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CONVERGENCE OF THE MULTIGRID V -CYCLE ALGORITHM
FOR SECOND-ORDER BOUNDARY VALUE PROBLEMS

WITHOUT FULL ELLIPTIC REGULARITY

SUSANNE C. BRENNER

Abstract. The multigrid V -cycle algorithm using the Richardson relaxation
scheme as the smoother is studied in this paper. For second-order elliptic
boundary value problems, the contraction number of the V -cycle algorithm
is shown to improve uniformly with the increase of the number of smoothing
steps, without assuming full elliptic regularity. As a consequence, the V -cycle
convergence result of Braess and Hackbusch is generalized to problems without
full elliptic regularity.

1. Introduction

In this paper we consider the effect of the regularity of a second-order elliptic
boundary value problem on the asymptotic behavior of the contraction number of
a V -cycle multigrid algorithm with respect to the number of smoothing steps.

Let Ω be a polygonal domain in R2 with reentrant corners. Consider the varia-
tional problem of finding u ∈ H1

0 (Ω) such that

a(u, v) = F (v) ∀ v ∈ H1
0 (Ω) ,(1.1)

where F ∈ H−1(Ω), the dual space of H1
0 (Ω), and

a(u, v) =
∫

Ω

[p(x)∇u · ∇v + r(x)uv] dx ∀u, v ∈ H1(Ω) .(1.2)

We assume that p(x) and r(x) are C1 on Ω̄, p(x) > 0 on Ω̄, and r(x) ≥ 0 on Ω̄.
It is clear that

|a(v1, v2)| ≤ C‖v1‖H1(Ω)‖v2‖H1(Ω) ∀ v1, v2 ∈ H1(Ω) ,(1.3)

and the Poincaré inequality implies that

a(v, v) ≥ c‖v‖2H1(Ω) ∀ v ∈ H1
0 (Ω) .(1.4)

Here C and c are positive constants which depend on Ω and the coefficients p(x)
and r(x).
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508 SUSANNE C. BRENNER

The estimates (1.3)–(1.4) and the Riesz representation theorem imply (cf. [16,
14]) that (1.1) is uniquely solvable and

‖u‖H1(Ω) . ‖F‖H−1(Ω) .(1.5)

In order to avoid the proliferation of constants, we henceforth use the notation
A . B (or B & A) to represent the inequality A ≤ constant×B, where the constant
is positive and independent of all the variables in the inequality, and it is always
assumed to be mesh-independent (i.e., it is independent of mesh sizes and mesh
levels). The notation A ≈ B is equivalent to the statement that A . B and B . A.

Because of the presence of reentrant corners, the solution of (1.1) does not have
H2(Ω) regularity for F ∈ L2(Ω). Instead (cf. Corollary 5.12 and Section 14 of [18],
and also the related work in [21, 27]), there exists a number α satisfying

1
2
< α < 1

such that u ∈ H1+α(Ω) ∩H1
0 (Ω) for F ∈ H−1+α(Ω), and the following regularity

estimate holds:

‖u‖H1+α(Ω) . ‖F‖H−1+α(Ω) .(1.6)

Let T1 be a triangulation of Ω, and the triangulations Tk, k = 2, 3, . . . , be ob-
tained from Tk−1 by connecting midpoints. The P1 finite element spaces associated
with the triangulations Tk will be denoted by Vk. The kth level discrete problem
for (1.1) is to find uk ∈ Vk such that

a(uk, v) = F (v) ∀ v ∈ Vk .(1.7)

On each level we introduce a discrete inner product

(v1, v2)k = h2
k

∑
p∈Vk

v1(p)v2(p) ∀ v1, v2 ∈ Vk ,(1.8)

where Vk is the set of all the internal vertices of Tk. We can then represent the
variational form a(·, ·) on Vk × Vk by the operator Ak : Vk −→ Vk defined by

(Akv1, v2)k = a(v1, v2) ∀ v1, v2 ∈ Vk .(1.9)

Note that Ak is symmetric positive definite with respect to (·, ·)k.
The discrete problem (1.7) can be rewritten as

Akuk = fk ,(1.10)

where fk ∈ Vk is defined by

(fk, v)k = F (v) ∀ v ∈ Vk .(1.11)

The V -cycle multigrid algorithm (cf. [23, 25, 5, 10]) is an iterative solver for
equations of the form (1.10). Given g ∈ Vk and initial guess z0 ∈ Vk, it produces
MGV(k, g, z0,m1,m2) as an approximate solution for the equation

Akz = g ,(1.12)

where m1 (resp. m2) is the number of pre-smoothing (resp. post-smoothing) steps.
The following are the known results concerning the convergence of the V -cycle
multigrid algorithm.

License or copyright restrictions may apply to redistribution; see https://www.ams.org/journal-terms-of-use
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In the case of full elliptic regularity where α = 1, Braess and Hackbusch [22, 4, 23]
(cf. also [1, 25, 7]) proved that there exists a positive mesh-independent constant
C such that

‖z −MGV(k, g, z0,m1,m2)‖a(1.13)

≤
[

C

C + [max(m1, 1) max(m2, 1)]1/2

]
‖z − z0‖a

for m1 +m2 ≥ 1, where the energy norm ‖ · ‖a is defined by

‖v‖a =
√
a(v, v) ∀v ∈ H1

0 (Ω) .(1.14)

For the case where α < 1, Zhang [33] and Bramble and Pasciak [8, 9] (cf. also
[31, 32, 20, 11, 28]) showed that there exists a positive constant δ < 1, independent
of the meshes and the number of smoothing steps, such that

‖z −MGV(k, g, z0,m1,m2)‖a ≤ δ‖z − z0‖a .(1.15)

Note that, in contrast to (1.13), the estimate (1.15) does not indicate that the
contraction number of the V -cycle algorithm decreases with the increase of the
number of smoothing steps.

In this paper we develop a new additive approach to the convergence of the
V -cycle algorithm and obtain the following estimate (cf. Lemma 6.8):

‖z −MGV(k, g, z0, 0,m)‖a . m−α/2‖z − z0‖a(1.16)

for m sufficiently large. Combining (1.15) and (1.16), we have (cf. Theorem 6.9)

‖z −MGV(k, g, z0,m1,m2)‖a(1.17)

≤
[

C

C + [max(m1, 1) max(m2, 1)]α/2

]
‖z − z0‖a

for m1 + m2 ≥ 1, where the positive constant C is mesh-independent. In other
words, the estimate (1.13) is generalized to boundary value problems without full
elliptic regularity.

Remark 1.1. The new result (1.17) is obtained only for the V -cycle algorithm us-
ing the Richardson relaxation scheme as the smoother (cf. Section 2), while the
estimates (1.13) and (1.15) are valid for many other smoothers. The generalization
of (1.17) to other smoothers will be investigated in future work.

The rest of the paper is organized as follows. The multigrid V -cycle algorithm
with the Richardson relaxation scheme as the smoother is described in Section 2.
Tools for the analysis of the multigrid V -cycle algorithm are developed in Sec-
tions 3–5. The estimates (1.16) and (1.17) are then proved in Section 6.

2. A multigrid V -cycle algorithm

In this section we describe the V -cycle multigrid algorithm with Richardson
relaxation as the smoother. First we note that the P1 finite element spaces Vk are
nested, i.e.,

V1 ⊂ V2 ⊂ · · · ⊂ H1
0 (Ω) ,(2.1)

and the mesh sizes hk = maxT∈Tk diamT are related by

hk = 2hk+1 for k = 1, 2, 3, . . . .(2.2)
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It is also easy to see that the mesh-dependent inner product defined by (1.8) satisfies

(v, v)k ≈ ‖v‖2L2(Ω) ∀ v ∈ Vk ,(2.3)

and then (1.3) and a standard inverse estimate (cf. [16, 14]) imply that the spectral
radius ρ(Ak) satisfies

ρ(Ak) . h−2
k .(2.4)

The computation of MGV(k, g, z0,m1,m2) is defined recursively as follows.

Algorithm 2.1. For k = 1, we define

MGV(1, g, z0,m1,m2) = A−1
1 g .(2.5)

For k ≥ 2, we obtain MGV(k, g, z0,m1,m2) in three steps.
1. (Pre-Smoothing) For j = 1, 2, . . . ,m1, compute zj by

zj = zj−1 +
1

Λk
(g −Akzj−1) .(2.6)

2. (Coarse Grid Correction) Compute zm1+1 by

zm1+1 = zm1 +MGV(k − 1, Ik−1
k (g −Akzm1), 0,m1,m2) .(2.7)

3. (Post-Smoothing) For j = m1 + 2, . . . ,m1 +m2 + 1, compute zj by

zj = zj−1 +
1

Λk
(g −Akzj−1) .(2.8)

Finally we set MGV(k, g, z0,m1,m2) to be zm1+m2+1.
In (2.6) and (2.8), the number Λk satisfies

ρ(Ak) ≤ Λk ,(2.9)

and the intergrid transfer operator Ik−1
k : Vk −→ Vk−1 in (2.7) is defined by

(Ik−1
k v, w)k−1 = (v, w)k ∀ v ∈ Vk , w ∈ Vk−1 .(2.10)

In view of (2.4), we can always take Λk = Ch−2
k , where the positive constant C is

mesh-independent.
Next we recall briefly some well-known formulas that describe the errors of V -

cycle algorithms. More details can be found in [26, 23, 5, 10].
Let Ek,m1,m2 : Vk −→ Vk be the operator connecting the initial error and the

final error of the multigrid V -cycle algorithm applied to (1.12), i.e.,

Ek,m1,m2(z − z0) = z −MGV(k, g, z0,m1,m2) .(2.11)

The operator Ek,m1,m2 can be described in terms of the Ritz projection operators
Pk : H1

0 (Ω) −→ Vk defined by

a(Pkζ, v) = a(ζ, v) ∀ ζ ∈ H1
0 (Ω) , v ∈ Vk ,(2.12)

and the operators Rk : Vk −→ Vk defined by

Rk = Idk −
1

Λk
Ak ,(2.13)

where Idk is the identity operator on Vk.

Remark 2.2. It follows immediately from (1.14) and (2.12) that

‖Pkζ‖a ≤ ‖ζ‖a ∀ ζ ∈ H1
0 (Ω) ,(2.14)

‖ζ − Pkζ‖a = inf
v∈Vk

‖ζ − v‖a ∀ ζ ∈ H1
0 (Ω) .(2.15)
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Note that (1.9), (2.10) and (2.12) imply

Ik−1
k Akv = Ak−1Pkv ∀ v ∈ Vk .(2.16)

Using (2.11), (2.13) and (2.16), we can express the effects of (2.6)–(2.8) as

z − zm1 = Rm1
k (z − z0) ,

z − zm1+1 =
(
Idk − Pk−1 + Ek−1,m1,m2Pk−1

)
(z − zm1) ,(2.17)

z − zm1+m2+1 = Rm2
k (z − zm1+1) .

Comparing (2.11) and (2.17), we obtain the recursive relation

(2.18) Ek,m1,m2v = Rm2
k

(
Idk − Pk−1 + Ek−1,m1,m2Pk−1

)
Rm1
k v

∀ v ∈ Vk , k ≥ 2 ,

and of course we also have (cf. (2.5))

E1,m1,m2v = 0 ∀ v ∈ V1 .(2.19)

In particular the operators Ek,m = Ek,0,m and E∗k,m = Ek,m,0 satisfy

Ek,mv = Rmk
(
Idk − Pk−1 + Ek−1,mPk−1

)
v ∀ v ∈ Vk , k ≥ 2 ,(2.20)

E1,mv = 0 ∀ v ∈ V1 ,(2.21)

E∗k,mv =
(
Idk − Pk−1 + E∗k−1,mPk−1

)
Rmk v ∀ v ∈ Vk , k ≥ 2 ,(2.22)

E∗1,mv = 0 ∀ v ∈ V1 .(2.23)

The following well-known relations (cf. [26, 23]) can be derived by mathematical
induction using (2.18)–(2.23):

a(Ek,mv1, v2) = a(v1, E
∗
k,mv2) ∀ v1, v2 ∈ Vk ,(2.24)

Ek,m1,m2 = Ek,m2E
∗
k,m1

for k = 1, 2, . . . .(2.25)

The estimate (1.16) can be rewritten as

‖Ek,mv‖a . m−(α/2)‖v‖a ∀ v ∈ Vk .(2.26)

We will establish (2.26) in Section 6 using the following additive expression for
Ek,m, which follows immediately from (2.20) and (2.21).

Ek,mv =
k∑
j=2

Rmk R
m
k−1 · · ·Rmj (Pj − Pj−1)v ∀ v ∈ Vk .(2.27)

Remark 2.3. The operators Ek,m (k ≥ 2) can also be written as (cf. [5, 10])

Ek,mv = Rmk (Idk − Pk−1 +Rmk−1Pk−1) · · · (Idk − P2 +Rm2 P2)(Idk − P1)v(2.28)

for v ∈ Vk. This multiplicative representation of Ek,m plays a key role in the proofs
of many of the known V -cycle convergence results. Using (2.27) instead of (2.28) is
the point of departure for the new approach to V -cycle convergence developed in
this paper.
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3. Consequences of the elliptic regularity

First we note that (1.5) and (1.6) imply a scale of elliptic regularity estimates.
Following the notation in [30, 21], we define, for s ≥ 0, the space H̃s(Ω) =

{v ∈ Hs(Ω) : ṽ ∈ Hs(R2)}, where ṽ is the trivial extension of v to R2, and
‖v‖H̃s(Ω) = ‖ṽ‖Hs(R2). The spaces H̃s(Ω) for s ≥ 0 form a scale of interpolation
spaces. Moreover, for s − 1

2 6∈ Z, the space H̃s(Ω) coincides with Hs
0 (Ω), and the

norms ‖ · ‖H̃s(Ω) and ‖ · ‖Hs(Ω) are equivalent on H̃s(Ω) = Hs
0 (Ω). Consequently,

for s ≥ 0 and s − 1
2 6∈ Z, we have H−s(Ω) = [Hs

0 (Ω)]′ = [H̃s(Ω)]′ with equivalent
norms.

Let 0 ≤ s ≤ α and u ∈ H1
0 (Ω) satisfy (1.1) for F ∈ [H̃1−s(Ω)]′. The interpolation

theory of Sobolev spaces (cf. [30, 3]) and the estimates (1.5) and (1.6) imply that
u ∈ H1+s(Ω) and

‖u‖H1+s(Ω) . ‖F‖[H̃1−s(Ω)]′ .(3.1)

It follows from (3.1) that T : H1+s(Ω) ∩H1
0 (Ω) −→ [H̃1−s(Ω)]′ defined by

Tφ = −∇ · (p(x)∇φ) + r(x)φ

is an isomorphism for 0 ≤ s ≤ α; i.e., T is one-to-one, onto and the following
estimate holds:

‖Tφ‖[H̃1−s(Ω)]′ ≈ ‖φ‖H1+s(Ω) ∀φ ∈ H1+s(Ω) ∩H1
0 (Ω) .(3.2)

Moreover, by a density argument, the variational form a(·, ·) has a unique ex-
tension from H1

0 (Ω)×H1
0 (Ω) to

[
H1+s(Ω) ∩H1

0 (Ω)
]
× H̃1−s(Ω) such that

a(φ, ψ) = (Tφ)(ψ) ∀φ ∈ H1+s(Ω) ∩H1
0 (Ω) , ψ ∈ H̃1−s(Ω) .(3.3)

The Sobolev spaces H1+s(Ω) ∩ H1
0 (Ω) and H̃1−s(Ω) satisfy a duality relation

with respect to the extended variational form a(·, ·), as stated in the next lemma.

Lemma 3.1. The following estimates hold for 0 ≤ s ≤ α :

‖φ‖H1+s(Ω) ≈ sup
ψ∈H̃1−s(Ω)

ψ 6=0

a(φ, ψ)
‖ψ‖H̃1−s(Ω)

∀φ ∈ H1+s(Ω) ∩H1
0 (Ω) ,(3.4)

‖ψ‖H̃1−s(Ω) ≈ sup
φ∈H1+s(Ω)∩H1

0 (Ω)
φ 6=0

a(φ, ψ)
‖φ‖H1+s(Ω)

∀ψ ∈ H̃1−s(Ω) .(3.5)

Proof. The estimates (3.4) and (3.5) follow immediately from (3.2), (3.3) and the
standard duality formulas

‖F‖[H̃1−s(Ω)]′ = sup
ψ∈H̃1−s(Ω)

ψ 6=0

F (ψ)
‖ψ‖H̃1−s(Ω)

∀F ∈ [H̃1−s(Ω)]′ ,

‖ψ‖H̃1−s(Ω) = sup
F∈[H̃1−s(Ω)]′

F 6=0

F (ψ)
‖F‖[H̃1−s(Ω)]′

∀ψ ∈ H̃1−s(Ω) .

Lemma 3.1 can be used to measure the approximation properties of the finite
element spaces Vk in lower order Sobolev norms.
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Lemma 3.2. The following estimate holds :

‖ζ − Pkζ‖H̃1−s(Ω) . hsk‖ζ‖a ∀ 0 ≤ s ≤ α , ζ ∈ H1
0 (Ω) .(3.6)

Proof. There exists an operator (cf. [17, 29]) Ik : H1
0 (Ω) −→ Vk such that

‖φ− Ikφ‖H1(Ω) . hsk‖φ‖H1+s(Ω) ∀φ ∈ H1+s(Ω) ∩H1
0 (Ω) .(3.7)

By (1.3), (2.15) and (3.7) we have

‖φ− Pkφ‖a . hsk‖φ‖H1+s(Ω) ∀φ ∈ H1+s(Ω) ∩H1
0 (Ω) .(3.8)

Using (1.14), (2.12), (3.5), and (3.8), we can establish (3.6) as follows:

‖ζ − Pkζ‖H̃1−s(Ω) ≈ sup
φ∈H1+s(Ω)∩H1

0 (Ω)
φ 6=0

a(φ, ζ − Pkζ)
‖φ‖H1+s(Ω)

= sup
φ∈H1+s(Ω)∩H1

0 (Ω)
φ 6=0

a(φ− Pkφ, ζ)
‖φ‖H1+s(Ω)

. sup
φ∈H1+s(Ω)∩H1

0 (Ω)
φ 6=0

‖φ− Pkφ‖a‖ζ‖a
‖φ‖H1+s(Ω)

. hsk‖ζ‖a .

4. Mesh dependent norms

Following [2] we define the mesh dependent norms ||| · |||s,k (s ∈ R) by

|||v|||s,k =
√

(Askv, v)k ∀ v ∈ Vk .(4.1)

It is clear from (1.3), (1.4), (1.9), (1.14), (2.3), (2.4), and (4.1) that

|||v|||1,k = ‖v‖a ≈ ‖v‖H1(Ω) ∀ v ∈ Vk ,(4.2)

|||v|||0,k ≈ ‖v‖L2(Ω) ∀ v ∈ Vk ,(4.3)

|||v|||s,k . ht−sk |||v|||t,k ∀ v ∈ Vk , 0 ≤ t ≤ s ≤ 2 .(4.4)

It also follows immediately from (4.1) that

|||v|||1+t,k = sup
w∈Vk
w 6=0

a(v, w)
|||w|||1−t,k

∀ v ∈ Vk , t ∈ R .(4.5)

In particular, we have the following generalized Cauchy-Schwarz inequality:

|a(v1, v2)| ≤ |||v1|||1+t,k|||v2|||1−t,k ∀ v1, v2 ∈ Vk , t ∈ R .(4.6)

These mesh dependent norms are related to the Sobolev norms, in fact (cf.
[2, 12]),

|||v|||s,k ≈ ‖v‖H̃s(Ω) ∀ v ∈ Vk , 0 ≤ s ≤ 1 .(4.7)

The following smoothing properties of Rk are well known (cf. [2, 23]):

|||Rmk v|||s,k . (hk
√
m)t−s|||v|||t,k ∀ v ∈ Vk , 0 ≤ t ≤ s ≤ 2 ,(4.8)

|||Rkv|||s,k ≤ |||v|||s,k ∀ v ∈ Vk , s ∈ R .(4.9)

The combined effect of the smoothing and approximation properties is given in
the next lemma.
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Lemma 4.1. The following estimates hold for 0 ≤ s ≤ α :

|||Rmk (Idk − Pk−1)v|||1−s,k . m(s−α)/2hsk‖v‖a ∀ v ∈ Vk .(4.10)

Proof. Combining (2.2), (3.6), (4.2), (4.7) and (4.8), we have

|||Rmk (Idk − Pk−1)v|||1−s,k . (hk
√
m)s−α|||v − Pk−1v|||1−α,k

≈ (hk
√
m)s−α‖v − Pk−1v‖H̃1−α(Ω)

. (hk
√
m)s−αhαk−1‖v‖a . m(s−α)/2hsk‖v‖a .

Let β be a fixed number satisfying 0 < β < 1
2 . Note that (cf. [13, 30]) Vk ⊂

H1+β
0 (Ω) = H1+β(Ω)∩H1

0 (Ω). Later on we will need the relation between ||| · |||1+β,k

and ‖ · ‖H1+β(Ω) stated in the next lemma, whose proof uses the error estimate (cf.
[16, 19, 14])

‖ζ −Πkζ‖a . hβk‖ζ‖H1+β(Ω) ∀ ζ ∈ H1+β
0 (Ω)(4.11)

for the nodal interpolation operator Πk, and also (cf. [13]) the estimate

‖Πkζ‖H1+β(Ω) . ‖ζ‖H1+β(Ω) ∀ ζ ∈ H1+β
0 (Ω) .(4.12)

Lemma 4.2. The following estimate holds :

|||v|||1+β,k ≈ ‖v‖H1+β(Ω) ∀ v ∈ Vk .(4.13)

Proof. It follows from (3.4), (4.5) and (4.7) that

|||v|||1+β,k = sup
w∈Vk
w 6=0

a(v, w)
|||w|||1−β,k

≈ sup
w∈Vk
w 6=0

a(v, w)
‖w‖H̃1−β(Ω)

. sup
ψ∈H̃1−β (Ω)

ψ 6=0

a(v, ψ)
‖ψ‖H̃1−β(Ω)

. ‖v‖H1+β(Ω) ∀ v ∈ Vk .

To prove the converse, we first observe that, since Vk ⊂ H1+β
0 (Ω), the Ritz

projection operator Pk can be extended to H̃1−β(Ω), by (3.3), so that

a(v, Pkψ) = a(v, ψ) ∀ v ∈ Vk , ψ ∈ H̃1−β(Ω) .(4.14)

Let φ ∈ H1+s
0 (Ω) be arbitrary. We find, by (3.4), (3.8), (4.2), (4.11), (4.12),

(4.14) and standard inverse estimates,

a(φ, Pkψ) = a(Pkφ−Πkφ, ψ) + a(Πkφ, ψ)

. ‖ψ‖H̃1−β(Ω)

(
‖Pkφ−Πkφ‖H1+β(Ω) + ‖Πkφ‖H1+β(Ω)

)
. ‖ψ‖H̃1−β(Ω)

(
h−β‖Pkφ−Πkφ‖H1(Ω) + ‖φ‖H1+β(Ω)

)
. ‖ψ‖H̃1−β(Ω)‖φ‖H1+β(Ω) ,

which, in view of (3.5), implies

‖Pkψ‖H̃1−β(Ω) . ‖ψ‖H̃1−β(Ω) .(4.15)

Let v ∈ Vk be arbitrary. We have, by (4.6), (4.7), (4.14) and (4.15),

a(v, ψ) = a(v, Pkψ) ≤ |||v|||1+β,k|||Pkψ|||1−β,k
. |||v|||1+β,k‖Pkψ‖H̃1−β(Ω)

. |||v|||1+β,k‖ψ‖H̃1−β(Ω) ∀ψ ∈ H̃1−β(Ω) ,

and therefore, in view of (3.4), ‖v‖H1+β(Ω) . |||v|||1+β,k ∀ v ∈ Vk.
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5. Relations between mesh dependent norms on consecutive levels

Our goal in this section is to show that, given any θ ∈ (0, 1], we have

|||v|||21−β,k+1 ≤ (1 + θ2)|||v|||21−β,k + Cθ−4h2β
k ‖v‖

2
a ∀ v ∈ Vk ,(5.1)

|||Πk−1v|||21−β,k−1 ≤ (1 + θ2)|||v|||21−β,k + Cθ−4h2β
k ‖v‖2a ∀ v ∈ Vk ,(5.2)

where β is the number chosen in Section 4, and C (and any other constant in this
section and the next) is a generic positive constant independent of the meshes and
θ, which can take different values at different places. The estimates (5.1) and (5.2)
play a key role in the convergence analysis in Section 6. Their proofs involve several
lemmas.

Let us first introduce another mesh dependent inner product ((·, ·))k on Vk:

((v1, v2))k = h2
k

∑
p∈Vk

n(p)v1(p)v2(p) ∀ v1, v2 ∈ Vk ,(5.3)

where the function n(·) is defined by

n(p) =
1
6
× (the number of triangles in Tk that have p as a vertex) .(5.4)

It is easy to see from (5.4) and the construction of Tk that n(·) is independent of
mesh levels, and

n(p) = 1 for p ∈ Vk \ V1 .(5.5)

The operator Ak : Vk −→ Vk is defined by

((Akv1, v1))k = a(v1, v2) ∀ v1, v2 ∈ Vk .(5.6)

We can then define the corresponding mesh dependent norms by

||||v||||s,k =
√

((Askv1, v2))k .(5.7)

Remark 5.1. It is clear that all the properties of ||| · ||| stated in Section 4 also hold
for |||| · ||||. A V -cycle algorithm can also be defined by replacing the inner product
(·, ·)k with ((·, ·))k throughout Section 2. The two algorithms are different only by a
diagonal preconditioner in the smoothing steps. For the algorithm based on ((·, ·))k,
the analysis in Section 6 can be carried out using the simpler estimates (5.8) and
(5.11) below.

Our plan is to first prove the (simpler) analogs of (5.1) and (5.2) for the new mesh
dependent norms, and then obtain (5.1) and (5.2) through the relation between the
norms ||| · |||1−β,k and |||| · ||||1−β,k.

Lemma 5.2. The following estimate holds :

||||v||||1−β,k+1 ≤ ||||v||||1−β,k ∀ v ∈ Vk .(5.8)

Proof. It is clear from (5.6) and (5.7) that

||||v||||1,k+1 = ‖v‖a = ||||v||||1,k ∀ v ∈ Vk .(5.9)

Let the parents of q ∈ Vk+1 \ Vk be denoted by q′ and q′′, i.e., q′, q′′ ∈ Vk and
q is the midpoint between them. Note that each p ∈ Vk is the parent of exactly
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6n(p) many vertices in Vk+1 \ Vk. Let v ∈ Vk be arbitrary. Using (2.2), (5.3) and
(5.5) we can estimate ||||v||||20,k+1 by

||||v||||20,k+1 = h2
k+1

( ∑
p∈Vk

n(p)[v(p)]2 +
∑

q∈Vk+1\Vk

[v(q)]2
)

= h2
k+1

( ∑
p∈Vk

n(p)[v(p)]2 +
∑

q∈Vk+1\Vk

[
v(q′) + v(q′′)

2

]2)

≤ h2
k+1

( ∑
p∈Vk

n(p)[v(p)]2 +
∑

q∈Vk+1\Vk

[v(q′)]2 + [v(q′′)]2

2

)

= h2
k+1

( ∑
p∈Vk

n(p)[v(p)]2 +
∑
p∈Vk

6n(p)
[v(p)]2

2

)
= h2

k

∑
p∈Vk

n(p)[v(p)]2 = ||||v||||20,k .

Hence we have

||||v||||0,k+1 ≤ ||||v||||0,k ∀ v ∈ Vk .(5.10)

The estimate (5.8) follows from (5.9), (5.10) and interpolation between the (real)
Hilbert scales

(
Vk, |||| · ||||s,k

)
and

(
Vk+1, |||| · ||||s,k+1

)
(cf. Theorem B.4 in [5]).

Lemma 5.3. There exists a positive constant C such that

||||Πk−1v||||21−β,k−1 ≤ (1 + θ2)||||v||||21−β,k + Cθ−2h2β
k ‖v‖

2
a(5.11)

∀ θ ∈ (0, 1], v ∈ Vk.

Proof. We have, by (1.14), (2.2), (4.11), (5.9) and the analog of (4.13) for |||| · ||||1+β,k,

||||Πk−1v||||21,k−1 ≤
(
‖v‖a + ‖v −Πk−1v‖a

)2
≤ (1 + θ2)‖v‖2a + (1 + θ−2)‖v −Πk−1v‖2a(5.12)

≤ (1 + θ2)||||v||||21,k + c1θ
−2h2β

k ||||v||||21+β,k ∀ v ∈ Vk .

Let the parents of p ∈ Vk \ Vk−1 be denoted by p′ and p′′. Given any v ∈ Vk, we
have the following elementary estimate:

[v(p′)]2

2
+

[v(p′′)]2

2

=

(
v(p) + [v(p′)− v(p)]

)2
2

+

(
v(p) + [v(p′′)− v(p)]

)2
2

(5.13)

≤ (1 + θ2)[v(p)]2 + (1 + θ−2)
(

[v(p′)− v(p)]2 + [v(p′′)− v(p)]2

2

)
.

Summing up (5.13) over all p ∈ Vk \ Vk−1, we find

3
∑

q∈Vk−1

n(q)[v(q)]2 ≤ (1 + θ2)
∑

p∈Vk\Vk−1

[v(p)]2 + c2θ
−2|v|2H1(Ω) .(5.14)
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It follows from (2.2), (5.3), (5.5), (5.14) and the analogs of (4.2) and (4.4) for |||| · ||||s,k
that

||||Πk−1v||||20,k−1 = h2
k−1

∑
q∈Vk−1

n(q)[v(q)]2

≤ h2
k

 ∑
q∈Vk−1

n(q)[v(q)]2+(1 + θ2)
∑

p∈Vk\Vk−1

[v(p)]2+c2θ−2|v|2H1(Ω)

(5.15)

≤ h2
k

(1 + θ2)
∑
p∈Vk

n(p)[v(p)]2 + c3θ
−2||||v||||21,k


≤ (1 + θ2)||||v||||20,k + c4θ

−2h2β
k ||||v||||2β,k ∀ v ∈ Vk .

Let C = max(c1, c4). Observe that

(1 + θ2)||||v||||2s,k + Cθ−2h2β
k ||||v||||

2
s+β,k = 〈Askv, v〉θ,k ∀ v ∈ Vk ,

where the inner product 〈·, ·〉θ,k is defined by

〈v1, v2〉θ,k = (1 + θ2)((v1, v2))k + Cθ−2h2β
k ((Aβkv1, v2))k ∀ v1, v2 ∈ Vk .

Therefore, for each k, the spaces
(
Vk,
√

(1 + θ2)|||| · ||||2s,k + Cθ−2h2β
k |||| · ||||2s+β,k

)
form

a Hilbert scale.
By interpolating (5.12) and (5.15) between the Hilbert scales

(
Vk−1, |||| · ||||s,k−1

)
and

(
Vk,
√

(1 + θ2)|||| · ||||2s,k + Cθ−2h2β
k |||| · ||||2s+β,k

)
, we have

||||Πk−1v||||21−β,k−1 ≤ (1 + θ2)||||v||||21−β,k + Cθ−2h2β
k ||||v||||21,k ∀ v ∈ Vk .(5.16)

The estimate (5.11) follows from (5.9) and (5.16).

Remark 5.4. It is important that the interpolation between (real) Hilbert scales is
exact (cf. Theorem B.4 in [5]) so that no additional constant appears in front of
the term (1 + θ2)||||v||||21−β,k on the right-hand side of (5.11).

The following lemmas relate the two mesh dependent norms.

Lemma 5.5. There exists a positive constant C such that

|||v|||20,k ≤ (1 + θ2)||||v||||20,k + Cθ−4h2
k‖v‖2a ∀ θ ∈ (0, 1] , v ∈ Vk ,(5.17)

||||v||||20,k ≤ (1 + θ2)|||v|||20,k + Cθ−4h2
k‖v‖2a ∀ θ ∈ (0, 1] , v ∈ Vk .(5.18)

Proof. We will only establish (5.18) since the proof of (5.17) is completely analo-
gous. Also it suffices to show that

||||v||||20,k ≤ (1 + C′`−2)|||v|||20,k + C′′`4h2
k‖v‖2H1(Ω) ∀ v ∈ Vk , ` = 1, 2, . . . .(5.19)

Let D = diam Ω and

d = min
p,q∈V1
p 6=q

|p− q|

be the minimum of the distances among the distinct vertices of T1.
It is clear from the analog of (2.3) for |||| · ||||0,k that, for `hk ≥ d

2 ,

||||v||||20,k ≤ c1`4h2
k‖v‖2H1(Ω) ∀ v ∈ Vk ,(5.20)

and (5.19) follows.
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Figure 1.

In the case where `hk < d
2 , we define for each q ∈ V1 the (open) polygon Ωq

whose vertices are those points in Vk that belong to the edges in T1 and which are
` steps away from q. The Ωq’s for an L-shaped domain are depicted in Figure 1,
where k = 4 and ` = 3.

It is easy to see that the Ωq’s are pairwise disjoint and

diam Ω ≈ `hk .(5.21)

Let v ∈ Vk and K =
⋃
q∈V1

Ω̄q. By (5.5) we have

h2
k

∑
p∈Vk\K

n(p)[v(p)]2 = h2
k

∑
p∈Vk\K

[v(p)]2 .(5.22)

Let q ∈ V1. We can estimate the contribution of the vertices of Tk in Ω̄q to the
left-hand side of (5.19) by

h2
k

∑
p∈Vk∩Ω̄q

n(p)[v(p)]2

= h2
k

∑
p∈Vk∩Ω̄q

n(p)
(
vq + [v(p)− vq]

)2(5.23)

≤ (1 + `−2)h2
k

 ∑
p∈Vk∩Ω̄q

n(p)

 v2
q + (1 + `2)h2

k

∑
p∈Vk∩Ω̄q

n(p)[v(p)− vq]2 ,

where the number vq is defined by

vq =
1
|Ωq|

∫
Ωq

v dx .(5.24)

A direct calculation using (5.21), (5.24) and the Bramble-Hilbert lemma (cf.
[6, 19]) shows that

h2
k

∑
p∈Vk∩Ω̄q

n(p)[v(p)− vq]2 ≤ c2‖v − vq‖2L2(Ωq) ≤ c3`2h2
k|v|2H1(Ωq)

.(5.25)
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Using (5.5) we have∑
p∈Vk∩Ω̄q

n(p) = (n(q)− 1) +
∑

p∈Vk∩Ω̄q

1 ≤ (1 + c4`
−2)

∑
p∈Vk∩Ω̄q

1 .(5.26)

We find from (5.23), (5.25) and (5.26) that

h2
k

∑
p∈Vk∩Ω̄q

n(p)[v(p)]2 ≤ (1 + c5`
−2)h2

k

( ∑
p∈Vk∩Ω̄q

v2
q

)
+ c6`

4h2
k|v|2H1(Ωq)

.(5.27)

On the other hand we also have, by (5.25),

h2
k

∑
p∈Vk∩Ω̄q

v2
q ≤ (1 + `−2)h2

k

∑
p∈Vk∩Ω̄q

[v(p)]2 + (1 + `2)h2
k

∑
p∈Vk∩Ω̄q

[vq − v(p)]2(5.28)

≤ (1 + `−2)h2
k

∑
p∈Vk∩Ω̄q

[v(p)]2 + c7`
4h2
k|v|2H1(Ωq)

.

Combining (5.27) and (5.28) we obtain

h2
k

∑
p∈Vk∩Ω̄q

n(p)[v(p)]2 ≤ (1 + c8`
−2)h2

k

∑
p∈Vk∩Ω̄q

[v(p)]2 + c9`
4h2
k|v|2H1(Ωq)

.(5.29)

The estimate (5.19) is established by summing up (5.22) and (5.29) (over all
q ∈ V1).

Lemma 5.6. There exists a positive constant C such that

|||v|||21−β,k ≤ (1 + θ2)||||v||||21−β,k + Cθ−4h2β
k ‖v‖

2
a ∀ θ ∈ (0, 1] , v ∈ Vk ,(5.30)

||||v||||21−β,k ≤ (1 + θ2)|||v|||21−β,k + Cθ−4h2β
k ‖v‖2a ∀ θ ∈ (0, 1] , v ∈ Vk .(5.31)

Proof. The estimates (4.2), (4.4) and (5.18) imply that there exists a positive con-
stant C such that

||||v||||20,k ≤ (1 + θ2)|||v|||20,k + Cθ−4h2β
k |||v|||2β,k ∀ v ∈ Vk .(5.32)

On the other hand it follows from (4.2) and (5.9) that

||||v||||21,k = |||v|||21,k ≤ (1 + θ2)|||v|||21,k + Cθ−4h2β
k |||v|||

2
1+β,k ∀ v ∈ Vk .(5.33)

The estimate (5.31) follows from interpolating (5.32) and (5.33) between the

Hilbert scales
(
Vk, |||| · ||||s,k

)
and

(
Vk,
√

(1 + θ2)||| · |||2s,k + Cθ−4h2β
k ||| · |||2s+β,k

)
.

The proof of (5.30) is similar.

The estimates (5.1) and (5.2) follow from Lemma 5.2, Lemma 5.3 and Lemma 5.6.

6. Convergence analysis of the V -cycle algorithm

Let us first introduce some operators that will simplify many expressions in the
convergence analysis. For 2 ≤ j < k, the operator Tk,j,m : Vj −→ Vk is defined by

Tk,j,m = Rmk R
m
k−1 · · ·Rmj+1 ,(6.1)

and the operator Tj,k,m : Vk −→ Vj defined by

Tj,k,m = PjR
m
j+1 · · ·Pk−1R

m
k(6.2)

is the transpose of Tk,j,m with respect to the variational form a(·, ·). The operator
Tk,k,m is defined to be the identity operator Idk on Vk.
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Remark 6.1. It is more precise to write

Tk,j,m = Rmk I
k
k−1R

m
k−1I

k−1
k−2 · · ·Rmj+1I

j+1
j ,

where I`+1
` : V` −→ V`+1 is the natural injection. Such natural injections have been

suppressed in Section 2 and (6.1).

Let K ≥ 2 be an arbitrary but fixed integer and

vk = (Pk − Pk−1)v ∀ v ∈ VK , 2 ≤ k < K .(6.3)

Note that the vk’s are pairwise orthogonal with respect to a(·, ·), and
K∑
k=2

‖vk‖2a = ‖v − P1v‖2a ≤ ‖v‖2a .(6.4)

Moreover, we have

vk = (Idk − Pk−1)vk .(6.5)

We can write, by (2.27) and (6.1)–(6.3),

a(EKv,EKv)

=
K∑

j,k=2

a(RmK · · ·Rmj+1R
m
j (Pj − Pj−1)v,RmK · · ·Rmk+1R

m
k (Pk − Pk−1)v)(6.6)

=
K∑
k=2

a(Rmk vk, Tk,K,mTK,k,mR
m
k vk)

+ 2
∑

2≤j<k≤K
a(Rmj vj , Tj,k,mTk,K,mTK,k,mR

m
k vk) .

The properties of the operators Tj,k,m are therefore crucial for the convergence
analysis. From (2.14) and (4.9) we have, for j, k ≥ 2, the trivial estimate

|||Tj,k,mv|||1,j ≤ |||v|||1,k ∀ v ∈ Vk .(6.7)

It follows from (4.2), (4.10), (6.5) and (6.7) that

a(Rmk vk, Tk,K,mTK,k,mR
m
k vk) ≤ |||Rmk vk|||21,k . m−α‖vk‖2a .(6.8)

In order to estimate the remaining terms on the right-hand side of (6.6) we need
some less trivial properties of the operators Tj,k,m. We begin the study of these
properties with a lemma on the Ritz projection operators.

Lemma 6.2. There exists a positive constant C such that

|||Pk−1v|||21−β,k−1 ≤ (1 + θ2)|||v|||21−β,k + Cθ−4h2β
k ‖v‖2a(6.9)

∀ θ ∈ (0, 1], v ∈ Vk.

Proof. It follows from (2.14) and (5.2) that

|||Pk−1v|||21−β,k−1 ≤ (1 + θ2)|||Pk−1v|||21−β,k + c1θ
−4h2β

k ‖Pk−1v‖2a
≤ (1 + c2θ

2)|||v|||21−β,k(6.10)

+
[
c3θ
−2|||Pk−1v − v|||21−β,k + c1θ

−4h2β
k ‖v‖

2
a

]
.

The estimate (6.9) follows from (2.2), (3.6), (4.7) and (6.10).

The properties of the operators Tj,k,m are given in the next three lemmas.
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Lemma 6.3. The following estimate holds :

|||Tk,K,mv|||1−β,k . |||v|||1−β,K + hβk‖v‖a ∀ v ∈ VK , 2 ≤ k ≤ K .(6.11)

Proof. The case where k = K is trivial. For 2 ≤ k < K, it follows from (2.2), (4.9),
(6.2), (6.7) and (6.9) that, for any v ∈ VK ,

|||Tk,K,mv|||21−β,k
= |||PkRmk+1Tk+1,K,mv|||21−β,k(6.12)

≤ (1 + θ2
k)|||Rmk+1Tk+1,K,mv|||21−β,k+1 + c∗θ

−4
k h2β

k ‖Rmk+1Tk+1,K,mv‖2a
≤ (1 + θ2

k)|||Tk+1,K,mv|||21−β,k+1 + c∗θ
−4
k h2β

k ‖v‖
2
a ,

where θk ∈ (0, 1] is arbitrary, and c∗ is independent of the meshes and θk.
Iterating (6.12) we find

|||Tk,K,mv|||21−β,k ≤
[
K−1∏
`=k

(1 + θ2
` )

]
|||v|||21−β,K(6.13)

+ c∗

[
K−1∑
`=k

h2β
` θ
−4
`

`−1∏
r=k

(1 + θ2
r)

]
‖v‖2a ,

where the θ`’s (k ≤ ` ≤ K − 1) are arbitrary numbers in (0, 1].
By taking θ` = 3−β(`−k)/4, we deduce from (2.2) and (6.13) that

|||Tk,K,mv|||21−β,k ≤ ω|||v|||21−β,K + c∗ωηh
2β
k ‖v‖

2
a ∀ v ∈ VK ,(6.14)

where

ω =
∞∏
n=0

(
1 + 3−(β/2)n

)
and η =

∞∑
n=0

(
3
4

)βn
.(6.15)

The estimate (6.11) follows from (6.14) and (6.15).

Lemma 6.4. The following estimate holds :

|||TK,k,mv|||1−β,K . |||v|||1−β,k ∀ v ∈ Vk , 2 ≤ k ≤ K .(6.16)

Proof. The case where k = K is trivial. For 2 ≤ k < K, using (4.9), (5.1), (6.1)
and (6.7) we obtain

|||TK,k,mv|||21−β,K = |||RmKTK−1,k,mv|||21−β,K
≤ |||TK−1,k,mv|||21−β,K(6.17)

≤ (1 + θ2
K−1)|||TK−1,k,mv|||21−β,K−1 + c∗θ

−4
K−1h

2β
K−1‖v‖2a

∀ v ∈ Vk, where θK−1 ∈ (0, 1] is arbitrary and the positive constant c∗ is indepen-
dent of the meshes and θK .

By iterating (6.17) we find

|||TK,k,mv|||21−β,K ≤ c∗

K−1∑
`=k

h2β
` θ
−4
`

∏
`+1≤r≤K−1

(1 + θ2
r)

 ‖v‖2a(6.18)

+

[
K−1∏
`=k

(1 + θ2
` )

]
|||v|||21−β,k ∀ v ∈ Vk ,

where θk, . . . , θK−1 ∈ (0, 1] are arbitrary.
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As in the proof of Lemma 6.3, by taking θ` = 3−β(`−k)/4 for k ≤ ` ≤ K − 1, we
obtain from (6.18) the estimate

|||TK,k,mv|||21−β,K . |||v|||21−β,k + h2β
k ‖v‖2a ∀ v ∈ Vk ,

which together with (4.2) and (4.4) imply (6.16).

Lemma 6.5. The following estimate holds :

|||Tk,K,mTK,k,mv|||1−β,k . |||v|||1−β,k ∀ v ∈ Vk , 2 ≤ k ≤ K .(6.19)

Proof. From (4.2), (4.4), (6.7), (6.11) and (6.16) we have, for any v ∈ Vk,

|||Tk,K,mTK,k,mv|||1−β,k . |||TK,k,mv|||1−β,K + hβk‖TK,k,mv‖a
. |||v|||1−β,k + hβk‖v‖a
. |||v|||1−β,k .

Lemma 6.6. Let 2 ≤ j < k and θ ∈ (0, 1]. There exists a mesh-independent
positive integer mθ such that

|||Tj,k,mv|||1−β,j ≤ (1 + 2θ2)(k−j)/2|||v|||1−β,k ∀ v ∈ Vk ,m ≥ mθ .(6.20)

Proof. From (4.2), (4.8), (4.9), (6.2) and (6.9), we have

|||Tj,k,mv|||21−β,j = |||PjRmj+1Tj+1,k,mv|||21−β,j
≤ (1 + θ2)|||Rmj+1Tj+1,k,mv|||21−β,j+1 + Cθ−4h2β

j+1‖Rmj+1Tj+1,k,mv‖2a
≤ (1 + θ2)|||Tj+1,k,mv|||21−β,j+1 + Cm−βθ−4|||Tj+1,k,mv|||21−β,j+1 ,

where C is independent of the meshes and θ.
Therefore, by choosing mθ large enough, we have

|||Tj,k,mv|||21−β,j ≤ (1 + 2θ2)|||Tj+1,k,mv|||21−β,j+1 ∀ v ∈ Vk ,m ≥ mθ .(6.21)

The estimate (6.20) follows by iterating (6.21).

Given any θ ∈ (0, 1], we can now estimate the terms in the second sum on the
right-hand side of (6.6) by using (2.2), (4.6), (4.8), Lemma 6.5 and Lemma 6.6 as
follows.

For 2 ≤ j < k ≤ K, we have

a(Rmj vj , Tj,k,mTk,K,mTK,k,mR
m
k vk)

≤ |||Rmj vj |||1+β,j |||Tj,k,mTk,K,mTK,k,mRmk vk|||1−β,j
≤C(1 + 2θ2)(k−j)/2|||Rmj vj |||1+β,j |||Rmk vk|||1−β,k

≤Cm−β(1 + 2θ2)(k−j)/2
(
hk
hj

)β
(h−βj |||R

dm/2e
j vj |||1−β,j)(6.22)

× (h−βk |||Rmk vk|||1−β,k)

≤Cm−β
[
(1 + 2θ2)1/(2β)2−1

]β(k−j)
(h−βj |||R

dm/2e
j vj |||1−β,j)

× (h−βk |||Rmk vk|||1−β,k) ,

where m ≥ mθ for a sufficiently large mθ.
The following strengthened Cauchy-Schwarz inequality provides the last key es-

timate for the convergence analysis.
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Lemma 6.7. Let v ∈ VK be arbitrary and vk (2 ≤ k ≤ K) be defined by (6.3).
There exists a positive integer M independent of the meshes and v such that

a(Rmj vj , Tj,k,mTk,K,mTK,k,mR
m
k vk) . m−α

(
2
3

)β(k−j)
‖vj‖a‖vk‖a(6.23)

for 2 ≤ j < k ≤ K and m ≥M .

Proof. Combining (4.10), (6.5) and (6.22), we find

a(Rmj vj , Tj,k,mTk,K,mTK,k,mR
m
k vk)

≤ Cm−β
[
(1 + 2θ2)1/(2β)2−1

]β(k−j)
(m(β−α)/2‖vj‖a)(m(β−α)/2‖vk‖a)

≤ Cm−α
[
(1 + 2θ2)1/(2β)2−1

]β(k−j)
‖vj‖a‖vk‖a ∀m ≥ mθ .

The estimate (6.23) follows by choosing a small θ so that (1+2θ2)1/(2β)2−1 < 2
3 .

We are now ready to prove the main results of this paper.

Lemma 6.8. There exists a positive integer M such that

‖EK,mv‖a . m−α/2‖v‖a ∀ v ∈ VK ,m ≥M ,K = 1, 2, 3, . . . .(6.24)

Proof. The case K = 1 is trivial since E1,m = 0. For K ≥ 2, we have, by (6.4),
(6.6), (6.8), (6.23) and the discrete Young’s inequality (cf. [24]),

‖EK,mv‖2a = a(EK,mv,EK,mv) . m−α
K∑

j,k=2

(
2
3

)β|k−j|
‖vj‖a‖vk‖a

. m−α
[ ∞∑
n=0

(
2
3

)βn] K∑
k=2

‖vk‖2a

. m−α
K∑
k=2

‖vk‖2a . m−α‖v‖2a .

As a corollary to Lemma 6.8 and the result (1.15), we have an error estimate for
the V -cycle algorithm with any number of smoothing steps.

Theorem 6.9. Given any g ∈ Vk and any initial guess z0 ∈ Vk, the approximate
solution MGV(k, g, z0,m1,m2) of (1.12) obtained by Algorithm 2.1 satisfies the
error estimate

‖z −MGV(k, g, z0,m1,m2)‖a(6.25)

≤
[

C

C + [max(m1, 1) max(m2, 1)]α/2

]
‖z − z0‖a

for m1 +m2 ≥ 1, where the positive constant C is mesh independent.

Proof. It follows from (1.15) that

‖Ek,mv‖a ≤ δ‖v‖a ∀ v ∈ Vk , k = 1, 2, . . . ,(6.26)

where δ ∈ (0, 1) is independent of the meshes and the number of smoothing steps.
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From Lemma 6.8 we have

‖Ek,mv‖a ≤ C̃m−α/2‖v‖a ∀ v ∈ Vk ,m ≥M ,k = 1, 2, . . . .(6.27)

Let M∗ ≥M be chosen large enough so that

C̃m−α/2 ≤ 2C̃
2C̃ +mα/2

∀m ≥M∗ + 1 ,(6.28)

and then let C be chosen large enough so that

C ≥ 2C̃ and δ ≤ C

C +M
α/2
∗

.(6.29)

It follows from (6.26)–(6.29) that

‖Ek,mv‖a ≤
[

C

C +mα/2

]
‖v‖a ∀ v ∈ Vk , k = 1, 2, . . . ,

i.e., the estimate (6.25) holds for m1 = 0 and m2 = m.
The general case of (6.25) follows easily from this special case and the relations

(2.24) and (2.25).

Remark 6.10. The results of this paper can be easily generalized to two- and three-
dimensional elliptic boundary value problems discretized by the Q1 element.

Remark 6.11. In the case where Ω also has cracks, the elliptic regularity estimate is
valid for 0 < α < 1

2 (α can be taken to be arbitrarily close to 1
2 , cf. [21, 18, 27]). All

the statements in this paper remain valid provided the concept of Sobolev spaces
on cracked domains are defined appropriately (cf. [15]). In particular, Theorem 6.9
also holds for domains with cracks.

Remark 6.12. The new approach to V -cycle convergence analysis developed in this
paper can also be applied to nonconforming finite elements. This will be addressed
in a forthcoming paper.

Acknowledgments. The author would like to thank Dietrich Braess and an
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