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Unconstrained Optimization Problem

Cost function

φ : R
n → R

For most of the classical convergence proofs for numerical descent

methods there are very few constraints placed on the nature of the

cost.

Mostly a cost function comes with significant structure.

Typical properties are smoothness. Sometimes convexity and

non-degeneracy.

Optimization problem is to compute

arg min
x∈R

n
φ(x)
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Descent Algorithms

I will consider three paradigms of descent algorithms

1. Continuous-time descent flows

2. Line-search descent methods

3. Trust region methods

Rather than enter into the technical details of the convergence

proofs, I will try and provide an overview flavour of the classical and

recent convergence results for these methods and show how the

work I am presenting fits into the scheme.
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Continuous-time descent flows

Descent Flows:

1. Compute a C0 vector field V (x) on R
n with the descent property

dφV (x) ≤ −ǫ|V (x)||dφ| Angle Condition

for ǫ > 0 a small positive constant.

2. Compute the solution to the ODE

ẋ(t) = V (x(t)), x(0) = x0.
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Line Search Descent Methods

For each iterate:

1. Compute a descent direction vk

〈∇φ(xk), vk〉 ≤ −ǫ|vk||∇φ(xk)| Angle Condition

based on the best available information. (usually first or second

order local derivatives).

2. Compute a step length αk that will ensure decrease of the cost.

3. Compute the new iterate

xk+1 = xk + αkvk
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Trust Region Methods

For each iterate:

1. Compute a local quadratic model of the cost at the present

iterate.

mk(p) = φ(xk) + dφ(xk) +
1

2
pTBkp

where p = xk+1 − xk.

2. Compute a trust region ∆k > 0

Tk = {xk+1 ||xk+1 − xk|| ≤ ∆k}

3. Compute a new iterate xk+1 ∈ Tk that ensures sufficient

decrease of the of the model mk(xk+1 − xk).
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Continuous time flows

ω-limit set convergence.

➤ Cost φ has compact sub-level sets

➤ Cost φ and vector field V (x) are sufficiently smooth.

Then the ω-limit set of x(t) is a C1 compact set in R
n on which

dφ(x) = 0

holds.
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Non-convergence of descent methods.

The potential problems with convergence of descent methods was

understood as early as numerical methods were formalised.

Curry 1944 gave the following counter example.

Let G(x, y) = 0 on the unit circle and G(x, y) > 0 elsewhere.

Outside the unit circle let the surface have a spiral gully

making infinitely many turns about the circle. The path C

will evidently follow the gully and have all points of the circle

as limit points of a sequence.
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Weak convergence of numerical methods

Classical convergence results were proved in the sixties and

seventies for line-search descent methods and the eighties for trust

region methods.

➤ Line search descent methods:

1. For line-search descent algorithms with angle condition and

sufficient decrease conditions on step-selection

lim
k→∞

||∇φ(xk)|| = 0

2. For conjugate gradient methods with sufficient decrease

conditions on step-selection

lim inf
k→∞

||∇φ(xk)|| = 0
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Trust Region methods.

1: For relative decrease of function with respect to model strictly

positive. That is

ρk =
φ(xk) − φ(xk+1)

mk(0) − m(xk+1 − xk)
> 0

and a sufficient decrease condition

m(0) − mk(xk+1 − xk) ≥ η3|∇φ(xk)|min

(

∆k,
|∇φ(xk)|

||Bk||

)

Then

lim inf
k→∞

||∇φ(xk)|| = 0

2: For relative decrease bounded away from zero ρk ≥ η > 0 and a

sufficient decrease condition. Then

lim
k→∞

||∇φ(xk)|| = 0
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Observations line search algorithms

1. All line search methods ensure some form of descent condition

φ(xk+1)−φ(xk) ≤ η1〈∇φ(xk), vk〉, Descent (Armijo) Condition

〈∇φ(xk+1), vk〉 ≤ η2〈∇φ(xk), vk〉, Curvature (Wolfe) Condition

2. Most line search convergence results require some sort of angle

condition

〈∇φ(xk), vk〉 ≤ −ǫ|vk||∇φ(xk)| Angle Condition

3. Best convergence that is obtained is

lim ||∇φ(xk)|| = 0
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Observations trust region methods

1. All Trust region methods apply some sort of model decrease

condition

m(0) − mk(xk+1 − xk) ≥ η3|∇φ(xk)|min

(

∆k,
|∇φ(xk)

||Bk||

)

Based on minimum decrease obtained by the Cauchy point

2. All Trust region methods apply some sort of relative measure of

decrease

ρk =
f(xk) − f(xk+1)

m(xk+1 − xk) − m(0)
≥ η ≥ 0

3. Best convergence that is obtained is

lim ||∇φ(xk)|| = 0
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What more is possible

➤ Numerically it is better to know that an algorithm will converge

to a single point rather than the weak lim |∇φ| = 0 condition.

➤ In practice, descent algorithms do converge to single points.

Counter examples are very few and far between.

➤ Most cost function have more structure than we have assumed

above.

The standard convergence results are based on the weakest set of

conditions on cost functions that are encountered in practice.
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Single-limit-point convergence results for

descent flows.

➤ Cost φ has compact sub-level sets

➤ Cost φ is twice differentiable.

➤ On locally minimizing sets the function is Morse-Bott.

That is the Hessian of the function D2φ is non-degenerate on

the normal space to the level set of the locally minimizing set

N ,

D2φx

∣

∣

∣

N⊥
x

> 0

Then x(t) → x∞.
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Single-limit-point Convergence results for

numerical methods

➤ Strong convexity of φ implies single-limit-point convergence to

global minima

1. Byrd and Nocedal (1989) for the BFGS algorithm with

bounds on the condition number of Bk.

2. Burachik et al. (1995) for the steepest descent method.

3. Kiwiel and Murty (1996) for the steepest descent method for

quasi-convex cost functions.

4. Iusem (2002) for the projected gradient algorithm.
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➤ Hessian D2φ is positive definite at an accumulation point implies

single-limit-point convergence to the accumulation point

1. Classical for Newton and quasi-Newton methods.

2. Moré and Sorensen (1983) for approximate trust-region

methods (using nearly exact update steps).

3. Conn et al. (1993) show the same result holds for a class of

trust-region methods that ensure a fraction of Cauchy

decrease.

➤ Local minimum of φ is isolated implies that there exists a small

basin of attraction around the point for which one obtains

single-limit-convergence.

1. Bersekes (1995) for a class of line-search descent methods.

2. Dunn (1983, 1987) for a class of line-search descent along

with some additional growth conditions on the function φ.
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What is the problem with these conditions

1. Hessian conditions and local isolation of critical points require a

significant amount of a-priori local knowledge about the level

sets of the cost.

2. Convexity requirements are strong conditions to require of cost

functions.

The goal of this presentation is to show how a result from the study

of analytic varieties can be applied to provide a simple additional

condition on the cost

φ(x) is analytic

that does not suffer from the first point, and provides a similarly

wide class of applications as the second point.
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ÃLojasiewicz’s inequality

Due originally to ÃLojasiewicz’s 1965 in order to characterise the

nature of level sets of analytic functions (analytic varieties).

Lemma 1 Let φ be a real analytic function on a neighbourhood of

x∗ in R
n such that ∇φ(x∗) = 0. Then there are constants c > 0 and

µ ∈ (0,1) such that

‖∇φ(x)‖ ≥ c|φ(x) − φ(x∗)|µ (1)

in some neighbourhood U of x∗.
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ÃLojasiewicz theorem background

In 1984 (20 years after the original result) ÃLojasiewicz proved a

corollary to his lemma relating to the convergence of gradient

descent flows of analytic functions. It was not his main research

focus and was published in an obscure workshop in Italy, published

in French.

It was picked up by some people working in dynamical evolution of

surfaces in the early nineties and used to show convergence of

pinching and separation behaviour of surfaces under curvature flows.

The importance of the result for its own sake was recognised in the

late nineties by the analytic geometry community and there are now

a dozen works where the result is proved in all sorts of manners.

One of the more focused expositions is Kurdyka, Mostowski and

Parusinski 2000.
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ÃLojasiewicz theorem

Let φ be a real analytic function and let x(t) be a C1 curve in R
n,

with ẋ(t) = dx
dt

(t) denoting its time derivative. Assume that there

exists a δ > 0 and a real τ such that for t > τ , x(t) satisfies the

angle condition

dφ(x(t))

dt
≡ 〈∇φ(x(t)), ẋ(t)〉 ≤ −δ‖∇φ(x(t))‖‖ẋ(t)‖ (2)

and a weak decrease condition
[

d

dt
φ(x(t)) = 0

]

⇒ [ẋ(t) = 0] . (3)

Then, either limt→+∞ ‖x(t)‖ = ∞, or there exits x∗ ∈ R
n such that

limt→+∞ = x∗.

This theorem is deliberately phrased in a similar manner to a

Lyapunov stability result.
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Proof

Assume that ‖x(t)‖ 6→ +∞.

Then x(t) has an accumulation point x∗ in R
n.

It follows from (2) that φ(x(t)) is non-increasing.

φ(x(t)) ↓ φ(x∗).
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Case (i)

There exists a t1 > τ such that φ(x(t1)) = φ(x∗).

It follows that

φ(x(t)) = φ(x∗),
d

dt
φ(x(t)) = 0

for all t ≥ t1.

The weak decrease condition ensures x(t) = x∗ for all t ≥ t1.

The weak decrease condition prevents endless wandering in the

critical set.
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Case (ii)

Assume without loss of generality that φ(x∗) = 0.

ÃLojasiewicz’s inequality implies

dφ(x(t))

dt
≤ −δ‖∇φ(x(t))‖‖ẋ(t)‖ ≤ −δc|φ(x(t))|µ‖ẋ(t)‖ (4)

holds in a neighbourhood of x∗.

Thus,

c1
d(φ(x(t)))1−µ

dt
≤ −‖ẋ(t)‖ (5)
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For t1 < t2 integrate this differential equation

L12 :=
∫ t2

t1
‖ẋ(t)‖dt ≤ c1((φ(x(t1)))

1−µ − (φ(x(t2)))
1−µ). (6)

Evaluate the limit as t2 → ∞

L1∞ ≤ c1(φ(x(t1)))
1−µ

But L1∞ is the length of the path x(t) from t1 to infinite time. If

this length is finite then it follows that

limx(t) = x∞ = x∗
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Mexican Hat counter example

Consider the cost

f(r, θ) :=











e
− 1

1−r2

[

1 − 4r4

4r4+(1−r2)4
sin

(

θ − 1
1−r2

)

]

if r < 1,

0 if r ≥ 1,

(7)

where (r, θ) denote polar coordinates in R
2.

The solution (r(t), θ(t)) of the gradient descent flow (expressed in

polar coordinates) satisfies

θ(t) =
1

1 − r(t)2
. (8)
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Strong Descent Conditions

Strong sufficient-decrease condition:

φ(xk) − φ(xk+1) ≥ σ‖∇φ(xk)‖‖xk+1 − xk‖ (9)

for all k and for some σ > 0.

This condition is satisfied under Armijo’s condition along with an

angle condition. It also accommodates the framework of

trust-region methods.

Weak decrease condition:
[

φ(xk+1) = φ(xk)
]

⇒
[

xk+1 = xk

]

(10)

Together, these two conditions are termed the Strong descent

conditions.
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Single point convergence of numerical line

descent methods

Let φ : R
n 7→ R be an analytic cost function. Let the sequence

{xk}k=1,2,... satisfy the strong descent conditions. Then, either

lim
k→∞

‖xk‖ = +∞,

or there exists a single point x∗ ∈ R
n such that

lim
k→∞

xk = x∗.

The proof is a technical adaptation of proof for continuous-case.

The key difference from classical proofs is that we use a total

bound on the length of the path rather than a local bound on

update steps close to the accumulation point.
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Trust region results

If the Cauchy decrease condition hold (standard condition)

m(0) − mk(xk+1 − xk) ≥ η3|∇φ(xk)|min

(

∆k,
|∇φ(xk)

||Bk||

)

and

Bk > 0, µ(Bk) := ||Bk||2||B
−1
k ||2 ≤ κ2

then the strong descent conditions hold. (Strong descent

conditions subsume the usual relative descent conditions).

As a consequence either

lim
k→∞

‖xk‖ = +∞,

or there exists a single point x∗ ∈ R
n such that

lim
k→∞

xk = x∗.
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Conclusions

➤ Classical convergence results for descent algorithms make very

weak assumptions on the cost.

➤ There is considerable benefit to be gained from looking at

properties cost, however, it is difficult to characterise global

properties of the cost function that lead to local convergence

properties.

➤ Analyticity of the cost function is one of the few global

properties of a cost function that has strong local implications.

➤ The convergence results presented provide a practical tool in

numerical descent method analysis for a wide class of costs of

considerable interest.
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