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CONVERGENCE OF THE LLOYD ALGORITHM
FOR COMPUTING CENTROIDAL VORONOI TESSELLATIONS∗

QIANG DU† , MARIA EMELIANENKO‡ , AND LILI JU§

Abstract. Centroidal Voronoi tessellations (CVTs) are Voronoi tessellations of a bounded
geometric domain such that the generating points of the tessellations are also the centroids (mass
centers) of the corresponding Voronoi regions with respect to a given density function. Centroidal
Voronoi tessellations may also be defined in more abstract and more general settings. Due to the
natural optimization properties enjoyed by CVTs, they have many applications in diverse fields.
The Lloyd algorithm is one of the most popular iterative schemes for computing the CVTs but its
theoretical analysis is far from complete. In this paper, some new analytical results on the local and
global convergence of the Lloyd algorithm are presented. These results are derived through careful
utilization of the optimization properties shared by CVTs. Numerical experiments are also provided
to substantiate the theoretical analysis.
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1. Introduction. A centroidal Voronoi tessellation (CVT) is a special Voronoi
tessellation of a given set such that the associated generating points are the centroids
(centers of mass) of the corresponding Voronoi regions with respect to a predefined
density function [7]. CVTs are indeed special as they enjoy very natural optimization
properties which make them very popular in diverse scientific and engineering appli-
cations that include art design, astronomy, clustering, geometric modeling, image and
data analysis, resource optimization, quadrature design, sensor networks, and numer-
ical solution of partial differential equations [1, 2, 3, 4, 7, 8, 9, 10, 11, 13, 14, 17, 15,
26, 29, 30, 31, 39, 44, 45]. In particular, CVTs have been widely used in the design
of optimal vector quantizers in electrical engineering [25, 28, 40, 43]. They are also
related to the so-called method of k-means [27] in clustering analysis. CVTs can also
be defined in more general cases such as those constrained to a manifold [12, 11] or
those corresponding to anisotropic metrics [16, 18], and other abstract settings [7, 9].

For modern applications of the CVT concept in large-scale scientific and engineer-
ing problems, it is important to develop robust and efficient algorithms for construct-
ing CVTs in various settings. Historically, a number of algorithms have been studied
and widely used [7, 19, 25, 27, 38]. A seminal work is the algorithm first developed
in the 1960s at Bell Laboratories by S. Lloyd which remains to this day one of the
most popular methods due to its effectiveness and simplicity. The algorithm was later
officially published in [35]. It is now commonly referred to as the Lloyd algorithm and
is the main focus of this paper.
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The Lloyd algorithm has many elegant and simple interpretations [7], but to
present it more rigorously, we begin with a more detailed description of the CVT.
First of all, we recall the concept of the Voronoi tessellation (or Voronoi diagram).
A Voronoi tessellation refers to a tessellation of a given domain Ω ∈ R

N by the
Voronoi regions {Vi}ki=1 associated with a set of given generating points or generators
{zi}ki=1 ⊂ Ω [22, 33, 41]. For each i, {Vi}ki=1 consists of all points in the domain Ω that
are closer to zi than to all the other generating points. For a given density function
ρ defined on Ω, we may define the centroids, or mass centers, of regions {Vi}ki=1 by

z∗i =

∫
Vi

yρ(y) dy∫
Vi

ρ(y) dy

.(1.1)

Then, a CVT refers to a Voronoi tessellation for which the generators themselves
are the centroids of their respective Voronoi regions, that is, zi = z∗i for all i. We
refer to [7] for a more comprehensive review of the mathematical theory and diverse
applications of CVTs.

In the seminal work of Lloyd on the least square quantization [35], one of the
algorithms proposed for computing the CVTs (referred to as the optimal quantizers
in the particular setting) is an iterative algorithm consisting of the following simple
steps: starting from an initial Voronoi tessellation corresponding to an old set of
generators, a new set of generators is defined by the mass centers of the Voronoi
regions. This process is continued until a certain stopping criterion is met. With the
notation given above, the Lloyd algorithm for constructing CVTs can be described
more precisely by the following procedure.

Algorithm 1.1 (Lloyd algorithm for computing CVTs).
Input:

Ω, the domain of interest; ρ, a density function defined on Ω;
k, number of generators; {zi}ki=1, the initial set of generators.

Output:
{Vi}ki=1, a CVT with k generators {zi}ki=1 in Ω.

Iteration:
1. Construct the Voronoi tessellation {Vi}ki=1 of Ω with generators {zi}ki=1.
2. Take the mass centroids of {Vi}ki=1 as the new set of generators {zi}ki=1.
3. Repeat procedures 1 and 2 until some stopping criterion is met.

Given a set of points {zi}ki=1 and a tessellation {Vi}ki=1 of the domain, we may
define the energy functional or the distortion value for the pair ({zi}ki=1, {Vi}ki=1) by

H
(
{zi}ki=1, {Vi}ki=1

)
=

k∑
i=1

∫
Vi

ρ(y)|y − zi|2 dy .

The minimizer of H necessarily forms a CVT which illustrates the optimization prop-
erty of the CVT [7]. Meanwhile, it is easy to see that the Lloyd algorithm is an energy
descent iteration, which gives strong indications of its practical convergence.

The Lloyd algorithm sparked enormous research efforts in later years and its
variants have been proposed and studied in many contexts for different applications
[25, 28, 40, 43, 35, 24, 23, 32, 34, 36]. A particular extension was made in [30] to
combine the deterministic features of the Lloyd algorithm with some random sampling
techniques. Despite its great success in applications and a large number of studies over
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the last few decades, only limited theoretical results on the Lloyd algorithm have been
obtained [7] and many fundamental issues remain open concerning its convergence.

In this paper, we present a systematic study on both the local and the global
convergence properties of the Lloyd algorithm. A number of new global convergence
theorems are rigorously proved, including the global convergence of subsequences for
any density functions, the global convergence of the whole sequence in one-dimensional
space, and the global convergence under some nondegeneracy conditions. We also
present some theoretical studies on the local convergence properties of the Lloyd
algorithm including estimates on the convergence rates. Some numerical results are
also presented to substantiate our theoretical investigation. Many of the techniques
employed in this paper, in fact, work for more general settings. As an illustration, we
analyze the application of the Lloyd algorithm to the construction of the constrained
CVTs on a manifold and present some similar convergence theorems.

The rest of the paper is organized as follows. We present our main convergence
theorems and some detailed discussions in section 2, followed by the extensions to
more general settings that are considered in section 3 and numerical results that are
given in section 4. Conclusions are drawn in section 5.

2. Convergence. Since Lloyd’s pioneering work, many studies have been made
on the convergence of the iteration [21, 24, 32, 36]. For example, the local conver-
gence has been proved for strictly logarithmically concave density functions in the
one-dimensional space [32]. An extension to CVTs defined on a circle is given in [12].
The convergence analysis in multidimensional space for general density functions is
far from complete. There are very few known conditions that guarantee the global
convergence. We now present some new results that have not been previously explored
in the literature.

For clarity, since a Voronoi tessellation is defined using a point set with k points
Y = {yi}ki=1 as the respective generators, let us redefine the energy functional, or the
distortion value, as a functional for a pair (Y,Z) with Z = (z1, z2, . . . , zk) ∈ R

kN :

H
(
Y,Z

)
=

k∑
i=1

∫
Vi(Y)

ρ(y)|y − zi|2 dy ,

where {Vi(Y)}ki=1 are the Voronoi regions with respect to {yi}ki=1. The Lloyd al-
gorithm may be viewed as a fixed point iteration of the so-called Lloyd map [7], a
mapping from a set of distinct generators {zi}ki=1 ⊂ Ω ⊂ R

N to the corresponding
mass centers, defined by T = (T1,T2, . . . ,Tk)

T : R
kN → R

kN with

Ti(Z) =

∫
Vi(Z)

yρ(y) dy∫
Vi(Z)

ρ(y) dy

.

A set of generators of a centroidal Voronoi tessellation is obviously a fixed point of
T. Moreover, the Lloyd algorithm is equivalent to a fixed point iteration of T:

Zn = T(Zn−1) for n ≥ 1 .

Notice that in general, the map T can be defined only on an open subset of
Ωk ⊂ R

kN as we need to ensure that the denominators are nonzero, that is, the
corresponding Voronoi regions are nonempty. This, in particular, implies that the



LLOYD ALGORITHM FOR COMPUTING CVTS 105

generating points must be distinct. With this being noted, one needs to be cautious
in applying general optimization theory concerning the convergence of energy descent
algorithms [37] as such abstract theory often requires the compactness of the domain
and the closedness of the associated map.

We now first quote some elementary facts for which one may find more detailed
discussions in [7] and [41].

Lemma 2.1. Let ρ be a positive and smooth density function defined on a smooth
bounded domain Ω. Then

(1) H is continuous and differentiable in Ω̄k × Ω̄k;

(2) H(Z,T(Z)) = minY∈Ω̄k H
(
Z,Y

)
;

(3) H(Z,Z) = minY∈Ω̄k H(Y,Z).
Next, we restate the strong connections between the map T, the CVTs, and the

Lloyd algorithm that we alluded to earlier.
Lemma 2.2. Let {Zn}∞1 be the sequence of generating sets produced by the Lloyd

algorithm. Then
(1) Zn = T(Zn−1);
(2) H(Zn,Zn) ≤ H(Zn−1,Zn−1).
The first conclusion of the above lemma is obvious while the second one follows

from properties (2) and (3) of Lemma 2.1 (for more details, see [7]). The results of
Lemma 2.2 imply that the distortion (energy) values decrease when they are evaluated
at consecutive iterations of the Lloyd algorithm; thus, the energy functional may be
viewed as a descent function of the map T, a fact that has been explored in [42],
though the notion of a closed algorithm does not readily apply here due to the possible
degeneracy of the Lloyd map T when some of the generating points either coincide
or become arbitrarily close.

It is perhaps also interesting to note that the Lloyd algorithm may be viewed
as an alternating variable algorithm for minimizing the energy functional, that is, in
which one alternates between minimizing H(Y,Z) with respect to Y and Z. It is well
known that there are examples of simple optimization problems with special objective
functions for which such an alternating variable algorithm does not always converge.
It is thus interesting to see whether the special features of the functional H can help
us to establish the convergence of the Lloyd algorithm.

2.1. Existence of convergent subsequence. We now present some new con-
vergence theorems concerning the Lloyd algorithm. It has been shown in [7] that if
the density function is positive, except on a measure zero set, stationary points of the
energy H are given by fixed points of the Lloyd map T. The result below justifies
that fixed points are attainable as a limit of Lloyd iterations.

Theorem 2.3. Any limit point Z of the Lloyd algorithm is a fixed point of the
Lloyd map, and thus, (Z,Z) is a critical point of H. Moreover, for an iteration started
with a given initial guess, all elements in the set of its limit points share the same
distortion value.

Proof. The Lloyd algorithm produces a sequence {Zn}, which is bounded in Ω̄k,
and thus it has a convergent subsequence. Let Z be a limit point; then there exists
a subsequence {Znj} such that Znj → Z as nj → ∞. Since the distortion values
are monotonically decreasing, it follows that all limiting points must share the same
distortion value.

Now, by properties of the iteration, H(Zn,Zn) is monotonically decreasing, so

H
(
Z,Z

)
= limH

(
Znj ,Znj

)
= inf H

(
Zn,Zn

)
.
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On the other hand, we know from Lemma 2.1 that

H1

(
U,Zn

)
|U=Zn

= 0 .

Here we use the notation H1 to denote the partial derivatives with respect to all the
components of the first argument (gradient with respect to the first argument U) and
H2 (the gradient) with respect to the second argument.

By continuity, we get

H1

(
Z,Z

)
= 0 .

Now, if H2(Z,U) |U=Z= 0, (Z,Z) is a critical point of H and we are done. Otherwise,
there exists some Y such that

H
(
Z,Y

)
< H

(
Z,Z

)
.

Thus, for small enough δ, we have for large enough nj that

H
(
Znj ,Y

)
< H

(
Z,Y

)
+ δ

< H
(
Z,Z

)
≤ H

(
Znj+1,Znj+1

)
≤ H

(
Znj ,Znj+1

)
.

This contradicts the fact that

H
(
Znj ,Znj+1

)
= minYH

(
Znj ,Y

)
.

Thus, the theorem is proved.
The above theorem may be simply classified as a theorem for the global conver-

gence of subsequences of the Lloyd algorithm. It leads to a more precise characteriza-
tion of the algorithm and a hint on why it rarely fails, while also motivating the global
convergence theorems for the whole sequence with some additional assumptions that
we are going to present next.

2.2. Global convergence. As an immediate consequence of Theorem 2.3, we
easily get the following result.

Corollary 2.4. If the fixed point is unique, the Lloyd algorithm converges
globally.

The uniqueness of the fixed point has been established in some special cases in
the literature. We will come back to this point later in the section. The unique-
ness is obviously not a necessary condition, but we may in fact derive the following
convergence theorem.

Theorem 2.5. If the set of fixed points with any particular distortion value is
finite, the Lloyd algorithm converges globally.

Proof. Convergence may fail only if the generated sequence possesses infinitely
many jumps from a neighborhood of one fixed point to another. Suppose U and V
are two fixed points with ||U − V|| = δ > 0. Denote the generated sequence of the
Lloyd algorithm as Zn, i.e., Zn+1 = T(Zn).
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Suppose Znr
→ U and Znl

→ V. Then for any δ > 0, there exists M > 0 such
that for all nr, nl > M we have ||Znr − U|| < δ/3 and ||Znl

− V|| < δ/3. The Lloyd
map is continuous near the fixed points (see Proposition 3.5 in [7]), so M can be
chosen to be suitably large to assure

||T(Znr
) − Znr

|| < δ/3.

Now suppose the sequence makes infinitely many jumps from subsequence {nr} to
{nl}; i.e., there are infinitely many μ, ν s.t. nlμ = nrν + 1. Then ||T(Znrν

) − V|| =
||Znrν +1 − V|| = ||Znlμ

− V||. Hence

δ = ||U − V|| ≤ ||U − Znrν
|| + ||Znrν

− T(Znrν
)|| + ||T(Znrν

) − V|| < δ.

We get a contradiction.
To this end, we have proved the global convergence of the Lloyd method in case

the set of fixed points, Γ, does not have an accumulation point. Note that there are
situations where Γ contains accumulation points and all points in Γ share the same
distortion value. For example, consider the CVTs formed with two generators in a
unit disc centered at the origin for the constant density function. Simple calculation
shows that the critical points fill a circle of radius 4/(3π). That is, due to the rotation
symmetry, any pair of points in the opposite ends of such a circle determines a CVT,
and all the critical points share the same energy values. Of course, cases like this
are very rare, so this fact does not present any difficulties for the convergence of the
Lloyd algorithm in most practical applications.

We now present another result which further substantiates the global convergence
of Lloyd algorithm in general.

Theorem 2.6. If the iterations in the Lloyd algorithm stay in a compact set,
where the Lloyd map T is continuous, then the algorithm is globally convergent to a
critical point of H.

Proof. The proposition follows from the global convergence theorem (GCT), [37]
and similar arguments have been presented in [42]. Indeed, the Lloyd algorithm
can be regarded as a descent method with the descent function given by H(·,T(·)).
Let {Zn}∞n=1 be a sequence generated by Zn+1 = T(Zn). All Zn’s are contained
in a compact set. If Γ is the set of solutions, H(Y,T(Y)) < H(Z,T(Z)) for all
Z /∈ Γ, Y ∈ T(Z) and H(Y,T(Y)) = H(Z,T(Z)) for all Z ∈ Γ, Y ∈ T(Z). The
continuity implies the closedness of T in a compact set. Applying the GCT, we get
the convergence of the sequence Zn, and the limit Z is a fixed point of T; thus, the
algorithm converges to a critical point of H.

We note that the compactness of the iteration seems to be intuitively true but it
has not been rigorously justified in the literature. The difficulty is related to showing
that during the iteration, the generators of the Voronoi regions do not get arbitrarily
close as the Lloyd map is not well defined at degenerating points, where some of the
generators may coincide.

2.3. The compactness in the one-dimensional case. Here, we take Ω =
[a, b], a compact interval, let ρ be smooth and positive, and assume that 0 < M1 ≤
||ρ||∞,Ω ≤ M2 < ∞. Let Mc = M2/M1; obviously, Mc ≥ 1. We verify that throughout
the Lloyd algorithm, the Voronoi regions remain nondegenerate (i.e., the generating
points remain distinct); thus, it will lead to the global convergence.

First, we have the following simple fact.
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Lemma 2.7. Given an interval V = [zl, zr] ∈ Ω, let z∗ be the mass centroid of V
with respect to the density function ρ. Then we have

L(V ) ≤ 2Mc min(z∗ − zl, zr − z∗),(2.1)

where L(V ) denotes the length of V .
Proof. Without loss of generality, we suppose that z∗ − zl ≤ zr − z∗. By the

definition of mass centroid, we have

z∗ − zl =

∫ zr

zl

(x− zl)ρ(x) dx∫ zr

zl

ρ(x) dx

≥ M1

2M2
(zr − zl),

so we get

zr − zl ≤ 2Mc(z
∗ − zl).

With z∗ − zl ≤ zr − z∗, we get the inequality (2.1).

Denote by {z(n)
i }ki=1 (z

(0)
1 < z

(0)
2 < · · · < z

(0)
k , n ≥ 0) the positions of the

generators after n iterations in the Lloyd method and by {V (n)
i = (y

(n)
i−1, y

(n)
i )}ki=1 the

corresponding Voronoi regions. Clearly, y
(n)
0 = a and y

(n)
k = b. We now present a

nondegeneracy result.
Lemma 2.8. For any 1 < i < k, we have

L(V
(n+1)
i ) < min

(
L(V

(n)
i ) + L(V

(n)
i+1)

2
+ L(V

(n+1)
i−1 ),

L(V
(n)
i ) + L(V

(n)
i−1)

2
+ L(V

(n+1)
i+1 )

)
.

Proof. First we have

L(V
(n+1)
i ) =

z
(n+1)
i+1 − z

(n+1)
i

2
+

z
(n+1)
i − z

(n+1)
i−1

2
.

Since z
(n+1)
i ∈ V

(n)
i , z

(n+1)
i+1 ∈ V

(n)
i+1 , we know

z
(n+1)
i+1 − z

(n+1)
i

2
<

L(V
(n)
i ) + L(V

(n)
i+1)

2
.

With L(V
(n+1)
i−1 ) > (z

(n+1)
i − z

(n+1)
i−1 )/2, we get

L(V
(n+1)
i ) <

L(V
(n)
i ) + L(V

(n)
i+1)

2
+ L(V

(n+1)
i−1 ).(2.2)

Similarly, we can prove that

L(V
(n+1)
i ) <

L(V
(n)
i ) + L(V

(n)
i−1)

2
+ L(V

(n+1)
i+1 ).(2.3)

Combining (2.2) and (2.3), we complete the proof.
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This leads to the following uniform lower bound between the adjacent generators
throughout the Lloyd algorithm.

Proposition 2.9. Let d
(n)
i = z

(n)
i+1 − z

(n)
i for i = 1, 2, . . . , k − 1. Then we have

d
(n)
i >

b− a

k42k−1Mk
c

, n > k ,(2.4)

and consequently,

L(V
(n)
i ) >

b− a

k42k−1Mk
c

, 1 < i < k, n > k ,(2.5)

and

L(V
(n)
i ) >

b− a

2k42k−1Mk
c

, i = 1 or k, n > k .(2.6)

Proof. Let us consider any d
(n)
i for 1 ≤ i ≤ k−1 and n > k. Since d

(n)
i = z

(n)
i+1−z

(n)
i

and y
(n−1)
i < z

(n)
i+1, we have

y
(n−1)
i − z

(n)
i < d

(n)
i .

Then from Lemma 2.7, we have

L(V
(n−1)
i ) < 2Mcd

(n)
i .(2.7)

On the other hand, we know that L(V
(n−1)
i ) > (z

(n−1)
i+1 − z

(n−1)
i )/2, which means

d
(n−1)
i < 2L(V

(n−1)
i ) < 4Mcd

(n)
i .

Again by Lemma 2.7, we know that

L(V
(n−2)
i−1 ) < 8M2

c d
(n)
i .

Repeating this process, we have for j = 1, . . . , i,

L(V
(n−j)
i−j+1) < 22j−1M j

c d
(n)
i .

Now let us consider j = i. Clearly, V
(n−i)
1 = (a, y

(n−i)
1 ), and we have

L(V
(n−i+1)
1 ) < L(V

(n−i)
1 ) + L(V

(n−i+1)
2 )

< 22i−1M i
cd

(n)
i + 22i−3M i−1

c d
(n)
i

< 4iM i
cd

(n)
i .

Furthermore, by Lemma 2.8, we get

L(V
(n−i+2)
2 ) <

L(V
(n−i+1)
2 ) + L(V

(n−i+1)
1 )

2
+ L(V

(n−i+2)
3 )

<
22i−3M i−1

c d
(n)
i + 4iM i

cd
(n)
i

2
+ 22i−5M i−2

c d
(n)
i

< 4iM i
cd

(n)
i .
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Repeating this process, we have for j = 1, . . . , i− 1,

L(V
(n−i+j)
j ) < 4iM i

cd
(n)
i ,

which means

L(V
(n−1)
i−1 ) < 4iM i

cd
(n)
i .

Using the same trick again and again, we finally arrive at

L(V
(n−1)
i−j ) < 4i+j−1M i

cd
(n)
i , j = 1, . . . , i− 1.

Combining (2.7) and the above equation with i, j ≤ k, we get

L(V
(n−1)
j ) < 42k−1Mk

c d
(n)
i , j = 1, . . . , i .(2.8)

By symmetry, we also have

L(V
(n−1)
j ) < 42k−1Mk

c d
(n)
i , j = i + 1, . . . , k .

Then, we get

b− a = L(Ω) =
k∑

j=1

L(V
(n−1)
j ) < k42k−1Mk

c d
(n)
i ,

which implies (2.4), (2.5), and (2.6).
We then have the following theorem.
Theorem 2.10. For any positive and smooth density function in one dimension

and a given set of k distinct generators as a starting point, the Lloyd map is continuous
at any of the iteration points.

Proof. In order to show the continuity it is enough to justify the fact that Voronoi
cells do not collapse. Indeed, after a sufficient number of steps, the latter is the
direct consequence of Proposition 2.9. For the initial finite number of iterations, the
continuity is obvious.

Finally, using Theorems 2.6 and 2.10, we get Theorem 2.11.
Theorem 2.11. The Lloyd algorithm is globally convergent in one dimension for

any positive and smooth density function.
Proof. Using the result of Theorem 2.10, we see that we can define a compact

set (away from the degenerating points) such that for any initial condition, the Lloyd
iteration (the images of the Lloyd maps) will stay in such a compact set after suffi-
ciently many steps. Thus, we may apply Theorem 2.6 to deduce the convergence of
the algorithm.

The above theorem provides an affirmative answer to the question of global con-
vergence of the Lloyd algorithm for the one-dimensional interval case without any
restrictive assumptions on the density functions. It remains an open problem to ver-
ify the same conclusion in the multidimensional case.

2.4. The logarithmic concave density for the one-dimensional case. Be-
yond the study on the global convergence, the characterization of the convergence
rate is often also important in practice. For instance, one may inquire if a geometric
convergence rate can be established. This is indeed verified in [7] for the constant
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density function corresponding to the unit interval [0, 1], where, via the spectral anal-
ysis of dT at the minimizer, the established geometric convergence rate r is shown to
satisfy

sin2

(
π

2(k + 1)

)
≤ r ≤ sin2

(
π

2(k − 1)

)
,(2.9)

so that asymptotically for large k (the total number of generators) the convergence
rate is on the order of 1 − π2/(4k2), as verified by the numerical experiments in the
next section.

In general, finding the convergence rate exactly is not possible, but estimates may
be obtained from the analytical bounds of the ‖dT‖.

First, it follows from Theorem 2.10 that T : Ωk → Ωk is a continuously dif-
ferentiable mapping away from the degenerate points, where the generating points
collapse. If this mapping T is a contraction, i.e., ||dT|| < 1 at all nondegenerate
points, the contraction mapping theorem can be used to get a good estimate of the
local convergence rate for the corresponding fixed point iteration, which in our case is
the Lloyd algorithm. Moreover, the contraction mapping properties also imply that
T has a unique fixed point z∗ in the set of nondegenerate points upon a consistent
ordering. Indeed, if there existed two fixed points x = {xi}ki=1 and y = {yi}ki=1, with
components corresponding to generating points whose coordinates are ordered from
small to large, that is, xi < xi+1 and yi < yi+1 for all indices i, then any point along
the line segment (1 − t)x + ty would remain nondegenerate and thus, by uniform
continuity, we may assume that

sup
0≤t≤1

||dT(x + t(y − x))|| ≤ α(x,y) < 1

for some constant α(x,y) independent of t. From the multidimensional form of the
mean value theorem, we then get

||x − y|| = ||Tx − Ty|| ≤ sup
0≤t≤1

||dT(x + t(y − x))|| ||x − y|| ≤ α||x − y|| ,

which is possible only if x = y; thus, we have the uniqueness. We refer to [32] for
similar discussions.

The concept of logarithmic concavity has played an important role in the classifi-
cation of one-dimensional density functions since it is a class of density functions for
which the Lloyd maps can be shown to be contractions [7].

Let us take a closer look at the structure of the Jacobian dT. By the notation of
the previous section, for the one-dimensional case (i.e., Ω = [a, b]), we have

∂Ti

∂zi
=

∂Ti

∂zi−1
+

∂Ti

∂zi+1
,

∂Ti

∂zi−1
=

ρ(z−i )(Ti − z−i )

2Ri
, and

∂Ti

∂zi+1
=

ρ(z+
i )(z+

i − Ti)

2Ri
,(2.10)

where Ri =
∫
Vi

ρ(y)dy and Vi = [z−i , z+
i ].

The following useful relation may be found in [7, 24]:

R2
i

⎛
⎝1 −

∑
j

∂Ti

∂zj

⎞
⎠ =

1

2

∫
Vi

∫
Vi

ρ(t)ρ(s)

(
ρ′(s)

ρ(s)
− ρ′(t)

ρ(t)

)
(t− s)dt ds(2.11)

at a fixed point z = T(z).
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Based on this, it can be shown that for the class of logarithmically concave func-
tions (i.e., (log ρ)′′ < 0), the spectral radius of the Jacobi map is less than 1 in the
neighborhood of a fixed point. In fact, it is easy to show that the same estimate holds
for all points as the identity (2.11) remains universally true. Hence the fixed point of
the Lloyd map is unique when the generators are ordered in an increasing manner.
The following convergence of the Lloyd algorithm for the logarithmically concave case
is easily one of the most popular results studied in the literature.

Proposition 2.12. In one dimension, in case of logarithmically concave density,
the Lloyd algorithm converges globally to the unique fixed point.

The class of logarithmically concave functions covers many densities used in prac-
tice, for instance, linear densities and normal distributions. Notice that the result
quoted in Proposition 2.12 does not provide the estimate of the actual distance of the
spectral radius from 1. We now focus on getting estimates on θ = 1 − ||dT|| more
accurately. For this, we use a more precise measure of the logarithmic concavity for
the density, that is, we assume that

ρ(t)ρ(s)

(
ρ′(s)

ρ(s)
− ρ′(t)

ρ(t)

)
(t− s) ≥ c20(t− s)2(2.12)

for some constant c0 > 0 and any (t, s) except for a set of measure zero. Upon
availability of an estimate of this type, the following conclusion can be reached:

1 − ||dT|| ≥ c20 min
i

{
R−2

i

∫
Vi

∫
Vi

(t− s)2dtds

}
∼ c20

12
min

{
h2
i

ρ(ζi)2

}

for some ζi ∈ Vi and hi = z+
i − z−i . Let h = mini hi, the smallest Voronoi cell size,

and M = supx∈[0,1] ρ(x); then we can rewrite the above result as follows.
Lemma 2.13. For any smooth density ρ satisfying (2.12) on the unit interval,

the Lloyd algorithm is globally convergent with a geometric convergence rate no larger
than

||dT|| ≤ 1 − c20
12

h2

M2
.(2.13)

The convergence estimate obtained here essentially depends on characteristics
c0 and the relative size of a Voronoi cell in comparison with the density distribution.
Since the minimizer of the energy gives a nondegenerate Voronoi diagram (Proposition
3.5 in [7]), there is a positive lower bound for the distance h in the neighborhood of
the solution in terms of the density and the number of generators. Moreover, for large
k, due to the asymptotic equipartition of energy property in one dimension [7], after
sufficiently many iterations, one can roughly estimate each cell size as

hi ∼ k−1ρ(ζi)
−1/3

∫ 1

0

ρ1/3(x)dx .

Thus, we have effectively θ = 1 − ||dT|| ≥
(
c1
k

)2
, where for large k,

c1 ∼ c0√
12M4/3

∫ 1

0

ρ1/3(x)dx .(2.14)
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The estimate (2.14) in general tends to be rather pessimistic; for instance, for a
linear perturbation of the constant density ρ(x) = 1 − εx for a small ε, we have
c1 ∼ 3

4
√

12
(1 − (1 − ε)4/3), which is significantly different from π/2 in the limit as

ε → 0 (for the constant density case, c1 can be estimated more accurately from the
estimate (2.9) as π/2). This is due to the fact that the class of constant densities shares
zero value of the parameter c0. Nevertheless, it allows us to reach the conclusion that
the geometric convergence rate for all densities satisfying (2.12) is comparable with
that of the constant density in the sense that θ remains of the order k−2 for large
values of k.

We expect that such a conclusion holds for even more general density functions,
but the rigorous analysis is still not available.

3. Extensions to constrained CVTs. We now briefly illustrate how much of
our earlier analysis can be extended to more general settings, where the concept of
CVTs can be defined. The example to be used is of constrained CVTs on general
surfaces as defined in [12].

Consider a compact and smooth surface S ⊂ R
N . Similar to the definition of

conventional CVTs, for a given set of points {zi}ki=1 ∈ S, one may define their corre-
sponding Voronoi regions on S by

Vi = {x ∈ S : |x − zi| < |x − zj | for j = 1, . . . , k, j �= i }.(3.1)

For a density function ρ defined on the surface S and positive almost everywhere,
one may encounter a problem with the original definition when one defines centroidal
Voronoi tessellations {(zi, Vi)}ki=1 of S: the mass centroids {z∗i }ki=1 of {Vi}ki=1 as de-
fined by (1.1) do not in general belong to S. For example, the mass centroid of
any region on the surface of a sphere is always located in the interior of the sphere.
Therefore, a generalized definition of a mass centroid on surfaces is needed. For each
Voronoi region Vi ⊂ S, we call zci the constrained mass centroid of Vi on S if zci is a
solution of the following problem:

min
z∈S

Fi(z) , where Fi(z) =

∫
Vi

ρ(x)|x − z|2 dx .(3.2)

The integral over {Vi} is understood as a standard surface integration on S. Note
that the constrained mass centroid coincides with the conventional mass center if S is
replaced by R

N and Vi is a convex subset of R
N . Clearly, for each i = 1, . . . , k, Fi(·)

is convex. Since S is compact and ρ(·) is continuous almost everywhere, there exists
a constant C such that for any z1, z2 ∈ S, we have

|Fi(z1) − Fi(z2)| =

∣∣∣∣
∫
Vi

ρ(x)(|x − z1|2 − |x − z2|2) dx
∣∣∣∣ ≤ C|z1 − z2| .

Thus, Fi is continuous and compact, and consequently we have the existence of solu-
tions of (3.2), although the solution may not be unique.

We call the tessellation defined by (3.1) a constrained centroidal Voronoi tessella-
tion (CCVT) if and only if the points {zi}ki=1 which serve as the generators associated
with the Voronoi regions {Vi}ki=1 are the constrained mass centroids of those regions
[12]. This definition of CCVT conforms with that of CVT for general spaces and
clearly the energy H defined in (3.2) for CVTs is still valid for CCVTs. In Figure
1, we give two examples of CCVTs, one with six generators constrained to a circle
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Fig. 1. Examples of CCVTs for a circle (dots are for generators and dashes show the partition
of the constrained Voronoi regions) and for a sphere (dots are generators and lines are planar
projections of Voronoi edges). Only portion in one hemisphere is shown.

(one-dimensional curve) and the other with 162 generators constrained to a sphere
(two-dimensional surface). Both correspond to the constant density.

The following generalized Lloyd algorithm for computing CCVTs was proposed
in [12].

Algorithm 3.1 (Lloyd algorithm for computing CCVTs).
Input:

S, the surface of interest; ρ, a density function defined on S;
k, number of generators; {zi}ki=1, the initial set of generators.

Output:
{Vi}ki=1, a CCVT with k generators {zi}ki=1 in S.

Iteration:
1. Construct the Voronoi tessellation {Vi}ki=1 of S with generators {zi}ki=1.
2. Take the constrained mass centroids of {Vi}ki=1 as the new set of

generators {zi}ki=1.
3. Repeat the procedures 1 and 2 until some stopping criterion is met.

It is clear that Algorithm 3.1 is almost identical to Algorithm 1.1 except the
constrained mass centroids are used instead of standard mass centroids in step 2 of
each iteration. So Algorithm 3.1 again can be regarded as a fixed point iteration of
T, the Lloyd map for CCVTs which now is defined to map the current generators to
the constrained mass centroids of the corresponding Voronoi regions. It is transparent
that the analysis done in sections 2.1 and 2.2 can be applied here, so we obtain the
following general results similar to Theorems 2.3 and 2.5.

Theorem 3.1. Any limit point Z of the Lloyd algorithm for computing CCVTs
is a fixed point of the Lloyd map for CCVTs, and thus, (Z,Z) is a stationary point
of H. Moreover, for an iteration started with a given initial guess, all elements in
the set of its limit points share the same distortion value. Furthermore, if the set of
fixed points with the same distortion value is finite, the Lloyd iteration for CCVTs
converges globally.

Now suppose that S is a smooth curve without self-intersection such as S = f(Ω),
where Ω = [a, b] for some smooth function f ; then using the analysis similar to that
provided in section 2.3, we obtain the following result.

Theorem 3.2. The Lloyd algorithm for computing CCVTs of S is globally con-
vergent for any positive and smooth density function when S is a bounded smooth
curve.
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Note that, unlike the one-dimensional conventional CVT in R
1, we have not given

any general estimate here on the convergence rate of the Lloyd algorithm for CCVTs.
Even for the case where S is a bounded smooth curve, the geometric convergence rate
has not been carefully derived, though the notion of contraction for the Lloyd map has
been studied for density functions which share similar logarithmic concave properties
with respect to the angular variable in the case of a perfect disc [12]. There are also
natural generalizations of the Lloyd algorithm to the anisotropic CVTs as defined in
[16] and also [18]. The details are omitted here.

4. Numerical examples. To further substantiate some of our earlier analysis,
we now present a few numerical examples. All examples given below correspond to
the Lloyd iteration on the interval [0, 1].

4.1. Constant density. In Figure 2, we show a log-log plot of both the numer-
ical estimates and the analytical estimate 1 − ||dT|| ∼ π2/(4k2) with respect to the
constant density for various values of k, the number of generating points. The two
estimates match very well and the results verify that the analytical estimates are very
sharp.

4.2. Nonconstant density. Consider the case of ρ(x) = e−x2

. Figure 3 com-
pares the analytical estimate with the computed norms of the Jacobian for different
system sizes. Here, the analytical estimate is based on c21k

−2 with the constant c1
estimated by (2.14) with c0 =

√
2/e, M = 1, and

∫ 1

0
ρ1/3(x)dx =

√
3π ·Erf(1/

√
3)/2,

which leads to c1 =
√
π ·Erf(1/

√
3)/2e ∼ 0.19. The plot is again given in log-log scale,

and we see that although we underestimated the exact value of c1, the slope was equal
to −2 for both estimates, which indicates good agreement of the asymptotic rates on
the order of 1 −O(1/k2).

Figure 4 gives a similar comparison for ρ(x) = 1 + x4 cos(πx). The numerical
data in this case were compared to the asymptotic rate of 1 − π2/4k2.

Figures 5–7 provide some insight into the dependence of the actual convergence
factor on the number of generators and on the density function. The convergence
factor in the plot is defined as the ratio of the 2-norm defects between two consecutive
iterations after sufficiently many steps. A density function of the form ρ(x) = 1 +
ε cos2 (πx) is chosen. In Figure 5, we fix the number of generators to be k = 16, while
letting ε vary in the range [10−10, 1010]. It is seen that the actual convergence factor
and the theoretical estimate given by ||dT|| agree well in general.
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Fig. 2. Convergence of Lloyd method for constant density.
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Fig. 3. Convergence factor of Lloyd method for ρ(x) = e−x2
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Fig. 4. Convergence factor of Lloyd method for ρ(x) = 1 + x4 cos(πx).
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Fig. 5. Convergence factor for k = 16 and ρ(x) = 1 + ε cos2 (πx) with ε = 10−10 : 1010.

To see the effect of the increasing k, in Figure 6 we fix ε and let the number of
generators vary. The two estimates again compare well with each other.

To see more clearly the dependence of convergence rates on k, we again plot the
data in a log-log scale for the density ρ(x) = 1 + 103 cos2 (πx) against the number of
generators. The slope value of −2 is very evident from Figure 7, which is consistent
with our earlier analysis.
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Fig. 6. Convergence factor for ρ(x) = 1 + 103 cos2 (πx) and k = 2 : 40.
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Fig. 7. Asymptotic behavior of the convergence factor for ρ(x) = 1 + 103 cos2 (πx).

5. Conclusions. In many practical applications of the centroidal Voronoi tes-
sellations, it is very important to find their reliable and efficient constructions. Lloyd
algorithm has been one of the most widely used techniques for such purposes. In this
paper, a systematic study of both the local and the global convergence properties
of the Lloyd algorithm is presented. We established several new convergence theo-
rems, made further characterizations on the properties of the iteration, and performed
relevant numerical experiments. We also extended our discussion to more general set-
tings such as the construction of the CCVTs on a manifold. Still, one important
open problem remains, that is, the global convergence of the Lloyd algorithm in any
dimensions for any smooth density. The nondegeneracy of the Lloyd map should be
true in this general case, but its proof has not been produced rigorously except for
the one-dimensional case discussed here. We hope that our present study generates
some interest along this direction, as there are certainly many issues to be considered
further—in particular, the improvement of the Lloyd method for large number of
generators. Even in the one-dimensional case, both our theoretical estimates and the
experiments indicate the possible slow convergence rates. Recently, we have worked on
making improvements in two directions: one is to explore the coupling with Newton-
like methods, and another is to introduce the ideas of multilevel schemes [5, 6, 20].
As previously studied in [30], one may also consider parallel implementation issues for
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these approaches. In conclusion, there are still many interesting problems associated
with the construction of CVTs that can be investigated in the future.
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