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Abstract

We consider the gradient projection method Xk+l = P[xk-lkVf(xk)] for

minimizing a continuously differentiable function f: H + R over a closed

convex subset X of a Hilbert space H, where P(f) denotes projection on X.

The stepsize Xk is chosen by a rule of the Goldstein-Armijo type along

the arc {P[xk-aVf(xk)]l a)> O}. A convergence result for this iteration

has been given by Bertsekas [1] and Goldstein [2] for particular types

of convex sets X. We show the validity of this result regardless of the

nature of X.
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1. Introduction

We consider the problem

minimize f(x)

subject to xsX (1)

where f : H + R is a continuously Frechet differentiable real-valued

function on a Hilbert space H, and X is a closed convex subset of H. The

inner product and norm on H are denoted <-,,> and [[-t[ respectively. For

any xEH we denote by Vf(x) the gradient of f at x, *and by P(x) the unique

projection of x on X, i.e.

P(x) = arg min {IIz-xl|l z£X} , V xsH. (2)

We say that x*EX is a stationary point for problem (1) if x* = P[x*-Vf(x*)].

For any xcX we consider the arc of points x(a), a > 0 defined by

x(ac) = P[x-acVf(x)] , V a> O, (3)

and the class of methods

Xk+1 = xk(Qk
) = P[Xk-akVf(xk)], x £X. (4)

The positive stepsize ak in (4) is chosen according to the rule

mk

ek Sm= k - (5)

where mk is the first nonnegative integer m for which

f(xk) - f[xk(ems)] > C <Vf(xk), xk - xk(sm)>, (6)
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and where s > 0, P6(0,1), and o.(0,1) are given scalars.

The stepsize rule (5), (6) was first proposed in Bertsekas [1], and

reduces to the well known Armijo rule for steepest descent when X = H.t

It provides a simple and effective implementation of the projection method

originally proposed by Goldstein [3] and Levitin and Poljak [4] where the

stepsize ak must be chosen from an interval that depends on a (gen-

erally unknown) Lipschitz constant for Vf. One of the advantages of

the rule (5),(6) is that, for linearly constrained problems, it tends

to identify the active constraints at a solution more rapidly than other

Armijo-like stepsize rules which search for an acceptable stepsize along

the line segment connecting xk and xk(s) (see e.g., Daniel [5], Polak [6]).

The algorithm is quite useful for large-scale problems with relatively

simple constraints, despite its limitation of a typically linear rate of

convergence (see Dunn [7]). On the other hand we note that in order for

the algorithm to be effective it is essential that the constraint set X

has a structure which simplifies the projection operation.

It was shown in [1] that every limit point of a sequence {Xk} gen-

erated by the algorithm (4)-(6) is stationary if the gradient Vf is

Lipschitz continuous on X. The same result was also shown for the case

where H = Rn and X is the positive orthant but f is not necessarily

Lipschitz continuous on X. Goldstein [2] improved on this result by

showing that it is valid if H is an arbitrary Hilbert space, Vf is con-

tinuous (but not necessarily Lipschitz continuous), and X has the property

that

tA variation of (6), also given 'in [1], results when the right side is

alxk-x k(8 s)l 1
replaced by . Every result subsequently shown for the

rule (5), (6) applies 

rule (S), (6) applies to this variation as well.
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x(ca) -x
lim exists V X£X (7)

a+O+

While it appears that nearly all convex sets of practical interest

(including polyhedral sets) have this property, there are examples

(Kruskal [8]) showing that (7) does not hold in general. Goldstein [2]

actually showed his result for the case where the stepsize ak in iteration

(4) is chosen to be s if

f(xk) - f[xk(s)] > a <Vf(xk), xk - k(s)>, 8)

and ak is chosen to be any scalar a satisfying

(1-c)<Vf(xk), xk - xkC(a)> > f(xk) - f[xk(a)] > C' <Vf(xk), xk - Xk(a)>

(9)

if (8) is not satisfied. This rule is patterned after the well known

Goldstein rule for steepest descent [9]. In what follows we focus attention

on the Armijo-like rule (5),(6) but our proofs can be easily modified to

cover the case where the algorithm uses a stepsize obtained by the Gold-

stein rule based on (8) and (9). We also note that Goldstein [2] assumes

in addition that Vf is uniformly continuous over X, but his proof can be

easily modified to eliminate the uniformity assumption. By contrast the

assumption (7) on the set X is essential for his proof.

The purpose of this paper is to show that the convergence results

described above hold without imposing a Lipschitz continuity assumption

on f, or a condition such as (7) on the convex set X. This is the subject

of Proposition 2 below. The following proposition establishes that the
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algorithm (4)-(6) is well defined.

Proposition 1: For every xsX there exists a(x) > 0 such that

f(x) - f[x(a)] > o<Vf(x), x - x(a)> , a6(0,a(x)] (10)

Proposition 2: If {Xk} is a sequence generated by algorithm (4)-(6), then

every limit point of {Xk } is stationary.

The proofs of Propositions 1 and 2 are given in the next section.

The following lemma plays a key role.

Lemma 3: For every x£X and zsH, the function g:(O,C) + R defined by

g(c) - IIP(x+z) - xjl > O (11)

is monotonically nonincreasing.

Proof: Fix x£X, zeH and y>l. Denote

a = x + z, b = x + yz (12)

Let a and b be the projections on X of a and b respectively. It will

suffice to show- that

Ijb-xII c y lai-xll. (13)

If a = x then clearly b = x so (13) holds. Also if acX then a = a = x + z

so (13) becomes i jb-xll < I Izl 1 = I b-xIl which again holds by an

elementary argument using the fact <b-b, x-b> < O. Finally if a = b then
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(13) also holds. Therefore it will suffice to show (13) in the case where

a # b, a # x, b # x, aIX, b4X shown in Figure 1.

bb b

Ha 

Figure 1
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Let Ha and Hb be the two hyperplanes that are orthogonal to (b-a)

and pass through a and b respectively. Since <b-a, b-b> > 0 and

<b-a, a-a> < 0 we have that neither a nor b lie strictly between the two

hyperplanes Ha and Hb. Furthermore x lies on the same side of Ha as a,

and xHa. Denote the intersections of the line {x+a(b-x) IacR} with H and

Hb by s a and Sb respectively. Denote the intersection of the line

{x+a(a-x) lacR} with Hb by w. We have

X llb-xll iIsb-xII lwW-xll Ilw-all + I1a-xll
Ila-xt[ - I ts-xa i ia-a-xl II1-II X

I lb-al i + I la-x I. I > Ib(-x I4> = > -_(14)
I a-xlI - I a-x|I

where the third equality is by similarity of triangles, the next to last

inequality follows from the orthogonality relation <w-b, b-a> = 0, and the

last inequality is obtained from the triangle inequality. From (14) we

obtain (13) which was to be proved. Q.E.D.

2. Proofs of Propositions 1-and 2

From a well known property of projections we have

<x-x((c), x - aVf(x) - x(c)> < O, Y x£X, a > 0.

Hence

<Vf(x), x - x(o)> > V x-x(E:X, > 0. (15)



Proof of Proposition 1: If x is stationary the conclusion holds with a(x)

any positive scalar so assume that x is nonstationary and therefore

I x-x(a)l # 0 for all a > O. By the mean value theorem we have for all

xeX and a > 0

f(x) - f[x(a)] = <Vf(x), x-x(a)> + <Vf(Ea) - Vf(x), x-x(O)>

where i lies on the line segment joining x and x(a). Therefore (10) can

be written as

(1-a)<Vf(x), x-x(a)> > <Vf(x)-Vf(E ), x-x(a)>. (16)

From (15) and Lemma 3 we have for all ac(0,1]

<vf(x) x-x(a)> l> J IIx-x())II IIX-X(a)lII

Therefore (16) is satisfied for all aE(0,1] such that

(l-a)llx-x(l)11 > <vf(x) - Vf( ), x-x(a) >

Clearly there exists a(x) > 0 such that the above relation, and therefore

also (16) and (10), are satisfied forca.E(O,a(x)]. Q.E.D.

Proof of Proposition 2: Proposition 1 together with (15) and the definition

(5),(6) of the stepsize rule show that da is well defined as a positive number for

all k, and that {f(xk)} is monotonically nonincreasing. Let x be a limit

point of {xk} and let {Xk}K be the subsequence converging to x. Since

{f(xk)} is nontonically nonincreasing we have f(xk) + f(x). Consider two

cases:
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Case 1: lim inf ck > a > 0 for some a > O.

k-~O
k-+K

Then from (15) and Lemma 3 we have for all ksK that are sufficently

large

I xk-xkl 12 
f(xk) - f(xk+l) > a <Vf(xk), xk - Xk+l> > 

-2 2 - 22

k

Taking limit as k +co, kcK we obtain

o > llx-x(s)l12

2s

Hence x = x(s) and x is stationary.

Case 2: lim inf ak = 0.
k-)~o

k-K

Then there exists a subsequence {ak}, K CK converging to zero, It

follows that for all k£K which are sufficently large the test (6) will be

failed at least once (i.e. mk > 1) and therefore

f(xk) - f[xk(B-l k) ] < <Vf(xk), xk - Xk(- ak)> (16)

Furthermore for all such kEK, xk cannot be stationary since if xk is

stationary then k = s. Therefore

IIXk - xk(' k) > 0. (17)
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By the mean value theorem we have

f(xk) f[xk(K-lak)] = <Vf(xk),xk - xk( -lk)>

+ <Vf(k) - Vf(xk),xk - Xk(Oaxk)> (183

where Ek lies in the line segment joining xk and xk(6 lk). Combining (16)

and (18) we obtain for all keK that are sufficiently large

(1-C) <Vf(xk) Xk xk k(S -lk)> < <vf(k) - Vf(xk), xk - xk( cak)>. (19)

Using (15) and Lemma 3 we obtain

-1 2
I Ixk-xk(s ickl

<Vf(xk), Xk- Xk(S ak)> -
B Ok

I I jxk-xk(s)II II Xk -l ak) l

(.20)

Combining (19) and (20), and using the Cauchy-Schwartz inequality we obtain

for all ksK that are sufficiently large

1-a lIxk - xk(S) I[IX - xk( - C) |l< <VfC(k)- Vf ( xk -k-

< IVf(1 k) - Vf(Xk) | I lk - Xk( B - k)3 1

(21)

Using (17) we obtain from (21)

s I lk - Xk() 1 1 < I lVf(Ek) - Vf(xk)ll1. (22)



Since 0k 0 and xk + x as k + o, kEK it follows that Xk + x, as~-k-, keK.

Taking the limit in (22) as k-+-o, kJK we obtain

I1x- x(s)1 < o.

Hence x = x(s) and x is stationary. Q.E.D.
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