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Abstract

We consider the gradient projection method X141

minimizing a continuously differentiable function f: H + R over a closed

=P [x, -0, VE(x, )] for

convex subset X of a Hilbert space H, where P{*) denotes projection on X.
The stepsize o is chosen by a rule of the Goldstein-Armijo type along
the arc {P[xk-an(xk)]I a> 0}. A convergence result for this iteration
has been given by Bertsekas [1] and Goldsfein t2] for particular types

of convex sets X. We show the validity of this result regardless of the

nature of X,




1. Introduction

We consider the problem

minimize f(x)

subject to xeX ‘ (1)

where £ : H > R is a continuously Frechet differentiable real-valued
function on a Hilbert space H, and X is a closed convex subset of H. The

inner product and norm on H are denoted <+,*> and |

*|| respectively. For
any xeH we denote by Vf(x) the gradient of f at x, and by P(x) the unique

projection of x on X, i.e.
P(x) = arg min {||z-x||| zeX} , V xeH. (2)

We say that x*eX is a stationary point for problem (1) if x* = P[x*-VE(x*)].

For any xeX we consider the arc of points x(a), o > 0 defined by

x(a) = p[x-oa}f(x)] , Y o> 0, (3)
and the class of methods

X = X loyd = PIxp-a VE(x L, - x eX. 4)
The Positive stepsize dk in (4)#15 chosen according to the rule

o = B s ' ‘ (5)
where m is the first nonnegative integer m for which

CEl) - £l (B")] > o <WE(q), X - X (87s)>, (6)
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and where s > 0, Bs(d,l), and 0e(0,1) are given scalars.
The stepsize rule (5), (6) was first proposed in Bertsekas [1], and
reduces to the well known Armijé rule for steepest descent when X = H.T
It provides a simple and effective implementation of the projection method

originally proposed by Goldstein [3] and Levitin andiPoljak [4] where the

-stepsize Oy must be chosen from an interval that depends on a (gen-
erally unknown) Lipschitz constant for Vf. One of the advantages of
the rule (5),(6) is that, for linearly constrained problems, it tends

to identify the active constraints at a solution more rapidly than other

Armijo-like stepsize rules which search for an acéeptable stepsize along
the line Segment connecting Xy and xk(s) (see e.g., Daniel [5], Polak [6]).
The algorithm is quite useful for large-scale problems with relatively
simple conétraints, despité its limitation of a typically linear rate of
convergence (see Dunn [7]). On the other hand we note that in order for
the algorithm to be effective it is essential that the constraint set X
has a structure which simplifies the projection operation.

It was shown in [1] that every limit point of a sequence'{xk} gen-
erated by the algorithm (4)—(6) is stationary if the gradient Vf is
Lipschitz cpntinuous on X. The same fesult was also shown for the case
whereiH = R" and X is the positive orthant but f is not necessarily
Lipschitz continuous on X. Goldstein [2] improved on this result by

"showing that it is valid if H is an arbitrary Hilbert space, Vf is con-
tinuous (but not necessarily Lipschitz_continuéus), and X has the property

that

'+Avvariation of (6), also given~in [1], results when the right side is

' m 2

o] % =%, (B7s) |
B"s

rule (5), (6) applies to this variation as well.

Every result subsequently shown for the

replaced by
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X(@)=X  orists v xeX (7)

While it appears that nearly all convex sets éf practical interest
(including polyhedral sets) have this property, there are examples
(Kruskal [8]) showing that (7) does not hold in general. Goldstein [2]
actually showed his result for the case where‘the stepsize Oy in iteration

(4) is chosen to be s if

f(Xk) - f[Xk(S)] _>_ O<vf(xk), xk —.Xk(5)>, (8)
and O is chosen to be any scalar o satisfying

(1—0)<Vf(xk), Xy - xk(a)> > f(xk) - f[xk(a)] > o <Vf(xk), Xy - xk(u)>

()

if (8) is not satisfied. This rule is patterned after the well known
Goldstein rule for steepest descent [9]. In what follows we focus attention
on the Armijo-like rule (5),(6) but our proofs can be easily modified to
cover the case where the algorithm uses a stepsize obtained by the Gold-
stein ruleAbased on (8) and (9). We also note that Goldstein [2] assumes
in addition that Vf is uniformly continuous over X, but his proof can be
easily modified to eliminaté the uniformity assumption. By contrast the
assumption (7) on the set X is essential for his proof.

The purpose of this paper is to show that the convergence results
described above hold without imposing a Lipschitz céntinuity assumption
on f, or a conditi;n such as (7)'on the convex set X. This is the subject

of Proposition 2 below. The following proposition establishes that the
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algorithm (4)-(6) is well defined.

Proposition 1: For every xeX there exists a(x) > 0 such that

f(x) - flx(a)] > o<VE(x), x - x(aj> s VY 0e(0,0(x)] (10)

Proposition 2: If {xk} is a sequence generated by algorithm (4)-(6), then

every limit point of'{xk} is stationary.

The proofs of Propositions 1 and 2 are given in the next section.

The following lemma plays a key role.

Lemma 3: For every xeX and zeH, the function g:(0,®) - R defined by,

e(a) = ]]P(xgaz) - xil?’ Vo> 0 » (11
is monotonically nonincféaéing.
Proof: Fix xeX, zeH and y>1. Denote

a = x+ 2, b =x+ vz ' (12)

Let a and b be the projections on X of a and b respectively. It will

suffice to show that

Ho-x|| < v |]a-x]]. o (13)

If 7 = x then clearly b = x so (13) holds. Also if aeX then a = a =x + z
so (13) becomes ||5-x|| < v]lz|| = ||b-x|| which again holds by an

elementary argument using the fact <b-b, x-b> < 0. Finally if a = b then
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(13) also holds. Therefore it will suffice to show (13) in the case where

a#b, a#x,b#x, afX, bgX shown in Figure 1.

Figure 1
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Let Ha and Hb be the two hyperplanes that are orthogonal to (b-a)
and pass through a and b respectively. Since <b-a, b-b> > 0 and
<b-a, a-a> < 0 we have that neither a ﬁor b lie strictly between the two
hyperplanes Ha and Hb. Furthermore x lies on the same side of Ha as a,
and xéHa. Denote the intersections of the iine {x+a(b—x)fueR} wifh‘Ha.and
Hb by S, and S respectively. Denote the intersection of the line

‘{x+q(zlx)1agR} with H_ by w. We have

_obpextl o Msexb et gl 1 Ex]]
1ax1] = TIs, | 1= |la-x]]
lb-all + [fax|]  lb-xIl (14)

= e

where the third equality is by similarity of triangles, the next to last
inequality follows from the orthogonality relation <w-b, b-a> = 0, and the
last inequality is obtained from the triangle inequality. From (14) we

obtain (13) which was to be proved. Q.E.D.

2. Proofs of Propositions l-and 2

From a well known property of projections we have

<x-x(a), x - aVE(x) - x(@)> < 0, Y xeX, a > 0.
Hence
- ( ) 2 .
<VE(X), x - x(a)> > Hxex(@) [[* , V xeX,a > 0. (15)

o
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Proof of Proposition 1: If x is stationary the conclusion holds with a(x)

any positive scalar so assume that x is nonstationary and therefore
||x-x(a) || # 0 for all a > 0. By the mean value theorem we have for all

xeX and o > 0
f(x) - fx(a)] = <vf(x), x-x(@)> + <vf(€a) - VEX), x-x(a)>

where £, lies on the line segment joining x and x(a). Therefore (10) can

be written as
(1-0)<VE(x), x=x(a)> > <Vf(x)—vf(ga), x-x(a)>. (16)
From (15) and Lemma 3 we have for all ae(0,1]

. 2
WEE)x-x()> > HEE@UT S x@y ] | x-x@)]]-

o

Therefore (16) is satisfied for all qe(0,1] such that

(-0) | |x-x(1) || > <VEG) - vE(g), ZX@L__
[1x-x(@)]]

Clearly there exists a(x) > 0 such that the above Telation, and therefore

“also (16) and (10), are satisfied for ac(0,a(x)]. ' Q.E.D.

Proof of Proposition 2: Proposition 1 together with (15) and the definition

(5), (6) of the stépSize rule show that O is well defined as a positive -number for
all k, and that'{f(xk)} is monotonically nonincreasing. Let X be'a limit

point of {xk} and let {xk}K be the subsequence converging to x. Sinﬁe
'{f(xk)} is hontonically nonincreasing we have f(xk) - f(E); Consider two

cases:
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Case 1: 1im inf % > a >0 for some a > 0.
~25¢ - o

kK

Then from (15) and Lemma 3 we have for all keK that are sufficently

large 2
| 1% %eeq ||
) - £(x,) > o <VElx), X - X 4> > © )
5 a L 2 - | 2
k jkaka+1lf o a[[xk—xk(s)fl
= >
o2 E 252
k

Taking limit as k +w, keK we obtain

0 > gollx-x(s)|]
2
2s

Hence x = x(s) and E_is'stationary.

Case 2: 1lim inf = 0.
koo - ak

kK

Then there exists a subsequence {ak}~? E(:K converging to zero. It
K
follows that for all keK which are sufficently large the test (6) will be

failed at least once (i;e.-mk > 1) and therefore
-1 1. '
f(xk) - f[xk(B ak)] < ¢ <Vf(xk), X - X (B 1ak)>'«' (16)

Furthermore for all such kdf, Xy cannot be stationary since if Xy is

stationary then'ak = 5, Therefore

[ - x (87 )| > 0. » %)
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By the mean value theorem we have
£(x,) - £[x, (B Yo )] = <VE(x.),x, - x, (B la)>
k K K (R S A ¥

+ <Vf(gk) - Vf(xk),}(k - Xk(B O‘k)> (18)

where gk lies in the line segment joining Xy and Xk(sﬁlak). Combining (16)

and (18) we ebfain for all keK that are sufficiently large

) -1 . . -1 _
(1-0) <VE(x ), x - x (B "oy )>< <VE(g) - VE(x ), X - X (B "o )>. (19)

Using (15) and Lemma 3 we obtain

y |13, (870 |1
VEx), X - (B 7 og)> > B-lak

|v

1 AN, -1
g”lxk‘ k(s)!j flxk - x (B ak){l

(20)
Combining (19) and (20), and using the Cauchy-Schwartz inequality we obtain

for all keK that are sufficiently large

2 g - 5 O] [l - x5 8 o< <VE(g,) - VEGRD, % - % (87 o)
< IVEGY - VEG] 1% - x (B o) |-
(21)

Using (17) we obtain from (21)

(22)

9 )% - x (] < |1vEGg) - vECR)] |-
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Since o > 0 and X X as k + «, keK it follows that gk > ;; as "k»w, keK.

Taking the limit in (22) as k>%, keK we obtain

[x - x(9]] < o.

Hence x = x(s) and X is stationary. ' Q.E.D.
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