CONVERGENCE OF A GRADIENT PROJECTION METHOD*

by

Eli M. Gafni and Dimitri P. Bertsekas
Laboratory for Information and Decision Systems Massachusetts Institute of Technology

Cambridge, Massachusetts 02139
*This research was conducted at the M.I.T. Laboratory for Information and Decision Systems with partial support provided by the National Science Foundation under Grant NSF/ECS 79-20834.

Abstract

We consider the gradient projection method $x_{k+1}=P\left[x_{k}-\alpha_{k} \nabla f\left(x_{k}\right)\right]$ for minimizing a continuously differentiable function $f: H \rightarrow R$ over a closed convex subset X of a Hilbert space H, where $P(\cdot)$ denotes projection on X. The stepsize α_{k} is chosen by a rule of the Goldstein-Armijo type along the arc $\left\{P\left[x_{k}-\alpha \nabla f\left(x_{k}\right)\right] \mid \alpha \geq 0\right\}$. A convergence result for this iteration has been given by Bertsekas [1] and Goldstein [2] for particular types of convex sets X. We show the validity of this result regardless of the nature of X.

1. Introduction

We consider the problem

$$
\begin{align*}
& \operatorname{minimize} \quad f(x) \\
& \text { subject to } x \varepsilon X \tag{1}
\end{align*}
$$

where $\mathrm{f}: \mathrm{H} \rightarrow \mathrm{R}$ is a continuously Frechet differentiable real-valued function on a Hilbert space H, and X is a closed convex subset of H. The inner product and norm on H are denoted $\langle\cdot, \cdot>$ and $\|\cdot\|$ respectively. For any $x \& H$ we denote by $\nabla f(x)$ the gradient of f at x, and by $P(x)$ the unique projection of x on X , i.e.

$$
\begin{equation*}
P(x)=\arg \min \{\|z-x\| \| z \varepsilon X\}, \forall x \varepsilon H . \tag{2}
\end{equation*}
$$

We say that $x^{*} \in X$ is a stationary point for problem (1) if $x^{*}=P\left[x^{*}-\nabla f\left(x^{*}\right)\right]$.
For any $x \in X$ we consider the arc of points $x(\alpha), \alpha \geq 0$ defined by

$$
\begin{equation*}
x(\alpha)=P[x-\alpha \nabla f(x)], \quad \forall \quad \alpha \geq 0 \tag{3}
\end{equation*}
$$

and the class of methods

$$
\begin{equation*}
x_{k+1}=x_{k}\left(\alpha_{k}\right)=P\left[x_{k}-\alpha_{k} \nabla f\left(x_{k}\right)\right], \quad x_{o} \varepsilon X . \tag{4}
\end{equation*}
$$

The positive stepsize $\dot{\alpha}_{k}$ in (4) is chosen according to the rule

$$
\begin{equation*}
\alpha_{k}=\beta^{m_{k}} \tag{5}
\end{equation*}
$$

where m_{k} is the first nonnegative integer m for which

$$
\begin{equation*}
f\left(x_{k}\right)-f\left[x_{k}\left(\beta^{m} s\right)\right] \geq \sigma\left\langle\nabla f\left(x_{k}\right), x_{k}-x_{k}\left(\beta^{m} s\right)\right\rangle \tag{6}
\end{equation*}
$$

and where $s>0, \beta \varepsilon(0,1)$, and $\sigma \varepsilon(0,1)$ are given scalars.
The stepsize rule (5), (6) was first proposed in Bertsekas [1], and reduces to the well known Armijo rule for steepest descent when $X=H .{ }^{\dagger}$ It provides a simple and effective implementation of the projection method originally proposed by Goldstein [3] and Levitin and Poljak [4] where the stepsize α_{k} must be chosen from an interval that depends on a generally unknown) Lipschitz constant for ∇f. One of the advantages of the rule (5), (6) is that, for linearly constrained problems, it tends to identify the active constraints at a solution more rapidly than other Armijo-1ike stepsize rules which search for an acceptable stepsize along the line segment connecting x_{k} and $x_{k}(s)$ (see e.g., Daniel [5], Polak [6]). The algorithm is quite useful for large-scale problems with relatively simple constraints, despite its limitation of a typically linear rate of convergence (see Dunn [7]). On the other hand we note that in order for the algorithm to be effective it is essential that the constraint set X has a structure which simplifies the projection operation.

It was shown in [1] that every limit point of a sequence $\left\{\mathrm{x}_{\mathrm{k}}\right\}$ generated by the algorithm (4)-(6) is stationary if the gradient ∇f is Lipschitz continuous on X. The same result was also shown for the case where $H=R^{n}$ and X is the positive orthant but f is not necessarily Lipschitz continuous on X. Goldstein [2] improved on this result by showing that it is valid if H is an arbitrary Hilbert space, ∇f is continuous (but not necessarily Lipschitz continuous), and X has the property that
 replaced by $\frac{\sigma\left\|x_{k}-x_{k}\left(\beta^{m} s\right)\right\|^{2}}{\beta^{m}}$. Every result subsequently shown for the rule (5), (6) applies to this variation as well.

$$
\begin{equation*}
\lim _{\alpha \rightarrow 0^{+}} \frac{x(\alpha)-x}{\alpha} \text { exists } \forall x \varepsilon X \tag{7}
\end{equation*}
$$

While it appears that nearly all convex sets of practical interest (including polyhedral sets) have this property, there are examples (Kruskal [8]) showing that (7) does not hold in general. Goldstein [2] actually showed his result for the case where the stepsize α_{k} in iteration (4) is chosen to be s if

$$
\begin{equation*}
f\left(x_{k}\right)-f\left[x_{k}(s)\right] \geq \sigma<\nabla f\left(x_{k}\right), x_{k}-x_{k}(s)>, \tag{8}
\end{equation*}
$$

and α_{k} is chosen to be any scalar α satisfying

$$
\begin{equation*}
(1-\sigma)<\nabla f\left(x_{k}\right), x_{k}-x_{k}(\alpha)>\geq f\left(x_{k}\right)-f\left[x_{k}(\alpha)\right] \geq \sigma<\nabla f\left(x_{k}\right), x_{k}-x_{k}(\alpha)> \tag{9}
\end{equation*}
$$

if (8) is not satisfied. This rule is patterned after the well known Goldstein rule for steepest descent [9]. In what follows we focus attention on the Armijo-1ike rule (5), (6) but our proofs can be easily modified to cover the case where the algorithm uses a stepsize obtained by the Goldstein rule based on (8) and (9). We also note that Goldstein [2] assumes in addition that ∇f is uniformly continuous over X, but his proof can be easily modified to eliminate the uniformity assumption. By contrast the assumption (7) on the set X is essential for his proof.

The purpose of this paper is to show that the convergence results described above hold without imposing a Lipschitz continuity assumption on f, or a condition such as (7) on the convex set X. This is the subject of Proposition 2 below. The following proposition establishes that the

$$
-5-
$$

algorithm (4)-(6) is well defined.

Proposition 1: For every $x \varepsilon X$ there exists $\alpha(x)>0$ such that

$$
\begin{equation*}
f(x)-f[x(\alpha)] \geq \sigma<\nabla f(x), x-x(\alpha)>\quad, \quad \forall \alpha \varepsilon(0, \alpha(x)] \tag{10}
\end{equation*}
$$

Proposition 2: If $\left\{x_{k}\right\}$ is a sequence generated by algorithm (4)-(6), then every limit point of $\left\{x_{k}\right\}$ is stationary.

The proofs of Propositions 1 and 2 are given in the next section. The following lemma plays a key role.

Lemma 3: For every $x \in X$ and $z \varepsilon H$, the function $g:(0, \infty) \rightarrow R$ defined by.

$$
\begin{equation*}
g(\alpha)=\frac{\lfloor P(x+\alpha z)-x \|}{\alpha}, \quad \forall \alpha>0 \tag{11}
\end{equation*}
$$

is monotonically nonincreasing.

Proof: Fix $x \in X, z \varepsilon H$ and $\gamma>1$. Denote

$$
\begin{equation*}
a=x+z, \quad b=x+\gamma z \tag{12}
\end{equation*}
$$

Let \bar{a} and \bar{b} be the projections on X of a and b respectively. It will suffice to show that

$$
\begin{equation*}
\|\bar{b}-x\| \leq \gamma\|\bar{a}-x\| \tag{13}
\end{equation*}
$$

If $\bar{a}=x$ then clearly $\bar{b}=x$ so (13) holds. Also if acX then $\bar{a}=a=x+z$
so (13) becomes $\|\vec{b}-x\| \leq \gamma\|z\|=\|b-x\|$ which again holds by an elementary argument using the fact $\langle b-\bar{b}, x-\bar{b}\rangle \leq 0$. Finally if $\bar{a}=\bar{b}$ then
(13) also holds. Therefore it will suffice to show (13) in the case where $\overline{\mathrm{a}} \neq \overline{\mathrm{b}}, \overline{\mathrm{a}} \neq \mathrm{x}, \overline{\mathrm{b}} \neq \mathrm{x}, \mathrm{a} \notin \mathrm{X}, \mathrm{b} \notin \mathrm{X}$ shown in Figure 1.

Figure 1

Let H_{a} and H_{b} be the two hyperplanes that are orthogonal to ($\overline{\mathrm{b}}-\overline{\mathrm{a}}$) and pass through \bar{a} and \bar{b} respectively. Since $\langle\bar{b}-\bar{a}, b-\bar{b}\rangle \geq 0$ and $\langle\bar{b}-\bar{a}, a-\bar{a}\rangle \leq 0$ we have that neither a nor b lie strictly between the two hyperplanes H_{a} and H_{b}. Furthermore x lies on the same side of H_{a} as a, and $x \notin H_{a}$. Denote the intersections of the line $\{x+\alpha(b-x) \mid \alpha \in R\}$ with H_{a} and H_{b} by s_{a} and s_{b} respectively. Denote the intersection of the line $\{x+\alpha(\bar{a}-x) \mid \alpha \varepsilon R\}$ with H_{b} by w. We have
where the third equality is by similarity of triangles; the next to last inequality follows from the orthogonality relation $\langle w-\bar{b}, \bar{b}-\bar{a}\rangle=0$, and the last inequality is obtained from the triangle inequality. From (14) we obtain (13) which was to be proved. Q.E.D.

2. Proofs of Propositions 1 and 2

From a well known property of projections we have

$$
\langle x-x(\alpha), x-\alpha \nabla f(x)-x(\alpha)\rangle \leq 0, \quad \forall x \in X, \alpha>0
$$

Hence

$$
\begin{equation*}
\left\langle\nabla f(x), x-x(\alpha)>\geq \frac{\|x-x(\alpha)\|^{2}}{\alpha}, \quad \forall x \in X, \alpha>0\right. \tag{15}
\end{equation*}
$$

Proof of Proposition 1: If x is stationary the conclusion holds with $\alpha(\mathrm{x})$ any positive scalar so assume that x is nonstationary and therefore $\|x-x(\alpha)\| \neq 0$ for all $\alpha>0$. By the mean value theorem we have for all $x_{\varepsilon} X$ and $\alpha \geq 0$

$$
f(x)-f[x(\alpha)]=\langle\nabla f(x), x-x(\alpha)\rangle+\left\langle\nabla f\left(\xi_{\alpha}\right)-\nabla f(x), x-x(\alpha)\right\rangle
$$

where ξ_{α} lies on the line segment joining x and $x(\alpha)$. Therefore (10) can be written as

$$
\begin{equation*}
(1-\sigma)<\nabla f(x), x-x(\alpha)\rangle \geq\left\langle\nabla f(x)-\nabla f\left(\xi_{\alpha}\right), x-x(\alpha)\right\rangle \tag{16}
\end{equation*}
$$

From (15) and Lemma 3 we have for all $\alpha \varepsilon(0,1]$

$$
\langle\nabla f(x), x-x(\alpha)\rangle \geq \frac{\|x-x(\alpha)\|^{2}}{\alpha} \geq\|x-x(1)\|\|x-x(\alpha)\|
$$

Therefore (16) is satisfied for all $\alpha \varepsilon(0,1]$ such that

$$
\left.(1-\sigma)\|x-x(1)\| \geq<\nabla f(x)-\nabla f\left(\xi_{\alpha}\right), \frac{x-x(\alpha)}{\|x-x(\alpha)\|}\right\rangle
$$

Clearly there exists $\alpha(x)>0$ such that the above relation, and therefore also (16) and (10), are satisfied for $\alpha \varepsilon(0, \alpha(x)]$. Q.E.D.

Proof of Proposition 2: Proposition 1 together with (15) and the definition (5), (6) of the stepsize rule show that α_{k} is well defined as a positive number for all k, and that $\left\{f\left(x_{k}\right)\right\}$ is monotonically nonincreasing. Let \bar{x} be a limit point of $\left\{x_{k}\right\}$ and let $\left\{x_{k}\right\}_{K}$ be the subsequence converging to \bar{x}. Since $\left\{f\left(x_{k}\right)\right\}$ is nontonically nonincreasing we have $f\left(x_{k}\right) \rightarrow f(\bar{x})$. Consider two cases:

Case 1: 1 im inf $\alpha_{k} \geq \bar{\alpha}>0$ for some $\bar{\alpha}>0$.

$$
\begin{aligned}
& k \rightarrow \infty \\
& k \rightarrow K
\end{aligned}
$$

Then from (15) and Lemma 3 we have for all keK that are sufficently
large

$$
\begin{aligned}
f\left(x_{k}\right)-f\left(x_{k+1}\right) \geq \sigma<\nabla f\left(x_{k}\right), x_{k}-x_{k+1}> & \geq \sigma \frac{| | x_{k}-x_{k+1}| |^{2}}{\alpha_{k}} \\
& =\frac{\sigma \alpha_{k}| | x_{k}-x_{k+1}| |^{2}}{\alpha_{k}^{2}} \geq \frac{\sigma \bar{\alpha}| | x_{k}-x_{k}(s)| |^{2}}{2 s_{i}^{2}}
\end{aligned}
$$

Taking limit as $k \rightarrow \infty$, $k \varepsilon K$ we obtain

$$
0 \geq \frac{\sigma \bar{\alpha}| | \bar{x}-\bar{x}(s)| |^{2}}{2 s^{2}}
$$

Hence $\bar{x}=\bar{x}(s)$ and \bar{x} is stationary.

Case 2: $\lim _{\substack{k \rightarrow \infty \\ k \rightarrow K}} \inf \alpha_{k}=0$.

Then there exists a subsequence $\left\{\alpha_{k}\right\}_{\widehat{K}}, \vec{K} \mathbb{C} K$ converging to zero. It follows that for all $k \cdot \bar{K}$ which are sufficently large the test (6) will be failed at least once (i.e. $m_{k} \geq 1$) and therefore

$$
\begin{equation*}
\left.f\left(x_{k}\right)-f\left[x_{k}\left(\beta^{-1} \alpha_{k}\right)\right]<\sigma<\nabla f\left(x_{k}\right), x_{k}-x_{k}\left(\beta^{-1} \alpha_{k}\right)\right\rangle \tag{16}
\end{equation*}
$$

Furthermore for all such $k \varepsilon \widehat{K}, x_{k}$ cannot be stationary since if x_{k} is stationary then $\alpha_{k}=s$. Therefore

$$
\begin{equation*}
\left|\left|x_{k}-x_{k}\left(\beta^{-1} \alpha_{k}\right)\right|\right|>0 \tag{17}
\end{equation*}
$$

By the mean value theorem we have

$$
\begin{align*}
f\left(x_{k}\right)-f\left[x_{k}\left(\beta^{-1} \alpha_{k}\right)\right]= & \left\langle\nabla f\left(x_{k}\right), x_{k}-x_{k}\left(\beta^{-1} \alpha_{k}\right)\right\rangle \\
& +\left\langle\nabla f\left(\xi_{k}\right)-\nabla f\left(x_{k}\right), x_{k}-x_{k}\left(\beta^{-1} \alpha_{k}\right)\right\rangle \tag{18}
\end{align*}
$$

where ξ_{k} lies in the line segment joining x_{k} and $\dot{x}_{k}\left(\beta^{-1} \alpha_{k}\right)$. Combining (16) and (18) we obtain for all $k \varepsilon \bar{K}$ that are sufficiently large
$\left.(1-\sigma)<\nabla f\left(x_{k}\right), x_{k}-x_{k}\left(\beta^{-1} \alpha_{k}\right)\right\rangle<\left\langle\nabla f\left(\xi_{k}\right)-\nabla f\left(x_{k}\right), x_{k}-x_{k}\left(\beta^{-1} \alpha_{k}\right)\right\rangle$.

Using (15) and Lemma 3 we obtain

$$
\begin{align*}
\left\langle\nabla f\left(x_{k}\right), x_{k}-x_{k}\left(\beta^{-1} \alpha_{k}\right)\right\rangle & \geq \frac{\left\|x_{k}-x_{k}\left(\beta^{-1} \alpha_{k}\right)\right\|^{2}}{\beta^{-1} \alpha_{k}} \\
& \geq \frac{1}{s}\left\|x_{k}-x_{k}(s)\right\|\left\|x_{k}-x_{k}\left(\beta^{-1} \alpha_{k}\right)\right\| \tag{20}
\end{align*}
$$

Combining (19) and (20), and using the Cauchy-Schwartz inequality we obtain for all $k \varepsilon \bar{K}$ that are sufficiently large

$$
\begin{align*}
\frac{1-\sigma}{s}\left\|x_{k}-x_{k}(s)\right\|\left\|x_{k}-x_{k}\left(\beta^{-1} \alpha_{k}\right)\right\| & \left.<\nabla f\left(\xi_{k}\right)-\nabla f\left(x_{k}\right), x_{k}-x_{k}\left(\beta^{-1} \alpha_{k}\right)\right\rangle \\
& \leq\left\|\nabla f\left(\xi_{k}\right)-\nabla f\left(x_{k}\right)\right\|\left\|x_{k}-x_{k}\left(\beta^{-1} \alpha_{k}\right)\right\| \tag{21}
\end{align*}
$$

Using (17) we obtain from (21)

$$
\begin{equation*}
\frac{1-\sigma}{s}\left\|x_{k}-x_{k}(s)\right\|<\left\|\nabla f\left(\xi_{k}\right)-\nabla f\left(x_{k}\right)\right\| \tag{22}
\end{equation*}
$$

Since $\alpha_{k} \rightarrow 0$ and $x_{k} \rightarrow \bar{x}$ as $k \rightarrow \infty$, kع \bar{K} it follows that $\xi_{k} \rightarrow \bar{x}$, as $\bar{k} \rightarrow \infty, k \varepsilon \bar{K}$. Taking the limit in (22) as $k \rightarrow \infty, k \in \bar{K}$ we obtain

$$
\|\bar{x}-\bar{x}(s)\| \leq 0
$$

Hence $\bar{x}=\bar{x}(s)$ and \bar{x} is stationary.
Q.E.D.

References

[1] Bertsekas, D.P., "On the Goldstein-Levitin-Poljak Gradient Projection Method', Proc. 1974 IEEE Decision and Control Conference, Phoenix, Az., Dec. 1974, Also IEEE Trans. on Aut. Control, Vol. AC-21, 1976, pp. 174184.
[2] Goldstein, A.A., "On Gradient Projection", Proc. 12th Ann. Allerton Conference on Circuits and Systems, Allerton Park, Ill., Oct. 1974, pp. 38-40.
[3] Goldstein, A.A., "Convex Programming in Hilbert Space", Buil. Amer. Math. Soc., 70, 1964, pp. 709-710.
[4] Levitin, E.S., and Poljak, B.T., "Constrained Minimization Methods", Z. Vychis1. Mat. i Mat. Fiz., 6, 1965, pp. 787-823.
[5] Daniel, J.W., The Approximate Minimization of Functionals, Prentice Hall, Englewood Cliffs, N.J., 1971.
[6] Polak, E., "A Survey of Methods of Feasible Directions for the Solution of Optimal Control Problems", IEEE Transactions on Aut. Control, Vol. AC-17, 1972, pp. 591-596.
[7] Dunn, J.C., "Global and Asymptotic Convergence Rate Estimates for a Class of Projected Gradient Processes", SIAM J. on Control and Optimization, Vol. 19, 1981, pp. 368-400.
[8] Kruskal, J.B., "Two Convex Counterexamples. A Discontinuous Envelope Function and a Nondifferentiable Nearest Point Mapping", PAMS, Vol. 23, 1969, pp. 697-703.
[9] Goldstein, A.A., "On Steepest Descent", SIAM J. on Control, Vol. 3, 1965, pp. 147-151.

