CONVERGENCE OF THE PML METHOD
FOR ELASTIC WAVE SCATTERING PROBLEMS

ZHIMING CHEN, XUESHUANG XIANG, AND XIAOHUI ZHANG

ABSTRACT. In this paper we study the convergence of the perfectly matched
layer (PML) method for solving the time harmonic elastic wave scattering
problems. We introduce a simple condition on the PML complex coordinate
stretching function to guarantee the ellipticity of the PML operator. We also
introduce a new boundary condition at the outer boundary of the PML layer
which allows us to extend the reflection argument of Bramble and Pasciak
to prove the stability of the PML problem in the truncated domain. The
exponential convergence of the PML method in terms of the thickness of the
PML layer and the strength of PML medium property is proved. Numerical
results are included.

1. INTRODUCTION

We study the convergence of the perfectly matched layer (PML) method for
solving elastic wave scattering problems with the traction boundary condition:

(1.1) V-7(u)++?u=—-q inR*D,
(1.2) 7(uynp, =—g onTp.

Here D C R3? is a bounded domain with Lipschitz boundary T'p, g € H'(R?*\D)’
has support inside B; := {x = (z1,22,23)T € R® : |2;] < l;,i = 1,2,3} for some
constants I; > 0,i = 1,2,3, g € H-'/?(T'p) is determined by the traction on the
boundary, n, is the unit outer normal to I'p, and v = ,/pow > 0 with the angular
frequency w > 0 and the constant density pp > 0. In this paper, for any Banach
space X, we denote the boldfaced letter X = X3. || - ||x stands for the norm of X
or X. X’ is the dual space of X.

In the region outside D, the medium is assumed to be linear, homogeneous, and
isotropic with constant Lamé constants A and p. The stress tensor 7(u) relates to
the displacement vector w = (uy,usz,u3)’ by the generalized Hooke law:

(1.3) T(u) = 2ue(u) + Mr(e(u))l, e(u) = %(Vu + (Vau)T),

where I € R3*3 is the identity matrix and Vu is the displacement gradient tensor
whose elements are (Vu);; = 0u;/0x;j, i,j = 1,2,3. We remark that the results in
this paper can be extended to solve the scattering problems with other boundary
conditions such as Dirichlet or mixed boundary conditions on I'p.
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We now introduce the Kupradze-Sommerfeld radiation condition in order to
complete the definition of the problem. It is known that under the constitutive
relation (1.3), (1.1) can be rewritten to the following equation:

1 1 _
u+ k—gV(divu) - ﬁcurl (curlu) =0 in R*\By,

S

where k, = \/%2“ and ks = % are respectively the wave numbers of compressional
and shear waves. Let u, = fk,%V(div u) be the compressional part and us =
D

k%curl (curlw) be the shear part of the wave field. They satisfy the Helmholtz
equations
Au, + kgup =0, Aus+Eku,=0 inR*\B.

It is clear that w = u, + us in R3\B;. The Kupradze-Sommerfeld radiation con-
dition is given by the requirement that w, and u, should satisfy the Sommerfeld
radiation condition

. 8up . . 8”3 .
|w1|13100 || (8|m| - 1kpup> =0, ‘wlgloo || <(“)|w| - 1ksus) =0.

The existence and uniqueness of the time harmonic elastic wave equation un-
der the Kupradze-Sommerfeld radiation condition are considered in Kupradze [23]
for smooth scatterers. For scatterers with Lipschitz boundary, the existence and
uniqueness of the scattering solutions are proved in Bramble and Pasciak [7] for
the Dirichlet boundary condition on I'p. For the Neumann boundary condition
(1.2) on I'p, the existence of solutions will be considered briefly by the method of
limiting absorption principle below (Theorem 2.1).

Since the work of Bérenger [4] which proposed a PML technique for solving the
time dependent Maxwell equations, various constructions of PML absorbing layers
have been proposed and studied in the literature (cf. e.g. [5] for the review). The
basic idea of the PML technique is to surround the computational domain by a
layer of finite thickness with specially designed model medium that absorb all the
waves that propagate from inside the computational domain.

The convergence of the PML method is studied in [25, 21, 3, 6, 8] for time har-
monic acoustic, electromagnetic, and elastic wave scattering problems with circular
or spherical PML layers. The convergence of the PML method was also studied
in the context of the adaptive PML technique for grating problems in [17] and for
acoustic and Maxwell scattering problems in [15, 16, 13, 14]. The main idea of the
adaptive PML technique is to use the a posteriori error estimate to determine the
PML parameters and to use the adaptive finite element method to solve the PML
equations. The adaptive PML technique provides a complete numerical strategy
to solve the scattering problems in the framework of finite element which produces
automatically a coarse mesh size away from the fixed domain and thus makes the
total computational costs insensitive to the thickness of the PML absorbing layer.

The purpose of this paper is to study the convergence of the Cartesian PML
method for the time harmonic elastic waves which was first proposed in [12] and

also studied in [28]. The complex coordinate stretching to derive the Cartesian
PML method is [11]:

xj Zj
(14) iﬁj =T, +C/ Uj(t)dt+l/ O'j(t)dt7 ] = 17273,
0 0
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where ¢ > 0 is a constant to be specified and o,(¢) is the PML medium property.
The choice of a positive parameter ( is equivalent to the complex frequency shifted
PML method proposed in [24] which has the advantage of additional damping for
the evanescent waves. The mathematical analysis in [9, 10, 14] reveals that an
appropriately chosen parameter ( guarantees the ellipticity of the PML operator
without any constraint on the smallness of the PML medium property o;(t) for 3D
acoustic and electromagnetic waves. The first contribution in this paper is to show
that the PML method with ¢ > /(A + 2u)/u will guarantee the ellipticity of the
elastic PML operator (Lemma 3.3 below).

The convergence of the Cartesian PML method is studied in [22, 10, 9, 16, 18]
for time harmonic acoustic and Maxwell scattering problems. The key gradient in
the analysis in [10, 9] is a reflection argument to show the inf-sup condition for the
sesquilinear form associated with the PML equation in the truncated domain. This
reflection argument cannot be directly extended to the elastic PML equations if
one imposes homogeneous Dirichlet boundary condition at the outer boundary of
the PML layer. In this paper we consider the following PML problem (see section
2 for the notation)

(1.5) V. (F(@)A) +7*Ja = —q in Qp,
(1.6) T(W)An, =—g onTp,
(1.7) u-n=0, 7(@)Anxn=0 onTy.

The mixed boundary condition (1.7) at the outer boundary of the PML layer I',
allows us to extend the reflection argument in Bramble and Pasciak [10, 9] for
acoustic and electromagnetic scattering problems to solve the elastic scattering
problems.

The layout of the paper is as follows. In section 2 we introduce the PML for-
mulation for (1.1)-(1.2) by following the method of complex coordinate stretching.
In section 3 we prove the well-posedness of the PML equation in R3. In section 4
we prove the stability of the PML equation in the truncated domain. In section 5
we prove the stability of the Dirichlet PML problem in the layer. In section 6 we
show the convergence of the PML method. In section 7 we show some numerical
results to illustrate the performance of the proposed PML method. In Section 8
we prove the existence of the scattering solution of (1.1)-(1.2) by the method of
limiting absorption principle.

2. THE PML EQUATION

Let By := {x = (v1,72,23)T € R3: |z;| <l;, i = 1,2,3} contain the scatterer D
and the support of q. Let I'; = 0B; and n; the unit outer normal to I';. We start by
introducing the Dirichlet-to-Neumann operator T : H'/2(T';) — H~'/2(I';). Given
f € HY2(T)), we define Tf = 7(£)n; with € being the solution of the following
exterior Dirichlet problem:

21)  V-7(§)+7%6=0 inR\B,

(22) €=f only,

(2.3) ¢ satisfies the Kupradze-Sommerfeld radiation conditions at infinity.
Since (2.1)-(2.3) has a unique solution ¢ € HL_(R3\B)) (cf. e.g. [7]), T : HY?(T}) —
H~'/2(I"}) is well-defined and is a continuous linear operator.
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Let a: H' () x H' () — C, where Q; = B;\D, be the sesquilinear form
24 o) = [ (@) V=) do— (To)r.
1

Here and in the following, for any Lipschitz domain D C R3 with boundary T, we
denote (-,-)p the inner product on L?(D) or the duality pairing between H'(D)’
and H'(D) and (-, )r the inner product on L?(T) or the duality pairing between
H~'/2(I') and HY?(T"). The weak formulation of the scattering problem (1.1)-(1.2)
is: Given ¢ € H'(R*\D)' and g € H~'/?(Tp), find w € H'(;) such that

(25) a(uv’l:b) = (q,'l,b)Ql + <g71/J>FD7 v 1/’ € Hl(Ql)

The existence of a unique solution of the scattering problem (2.5) is a direct
consequence of the following theorem whose proof will be discussed briefly in the
Appendix of this paper.

Theorem 2.1. For any q € H'(R3\D)' with compact support andg € H'/%(T'p),
the problem (1.1)-(1.2) with the Kupradze-Sommerfeld radiation condition has a
unique solution w € HL _(R3\D) such that for any bounded open set O C R3\D
that contains the support of q,

(2.6) 1wl g ovny < Clllall g @s\py + 19la-172(00))-

For the sesquilinear form a(-,-), we associate with a bounded linear operator
A HY Q) — HY(Q) such that

(Ap,¥)a, = a(p,v), Ve, 1p € H' ().

By Theorem 2.1, A s surjective and one-to-one. Thus, by the open mapping
theorem, we know that there exists a constant C' > 0 such that the following inf-
sup condition is satisfied

(2.7) s AXCB S g, e HUR).

ozper () | ¥ (0
2.1. PML complex coordinate stretching. The PML method is based on the
complex coordinate stretching outside B;. Let aj(z;) = 1+ (oj(z;) + ioj(z;),
j =1,2,3, be the model medium property. We require the following assumption
on the parameter ¢ to guarantee the ellipticity of the PML equation (see Lemma
3.3 below):

(H1) ¢ = /(A +2p)/p.

For t € R, 0;(t) € C'(R), j = 1,2,3, is an even function such that
(2.8) oj(t) >0 fort >0, o; =0 for[t| <l;, and o; =0¢ for [t| > 1,

where l} > [; is fixed and o > 0 is a constant. The requirement that the medium
property o;(t) is constant for [t| > I; has been also used in [10, 9] which is essential
for using a reflection argument to prove the int-sup condition for the PML problem
in the truncated domain.

For € R3, denote by &(x) = (Z1(z1), Z2(z2), Z3(z3))” the complex coordinate,
where

"fJ({L’j):/O]Oé](t)dt:l'j‘i‘(g‘i‘l)‘/oJJJ(t)dt, ]:172,3



CONVERGENCE OF THE PML METHOD FOR ELASTIC WAVES 5

Note that Z;(z;) depends only on z;. For any z € Cyy := {z € C: Re(z) >
0,Im (z) > 0}, denote

z;
2.9 i(x;)=x; + 2 o;(t)dt, 7=1,2,3.
g\ti J J
0

Write &, = (£%(x1), 75(22), 75(23))T and 9. = (55 (y1), 95 (v2), 75 (y3))T. We define
the complex distance

d(@.,9.) = [(71(21) = 97 (1)) + (@5 (22) — 75 (y2))* + (5 (x3) — 95 (y3))?]
Here and in the following, for any z € C, z'/? is the analytic branch of \/z such that

Re (21/2) > 0 for any z € C\(—o0,0]. It is obvious that &., = &, where 2o = ¢ +i.
The following lemma is a variant of [10, Lemma 3.1].

1/2

Lemma 2.2. For any z € U := {z € C: Re(z) > |Im (2)|}, we have
|.’13 - y‘ < |d(5)za'g2)| < (1 + |Z‘O’0)‘CC - y|5 vmay € RS'

Proof. For the sake of completeness we recall the proof here. From the definition
we know that

5 (x5) = 95 (y;) = o5 (§) (x5 —y5), (&) =14 205(§),  J=1,2,3

where &; is some number between x; and y;. It is clear that 0 < 0;(§;) < 0o. Thus

oty =l — P/l -yl

3
(210) |d(@2,9:)1° = |z — y2| > tje5(&)?
j=1

The right half of the desired estimate follows now directly since t; + to + t3 = 1.
To proceed, we let z = a+ib € U, a,b € R. Then a > |b| > 0. The left half of the
desired inequality follows easily from the following observation:

Re aj(gj)Q =1+ (a®— b2)<7j(§j)2 + 2a0;(&5) > 1.
This completes the proof. ([

2.2. The PML equation. In this subsection we derive the PML equation based
on the method of complex coordinate stretching. By Betti formula [23], the solution
& of the exterior Dirichlet problem (2.1)-(2.3) satisfies:

(2.11) €= -0, (Tf) +To.(f) inR*\By,

where Wy, , ¥, are respectively the single and double layer potentials. For n =
1,2, 3, the n-th component of the potentials are, for X € H~'/2(I}), f € H/*(I}),

o (M) (@) en = (A T(z,Jen)r,, o) (@) en = (T[ (2, )en], f)r.-

Here e, is the unit vector in the z,, direction and I'(x, y)e,, is the n-th column of
the fundamental solution matrix I'(x,y) of the time harmonic elastic wave equa-
tion satisfying the Kupradze-Sommerfeld radiation condition. The (j, k)-element of
D(x,y) is

82

m(%(%y) — G, (z,9))

1
ij(ili,y) = ? kEGks(w>y)6j -

o elkﬂ"

where Gi(z,y) = fe(lx — y|), fu(r) = $ for 7 > 0, is the fundamental solution
of the Helmholtz equation of wave number k. It is known that ¥¢ () € HL (R?)
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for A € H~'/2(T}) and ¥, (f) € HL_(R?) for f € H'/?(T}) (see e.g. McLean [27,
Theorem 6.11] and also the proof in Lemma 5.1 below).

Straightforward calculation shows that

(2.12)  Tje(z,y) =T1(jz — y|)dk + Da(|z — yl) (z; _|3;j)—(zk2_ yk)’

where, for r > 0,

(2.13) [i(r) = % lszks (r) — W] ;
(2.14) Do(r) = % l?’ W + (K} fr, (r) — k2 fr, (r))l -

The functions I'; and I's can be extended to be analytic functions defined in C\{0}.

Lemma 2.3. Forj = 1,2, I'j(2) is analytic in C\{0}. Moreover, |I';(2)| < Clz|7,
IT%(2)| < Clz|72, and |T(2)| < C|z|~* uniformly for z € C\{0}, |z| < 1.

Proof. T'j(z) is obviously analytic in C\{0}. For z € C\{0}, we have

fllcp(z) - fllcb () = ﬁ [(ik'pz — l)eikpz — (iksz — 1)eiksz]
_ 1o (= D[(ky)" — (k)] .
- E; Z! 22,

This yields [T'(2)] < Clz|7", [T(2)] < Olz|72, and [T/ (2)| < Clz|7? for |2] < 1,
240,j=1,2. 0

For any z € U = {# € C : Re(z) > |Im(2)[} defined in Lemma 2.2, we de-
fine the modified single and double layer potentials WZ, and ¥Z  as follows. For
X € HY*Iy), f € H/*(I}), the n-th component, n = 1,2,3, of the modified
potentials are

P2 (N)(@) - en = A Ta(zJenrs T3 (f)(@)-en = (T[a(z,-)en] Fr,
where the (j, k)-element of the matrix ', (x,y) is
(@5 —97)(@% — 0t)
d(Z2,9:)*
In the following, for zy = ¢+i, we denote I'(z, y) = f‘zO (z,y), f‘jk(w, y) = szf(m, Y),
and, for any A € H~V/2(I'}), f € H'/?(I)),
‘i’SL(A) = ‘ilgg()‘), \i’DL(f) = ‘i’f&(f)

Lemma 2.4. Let (H1) be satisfied. For j,k = 1,2,3, we have for any =,y € R3
such that Imd(&,y) > 0,

ICj(@, )| < C(1+ |20]o0) | —y|~tetrim A&,

Velji(@,y)| < C(L+ |20fo0)* (|2 —y| ™" + & — y|72)e Mm@,
IVy i@, y)| < O+ |2olo0)! (J& — y| =" + | — y|2)e ot d@D),
Ve VyTjn(@,y)| < O+ [20/00)° (|2 — y| ™" + [ —y|~2)e o@D,

(2'15) f‘jzlk<w7 y) = F1<d(i:z; Qz))gjk + FQ(d<a~:z7 ’gz))
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Proof. Since zp € U = {#z € C : Re(z) > [Im(z)|}, by Lemma 2.2 we have |Z; —
g;l/1d(@, )] < 1+ |20|00 and consequently

2
(@, y)| < C(1+ |2]00) Z d(z,y))

By Lemma 2.3 and Lemma 2.2, if |d(&, §)| < 1, then e~ *rI™d(@8) > ¢=F» and thus
Tj(d(&,9))| < Cld(&,9)| 7" < Clz —y|™! < Cla —y[ e i d®9),
On the other hand, if |d(&,g)| > 1, by Lemma 2.2 and simple calculations we have
ITj(d(@,9))| < Cld(&,g)| e " &Y < Cla —y|~te @),

This shows the estimate for |Tjx(z, y)|. The other estimates can be proved similarly.
O

The following lemma which extends [16, Lemma 3.2] is proved in [14].

Lemma 2.5. For any z; = a; + ib; with a;,b; € R,i = 1,2,3, such that a1by +
asby + azbz > 0 and a? + a3 + a% > 0, we have

a1b1 + asby + asbs

fT”aj t)dt, 7 = 1,2,3. By Lemma 2.5,

/y o3 (0| + | /y I oy tya|)

(1 + Coo)l — y|
The following lemma which extends [10, Lemma 3.2] shows that Imd(&,y) is
bounded below by |x — y| if ¢,y are far away.

Im (27 + 25 + z§)1/2 >

Let Zj = .’fj — (
d(z,9) = (22 + 22 —|— 23)1/? satlsﬁes
3

> (ng -y

(2.16) Imd(z,g) > =

Lemma 2.6. Let 3 > 1 be a fived number. If |x — y| > 2v/3Blmax, where lnax =
max;_1231l;, where l;, j = 1,2,3, are defined in (2.8), we have Imd(&,g) >
31— B7") %00 |z —yl.

Proof. Let j be the index such that |z; —y;| = max;—1 23 |z;—y;|. Then |z;—y;|* >
|z —y|?/3. It follows from the assumption | —y| > 2v/38lmax that |z; —y;| > 281;.
Thus, since o;(t) = oq for [t| > I},

/ m o(t)dt

J

This implies by (2.16) that

> (lzj — ;1 — 20;)o0 = (1 = B~ Hoolz; — y;l.

Imd(#,9) > +(1 - 87200l — yl.

This completes the proof. ([

c,o\»—l

For any f € H'/?(T), let E(f)(x) be the PML extension:
(2.17) E(f)(x) = =W (Tf) + ¥, (f), VaeR3\B,.
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By (2.11) we know that E(f) = f on I} for any f € HY?(T}). By Lemma 2.2,
ld(z,9)| > |z —y| for x € R®\ By, y € ;. Thus since 0; € C1(R), j = 1,2,3, we
have E(f) € C%(R3\B;). Moreover, by Lemma 2.4 and Lemma 2.6 we know that
E(f) decays exponentially as |x| — oo.

For the solution u of the scattering problem (2.5), let @ = E(u|r,) be the PML
extension of u|r,. It satisfies @ = u|r, on I'; and the equation

(2.18) V-#a)+~*a=0 inR3\By,
where
1 - .
7(a) = 2ué(a) + Mr(é(a))l, &(a) = 5(Vﬂ +(Va)h).
Here Vi € C3*3 whose elements are (91;/07%;), i,j = 1,2,3. For & € R3, let

F(:II) = (Fl(I1)7F2($2),F3(]}3))T with Fj(l‘j) = ij(xj), _] = 172,3. Then :E:(a:) =
F(z). Denote by VF' the Jacobi matrix of F', then

(2.19) V-=J V. J(VF)™!, J=det(VF).
By (2.19) we easily obtain from (2.18) the desired PML equation
V- (F(@)A) +~+*Ja =0 in R3\B,.
Here
F(a) = 2ué(a) + Mr(é(@), &(a) = %(VﬂBT + B(Va)T'),

where B = (VF)~ 1 = diag(a;(z1)7%, ag(we) L az(z3)~t) € C3*3 is a diagonal
matrix and A = J(VF)~T = JB. We notice that 7(¢) = 7(x, ), &(¢) = &(x, P)
which satisfies 7(x, ¢) = 7(¢), é(x, @) = e(¢) for x € B,.

Let By = {x € R®: |z;| < L;,i = 1,2,3} be the domain containing B;. The
PML solution @ in Qj = BL\D is defined as the weak solution of the following
problem:

(2.20) V. (F(@)A) +~+*Ja=—q in Qp,
(2.21) T(W)An, =—g onTp,
(2.22) w-n=0 T(@W)Anxn=0 onTy :=0BL.

The well-posedness of the PML problem (2.20)-(2.21) and the convergence of its
solution to the solution of the original scattering problem will be studied in the
following sections. We remark that the boundary condition (2.22) is different from
the usual homogeneous Dirichlet condition 4 =0 on I'f,.

To conclude this section, we introduce the following assumption on the thickness
of the PML layer which is rather mild in practical applications:

(H2) dj = Lj — lj > 2(l] — lj), ] = 1,273. Set d := min(dhdg,dg).

Here [, j = 1,2, 3, are defined in (2.8). In the remainder of this paper we denote
C the generic constant which is independent of d but may depend on oy which,
however, has at most polynomial growth in .
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3. TuE PML EQUATION IN R3

In this section we will show that the PML equation
(3.1) V- (Fu)A) +y*Juy = —J®  in R,

has a unique weak solution u; € H*(R?) for any ® € H*(R?). The argument
depends on the study of the fundamental solution matrix and the Newton potential
of the PML equation which extends the study in [25, 10] for acoustic scattering
problems.

We denote A(-,-) : H(R?) x H'(R?) — C the sesquilinear form

A, ) = / H)A: Vid, Voo € H'(BD).

R3
Our first goal is to show that under the assumption (H1), the sesquilinear form A
is coercive in H'(R?). We first prove some elementary lemmas.

Lemma 3.1. Let (HI) be satisfied. Let i/ = p/(A+ p). Then we have

12X ! .
(1 + //)Re 1 ; 3 Z 771773773 + H -, j= 1’ 2’3’
aj Uk |aj|

where n;(x;) = 1+ (oj(z;) and thus a;(z;) = n,;(x;) +io,(x;), 7 =1,2,3.

Proof. We only prove the case when j = 1. The other cases are similar. By direct
calculation we have

(14 4o 208 2
m
13 (n2ns — 0203) + (1 + p')orm (023 + o312) — 12307 — Nj0203
B n1|a1\2 )
It is easy to see that
o1ni(oans + o3m2) — 7727730% - 77%0203 = (01 —o03)(02 —01)

> —0903 — a%.
Thus
(14 1/)Re @203 TR13 ('3 (e — 0203) — 0903 — of

o m n1|a1|2

The lemma follows since n? > 11 +¢20% and 1213 — 0203 > 144/~ togo3 by (H1). O
Lemma 3.2. Let (H1) be satisfied. Let p' = p/(A+u). Then for any &1,&2,&3 € C,

[e5Ke%)

3
(1+p4) Z Re a2a3 &1 + 2 [mRe (&2&3) + meRe (£163) + n3Re (§16)]

i=1 ?

5.
Z Z 2‘€i|2'
= lal

Proof. This is a direct consequence of Lemma 3.1 and the following identity

n2M3 mns 112 = = =
el + e + (€ + 2 [mRe (6263) + maRe (6163) + msRe (6162)]
m 2 3
2
:‘W%&+ M 1
m T2 3

This completes the proof. [
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Lemma 3.3. Let (H1) be satisfied. We have

2 1 3
Re A(¢, ¢) > ]H%lgl&glgll{ m”vﬁbHLQ(Ra)a V¢ € H (R?).

We remark that since a](x]) =1+ Caj(acj) +ioj(z;), 7 = 1,2,3, by (2.8) we
know that min,,cr W > [(1+Coo)? + 0]t
Proof. We only need to prove the lemma for ¢ € C§°(R3) by the density argument.
First, since B = diag(a; ', a;y ', ozg_l) and A = JB, we have
FHP)A: Ve = Ji(¢): VBT
= pJ(VeBT + BVT) : VBT + \Jtr(é(9))tr(8(¢)).
This yields

1,1 09, 5@') e

i J 8xz al‘j

3 B a ; 2
/]R3MJ--Z_ (ajzlaxj -

L1100 09,
Z 1,1
+ / AT % 0x; axjd

3,7=1

T
l
&
h
4
©
U
8
I

Now since ¢ € C§°(R?), we integrate by parts twice to obtain

/RJa:lozj_lgiJ ng :/R Ja;laj—lg@g%d Vi#j, i,j=1,2,3,
3 i 7 3

1

where we have used the fact that for i # j, Jozi_ a; = ag, where k # i,j, is

independent of z;,z;. Thus

Re / F(P)A: V¢ dx
R?’

_ / /‘ZZR Q103 a¢z d:c+/ (/\+2u)§:Re Qa0 |09i 12
p ey % R3 — a? 10z,
Dps O3 D1 O3 Op1 0o
+ /Rs 20+ m) [ane (83@2 8333) +m2Re (63:1 63:3) +nsRe (8582 8@)] '

The lemma now follows from Lemma 3.2 and the fact that Re % > ﬁ, j=

1,2,3, since ¢ > 1 which follows from (H1). O

Now we study the Newton potential for the PML equation (3.1). For z € U =
{z € C: Re(z) > |Im(z)|} which is defined in Lemma 2.2, denote F.(x) = &.(x)
and J, = det(VF}), where &, () is defined in (2.9). For ® € L?*(R?®) with compact
support, we define

(3:2) N.@)@) = [ LWl @)e@iy R

To proceed, for any Banach space X with norm || - || x, we denote A(U; X) the
space of all X-valued analytic functions in U. A function v(z) is called X-valued
analytic function in U if for any z € U, ||(v(z + h) — v(z))/h|lx — 0 as |h| — 0,
heC.
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Lemma 3.4. Let ® € L%*(R3) with compact support. For any z € U = {z €
C : Re(z) > |Im(2)|} defined in Lemma 2.2, we have N,(®) € HL_(R3) satis-
fies |INL(®)|| g2 o) < C||®||p2(re) for any bounded open set O C R3. Moreover,
N.(®) € A(U; H(0)) for any bounded open set O C R3.

Proof. For convenience we denote u, = N,(®). By Lemma 2.3 and Lemma 2.2,
we know that |I,(z,y)| < C|l& — y|~" uniformly for &,y in bounded set of R?
and x # y. Since ® has compact support, by well-known estimates for Riesz
potentials (e.g. [20, Lemma 7.12]), we know that for any bounded open set O C
R3, |||l 2(0) < C||®||12(re). Similarly, by Lemma 2.3 and Lemma 2.2, we have
\%f‘z(m,yﬂ < C|z — y|~? uniformly for x,y in bounded set of R? and = # y.
Thus again by [20, Lemma 7.12], we have ||%juz||m(0) < O||®||z2(rs)- This shows
u, € H! (R*) and |u.| g1 (o) < C||®| 12(re) for any bounded open set O C R3,
Next, it is easy to see that |%d(5§z, U.)| < Clx—y| uniformly for x, y in bounded
set. Thus, by Lemma 2.3 and Lemma 2.2, we can obtain that |a%f‘jk(:137 y)| < Cle—
y| =1, |%(wajk(5sz, 7.))| < C|z —y|~? uniformly for x,y in bounded set and = #
y. Consequently, |6%(Jz(y)fjk(w,y))| < Clz—y| ! and |8%(Jz(y)vmfjk(w,y))| <
C|x—y|~2 uniformly for ,y in bounded set and & # y. This implies that for almost
all  in the bounded open set O, %(JZ(-)fz(w7~))<I>(-) € H'(O). By Lebesgue
dominated convergence theorem, we conclude that uw, € A(U; H'(0)). O

The following lemma indicates that J(y)T'(x,y) is the fundamental solution
matrix of the PML equation.

Lemma 3.5. For any ® € L?(R3) with compact support, the Newton potential

(33 N@)@)= [ Ty

satisfies N(®) € H*(R3) and the PML equation in the weak sense
(34)  AN(®),%) = V(IN(®),¢) = (J&,¢), vy € H'(R),

where (-,-) is the inner product on L*(R3) or the duality pairing between H'(R3)
and H'(R?)'. Moreover, |N(®)|/ g1 (0) < C||®||L2s) for any bounded open set
O C R3.

Proof. Let zg = ¢ + 1, then N(®) = N,,(®). We again denote u, = N,(®) for
z€U={z€C:Re(z) > |Im(z)|} which is defined in Lemma 2.2. By Lemma
3.4 we know u., € H\ (R?) and ||, || g1 (0) < C||®||12(rs) for any bounded open
set O C R3. By the definition (3.3) and Lemma 2.4 we know that u,, decays
exponentially and hence u,, € H!(R?).

It remains to show wu,, satisfies (3.4). Here we use the argument in [25] for the

Helmholtz equation. For that purpose, for any ¥ € C§°(R?), consider
I(2) = / (o)A, VP — P dous % — J.® ) da, V=€ U,
R3
where 7, (u,) = 2ué, (u,) + Atr(€,(u.))l, €. (u,) = %(Vung + B (Vu,)"), B, =

(VF,)"T, and A, = J.B,. By Lemma 3.4, I(z) is analytic in U. On the other
hand, for z € Ry \{0} C U, it is easy to see that F, is C? smooth, injective, and
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maps R? onto R3. Thus by using the formula of change of variable, we know that

1) = [ () VOB~ b - @) Jda

B /]1{3 (T(vz) : V’l/;z - 721)2 : 111_)2 - ((I) © Fz_l) : 111_)2) d:l},
where 1, ;= o F_ 1, and
v.(x) = (us 0 F ) (x) = / T'(a, y)(@ o F)(y)dy.
R3

It is clear that V - 7(v,) + y?v, = —® o F; ! in R? for z € R;\{0}. Since 1,
has compact support for z € R;\{0}, we obtain I(z) = 0 for z € R;\{0} by
integration by parts. Thus the analyticity of I(z) yields that I(z) = 0 in U which
implies that ., satisfies the PML equation (3.4) in the weak sense. This completes
the proof. O

We remark that in the lemma we have in fact proved that for any z € U = {z €
C:Re(z) > |Im(2)|} defined in Lemma 2.2, u, = IN,(®), where ® € L?(R?) has
compact support, satisfies

(3.5) /RS (7. (u) A, - Vb — 2 T, - ) de = /R3 J.® -apdx, Yip € H'(R?).

Then by Lemma 3.3 and Lemma 3.4 we deduce that [|u.| 10y < C||®|| 1 (gsy for
any bounded open set @ C R3. Therefore, by the density argument we know that
N.(®) € H. .(R?) is well-defined for any ® € H'(R?)" with compact support and
satisfies | IV (®)]| g0y < C||®|| 2 ray for any bounded open set O C R3.

The following lemma shows that the Newton potential in (3.3) can also be defined
for ® € L*(R3?).

Lemma 3.6. For any ® € L*(R3), we have N(®) € H(R3) which satisfies
[N(®)[|rr1(rey < C|@|p2(rs) and
(3.6)  AN(®), %) —7*(JN(®),9) = (J®,9), ¥ € H'(R?).
Proof. By Lemma 2.4 and Lemma 2.6 we know that for any « € R3, j,k =1,2,3,
/ ITji(2,y)|dy < C |z —y|"ldy +C e eI @ gy < C,

R3 lz—y|<B1 lz—y|>p1
where 81 = 2v3Blmax. Now for any & € L?(R3) with compact support and
1 € L?(R?), by Cauchy-Schwarz inequality,

I( )|

N(®),
/]R ) /R ) J(y)f(w,y)é(y)(:c)dwdy’

C(/R /R |f(m,y)|<1’(y)|2da:dy>l/2 </R /R |f(m’y)|¢($)|2dmdy)l/2

< Ol @l rewe) ol L2 re).-

This implies ||N(¢)||L2(]R5) < CH‘PHLZ(RB). Similarly, one has HVN(¢)||L2(]R3) <
C||¢||L2(R3). Thus ||N(‘I’)||H1(R3) < C||¢||L2(R3). This implies by the density that
N (®) € H(R?) for any ® € L*(R?). The equality (3.6) follows now from (3.4)
again by the density argument. This completes the proof. [

IN

A
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The following theorem is the main result of this section.
Theorem 3.7. Let (H1) be satisfied. There exists a constant C > 0 that

“u |A(p, ) — (T, )|
p
YEH(R3) 10l 5 (r3)

> C|ollgrws), V¢ € H'(R?).

Proof. We follow the argument in [10, Theorem 5.2]. We only need to show that
for any Fy € H'(R3)', there exists a unique solution w € H'(R?) that satisfies

(3.7) Alw, ) = (Jw,9) = Fi(v), Y € H'(R®),

and the estimate ||w|| g1 (rsy < O/ F1| g1 sy . We first show the existence and the
estimate. By Lemma 3.3 and Lax-Milgram lemma we know that there is a unique
v € HY(R3) such that

Alv, %)+ (v,9) = Fi(), vy € H'(R?).
Moreover, [|v| g1 gsy < C||Fi| g (rsy. For F :=~*v + J 'v € L*(R?), we intro-
duce the Newton potential v; = IN(F) which satisfies [|v1]| g1 (rs) < O/ Fa|z2(rs) <
Cl|v| 23y < C||F1| g1 sy, and by Lemma 3.6
‘A(vla":b) - Vz(J’Ulv?:b) - (72‘]’0 + 'U,’l#), V%b € HI(R3)7

which implies w = vy + v € H'(R?) satisfies (3.7) and the estimate ||w| g1 (rs) <
CllFyl| pr (ray -

It remains to show the uniqueness. Let w satisfy (3.7) with F; = 0. For any
® € L?(R?), let N(®) € H'(R?) be the Newton potential in Lemma 3.6. Then

since A(N(®),w) = A(w, N(®)), by (3.6) and (3.7) with F} = 0, we have,
(J@,w) = A(N(®),w) —7*(J®, ) = A(w, N(®)) — 7*(Jw, N(®)) =0,
for any ® € L?(R3). This shows w = 0 and completes the proof. O

We finally show that the Newton potential N (®) can also be defined for ® €
Hl(RS)/'

Lemma 3.8. Let (H1) be satisfied. The Newton potential N : L?(R3) — H*(R?)
defined in (3.3) extends as a continuous linear operator from H*(R3?) to H'(R3)
and satisfies || IN(®)| g1 sy < C||®| g1 (rsy . Moreover,

(38)  AN(®), %)~ (JN(®),9) = (J@,¢), V¢ H'(R?).

Proof. For ® € L*(R?), Theorem 3.7 and Lemma 3.6 imply that [|N(®)| z1(rs) <
C||®| g (r2) - The lemma follows then from the density of L*(R?) in H*(R?)". O
4. THE PML EQUATION IN THE TRUNCATED DOMAIN

We first introduce some notation. For any bounded domain D C R? with bound-
) B 9 ) 1/2
ary I', we use the weighted H'-norm || ¢ 1Dy = (dD2 ¢ lz2py + 1 Ve HLQ(D)>

) ) 1/2
and the weighted H'/2-norm || v #r1/2(ry = (dg vy + lv|2 F) , where dp
3

is the diameter of D, and

fo= [ [ o) oo,

|z — |3

|v
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It is obvious that for any v € WH(T),
@1)  olmeey < (T1dp") 2ol ey + (Dldp) V2 Vol| oo ).

By the scaling argument and the trace theorem we know that there exist constants
C4, Cy independent of dp such that

D| , di
(42) CldTH’U”Hl/Q(F) S 1n£ H‘PHHl(D) S Cgﬁ H’UHHl/Q(F).
D kP|1‘—1f

peHL (D)
We denote Ap : H'(D) x H'(D) — C the sesquilinear form:
Ap(6.9) = [ F($)A: Vibde, V6.4 < HI(D)
D

Since £(¢) is a symmetric matrix, we have, for any ¢, € H(D),
13 Ao(@w) = [ (wIE(@): 2D + Mg div ) da.
D

where divv = Z?Zl ai% is the divergence operator with respect to the stretched
coordinates.

Let V(BL) ={v € HY(BL):v-n=0 onIL}. The purpose of this section is
to show the following theorem which plays a key role in our subsequent analysis.

Theorem 4.1. Let (H1)-(H2) be satisfied and ood be sufficiently large. Then there
ezists a constant C > 0 such that

2
Wiy An0.0)=U6.0)
veEV(BL) ||U||H1(BL)

Bil 5 Ol mays Vb € V(Br).

Proof. The argument extends the reflection argument in [10, 9] for the Helmholtz
and Maxwell equations. For ¢ € V(By,), we define a functional F; € V(BL) by

Fl(v) = ABL (¢7v) - 72(‘]9{)7 U)BL7 Vv € V(BL>
Then the inf-sup condition (4.4) is equivalent to show |||z (5,) < C||Fillv(B,)-
We introduce an extension of ¢ to th_e domain Bfl = (2L + 1,201 — l]) X
(—La, L) x (—Ls, L3) as follows, where [;, j = 1,2, 3, are defined in (2.8). For any
T € Bf‘l, we denote

- (2L1 — 1, w2, 23)7 if |z1 —Lq1| <Ly — 1:1;
(—2L1 — $1,1‘2,1‘3)T if |$1 + L1| S L1 — ll.

& is the image point of & with respect to #; = Ly or #; = —L;. For & € BJ*\By,
let

(@) = —d1(a™), 65" (x) = ga(a™), ¢5(x) = g3(™).
qbf‘l is the extension of ¢ in By, to Bfl by odd reflection with respect to z; = +L;.
For j =2,3, gbfl is the extension of ¢; in By, to Bfl by even reflection with respect
to 21 = +L;. Obviously ¢ = (¢, ¢t s € H'(BH) since ¢ - n = 0 on
['y. For any v € H}(Bf"), we define Ff* ¢ H-'(BI) by

P [

1
L

(;Ué((ﬁRl) &) + A div @Fr - dive — 42T - f;) da.
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Since o1 (x1) = o for |z1| > I1, we have, for € B,

£jj(@™)(x) = &;5(9) (™), j=1,2,3,
Era(™) (@) = —E12(@) (&™), E13(p™) () = —E13(p)(x™),
Ea3(¢™) () = Eas(ep) (x™),

which imply by the change of variables that
FRi(y) = / (uJé(gb) LE(®) + AJdive - dive — 42 ¢ - é) da,
By,

where © = (01,79, 03)" is defined in By, as

1}1(113) — Ul(J)Rl) if x1 € (Z1,_L1_);
’U1<(B) = vl(:c) if xr1 € (*ll,ll);_
’1}1(513) — ’Ul(:ERl) if xr1 € (*Ll, 711),

and for j = 2,3,
’Uj(iL') + ’Uj(iL‘R1> if 1 € (illLl);
’Uj((l}) = vj(w) if 1 € (_lhll)i

’Uj(.’l)) + ’Uj(.’BRl) if 1 € (—Ll, —ll).

Since v € HY(B™), we know that & € V(Br) and |9 g1(p,) < Cllvll 2 s
L
Thus

)

< C sup |ABL ((ﬁ,f)) 772(J¢71~))BL|

(45)[ F - =
H D€V (BL) ||”||H1(BL)

(B = ClFillvs.y-

Now we extend d)fl by odd reflection, gf)?l, 51 by even reflection with respect
to 9 = 4Ly to obtain a function ¢ defined in Bgle = (2L + 11,204 —
I1) X (—2Lg + 13, 2Ly — I3) x (—L3, L3). We further extend ¢5* " by odd reflection,

{%1R27¢§‘1R2 by even reflection with respect to x5 = +L3 to obtain a function ¢
defined in BE = (=2Ly +11,2L1 —11) X (=2La+12,2Ly —I3) X (—2L3 +13,2L3 —3).
For any v € H}(BE), we then define a functional F € H~!(BE) by

(4.6) F(v) := /

Bf

(ujé(qu) LE(B) + M div @l - dive — 12T T - @) da.

By a similar argument leading to (4.5) one can prove ||FRHH_1(B§) < C||F1llv(s,y-
Now we extend F¥ € H~1(BE) to a bounded linear functional F» € H*(R3)' by
Hahn-Banach theorem such that || Fy| girsy = [|[F 7| -1 (pn). For Fy € H'(R?)

we use Lemma 3.7 to conclude that there exists a w € H'(R?) such that
A(w,v) — ¥ (Jw,v) = Fy(v), VYve H'(R?),

and H'w||H1(Ra) < C”FQ”Hl(R:S)I < CHF1HV(BL)" This yields, by using (46), for
w; =w — ¢R S Hl(BII?%

(4.7) A(wy,v) — ¥*(Jwy,v) =0, Vv c H}(BE).
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Since J(y)I'(x,y) is the fundamental solution matrix of the PML equation, by the
integral representation formula we have for @ € By,

(4.8) J(x)wi(x) e, = /BBR 7wy (y))An - JT(z,y)e,ds(y)

- [ U@ e An - wi(y)ds(y).
OBR

Denote df = (L;j — 1), j = 1,2,3. Then d® := min(df,d},df) is the dis-
tance between By and OBE. Clearly df > d;/2 by (H2), j = 1,2,3. Denote
by Bpiarss = {z € R : |zj| < L; + df/?,j = 1,2,3}. Since o;(t) = og for
Lj < |t| < Lj + df, we have ‘ f;: aj(t)dt‘ > 00dft/2 for x € By, |y;| > L; 4+ df/2.
By (2.16) we have then for any @ € B,y € BE\BH_dn/%

(4.9) Im d(&, §) > /2
Vi L + a2

Let x € C3°(R?) be the cut-off function such that x = 0 in Bjqr /2, X = 1 near
OBE and |Vy| < C(df)~! < Cd~!. Then by integrating by parts and using
V - (F(w1)A) — y2Jw; = 0 in BE which is a consequence of (4.7), we obtain, for
any ¢ € Br,

UodR/2 = ’leodR.

/ 7(wi(y))An - JT(x, y)ends(y)
oBR

[, (7w (@ y)e,) = Hw)A: DO (@ y)e,)) dy

IN

Cd®?|w max max (df» z,y)| + |VyLik(, )
ol gy s, s ()] + Vo)

3/2 —kpy100dE
< CdPem N lwi || 1Ry,
where we have used (4.9) and Lemma 2.4. A similar argument for the second term
in (4.8) implies that w1/ p~(,) < Cd3/2e*kp“/1<’0dR||w1||H1(B§). One can obtain a

similar bound for Vaw; to get [|[Vw: |z~ (p,) < CdS/Qe_kP“”"dR||w1||H1(BzLa). Thus

(4.10) lwillgip,y < Cd¥2(d Hwillpe(n,) + VWil L= (s,))
< CdPe O wy |y
< Cde R (]| gy + 07 41 7))
< O Fn TN (]| i sy + 1l 5)).
Therefore,
lolar sy < lwllgisy) + |lwilla s,
< wli sy + CdPe™ 0 (]| g sy + Bl (5.

This shows H¢||H1(BL) < C||wHH1(]R3) < C”Fl”V(BL)’ ifJod and thus O'QdR > Uod/2
is sufficiently large. This completes the proof. O
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5. THE PML EQUATION IN THE LAYER

In this section we consider the following problem of the PML equation in the
layer QPML = BL\Bl

(5.1) V- (F(w)A) ++*Jw =0 in Qpur,
w=0 onlYy,

(5.3) w-n=7Ff-n, T(wAnxn=g; xn onlyp,
where f; € H'/?(T'1),g, € H-Y/%(Tp).

Lemma 5.1. Let (H1) be satisfied. Given f € H'Y2(T)), let € = E(f) be the PML
extension of f defined in (2.17). Then & € H'(R3\B;) and

(5.4) (Tf,4)r, = — /

(F@)A: Vi —2JE- ) dw, Wb € H'(R\B).
R3\ By

Proof. For z € U = {z € C: Re(z) > |Im(2)|} defined in Lemma 2.2, we first prove
the modified single and double layer potentials W () € H (R3\B)), ¥ (f) €
H! (R3\B)) for any A € H'/2(T}), f € H'Y/?(I';) by using an argument in [27,
Theorem 6.11]. Since the trace operator o : H(B;) — H'/?(T}) is surjective and
continuous, its conjugate operator j) : H~'/2(I';) — H'(B;)’ is a continuous linear
operator. Thus the modified single layer potential operator can be decomposed as
W2 = N, o~} which implies by the remark after Lemma 3.5 that ®Z, (A\) €
H] (R3\B)) and satisfies |[®Z (A)||lg1o\5y) < ClIA|g-1/2(r, for any bounded
open set O in R3. For f € H'/?(I';), we denote v € H'(B;) the weak solution of
the Dirichlet problem V-7(v) = 0in B;, v = f on I;. Thus 7(v)n; € H~Y/2(T). Tt
is easy to see by integration by parts that W2, (f) = —y2N(v)+W¥Z (7(v)n;). This
shows by Lemma 3.4 that %, (f) € H. (R3\B;) and satisfies | ¥2, (f)l| g1 (0\5) <
Clvlle2s)+Clir ()il g-1/20,) < Cll Il /2(r,) for any bounded open set O in R?.
Therefore, £, := —WZ (Tf) + 2 (f) € HL.(R®\By). Since € = £.,, 20 = ¢ +1i,
we know that € € HJL _(R3\B;). This implies £ € H'(R?\B;) since € decays
exponentially as |x| — cc.
Now we prove (5.4). It follows from (3.5) that £, satisfies

/ (%z(éz)Az : V"; - ’YQJZEZ ’J’) de =0, Vo € CSO(R3\BI)
R3\ By

Thus by the definition of weak derivative, V - (7.(€.)A,) = =72 J.E. € L2(R3\By),
which implies 7, (€,)A.n; € H~/2(T;) and for any v € H'(R3\B)),

(55) <7~—z(£~z)Azn17¢>Fz = w/]R3\B (fz(éz)Az : V'lﬁ - 'VQJzéz : ’J’) dzx.

Here we remark that n; is the unit outer normal to I'; which is opposite to the unit
outer normal to J(R?\B).

The following argument is the same as that in Lemma 3.5. For any z € R;\{0} C
U, F. is C? smooth, injective, and maps R*\B; onto R?*\B;. Thus by using the
formula of change of variable and integration by parts, we know that for any ¥ €
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Ci°(R?),
Il(z) L= / <7~—z(€~z)Az : VU_’ - 72‘]211’2 : JJ) de
Rs\Bl
= / (T('UZ) Vb, — 2o, @Bz) dz,
R?’\Bl
where 1, = 1 o F,"! has compact support and

vi(@) = (Lo F.Y)(@) = —(TfoF. '\ T(z, Jen)r, + (T(x, )en], f o F= ',
= —(Tf, F( )en>Fz + <T[F(:I:, ')en]’ f>Fz
= g(l’), Ve € IR?)\Blv
where we have used F, () = x on I';, the Betti formula (2.11) with & being the so-
lution of (2.1)-(2.3). Thus by integration by parts we obtain I (z) = —(Tf,¢.)r, =
—(Tf,4)r, for = € R;\{0}. By Lemma 3.4, I () is analytic in U which yields that
Ii(z) = —=(Tf,4)r, for any 2z € U. This completes the proof by (5.5) and noticing
that £ = €., and 7(€)An; = 7., (€.,)A.,n; on T, O

Let X (Qpyr) = {v € H'(Qpyp) :v=0o0nT;,v-n=0on I'y}. The following
theorem is the main result of this section.

Theorem 5.2. Let (H1)-(H2) be satisfied and ood be sufficiently large. Then there
exists a constant C > 0 such that

sup |"4QPML ((ZS,’U) - 72(J¢,v)
veEX (QpyL) ||v||H1(QPML)

2l > Ol s ¥ € X(prn)
Moreover, the PML problem in the layer (5.1)-(5.3) has a unique weak solution
w € H'(Qpm) which satisfies |wl] g1 appe) < CUIF1llmrze,) + g1l a-12r,))-

Proof. We extend any ¢ € X (QpMr,) to be zero in B; and thus obtain a function
(still denoted as ¢) in V(Br). By using Theorem 4.1

A ,v) —Y2(Jp,v
||¢HH1(QPML) — ||¢||H1(BL) S C Sup | QPML(¢ ) ’y ( ¢ )QPML|.
veV (BL) vl ()

Here we notice that since ¢ vanishes in B;, the integration in the sesquilinear form
Ap, (¢,v) —7%(Jp,v)p, is restricted to Qpyr. Now for any v € V(Br), we define
w = E(v|p,) € HY(R3\B)). Tt is easy to see that it satisfies

AQPML(¢7w) - 72(J¢7w)QPN1L = <7-(u_))Ana (;S)FL
Let x € C*(R?) be the cut-off function such that y = 1 in Biiaje = {z € R3 :
lzi| < I; +d;/2,i = 1,2,3}, x = 0 on 'z, and |Vx| < Cd~! in Qpyr. Then
v =v— xw € X(Qpymr) and
|AQPML< ) (J¢7 )QPMLl

|AQPML (¢ ) (J¢7 UI)QPML |

(

(

|-AQPML ¢7( ) ) (J¢ ( ) )QPML‘ + |< ( )A'I’I, >FL‘
|AQPML ¢,v ) (J¢v vl)QPML| +cydzu(ﬁ“Hl(QPML)”'w”Hl(BL\BZ_*_d/z)

IN + IA
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Since o(z;) = og for |z;| > I + d;i/2 > I;, where we have used (H2), we know by

(2.16) that for any « € Br\Bjjq/2,y € I't,
d/2

S (20 + dy)?

By the the definition of the PML extension in (2.17) and Lemma 2.4, we have

Imd(z,g) > o0d/2 := ya00d.

Hw||H1(BL\BZ+d/2)

< O (A7 wll oo (0 By j0) + IVl Lo (B By a2))
= Cd3/2 max (”ij(xv ')”le@C(FZ) + ||erjk(137 ')”Wl,oo(l"l))||v||H1/2(Fl)
2EBL\B1a/2
§,k=1,2,3
< Cdl/Qe_kp’haUd||UHH1/2(FL)-
Therefore
A ,v1) — Y2 (J o,
H¢||H1(QPML) < C sup ‘ QPNIL(¢ ’Ul) v ( d) ’Ul)QpML|
v1€X (RpML) ||"’1||H1(QPML)
+ Cd5/26—kp7200d||¢HH1(QPML).
This shows the desired inf-sup condition if ogd is sufficiently large. O

6. CONVERGENCE OF THE PML PROBLEM

We start by introducing the approximate Dirichlet-to-Neumann operator T :
H'/2(I'})) - H~/?(I'}) associated with the PML problem. Given f € H'Y/2(T}),
let ¢ € H'(Qpmy) such that (¢ = fon I, ¢-m=0o0n Tz, and
(6'1) AQPML (C,’l/)) - VQ(JCa w)QPML =0, Vye X(QPML)'

By Theorem 5.2, T is well-defined for sufficiently large ogd. We define T f e
H~'/2(I}) through the relation

(6.2) (EF e, = — /Q (F(O)A : Vi — 2 - ) da,

for any v € H*(Qpy1) such that p-n =0 on I'. By (6.1) we know that the right-
hand side of (6.2) depends only on 9|r,. Moreover, Tf = 7(¢)An; in H=/2(T)).
To proceed we notice by (2.16) that for x € ',y € T,
in—12,3 (Li — s ki
(6) . g) > SRz = 5o o i [0
i (2 + di)? e

Lemma 6.1. Let (H1)-(H2) be satisfied. For any f € H'/?(T)), let E(f) be the
PML extension defined in (2.17). Then we have

VEF) Ve, + IFEE) AR g-1/2w,y < CdY2e™ 07 || f gy, -
Proof. Since

E(f)(z) en = — <’]I‘f,f(:c, -)en> + <T[f‘(a:, -)en},f>rl .

Iy

By (4.1) we have
(6.4) B(F) g2,y < CLY2IE(f)l| oo ry) + CLY 2 VE(F) | oo (rs)s
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where L is the diameter of By. Clearly L < Cd. For € I'f, we have again by
(4.1)

EA@] < max [Tflame) (D@ Jealmmm,)
+ max ||T[f(w>')en]||H*1/2(1"l)HfHHl/Z(Fl)

n=1,2,3

< 0 max [P )lw e I L.

Now by Lemma 2.4 and (6.3) we obtain
By < Cd7 e 7| | r1/2r)-

Similarly, one can prove |VE(f)| Lo,y < Cd~'e 77| | z1/2p,). This shows
the estimate for [[E(f)|| g1/2(r,) by (6.4).
For the estimate of ||[7(E(f))An| z-1/2(r,), we notice that by the definition of

H~'2(I'p) norm that
ITE) Al r-1/2(r)

< CL*Z|#E(f))An| L=,
< CL*2 max (IVe(TS, T(@, Jenr i ry) + Vo (TIE@, el Frllzer) ) -

The proof can now be completed using a similar argument for the estimate of
IE() r2/2(r, ) as above. -

Lemma 6.2. Let (H1)-(H2) be satisfied and ood is sufficiently large. Then we have
ITf — Tf”H*l/Q(Fl) < Cd5/2 e Fpr05 | f ||H1/2(Fz) , Vfe Hl/Z(Fl).
Proof. For any 1 € H'/2(I'}), we extend it to be a function ¢ € H'(Qpy,) which

satisfies ¢ - m = 0 on I'y, and H’Q,B||H1(QPML) < ClYllgi2(r,)- By (6.2) and Lemma
5.1 we know that for £ = E(f),

(Tf —TF,%)r,|
= [ (704 V9 —20E -0 9) da| + 1€ An.iiir, |
Cd?||€ - Clla (Qeae) ||1;||H1/2(Fl) + C”%(E)AnHH*l/?(FL)||1/~’||H1/2(FL)-

Since £ — ¢ satisfies the PML problem (5.1)-(5.2) with f; = E(f), g1 = 7(E(f))An,
by Theorem 5.2 and Lemma 6.1, we have

1€ = Clnoene) < CUBEmzy) + 1FEFE)) AR g-1/2(0,))
< Odl/Qefkp’YoFr”f”Hl/z(Fl).

IN

This completes the proof. (I
Let b: H'(Qr) x H* (1) — C be the sesquilinear form given by
(65 o) = [ (@)A1 V=120 4) da.
L

Denote by V() = {v € HY(Qr) :v-n =0 onI'y}. Then the weak formulation
of (2.20)-(2.21) is: Given q € H'(Q;)', g € H'/?(I'p), find & € V(Q2) such that

(66) b(ﬁ’¢) = (qat/))ﬂl + <gv¢>l—‘pv v 1/) € V(QL)



CONVERGENCE OF THE PML METHOD FOR ELASTIC WAVES 21

Theorem 6.3. Let (H1)-(H2) be satisfied and ood is sufficiently large. Then the
PML problem (6.6) has a unique solution & € V(). Moreover, we have the
following error estimate

(6.7) =l o,y < CA2e™™ 7 [a] g,
where u is the solution of (2.5).

Proof. We first show that any solution @ of the PML problem (6.6) satisfies the
estimate (6.7). By (6.2) we have

a(@, ) + (T — T, )r, = (q.%)o, + (g, %)rp. Vo € H'().
Subtracting with (2.5) we get

a(u — @, ) = (Ta — Ta, ), Ve H(Q).

Now (6.7) follows from the inf-sup condition (2.7) and Lemma 6.2.

By the Fredholm alternative theorem we know that the uniqueness of the so-
lution of the PML problem (6.6) implies the existence of the solution. To show
the uniqueness, we let ¢ = 0,g = 0 in (6.6). By the uniqueness of the scattering
problem we know that the corresponding scattering solution w = 0 in €;. Thus
(6.7) implies

a1 ) < CA™ e 07 ||| pajo g,y < CdP2e™5707 || g, -

Thus for sufficiently large ood we conclude that & = 0 on €2;. That @ also vanishes
in Qpumr is a direct consequence of Theorem 5.2. Thus & = 0 in 7. This completes
the proof. O

7. NUMERICAL RESULTS

In this section we present a 2D example to illustrate the performance of the
proposed PML method with respect to the change of the PML parameters. The
computations are all carried out in MATLAB on ThinkStation D30 with Intel(R)
Xeon(R) CPU 2.4GHz and 128GB memory.

We first introduce the finite element approximation of the PML problem (2.20)-
(2.21). We assume q € L*(Q;), g € L*(I'p). Let M, be a regular triangulation of
the domain Q. We assume the elements K € M) may have one curved side align
with T'p so that Q = Ugenm, K. Let V,, € HY(21) be the conforming quadratic

finite element space over Qp, and Vi = {v, € V}, : vy, - n =0 on I'p}. The finite
element approximation to the PML problem (2.20)-(2.21) reads as follows: Find

up, € V), such that

(7.1) b(un, ¥n) = (@, %¥n)a, + (9. ¥n)rp,, Yy € ‘o/h-

In our example, we set D = (—0.5,0.5)%, I = Iy = 2, Iy = I, = 2.5, and
d=dy =dy. Let \=1, u=1, po =3, and w =5, then k, = 5. Let ( = 1.8. For
the medium property o;(¢), j = 1,2, we define

4t, 0<t<0.25,
Bi(t) = { 2—4t, 0.25<t<0.5,
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and for [; <t < l_j,

o5(t) = 0 ( /l Y byt zj)ds) B /l "85 — 1y)ds.

We consider the scattering problem whose exact solution is known:

i
w=VGy,(2)), Gy, (l2]) = 3 Hy(kp|2)).

We follow a similar idea in [10] to construct the finite element mesh. Figure 7.1
shows a sample of the mesh used which maintains the same number of elements
in the PML layer for different choices of the PML thickness d. In our numerical
experiments, we take 1 < d < 4 and thus the elements in the PML layer keep the
shape regularity.

20,=4 |-

- . = S — ‘ - }
FIGURE 7.1. The mesh when h =1/2 and d = 1.

We remark that error [|w —wp ||z (q,) comes form two parts: the PML trun-
cation error and finite element approximation error. It is clear that one can not
expect the decrease of error when either one of the two parts of the error dominates.
Figure 7.2 shows clearly the exponential decay of the error ||u — up||g1(q,) with
respect to k,vo0 when the finite element discretization error is negligible compared
to the PML error. This is in conform with Theorem 6.3. Figure 7.3 shows the
decay of the finite element error ||u — up||g1(q,) when the mesh is refined and we
keep the product of the PML thickness d and PML strength og constant: oqd = 4.
We observe the expected second order convergence for the quadratic finite element.
In Figure 7.4, we plot the real part of u;, and wuj, the interpolation of the exact
solution, when o9 = 4, d =1 and h = 1/32. Note that the solution u;, goes rapidly
to zero in the PML layer.

To conclude this section we remark that similar numerical results are also ob-
served if we take the boundary condition v = 0 at the outer boundary of the
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——o0)=1,d=0.5,..,3
——d=1,00=0.5,..,4
a line with slope -1

12

FIGURE 7.2. The log||lu — un|/g1(q,) - kpY00 plot of the finite
element solution up when h = 1/128 and the degrees of freedom
DOF=8266752.

10

——o0g=4,d=1
——0)=2,d=2
——oy=1,d=4
——a line with slope -2
107"} ]
107
10
-4
10 L L
107" 107

FIGURE 7.3. The log|lu — unl|/g1(q,) - logh plot of the finite
element solution wp when ogd = 4. The mesh size h =
1/8,1/16,1/32,1/64,1/128 and the corresponding degrees of free-
dom DOF = 32832,130176, 518400, 2068992, 8266752.

PML layer instead of the mixed boundary condition (1.7) introduced in this paper.
The convergence of the PML method for the time harmonic elastic waves with the
boundary condition w = 0 at the outer boundary of the PML layer remains an
interesting open problem.
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= &5

(a) (b)

= )

FIGURE 7.4. Numerical results when g =4, d =1, and h = 1/32.
(a) The real part of the numerical solution uy,_1; (b) The real part
of the numerical solution uy, 2; (¢) The real part of the interpolation
solution wy 1; (d) The real part of the interpolation solution wy .

8. APPENDIX

In this section we prove Theorem 2.1. We start with the following uniqueness
result that is proved in [23, 26].

Lemma 8.1. The scattering problem (1.1)-(1.2) with Kupradze-Sommerfeld radi-
ation condition has at most one solution uw € HL (R3\D).

The existence of the solution can be proved by the method of limiting absorption
principle by extending the argument for Helmholtz scattering problems (cf. e.g.
[26]). Here we briefly recall the argument. For any z = 1+1ie, ¢ > 0, q; € H'(R3)’
with compact support in B;, we consider the problem

(8.1) V-7(u.) + 27y*u, = —q1  in R3.

It is easy to see by Lax-Milgram lemma that (8.1) has a unique solution u, €
H'(R3). For any domain D C R3, we define the weighted space L**(D), s € R, by

L*%(D) ={v e L3 (D) : (1 +|z|?)*?v € L*(D)}

loc

with the norm [[v||z2.:(py = ([p(1 + |w|2)s|v|2d:c)l/2. The weighted Sobolev space
HY$(D), s € R, is defined as the set of functions in L**(D) whose first derivative
. . s 1/2

is also in L*#(D). The norm ||v||g1.«(p) = <||U||%2,S(D) + ||V11||%2,5(D)>

Lemma 8.2. Let q; € L*(R?) with support in By. For any z = 1+ie,0 < e < 1, we
have, for any s > 1/2, ||u.||g1.-»®s) < C|lq1l|L2(rs) for some constant independent
of e,u,, and q.

Proof. We first observe that by testing (8.1) by (1 + |z|?)*4., s > 1/2, one can
obtain ||| g1,-+rs) < Cllu.l| 12—+ ®s) + Cl|q1]|L2(rs) by standard argument. Now



CONVERGENCE OF THE PML METHOD FOR ELASTIC WAVES 25

we show [[u. || z2—s®s) < C|q1]|L2(rs). It is obvious that we only need to prove the
estimate for g; € CJ°(R3)3 for which we have the integral representation formula

w) = [ Fayawiy, @
R
Here I'*(x,y) is the fundamental solution matrix of (8.1) which has the complex

wave number yz/2, where Im 2/2 > 0 for £ > 0. Similar to (2.12), we have

(zj —yj) (@K — yx)
|z — yl?

(8.2) e(@y) =iz —y))dje + T3(lz —yl)

)

where, for r > 0,

Jis () = fi (1)
i) = 3 [(k:)?fkg (1) - ’“’“] ,
fis () = £ 1)
T3 = = [3 S (k)2 e, (1) — (K22 <r)>] .

Here kZ = y2'/2 /\/ X+ 2p,kZ = v2'/2 /\/li. It is easy to show that
(8.3) T4 (z -y < Clz —y|™',  forz#y,

for some constant C' independent of € € (0, 1).

For any ¢ € L**(R?), denote 9(y) = [z I* (2, y)$(x)dx. Since q; is supported
in Bl, we have |(u27¢)R3| < ‘|¢||L2(Bl)||q1||L2(R3)~ Now we estimate H’lﬂ”L’z(Bl).
Write

¢=¢1+¢21=/

Byt

Fayd@izt [ ey,

R3\Bi41

where Bj.1 := {x € R : ;| < [; + 1,i = 1,2,3}. By (8.3) and Cauchy-Schwarz

inequality we have
9 1
C |o(x)|*de - ———dz | dy
B B By ‘SC - y|

C||¢H%2(BH,1)
On the other hand, since by (8.3), |[I'*(x,y)| < C for x € R*\B;11,y € By,

410172,

IN

IN

2

[Weltewy < [ [ loGlde| dy
By |JR3\Bit1
< Cllollizxrey-
This yields ||%][z2(B,) < C||@||L2.5(r3). Therefore,
(s, @)rs| < C|@||L2.s(r3) g1 | 2 (m3)-
This shows [|u.[|z2,—®s) < C||q1| z2(rs) and completes the proof. O

Now we are in the position to prove Theorem 2.1.

Proof of Theorem 2.1. The argument is standard and we just give an outline below,
see e.g. [26] for the consideration for Helmholtz equations. For any 0 < & < 1, we
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consider the problem

(8.4) V-7(us) + (1 +ie)y?u. = —q  in R®\D,

(8.5) T(ue)np, = —g on I'p.

By Lax-Milgram lemma we know that the above problem has a unique solution
u. € HY(R3\D). Let x € C5°(R3) be the cut-off function such that 0 < y < 1,
x = 0in By, and x = 1 outside Bj11. Let v. = yu.. Then v, satisfies (8.1) with
z=1+1icand g1 = 7(uc)Vx + (A + p)(V3xuc: + Vu:Vy) + pAxue + pdivu.Vy,
where V?2y is the Hessian matrix of y. Clearly q; has compact support. By Lemma
8.1 we can obtain

(8.6) e[| 15 sy < Clluel|gr(s,,,\0)

for some constant C' independent of ¢ > 0. Now let x; € C§°(R?) be the cut-
off function such that 0 < x;3 < 1, x1 = 1 in Bjy1, and x3 = 0 outside Bjys.
Denote wy, € H'(R3\D) as the lifting of the function g € H~'/?(T'p) such that
T(wg)np = g on I'p and [|wg|| g1 (rs\py < Cllgllg-1/2(rp,)- By multiplying (8.4)
with x%(u. — wy) and using the standard argument we have

||Ue||H1(Bl+1\D) < C(||q||H1(R3)’ + H9||H—1/2(FD) + ||U5HL2(B,+2\D))-

A combination of (8.6) and the above estimate yields

(8.7) Nvellgr—s ey < Clgllmr ey + 19llg-1/2(0p) + el 2,5\ D))-

Now we claim
(8.8) luell 2,0y < CUlallar@sy + gl g-1/200)):

for any q € H'(R?) with the support inside B;, g € H~'/?(I'p), and ¢ € (0, 1).
If (8.8) were false, there would exist sequences {g,} C H*(R3)" with support in
By, {gm} € H™'2(T'p), {e;m} C (0,1), and {u., } the corresponding solution of
(8.4)-(8.5) such that

(8'9) HuEnL

Then by (8.7), |[ue,, ||g1.—=@s\py < C and thus there is a subsequence of {e,},
which is still denoted by {e,,}, such that &,, — &’ € [0,1], and a subsequence of
{ue,, }, which is still denoted by {u., }, such that {u., } converges weakly to some
u. € HY75(R?\ D) which satisfies (8.4)-(8.5) with ¢ =0, g =0, and ¢ = €',

By the integral representation satisfied by u., we know that for n =1,2,3,

(8.10)  wue () - e, = (T (z, )en], uer |1y )rp, Vo € R3\D.

If & > 0, we deduce from (8.10) that u. decays exponentially and thus in u. €
H'(R3*\D). Now the uniqueness of the solution in H'(R3\ D) indicates that u., =
0. If & = 0, (8.10) implies that u.s satisfies the Kupradze-Sommerfeld radiation
condition and we conclude by Lemma 8.1 that u.» = 0. In any case u., = 0,
however, this contradicts to (8.9). Therefore, we have (8.8) and consequently by
(8.7)

(8.11) HU’E”HL*S(]R"*\D) < C(||QHH1(R3)’ + ”g”H*l/?(FD))'

Now it is easy to see that u. has a convergent subsequence which converges weakly
to some w in H~*(R3\ D) that satisfies (1.1)-(1.2) and the Kupradze-Sommerfeld

radiation condition. The desired estimate follows from (8.11). This completes the
proof. O

2(Biao\D) = 1 and |lgm | g sy + |gmllg-1/2(0p) < 1/m.
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We remark that the above arguments extends easily to show that the existence
of radiating solutions to the time harmonic elastic wave problem with other types
of boundary conditions such as Dirichlet or mixed boundary conditions on I'p.
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