 2 are varied, while for the target region
and shell 3+ are kept to aug-cc-pVTZ and STO-3G, respectively. The results are
presented in Table 4. If we first consider the results where STO-3G is used for shell
2, Table 4 contain results for using STO-3G, cc-pVDZ, cc-pVTZ, aug-cc-pVDZ and
aug-cc-pVTZ. All computed dipole moment values for these basis sets in shell 1 are
2.14–2.15 D. Hence, the target electronic density is not appreciably affected by the
choice of basis in shell 1. We next consider the calculations where the basis set of shell
2 is cc-pVDZ, and the basis sets of shell 1 are cc-pVDZ, cc-pVTZ and aug-cc-pVDZ.
All calculations result in a dipole moment of 2.17 D, which is 0.02–0.03 D higher
than that of the STO-3G in shell 2 calculations. We further see that changing the basis
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Table 4 Dipole moment for the target region (central NH3 molecule) computed for a cluster containing
143 molecules, using different basis sets for shell 1 and 2

Basis (shell 1) Basis (shell 2) Dipole moment [D]

STO-3G STO-3G 2.14

cc-pVDZ STO-3G 2.15

cc-pVTZ STO-3G 2.15

aug-cc-pVDZ STO-3G 2.14

aug-cc-pVTZ STO-3G 2.14

cc-pVDZ cc-pVDZ 2.17

cc-pVTZ cc-pVDZ 2.17

aug-cc-pVDZ cc-pVDZ 2.17

cc-pVTZ cc-pVTZ 2.17

aug-cc-pVDZ aug-cc-pVDZ 2.16

The basis sets used for the target region and shell 3+ are aug-cc-pVTZ and STO-3G, respectively

set in shell 2 to cc-pVTZ and aug-cc-pVDZ, the computed dipole moment stays at
2.16–2.17 D. Considering the mean absolute error in Hartree–Fock dipole moments
for molecules is found to be 0.16 D [56], these variations are negligible. Hence, it can
be concluded that the the basis sets used in shell 1 and 2 has a negligible effect on the
dipole moment of the target region. This should be seen in context with the reasonably
large basis set (aug-cc-pVTZ) used for the target region. The large basis set of the
target region ensures that we do not rely on a large basis set in shell 1 to improve the
description of the target region.

4.2.2 Effect of basis set on CC2-in-HF vertical excitation energies

In this section we explore how changing the basis set of shell 1 and 2 affects CC2-in-
HF excitation energies, as well as the effect of increasing the active virtual space to
also include shell 2. In contrast to the Hartree–Fock dipole moment which only relies
on the electronic density in the target region, the excitation energies further requires
an active virtual space which extends beyond the target region. Hence, basis set effects
is expected to be important here.

Results for how the excitation energies are affected by varying the basis set of shell
1 and 2 is presented in Table 5. The excitation energies are computed for the cluster
containing 143 molecules, with aug-cc-pVTZ being used for the target region (central
NH3 molecule) and STO-3G being used for shell 3+ (see Sect. 3.2). The occupied
active region is set to the target region, while the virtual active region is set to either
the target region + shell 1 or the target region + shell 1–2 (see Sect. 3.4).

We first consider the results for which STO-3G is used for shell 2. We see that
calculations using target + shell 1 and target + shell 1-2 as active virtual region yields
identical results with respect to varying the basis set of shell 1. Increasing the basis
set of shell 1 from STO-3G to cc-pVDZ reduces the excitation energy by 0.20 eV.
Increasing the basis set of shell 1 from cc-pVDZ to cc-pVTZ, however, does not
change the excitation energies. Increasing the basis set of shell 1 to aug-cc-pVDZ and
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Table 5 CC2 S0 → S1 excitation energies (eV) showing the effect of varying the basis set of shell 1 and
2, using either the target region + shell 1 or the target region + shell 1–2 as the virtual active region

Virtual active region
Basis (shell 1) Basis (shell 2) Target + Shell 1 Target + Shell 1–2

STO-3G STO-3G 9.26 9.26

DZ STO-3G 9.06 9.06

TZ STO-3G 9.06 9.06

aDZ STO-3G 9.03 9.03

aTZ STO-3G 9.03 9.03

DZ DZ 9.07 9.06

TZ DZ 9.07 9.05

aDZ DZ 9.05 9.04

TZ TZ 9.07 9.05

aDZ aDZ 9.05 9.03

All calculations are performed for the cluster containing 143 molecules, with the target region set as
the occupied active region and aug-cc-pVTZ and STO-3G being used for the target region and shell 3+,
respectively

aug-cc-pVTZ yields an excitation energy 0.03 eV lower than when using cc-pVDZ
to cc-pVTZ in shell 1. We therefore see that the basis set of shell 1 one must be of
sufficient size, but that increasing the basis set of shell 1 beyond cc-pVDZ gives only
modest changes in the excitation energies.

We next consider the results which go beyond STO-3G in shell 2. As seen from
Table 5 the excitation energies are increased by between 0.00 and 0.02 eV relative
to the results where STO-3G is used in shell 2. This is the case both when the active
virtual region is target + shell 1 as well as when the active virtual region is target +
shell 1–2. From this we see two main points; (1) the basis set quality in shell 1 is
of greater importance than the quality of the basis set in shell 2, and (2) increasing
the virtual region beyond shell 1 is of little importance even when using reasonably
large (aug-cc-pVDZ) basis sets in shell 2. It therefore appears that the smaller virtual
active region (target and shell 1) is sufficient to obtain converged excitation energies
with respect to the virtual space. Note that since only the occupied space for the target
region is included, no occupied relaxation effects are taken into account.

5 Conclusion

In this paper we use local occupied and virtual orbital spaces for cluster models of
a NH3 crystal to show the convergence characteristics of the Hartree–Fock energy
and electronic density in a small target region (single NH3 molecule). The size of
the cluster models ranges from 13 to 953 NH3 molecules. The calculations illustrate
that although the energy of a target region will not converge with cluster size, the
energy contribution which only depends on the electronic density of the target region
will. Based on this it can be concluded that the electron density of the target region
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converges and as a consequence local size-intensive properties may be computed. The
convergence of the target electronic density with respect to cluster size yields the
possibility to evaluate how the density (and hence properties) is affected by basis set
choices in shells around the target region. The properties used for these numerical
illustrations are the Hartree–Fock electric dipole moment of the target region, which
only relies on the electronic density matrix and local CC2-in-HF vertical excitation
energies, which also relies on the virtual space.

Since the electronic density converges with cluster size, so do the target region
Hartree–Fock dipole moments. Converged values are obtained using approximately
three shells around the central NH3 molecule. We further show that the effect of
quality of the basis set used in the shells outside the target region is negligible for the
dipole moment calculations. Using a minimal basis seems to be sufficient to capture
the long range effects of the shells on the electronic density of the target region. The
lowest singlet CC2-in-HF vertical excitation energies are also seen to converge with
cluster size and basis set, despite the fact that the ground state Hartree–Fock energy
does not converge with cluster size. Excitation energies using occupied and virtual
spaces spanning the target region and the target region + shell 1, respectively, show
convergencewith cluster sizewith only small variations beyond three shells. Increasing
the virtual space beyond shell 1 is seen to effect the excitation energies in the order of
0.00–0.02 eV. Unlike for the dipole moment, the excitation energies requires that the
basis set of shell 1 is of sufficient size, but the quality of the basis set for shells beyond
has little effect. For the vertical excitation energies presented, it is important to note
that the occupied space only comprise of the occupied space of the target region (the
central NH3 molecule). Including a larger occupied space would result in relaxation
effects which would lead to lower excitation energies. However, the intention of this
study is not to obtain quantitative accuracy in the lowest local excitation of the NH3
crystal, but rather to illustrate the cluster and basis set dependencies of the excitation
energies.

The paper thus demonstrates fundamental aspects relating to the convergence of
electronic density of a target region, and hence local size-intensive properties, with
respect to cluster size. It is therefore not necessary to require an infinite system and
converged energy to compute size-intensive properties for a target regionof amolecular
crystal using the electronic density.We further see that although the cluster needs to be
of a given size to obtain a converged electronic density in the target region, a minimal
basis description of the outer shells are sufficient to capture the correct interaction
with the target region. The concepts illustrated in this paper are attainable using any
fragmentation or orbital space partitioned based approach, as long as it contain the
effective interaction between the target region and the rest of the cluster.
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