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Abstract. This paper analyzes the behavior of the Nelder–Mead simplex method for a family
of examples which cause the method to converge to a nonstationary point. All the examples use
continuous functions of two variables. The family of functions contains strictly convex functions
with up to three continuous derivatives. In all the examples the method repeatedly applies the inside
contraction step with the best vertex remaining fixed. The simplices tend to a straight line which is
orthogonal to the steepest descent direction. It is shown that this behavior cannot occur for functions
with more than three continuous derivatives. The stability of the examples is analyzed.
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1. Introduction. Direct search methods are very widely used in chemical en-
gineering, chemistry, and medicine. They are a class of optimization methods which
are easy to program, do not require derivatives, and are often claimed to be robust
for problems with discontinuities or where the function values are noisy. In [12, 13]
Torczon produced convergence results for a class of methods called pattern search
methods. This class includes several well-known direct search methods such as the
two-dimensional case of the Spendley, Hext, and Himsworth simplex method [8] but
does not include the most widely used method, the Nelder–Mead simplex method [4].
In the Nelder–Mead method the simplex can vary in shape from iteration to iteration.
Nelder and Mead introduced this feature to allow the simplex to adapt its shape to
the local contours of the function, and for many problems this is effective. However,
it is this change of shape which excludes the Nelder–Mead method from the class of
methods covered by the convergence results of Torczon [13], which rely on the vertices
of the simplices lying on a lattice of points.

The Nelder–Mead method uses a small number of function evaluations per itera-
tion, and for many functions of low dimension its rules for adapting the simplex shape
lead to low iteration counts. In [11, 1], however, Torczon and Dennis report results
from tests in which the Nelder–Mead method frequently failed to converge to a local
minimum of smooth functions of low dimension: it was observed even for functions
with as few as eight variables. In the cases where failure occurred, the search line
defined by the method became orthogonal to the gradient direction; however, the rea-
sons for this behavior were not fully understood. Some theoretical results about the
convergence of a modified version of the Nelder–Mead method are given by Woods
[15]. In a recent paper, Lagarias et al. [3] derive a range of convergence results which
apply to the original Nelder–Mead method. Among these results is a proof that the
method converges to a minimizer for strictly convex functions of one variable and
also a proof that for strictly convex functions of two variables the simplex diameters
converge to zero. However, it is not yet known even for the function x2 + y2, the sim-
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NELDER–MEAD AT A NONSTATIONARY POINT 149

plest strictly convex quadratic functions of two variables, whether the method always
converges to the minimizer, or indeed whether it always converges to a single point.

The current paper presents a family of examples of functions of two variables,
where convergence occurs to a nonstationary point for a range of starting simplices.
Some examples have a discontinuous first derivative and others are strictly convex
with between one and three continuous derivatives. The simplices converge to a line
which is orthogonal to the steepest descent direction and have interior angles which
tend to zero.

We assume that the problem to be solved is

min
v∈R2

f(v).

For functions defined over R2 (i.e., functions of two variables) the Nelder–Mead
method operates with a simplex in R2, which is specified by its three vertices. The
Nelder–Mead method is described below for the two-variable case and without the
termination test. The settings for the parameter ρ in L(ρ) are the most commonly
used values. A fuller description of the method can be found in the papers by Lagarias
et al. [3] and Nelder and Mead [4].

The Nelder–Mead method.

order: Label the three vertices of the current simplex b, s, and w so that their
corresponding function values fb, fs, and fw satisfy fb ≤ fs ≤ fw.
m := (b+ s)/2, {the midpoint of the best and second worst points}.
Let L(ρ) denote the function L(ρ) = m+ ρ(m− w), {L is the search line}.
r := L(1); fr := f(r).
If fr < fb then

e := L(2); fe := f(e).
If fe < fb then accept e {Expand} else accept r {Reflect}.

else {fb ≤ fr} if fr < fs then
Accept r {Reflect}.

else {fs ≤ fr} if fr < fw then
c := L(0.5); fc := f(c).
If fc ≤ fr then accept c {Outside Contract} else → shrink.

else {fw ≤ fr}
c := L(−0.5); fc := f(c).
If fc < fw then accept c {Inside Contract} else → shrink.

Replace w by the accepted point; → order.
shrink: Replace s by (s+ b)/2 and w by (w + b)/2; → order.

The examples in this paper cause the Nelder–Mead method to apply the inside
contraction step repeatedly with the best vertex remaining fixed. This behavior will
be referred to as repeated focused inside contraction (rfic). No other type of step
occurs for these examples, and this greatly simplifies their analysis. The examples are
very simple and highlight a serious deficiency in the method: the simplices collapse
along the steepest descent direction, a direction along which we would like them to
enlarge.

It should be noted that it is now common to use a variant of the original Nelder–
Mead algorithm in which the expand step is accepted if fe < fr, which is a more
restrictive condition. Since the examples in this paper are constructed so that fr > fb,
i.e., the reflected point is never an improvement on the best point, the expand step
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150 K. I. M. MCKINNON

is never considered. Hence this common variant of the Nelder–Mead method behaves
in an identical manner to the original algorithm for the examples in this paper.

Other examples are known where the Nelder–Mead method or its variants fail. In
[2], Dennis and Woods give a strictly convex example, where a variant of the Nelder–
Mead method performs an unbroken sequence of shrink steps toward a single point
which is at a discontinuity of the gradient and at which there is no zero subgradient.
In their variant the condition for accepting a contraction step is that fc < fs, which
is more stringent than the original Nelder–Mead method, so more shrink steps are
performed. This behavior cannot occur for the original version of the Nelder–Mead
method as this method never performs shrink steps on strictly convex functions (see
Lagarias et al. [3]). In [15] Woods also gives a sketch of a differentiable nonconvex
function for which the Nelder–Mead method converges to a nonminimizing point by
a sequence of repeated shrinks. However, it can be shown that for this behavior to
occur with the original form of the Nelder–Mead method, the point to which the
simplex shrinks must be a stationary point. It is also possible to construct examples
of nonconvex differentiable functions for which the original form of the Nelder–Mead
method in exact arithmetic converges by repeated contractions to a degenerate simplex
of finite length, none of whose vertices are stationary points [9, 10]. An example of
this case is the function f(x, y) = x2−y(y−2) with initial simplex (1,0), (0,-3), (0,3),
which tends in the limit to (0,0), (0,-3), (0,3). The examples given in this paper are,
however, the first examples known where the Nelder–Mead method fails to converge
to a minimizer of a strictly convex differentiable function.

A wide variety of simplex methods which allow the simplex to vary in shape
in a similar manner to the Nelder–Mead method has been proposed and analyzed
by, among others, Rykov [5, 6, 7] and more recently by Tseng [14]. These methods
accept certain trial steps only if there is a sufficient decrease in an objective function.
In this they differ from the Nelder–Mead method and the methods of Torczon [12]
which require only strict decrease and whose behavior depends only on the order of
the function values at the trial points, not on the actual values. Convergence results
for the methods of Rykov and Tseng rely on this sufficient decrease. One of the
variants of Tseng’s method is the same as the Nelder–Mead method except for the
sufficient decrease condition and a condition which bounds the simplex interior angles
away from zero. Because of this, when Tseng’s variant is applied to the examples
in this paper, it eventually performs shrink steps instead of the inside contraction
steps performed by the original Nelder–Mead method. This allows it to escape from
the nonstationary point which is the focus of the rfic in the original Nelder–Mead
method.

The structure of this paper is as follows. In section 2 the sequence of simplices
is derived corresponding to rfic. In section 3 a family of functions are given which
produce this behavior and result in the method converging to a nonstationary point.
In section 4 the range of functions which can give the rfic behavior is derived.
Section 5 contains an analysis of how perturbations of the initial simplex affect the
rfic behavior of the examples in section 3.

2. Analysis of the repeated inside contraction behavior. Consider a sim-
plex in two dimensions with vertices at 0 (i.e., the origin), v(n+1), and v(n). Assume
that

f(0) < f(v(n+1)) < f(v(n)).(2.1)
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NELDER–MEAD AT A NONSTATIONARY POINT 151

After the order step of the algorithm, b = 0, s = v(n+1), and w = v(n). The
Nelder–Mead method calculates m(n) = v(n+1)/2, the midpoint of the line joining the
best and second worst points, and then reflects the worst point, v(n), in m(n) with a
reflection factor of ρ = 1 to give the point

r(n) = m(n) + ρ(m(n) − v(n)) = v(n+1) − v(n).(2.2)

Assume that

f(v(n)) < f(r(n)).(2.3)

In this case the point r(n) is rejected and the point v(n+2) is calculated using a
reflection factor ρ = −0.5 in

v(n+2) = m(n) + ρ(m(n) − v(n)) =
1

4
v(n+1) +

1

2
v(n).

v(n+2) is the midpoint of the line joining m(n) and v(n). Provided f(v(n+2)) <
f(v(n+1)), i.e., (2.1) holds with n replaced by n+1, the Nelder–Mead method does the
inside contraction step rather than a shrink step. The inside contraction step replaces
v(n) with the point v(n+2), so that the new simplex consists of v(n+1), v(n+2), and the
origin. Provided this pattern repeats, the successive simplex vertices will satisfy the
linear recurrence relation

4v(n+2) − v(n+1) − 2v(n) = 0.

This has the general solution

v(n) = A1λ
n
1 +A2λ

n
2 ,(2.4)

where Ai ∈ R2 and

λ1 =
1 +
√

33

8
, λ2 =

1−√33

8
.(2.5)

Hence λ1
∼= 0.84307 and λ2

∼= −0.59307. It follows from (2.2) and (2.4) that

r(n) = −A1λ
n
1 (1− λ1)−A2λ

n
2 (1− λ2).(2.6)

It is this repeated inside contraction toward the same fixed vertex which is being
referred to as repeated focused inside contraction (rfic). In [3] Lagarias et al. formally
prove that no step of the Nelder–Mead method can transform a nondegenerate simplex
to a degenerate simplex. In the two-dimensional case this corresponds to the fact that
the area of the simplex either increases by a factor of 2, stays the same, or decreases
by a factor of 2 or 4. Hence, provided the Nelder–Mead method is started from a
nondegenerate initial simplex, then no later simplex can be degenerate and if rfic
occurs, then the initial simplex for rfic is nondegenerate. This implies that A1 and
A2 in (2.4) are linearly independent.

Consider now the initial simplex with vertices v(0) = (1, 1), v(1) = (λ1, λ2), and
(0, 0). Substituting into (2.4) yields A1 = (1, 0) and A2 = (0, 1). It follows that
the particular solution for these initial conditions is v(n) = (λn1 , λ

n
2 ). This solution is
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152 K. I. M. MCKINNON

x

y v(0)

v
(1)

v
(2)

v
(3)

Fig. 2.1. Successive simplices with rfics.

shown in Figure 2.1. The general form of the three points needed at one step of the
Nelder–Mead method is therefore

v(n) = (λn1 , λ
n
2 ),(2.7)

v(n+1) = (λn+1
1 , λn+1

2 ),(2.8)

r(n) = (−λn1 (1− λ1),−λn2 (1− λ2)).(2.9)

Provided (2.1) and (2.3) hold at these points, the simplex method will take the
inside contraction step assumed above.

Note that the x coordinates of v(n) and v(n+1) are positive and the x coordinate
of r(n) is negative.

3. Functions which cause RFIC. Consider the function f(x, y) given by

f(x, y) = θφ|x|τ + y + y2, x ≤ 0,(3.1)

= θxτ + y + y2, x ≥ 0,

where θ and φ are positive constants. Note that (0,-1) is a descent direction from
the origin (0,0) and that f is strictly convex provided τ > 1. f has continuous first
derivatives if τ > 1, continuous second derivatives if τ > 2, and continuous third
derivatives if τ > 3. Figure 2.2 shows the contour plot of this function and the first
two steps of the Nelder–Mead method for the case τ = 2, θ = 6, and φ = 60. Both
steps are inside contractions.
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NELDER–MEAD AT A NONSTATIONARY POINT 153

x

y

v(0)

v(1)

v(2)

m(0)

r (0)

m(1)

r (1)

Fig. 2.2. f(x, y) = 360x2 + y + y2 if x ≤ 0 and f(x, y) = 6x2 + y + y2 if x ≥ 0, i.e., function
(3.1) for case τ = 2, θ = 6, φ = 60.

Define τ̂ to be such that

λτ̂1 = |λ2|,(3.2)

so τ̂ is given by

τ̂ =
ln |λ2|
lnλ1

∼= 3.0605.(3.3)

In what follows assume that τ satisfies

0 < τ < τ̂ .(3.4)

Since 0 < λ1 < 1, it therefore follows that

λτ1 > λτ̂1 = |λ2|.(3.5)

Using (2.7) and (2.9) it follows that

f(v(n))= θλτn1 + λn2 + λ2n
2

and f(r(n))= φθ(λτn1 (1− λ1)τ )− λn2 (1− λ2) + λ2n
2 (1− λ2)2.

Hence f(v(n)) > f(v(n+1)) iff

θλτn1 (1− λτ1) > λn2 (λ2 − 1) + λ2n
2 (λ2

2 − 1).
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154 K. I. M. MCKINNON

Since λτ1 > |λ2| and λ2
2 − 1 < 0, this is true for all n ≥ 0 if θ is such that

θ(1− λτ1) > |λ2 − 1|.(3.6)

Also f(v(n+1)) > f(0) iff

θλ
τ(n+1)
1 + λn+1

2 + λ
2(n+1)
2 > 0.

Since λτ1 > |λ2|, this is true for all n ≥ 0 if

θ > 1.(3.7)

Also f(r(n)) > f(v(n)) iff

φθ(λτn1 (1− λ1)τ )− λn2 (1− λ2) + λ2n
2 (1− λ2)2 > θλτn1 + λn2 + λ2n

2 ,

⇐⇒ θλτn1 (φ(1− λ1)τ − 1) > λn2 (2− λ2)− λ2n
2 ((1− λ2)2 − 1).

Since λ2 < 0 and λτ1 > |λ2|, this is true for all n ≥ 0 if θ and φ are such that

θ(φ(1− λ1)τ − 1) > (2− λ2).(3.8)

For any τ in the range given by (3.4), θ can be chosen so that (3.6) and (3.7) hold and
then φ can be chosen so that (3.8) holds. It then follows that (2.1) and (2.3) will hold,
so the inside contraction step will be taken at every iteration and the simplices will
be as derived in section 2. The method will therefore converge to the origin, which is
not a stationary point. Examples of values of θ and φ which make (3.6), (3.7), and
(3.8) hold are as follows: for τ = 1, θ = 15 and φ=10; for τ = 2, θ = 6 and φ = 60;
for τ = 3, θ = 6 and φ = 400.

4. Necessary conditions for RFIC to occur. In this section we will derive
necessary conditions for rfic to occur. For notational convenience the results are
given for rfic with the origin as focus, but by change of origin they can be applied
to any point.

It follows from the description of the algorithm that a necessary condition for
rfic to occur is

f0 = f(0) ≤ f(v(n+1)) ≤ f(v(n)) ≤ f(r(n)).(4.1)

(The examples in section 3 satisfy the strict form of the (4.1) relations as given in
(2.1) and (2.3).)

If f is s times differentiable at the origin, then f can be written in the form f(v) =
ps(v) + o(‖v‖s), where ps is a polynomial of degree at most s, and Dif(0) = Dips(0)
for i = 0, ..., s, i.e., the derivatives of f and ps agree. Making a change of variable to
z-space using v = A1z1 +A2z2, f and ps can be viewed as functions of (z1, z2) ∈ R2.
When the necessary derivatives exist, define

f0 = f(0), gi =
∂f

∂zi
(0), h =

1

2

∂2f

∂z2
1

(0), and k =
1

6

∂3f

∂z3
1

(0).

Then (g1, g2) is the gradient of f in z-space, and gi, h, and k are the zi, z
2
1 , and z3

1

coefficients in the Taylor expansion of f in z-space. Since |λ2| < λ1 and (2.4) holds,
‖v(n)‖ = O(λn1 ), so

f(v(n)) = ps(v
(n)) + o(λsn1 ).(4.2)
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NELDER–MEAD AT A NONSTATIONARY POINT 155

Theorem 4.1. If the origin is the focus of repeated inside contraction starting
from a simplex with limiting direction A1, then

(a) if f is differentiable at the origin, then g1 = 0;
(b) if f is 2 times differentiable at the origin, then h = 0;
(c) if f is 3 times differentiable at the origin, then k = 0.
Proof. (a) From (4.1) it follows that a necessary condition for rfic to occur is

that f0 ≤ f(v(n)) and f0 ≤ f(r(n)). This is true iff

f0 ≤ f0 + g1λ
n
1 + g2λ

n
2 + o(λn1 ),

and f0 ≤ f0 − g1λ
n
1 (1− λ1)− g2λ

n
2 (1− λ2) + o(λn1 ).

Since |λ2| < λ1 < 1, this cannot occur for all n unless g1 = 0.
(b) Since f is 2 times differentiable at the origin, part (a) holds, so g1 = 0. Hence

p2(v(n))− (f0 + g2λ
n
2 + hλ2n

1 ) = O(|λ1λ2|n) = o(λ4n
1 ), since |λ2| < λ3

1. From this and
(4.2) it follows that

f(v(n)) = f0 + g2λ
n
2 + hλ2n

1 + o(λ2n
1 ).

From (4.1) it follows that a necessary condition for rfic to occur is that f0 ≤ f(v(n))
and f(v(n)) ≤ f(r(n)). This is true iff

f0 ≤ f0 + g2λ
n
2 + hλ2n

1 + o(λ2n
1 )

and 0 ≤ −g2λ
n
2 (2− λ2)− hλ2n+1

1 (2− λ1) + o(λ2n
1 ).

Since |λ2| < λ2
1 < 1, this cannot occur for all n unless h = 0.

(c) Since f is 3 times differentiable at the origin, parts (a) and (b) hold, so g1 = 0
and h = 0. Hence p3(v(n)) − (f0 + g2λ

n
2 + kλ3n

1 ) = O(|λ1λ2|n) = o(λ4n
1 ). From this

and (4.2) it follows that

f(v(n)) = f0 + g2λ
n
2 + kλ3n

1 + o(λ3n
1 ).

From (4.1) it follows that a necessary condition for rfic to occur is that f0 ≤ f(v(n))
and f0 ≤ f(r(n)). This is true iff

f0 ≤ f0 + g2λ
n
2 + kλ3n

1 + o(λ3n
1 )

and f0 ≤ f0 − g2λ
n
2 (1− λ2)− kλ3n

1 (1− λ1)3 + o(λ3n
1 ).

Since λ3
1 > |λ2|, this cannot occur for all n unless k = 0.

Theorem 4.2. If f has a nonzero gradient at the origin and in a neighborhood
of the origin can be expressed in the form

f(v) = p4(v) + o(‖v‖τ̂ ),(4.3)

where p4 is at least 4 times differentiable at the origin, and if the initial simplex is
not degenerate, then the origin cannot be the focus of repeated inside contractions.

Proof. Assume that the origin is the focus of repeated contractions.
The first three derivatives of f and p4 at the origin are the same. Theorem 4.1

shows that g1 = h = k = 0. Hence p4(v(n)) − (f0 + g2λ
n
2 ) = O(|λ1λ2|n) = o(λ4n).

Since τ̂ < 4 and o(‖v(n)‖τ̂ ) = o(λτ̂n1 ) and λτ̂1 = |λ2| (by the definition of τ̂), it follows
that

f(v(n)) = f0 + g2λ
n
2 + o(|λ2|n).
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156 K. I. M. MCKINNON

From (4.1) it follows that a necessary condition for rfic to occur is that f0 ≤ f(v(n))
and f0 ≤ f(v(n+1)). Since λ2 < 0, this cannot occur for all n unless g2 = 0. However,
since a condition of the theorem is that the gradient is nonzero at the origin and since
g1 = 0, it is not possible that g2 = 0. This contradicts the original assumption and
so proves that the origin cannot be the focus of repeated contractions.

Theorem 4.2 shows that rfic cannot occur for sufficiently smooth functions, the
limit being slightly more than 3 times differentiable. The examples in section 3 show
that if the conditions of Theorem 4.2 do not hold, then rfic is possible.

5. Perturbations of the initial simplex. In this section the behavior of the
examples is analyzed for perturbations of the starting simplex. The perturbed position
for the vertex at the origin must be on the y axis; otherwise the contracting simplex
will eventually lie within a region where all derivatives of the function exist, and
Theorems 4.1 and 4.2 show that a nonstationary point cannot be the focus of rfic
in such a region. Also if τ > 1, the gradient exists where x = 0 and its direction
is parallel to the y axis. It follows from Theorem 4.1 that the only initial simplices
which can yield rfic are those with the dominant eigenvector A1 perpendicular to
the y axis. We therefore consider only perturbations where the vertex at the origin is
perturbed to (0, y0) giving the general form

v(n) =

[
0
y0

]
+

[
x1

y1

]
λn1 +

[
x2

y2

]
λn2 ,(5.1)

and when τ > 1 we take y1 = 0. The reflected point is then given by

r(n) =

[
0
y0

]
−
[
x1

y1

]
λn1 (1− λ1)−

[
x2

y2

]
λn2 (1− λ2).(5.2)

We are considering y0, x1 − 1, y1, x2, and y2 − 1 to be close to zero.
Repeating the analysis of section 3 gives f(v(n)) > f(v(n+1)) iff

θλτn1 xτ1

((
1 +

x2

x1

(
λ2

λ1

)n)τ
−
(

1 +
x2

x1

(
λ2

λ1

)n+1
)τ

λτ1

)
+λn1 (1− λ1)y1(1 + 2y0 + λn1 (1 + λ1)y1 + λn2 (1 + λ2)y2)

> λn2 (1− λ2)y2(1 + 2y0 + λn1 (1 + λ1)y1) + λ2n
2 (λ2

2 − 1)y2
2 .

Also f(v(n)) > f(0, y0) iff

θλ
τ(n+1)
1 xτ1

(
1 +

x2

x1

(
λ2

λ1

)n+1
)τ

+ y1λ
n+1
1 (1 + 2y0 + y1λ

n+1
1 + y2λ

n+1
2 )

+y2λ
n+1
2 (1 + 2y0 + y1λ

n+1
1 ) + y2

2λ
n+1
2 > 0.(5.3)

Note that for x1 − 1 and x2 sufficiently close to zero, the x coordinate of r(n) is
negative, so the negative x case for the form of f holds. Hence f(r(n)) > f(v(n)) iff

θλτn1 xτ1

(
φ

(
1− λ1 − x2

x1

(
λ2

λ1

)n
(1− λ2)

)τ
−
(

1 +
x2

x1

(
λ2

λ1

)n)τ)
−y1λ

n
1 (2− λ1)(1 + 2y0 + y1λ

n+1
1 + y2λ

n+1
2 )

> y2λ
n
2 (2− λ2)(1 + 2y0 + y1λ

n+1
1 ) + y2

2λ
n
2 (2− λ2).
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Since the corresponding inequalities are strict in section 3 and all the functions are
continuous, it follows that there exists a symmetric neighborhood of y0 = 0, x1 = 1,
y1 = 0, x2 = 0, and y2 = 1 in which the above three relations hold for n = 0. Since
|λ1| < 1 and |λ2| < 1, it follows that if τ ≤ 1, the inequalities still hold for all n ≥ 0.
If τ > 1, then the rfic behavior will not change in the neighborhood provided y1 = 0.
The set of possible perturbations which maintain the rfic behavior is therefore of
dimension 4 for τ > 1 and of dimension 5 for τ ≤ 1.

Because of this we would expect the behavior of the examples to be stable against
small numerical perturbations caused by rounding error when τ ≤ 1 and not to be
stable when τ > 1. This behavior is confirmed by numerical tests. Rounding error
introduces a component of the larger eigenvector in the y direction and this is enough
to prevent the algorithm converging to the origin when τ > 1, but is not enough to
disturb the convergence to the origin when τ ≤ 1. Note, however, that in the τ > 1
case the behavior is very sensitive to the representation of the problem and to the
details of the implementation of the Nelder–Mead method and of the function. For
example, a translation or rotation of the axes can affect whether or not the method
converges to the minimizer. The example with τ = 1 is not strictly convex; however,
a strictly convex example which is numerically stable can be constructed by taking
the average of examples with τ = 1 and with τ = 2.

6. Conclusions. A family of functions of two variables has been presented which
cause the Nelder–Mead method to converge to a nonstationary point. Members of the
family are strictly convex with up to three continuous derivatives. The examples cause
the Nelder–Mead method to perform the inside contraction step repeatedly with the
best vertex remaining fixed. It has been shown that this behavior cannot occur for
smoother functions. These examples are the best behaved functions currently known
which cause the Nelder–Mead method to converge to a nonstationary point. They
provide a limit to what can be proved about the convergence of the Nelder–Mead
method.

There are six values necessary to specify the initial simplex for functions of two
variables. It has been shown that for examples in the family which have a discon-
tinuous first derivative, there is a neighborhood of the initial simplex of dimension
5 in which all the simplices exhibit the same behavior. These examples appear to
be numerically stable. For those examples in the family where the gradient exists,
the dimension of the neighborhood is only 4. These examples are often numerically
unstable and so are less likely to occur in practice due to rounding errors, even for
starting simplices within the neighborhood. However, even in cases where numerical
errors eventually perturb the simplex enough to escape from the nonstationary focus
point, the method can spend a very large number of steps close to this point before
escaping. These results highlight the need for variants of the original Nelder–Mead
method which have guaranteed convergence properties.
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