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Convergence of the Two-Dimensional Dynamic
Ising-Kac Model to ˆ4

2
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École Normale Supérieure de Lyon, CNRS

HENDRIK WEBER
University of Warwick

Abstract

The Ising-Kac model is a variant of the ferromagnetic Ising model in which each
spin variable interacts with all spins in a neighborhood of radius �1 for  � 1

around its base point. We study the Glauber dynamics for this model on a discrete
two-dimensional torus Z2=.2N C 1/Z2 for a system size N � �1 and for an
inverse temperature close to the critical value of the mean field model. We show
that the suitably rescaled coarse-grained spin field converges in distribution to
the solution of a nonlinear stochastic partial differential equation.

This equation is the dynamic version of theˆ42 quantum field theory, which is
formally given by a reaction-diffusion equation driven by an additive space-time
white noise. It is well-known that in two spatial dimensions such equations are
distribution valued and a Wick renormalization has to be performed in order to
define the nonlinear term. Formally, this renormalization corresponds to adding
an infinite mass term to the equation. We show that this need for renormalization
for the limiting equation is reflected in the discrete system by a shift of the critical
temperature away from its mean field value. © 2016 by the authors. Commu-
nications on Pure and Applied Mathematics is published by Wiley Periodicals,
Inc., on behalf of the Courant Institute of Mathematics.

1 Introduction
The aim of this article is to show the convergence of a rescaled discrete spin

system to the solution of a stochastic partial differential equation formally given
by

(1.1) @tX.t; x/ D �X.t; x/ �
1

3
X3.t; x/C AX.t; x/C

p
2 �.t; x/:

Here x 2 T2 takes values in the two-dimensional torus, � denotes a space-time
white noise, and A 2 R is a real parameter.

The particle system that we consider is an Ising-Kac model evolving according
to the Glauber dynamics. This model is similar to the usual ferromagnetic Ising
model. The difference is that every spin variable interacts with all other spin vari-
ables in a large ball of radius �1 around its base point. We consider this model on
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a discrete two-dimensional torus Z2=.2N C 1/Z2 for N � �1. We then study
the random fluctuations of a coarse-grained and suitably rescaled magnetization
field X in the limit  ! 0 for inverse temperature close to the critical temper-
ature of the mean field model. Our main result, Theorem 2.1, states that under
suitable assumptions on the initial configuration, these fields X converge in law
to the solution of (1.1). A similar result in one spatial dimension was shown in the
1990s in [6, 22]. Our two-dimensional result was conjectured in [24].

The two-dimensional situation is more difficult than the one-dimensional case,
because the solution theory for (1.1) is more intricate. Indeed, it is well-known that
in dimension higher than 1, equation (1.1) does not make sense as it stands. We
will recall below in Section 3 that the solution X to (1.1) is a distribution-valued
process. For each fixed t , the regularity properties of X are identical to those of
the Gaussian free field. In this regularity class, it is a priori not possible to give a
consistent interpretation to the nonlinear term X3. In order to even give a meaning
to (1.1), a renormalization procedure has to be performed. Formally, this procedure
corresponds to adding an infinite mass term to (1.1); i.e., (1.1) is formally replaced
by

@tX.t; x/ D �X.t; x/ �
1

3

�
X3.t; x/ � 31�X.t; x/

�
C AX.t; x/C

p
2 �.t; x/;

where “1” denotes a constant that diverges to infinity in the renormalization pro-
cedure (see Section 3 for a more precise discussion).

A similar renormalization was performed for the equilibrium state of (1.1) in
the 1970s, in the context of constructive quantum field theory (see [25] and the
references therein). This equilibrium state is given by a measure on the space of
distributions over T2 (or R2), which is formally described by

(1.2)
1

Z
exp

�
�

Z
1

12

�
X4.x/ � 61�X.x/2 C 31

�
C
1

2
AX.x/2 dx

�
�.dX/;

where � is the law of a Gaussian free field. The measure (1.2) is usually called
the ˆ42 model, and we will therefore refer to the solution of (1.1) as the dynamic
ˆ42 model. Connections between the measure (1.2) and the Ising model are well
known: In [29, 30] the measure (1.2) was obtained as a limit of spin models with
continuous spins on a lattice (essentially the natural discretization of (1.2)). Then
in [52] the one-point distribution appearing in this approximation, i.e., the measure
on R whose density is proportional to exp.�ax4C bx2/dx, was shown to arise as
a limit of mean field Ising models. Furthermore, in [26] the authors showed that the
�42 model admits a phase transition just like the two-dimensional Ising model, the
parameter A playing the role of the inverse temperature. We hope that our dynamic
result will also allow us to derive the invariant measure (1.2) directly as a scaling
limit of a Kac-Ising model in equilibrium.

The construction of the dynamic ˆ42 model was a challenge for stochastic an-
alysts for many years. Notable contributions include [2, 39, 41, 47]. Our analysis
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builds on the fundamental work of Da Prato and Debussche [17], in which strong
solutions for (1.1) were constructed for the first time.

Much more recently there was great progress in the theory of singular SPDEs,
in particular with [32, 33]. In these papers, Hairer developed a theory of regular-
ity structures that allows one to perform similar renormalization procedures for
many more singular equations such as the three-dimensional version of (1.1) or
the Kardar-Parisi-Zhang (KPZ) equation. Parallel to [32, 33], another fruitful ap-
proach to give a meaning to such equations was developed in [11, 28]. One of the
motivations for these works is to develop a technique to show that fluctuations of
nonlinear particle systems are governed by such an equation. The present article
establishes such a result in this framework for the first time. One interesting feature
of our result is that it gives a natural interpretation for the infinite renormalization
constant as a shift of critical temperature away from its mean field value (as was
already predicted in [10, 24]).

The study of the KPZ equation has recently witnessed tremendous developments
(see [14,15,51] and references therein). In their seminal paper [5], Bertini and Gia-
comin proved that the (suitably rescaled height process associated with the) weakly
asymmetric exclusion process converges to the KPZ equation. This result relies on
two crucial properties: (1) that the KPZ equation can be transformed into a linear
equation (the stochastic heat equation with multiplicative noise) via a Cole-Hopf
transform, and (2) that the discrete system itself allows for a microscopic analogue
of the Cole-Hopf transform [23]. The result can be extended to other particle sys-
tems as long as some form of microscopic Cole-Hopf transform is available [20].
However, for more general models, the question is still open, although notable
results in this direction were obtained in [27].

For the asymmetric exclusion process to converge to the KPZ equation, it is es-
sential to tune down the asymmetry parameter to 0 while taking the scaling limit
(hence the name weakly asymmetric). This procedure enables one to keep the sys-
tem away from the scale-invariant KPZ fixed point. This KPZ fixed point remains
partly elusive [16]. Proving that a discrete system converges to the KPZ fixed point
has so far only been possible (in a limited sense) by relying on the special alge-
braic properties of integrable models; see [4, 38, 48] for early works and [15] and
references therein for more recent developments.

We would like to underline the analogy between these observations and the sit-
uation with the two-dimensional Ising, Ising-Kac, and ˆ4 models. The scaling
limit of the (static) two-dimensional Ising model with nearest-neighbor interac-
tions is now well understood; see [8, 12, 13, 53] and references therein. We may
call this limit the (static, critical) continuous Ising model. Our replacement of
nearest-neighbor by long-range, Kac-type interactions does not simply serve as a
technical convenience. It also plays the role that the tunable asymmetry has for the
convergence of the weakly asymmetric exclusion process discussed above. That is,
it enables one to keep the model away from the (scale-invariant) continuous Ising
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model. In order to best see that this limit is qualitatively different from the contin-
uous Ising model (and its near-critical analogues), we point out that the probability
for the field averaged over the torus to be above a large value x decays roughly
like exp.�x16/ for the continuous Ising model [9], while one can check that this
probability decays roughly like exp.�x4/ for the measure in (1.2), as it does for
the Curie-Weiss model [21, theorem V.9.5]. It is expected that the measure (1.2)
with critical A converges, under a suitable scaling, to the continuous Ising model.

1.1 Structure of the Article
In Section 2, we define our model and give a precise statement of our main re-

sults. In Section 3, we describe briefly the solution theory for the limiting dynam-
ics, following essentially the strategy of [17]. Sections 4 to 6 contain the core of our
article. There we introduce a suitable linearization of the rescaled particle model
and prove the convergence of this linearization and several nonlinear functionals
thereof to the continuum model. In Section 7 we analyze the nonlinear evolution
and complete the proof of our main theorem. Finally, in Section 8, we derive some
additional bounds on an approximation to the heat semigroup that are referred to
freely throughout the paper. In several appendices, we provide background mate-
rial on Besov spaces, martingale inequalities, and the martingale characterization
of the solution to the stochastic heat equation.

1.2 Notation
Throughout the paper, C will denote a generic constant that can change at every

occurrence. We sometimes write C.a; b; : : : / if the exact value of C depends on
the quantities a; b; : : : . For x 2 Rd , we write

jxj D

q
x21 C � � � C x

2
d

for the euclidean norm of x. For x 2 Rd and r > 0, B.x; r/ D fy 2 Rd W jx�yj <
rg is the euclidean ball of radius r around x. For a; b 2 R, we write a^b and a_b
to denote the minimum and the maximum of fa; bg. We denote by N D f1; 2; : : : g
the set of natural numbers and by N0 D N [ f0g. We also write RC D Œ0;1/.

2 Setting and Main Result
For N � 1, let ƒN D Z2=.2N C 1/Z2 be the two-dimensional discrete

torus that we identify with the set f�N;�.N � 1/; : : : ; N g2. Denote by †N D
f�1;C1gƒN the set of spin configurations on ƒN . We will always denote spin
configurations by � D .�.k/; k 2 ƒN /.

Let K W R2 ! Œ0; 1� be a C2 function with compact support contained inB.0; 3/,
the euclidean ball of radius 3 around 0 in R2. We assume that K is invariant under
rotations and satisfies

(2.1)
Z

R2

K.x/dx D 1;

Z
R2

K.x/jxj2 dx D 4:
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For 0 <  < 1
3

, let � WƒN ! Œ0;1/ be defined as � .0/ D 0 and

(2.2) � .k/ D c;1
2K.k/; k ¤ 0;

where c�1;1 D
P
k2ƒ?N

2K.k/ and ƒ?N D ƒN n f0g.
For any � 2 †N , we introduce the locally averaged field

(2.3) h .�; k/ WD
X
j2ƒN

� .k � j /�.j / DW � ? �.k/

and the Hamiltonian

(2.4) H .�/ WD �
1

2

X
k;j2ƒN

� .k � j /�.j /�.k/ D �
1

2

X
k2ƒN

�.k/h .�; k/:

In both (2.3) and (2.4), subtraction onƒN is to be understood with periodic bound-
ary conditions. Throughout this article we will always assume that N � �1, so
that the assumption � .0/ D 0 implies that there is no self-interaction in (2.4).

For any inverse temperature ˇ > 0, we define the Gibbs measure � on †N as

� .�/ WD
1

Z
exp

�
�ˇH .�/

�
;

where
Z WD

X
�2†N

exp
�
�ˇH .�/

�
denotes the normalization constant that makes � a probability measure. On †N ,
we study the Markov process given by the generator

(2.5) Lf .�/ D
X
j2ƒN

c .�; j /
�
f .�j / � f .�/

�
acting on functions f W†N ! R. Here �j 2 †N is the spin configuration that
coincides with � except for a flipped spin at position j . As jump rates c .�; j / we
choose those of the Glauber dynamics,

(2.6) c .�; j / WD
� .�

j /

� .�/C � .�j /
:

It is clear that these jump rates are reversible with respect to the measure � . Since
� .0/ D 0, the local mean field h .�; j / does not depend on �.j /. Using also the
fact that �.j / 2 f�1; 1g, we can conveniently rewrite the jump rates as

c .�; j / D
e��.j /ˇh .�;j /

eˇh .�;j / C e�ˇh .�;j /

D
1

2

�
1 � �.j / tanh

�
ˇh .�; j /

��
:(2.7)

We write .�.t//t�0 for the (pure jump) Markov process on †N thus defined, with
the notation �.t/ D .�.t; k//k2ƒN . With a slight abuse of notation, we let

(2.8) h .t; k/ D h .�.t/; k/:
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The aim of this article is to describe the critical fluctuations of the local mean
field h as defined in (2.8) and to derive a nonlinear SPDE for a suitably rescaled
version of it. To this end we write, for t � 0 and k 2 ƒN ,

(2.9) h .t; k/ D h .0; k/C

Z t

0

L h .s; k/ds Cm .t; k/;

where the process m . � ; k/ is a martingale. Observing that for any � 2 †N and
for any j; k 2 ƒN we have h .�j ; k/ � h .�; k/ D �2� .k � j /�.j /, we get
from (2.5) and (2.7)

Lh .�; k/ D �h .�; k/C � ? tanh
�
ˇh .�; k/

�
D
�
� ? h .�; k/ � h .�; k/

�
C .ˇ � 1/� ? h .�; k/

�
ˇ3

3

�
� ? h

3
 .�; k/

�
C � � � ;(2.10)

where we have used the Taylor expansion tanh.ˇh/ D ˇh � 1
3
.ˇh/3 C � � � .

The predictable quadratic covariations (see Appendix C) of the martingales
m . � ; k/ are given by

hm . � ; k/;m . � ; j /it D 4

Z t

0

X
`2ƒN

� .k � `/� .j � `/c
�
�.s/; `

�
ds:(2.11)

Furthermore, the jumps of m . � ; k/ coincide with those of h . � ; k/. In particular,
if for some ` 2 ƒN the spin �.`/ changes sign, then m . � ; k/ has a jump of
�2�.`/� .k � `/.

2.1 Rescaled Dynamics
For any 0 <  < 1 let N D N./ be the microscopic system size determined

below (in (2.16)). Then set " D 2
2NC1

. Every microscopic point k 2 ƒN can be
identified with x D "k 2 ƒ" D fx D .x1; x2/ 2 "Z2 W �1 < x1; x2 < 1g. We
view ƒ" as a discretization of the continuous two-dimensional torus T2 identified
with Œ�1; 1�2. For suitable scaling factors ˛; ı > 0 and inverse temperature ˇ to be
determined below, we set

(2.12) X .t; x/ D
1

ı
h

�
t

˛
;
x

"

�
; x 2 ƒ"; t � 0:

In these macroscopic coordinates, the evolution equation (2.9) (also with (2.10))
reads

(2.13)

X .t; x/ D X .0; x/

C

Z t

0

�
"2

2
1

˛
z�X .s; x/C

.ˇ � 1/

˛
K ?" X .s; x/

�
ˇ3

3

ı2

˛
K ?" X

3
 .s; x/CK ?" E .s; x/

�
ds

CM .t; x/



CONVERGENCE OF ISING-KAC TOˆ42 7

for x 2 ƒ". Here we have set K .x/ D "�2� ."
�1x/ D c;1.

2="2/K.
"
x/

(the second equality being valid for x ¤ 0). The convolution ?" on ƒ" is defined
through X ?" Y.x/ D

P
´2ƒ"

"2X.x � ´/Y.´/ (where subtraction on ƒ" is to be
understood with periodic boundary conditions on Œ�1; 1�2) and

z�X D
2

"2
.K ?" X �X/

(so that z� scales like the continuous Laplacian). The rescaled martingale is de-
fined as M .t; x/ WD

1
ı
m .

t
˛
; x
"
/. Finally, the error term E .t; x/ (implicit in

(2.10)) is given by

(2.14) E .t; �/ D
1

ı˛

�
tanh

�
ˇıX .t; �/

�
� ˇıX .t; �/C

.ˇı/3

3
X .t; �/

3

�
:

In these coordinates, the expression (2.11) for the quadratic variation becomes

(2.15) hM . � ; x/;M . � ; y/it D

4
"2

ı2˛

Z t

0

X
´2ƒ"

"2K .x � ´/K .y � ´/C
�
s; ´

�
ds;

where C .s; ´/ WD c .�.s=˛/; ´="/. In these macroscopic coordinates, for the
martingale M . � ; x/ a spin flip at the microscopic position k D "�1y causes a
jump of �2�."�1y/ı�1"2K .y � x/.

The scaling of the approximated Laplacian, the termK?"X
3
 , and the quadratic

variation in (2.15) suggest that in order to see nontrivial behavior for these terms,
we need to impose

1 �
"2

2
1

˛
�
ı2

˛
�

"2

ı2˛
:

Hence, from now on we set

(2.16) N D
�
�2

˘
; " D

2

2N C 1
; ˛ D 2; ı D :

For later reference, we note that this implies that for 0 <  < 1
3

we have

(2.17) " D 2c;2 with .1 � 2/ � c;2 � .1C 2/:

Under these assumptions, the leading-order term in the expansion of the error term
(2.14) scales like ı4˛�1 D 2. Hence it seems reasonable to suspect that it will
disappear in the limit. In order to prevent the (essentially irrelevant) factor c;2
from appearing in too many formulas, we define

(2.18) � WD c
2
;2
z� D

"2

2
1

˛
z� :

At first sight, (2.13) suggests that ˇ should be so close to 1 that .ˇ � 1/=˛ D
O.1/. It was already observed in [10] (for the equilibrium system) that this naive
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guess is incorrect. Instead, we will always assume that

.ˇ � 1/ D ˛.c C A/;(2.19)

where A 2 R is fixed. The extra term c reflects the fact that the limiting equation
has to be renormalized (see Section 3 for a detailed explanation). Its precise value
is given below in (2.20), but we mention right away that the difference between c
and X

!2Z2;
0<j!j<�1

1

4�2j!j2

remains bounded as  goes to 0. In particular, c diverges logarithmically as 
goes to 0.

2.2 Main Result
For any metric space S, we denote by D.RC;S/ the space of the S-valued

cadlag function endowed with the Skorokhod topology (see [7] for a discussion of
this topology). For any � > 0 we denote by C�� the Besov space B��1;1 discussed
in Appendix B.

We denote by X the solution of the renormalized limiting SPDE (1.1) discussed
in Section 3 for a fixed initial datum X0 2 C�� . This process has continuous
trajectories with respect to the C�� topology.

Assume that for  > 0, the spin configuration at time 0 is given by � .0; k/; k 2
ƒN , and define for x 2 ƒ"

X0 .x/ D ı
�1

X
y2ƒ"

"2K .x � y/� .0; "
�1y/:

We extend X0 to a function on all of T2 as a trigonometric polynomial of degree
�N still denoted by X0 ; a precise definition and some properties of this extension
can be found in Appendix A. Let X .t; x/, t � 0, x 2 ƒ2" , be defined by (2.12)
and extend X .t; � / to x 2 T2 as a trigonometric polynomial of degree � N , still
denoted by X .

THEOREM 2.1. Assume that the scaling assumptions (2.16), (2.17), and (2.19)
hold, where the precise value of c is given by

c D
1

4

X
!2f�N;:::;N g2;

!¤0

j yK .!/j
2

�2.1 � yK .!//
:(2.20)

Assume also that X0 converges to X0 in C�� for � > 0 small enough and that
X0; X0 are uniformly bounded in C��C� for an arbitrarily small � > 0. Then X
converges in law to X with respect to the topology of D.RC; C��/.
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Remark 2.2. In principle one can perform the analysis that leads to (2.16) in any
spatial dimension n. Indeed, the only necessary change is to replace the "2 terms
appearing in (2.15) by "n, so that one wishes to impose 1 � "2

2
1
˛
�

ı2

˛
�

"n

ı2˛
. In

this way, one obtains the scaling relation

(2.21) " � 
4
4�n ; ˛ � 

2n
4�n ; ı � 

n
4�n :

This relation was already obtained in [24] and for n D 1 it is indeed the scaling
used by [6, 22]. For n D 3, we expect that it is possible to combine the techniques
developed in this article with the theory developed in [11, 33] to get a convergence
result to the dynamicˆ43 model. For n D 4, relation (2.21) cannot be satisfied. This
corresponds exactly to the fact that the ˆ44 model fails to satisfy the subcriticality
condition in [33] and indeed, a limiting theory is not expected to exist for n � 4
(see [1]).

Remark 2.3. We stress that our analysis is purely based on the dynamics of the
system; we do not rely on properties of the invariant measure � .

Remark 2.4. A simple analysis (see, e.g., [19, chap. 2.1]) of the trapezoidal ap-
proximation c�1;1 D

P
k2ƒN

2K.k/ to
R
K.x/dx D 1 shows that under our C2

assumption on K, we have jc;1 � 1j � C2. If we were to replace c;1 by 1 in
(2.2), this error term of the form C2 would not disappear in our scaling but would
produce an O.1/ contribution to the “mass” A in the limiting equation. But this
effect could be removed under slightly different assumptions: if we assumed that
K is C1 and in addition removed the assumption � .0/ D 0, then by the Euler-
Maclaurin formula (see [19, chap. 2.9]) we could get an arbitrary polynomial rate
of convergence. Under these modified assumptions, setting c;1 D 1 would not
change the result.

Remark 2.5. The condition � .0/ D 0 in the definition of h is very convenient,
because it allows one to rewrite the jump rates defined in (2.6) as a function of
h in a clean way (2.7). However, at some places it causes some minor technical
problems: much of our analysis is performed in Fourier space, and due to this con-
dition the Fourier transform yK .!/ ofK decays at most like C

j!j2
for large ! (see

Lemma 8.2 below), whereas without this condition (and with a stronger regularity
assumption on K) one could obtain Cm

j!jm
for any m � 1. Fortunately, this only

produces some irrelevant logarithmic error terms.

Remark 2.6. In order to state our result, we have made two assumptions that may
seem debatable. On the one hand, we have chosen to define the coarse-graining h
in terms of the same kernel � that determines the interaction. On the other hand,
we have extended the field X as a trigonometric polynomial.

The reader will see below that the first choice is necessary in order to get con-
trol on Fourier modes ! satisfying �1 � j!j � �2. The second choice is
convenient but essentially irrelevant.
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A posteriori, it is not too hard to show that even without any coarse-graining,
the evolution

X .t; '/ D
X
x2ƒ"

"2'.x/ı�1�.t=˛; x="/;

viewed as an evolution in the space of distributions S 0.T2/, converges in law to
the same limit but only with respect to the weaker topology of D.RC;S 0.T2//.

Remark 2.7. Of course, there are many choices other than (2.7) for a rate c to
define a Markov process on †N that is reversible with respect to � . The Glauber
dynamics is a standard choice, but it would be possible to extend our proof to a
more general jump rate. We make strong use of the fact that c .�; k/ is a function
of h .�; k/ and of the specific form of the Taylor expansion around h .�; k/ D 0

(see (2.10)). We furthermore use the fact that c is bounded by 1.

3 Analysis of the Limiting SPDE
As stated above, a well-posedness theory for the limiting equation (1.1) was

provided in [17]. More precisely, in that article local-in-time existence and unique-
ness for arbitrary C�� initial data and for � > 0 small enough was shown (recall
the definition of the Besov space C�� in Appendix B). Furthermore, it was shown,
using an idea due to Bourgain, that global well-posedness holds for almost every
initial datum with respect to the invariant measure. In our companion paper [43],
we extend these results to show global well-posedness for every initial datum in
C�� for � > 0 small enough. In [43], we also show how to extend these arguments
from the two-dimensional torus to the full space R2, but this extension is not rel-
evant for the present article. The purpose of this section is to review the relevant
results from [17,43]. We give some ideas of the proofs where it helps the reader to
understand our argument in the more complicated discussion of the discrete system
that follows.

As it stands, it is not clear at first sight how equation (1.1) should be interpreted.
Indeed, the space-time white noise is a quite irregular distribution, and it is well-
known that the regularizing property of the heat semigroup is not enough to turn
the solution of the linearized equation (the one obtained by removing the X3 term
from (1.1)) into a function. We will see below that this linearized solution takes
values in all of the distributional Besov spaces of negative regularity but not of
positive regularity. We cannot expect the solution X to the nonlinear problem to
be more regular, and hence it is not clear how to interpret the nonlinear term X3.

A naive approach consists in approximating solutions to (1.1) by solutions to a
regularized equation. More precisely, let X" be the solution to the stochastic PDE

(3.1) dX" D

�
�X" �

1

3
X3" C AX"

�
dt C

p
2 dW":
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Here W".t; x/ D 1
4

P
j!j<"�1 e

i�!�x �W .!; t/ is a spatially regularized cylindrical
Wiener process. For every ! 2 Z2 the process bW .!; t/ is a complex-valued Brow-
nian motion with Ej�W .!; t/j2 D 4t . These Brownian motions are independent
except for the constraint

�W .!; t/ D �W .�!; t/ for all ! 2 Z2 and t � 0:

We choose to regularize the noise by considering a cutoff in Fourier space, but
this choice of regularization is inessential. A solution to equation (3.1) for fixed
value of " > 0 can be constructed with standard methods; see, e.g., [18, 31, 49]. It
seems natural to study the behavior of these regularized solutions as " goes to 0.
Unfortunately, letting " go to 0 yields a trivial result. Indeed, it is shown in [34]
that X" converges to 0 in probability (in a space of distributions).

In order to obtain a nontrivial result, the approximations (3.1) have to be modi-
fied. Indeed, it is shown in [17] that if instead of (3.1), we consider

(3.2) dX" D

�
�X" �

�
1

3
X3" � c"X"

�
C AX"

�
dt C

p
2 dW"

for a particular choice of constant c", then a nontrivial limit can be obtained as "
goes to 0. Similarly to (2.20), the precise value of c" is given by

(3.3) c" D
X

0<j!j<"�1

1

4�2j!j2
:

In particular, the constants c" diverge logarithmically as " ! 0. Note, however,
that our choice of c" is not universal—other choices would lead to a nontrivial
limit as long as the difference to our choice remains bounded as " goes to 0. See
Remark 3.3 below for more on this.

As a first step to show this convergence, equation (3.2) is linearized. Let Z" be
the unique mild solution to

(3.4)
dZ".t; x/ D �Z".t; x/dt C

p
2 dW".t; x/;

Z".0; x/ D 0;

i.e., Z".t; � / D
p
2
R t
0 Pt�s dW".s; � /, where Pt D e�t is the solution operator

of the heat equation on the torus T2. Then the renormalization is performed on
the level of this linearized equation. We explain this procedure in some detail,
because a similar study of a linearized version of (2.13) constitutes the core of our
argument.

We start by recalling that the Hermite polynomialsHn D Hn.X; T / are defined
recursively by setting

(3.5)

(
H0 D 1;

Hn D XHn�1 � T @XHn�1; n 2 N;
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so that H1 D X , H2 D X2 � T , H3 D X3 � 3XT , etc. One can check by
induction that

(3.6) @XHn D nHn�1

and

(3.7) @THn D �
n.n � 1/

2
Hn�2

(the identities are even valid for n 2 f0; 1g, for an arbitrary interpretation of H�1
and H�2).

Now, for any fixed " > 0, Z" is a random continuous function, and there is no
ambiguity in the definition of Zn" , but for n � 2 these random functions Zn" fail to
converge to random distributions as " goes to 0. If, however, Zn" are replaced by
the Hermite polynomials

ZWnW" .t; x/ WD Hn.Z".t; x/; c".t//

for

(3.8)

c".t/ D EŒZ".t; 0/
2� D

1

2

X
j!j<"�1

Z t

0

exp.�2r�2j!j2/dr

D
t

2
C

X
0<j!j<"�1

1

4�2j!j2

�
1 � exp.�2t�2j!j2/

�
;

then a nontrivial limit is obtained. Note that c" D limt!1.c".t/ �
t
2
/, where the

term t
2

comes from the summand for ! D 0 in (3.8), which does not converge as
t !1. Furthermore, for every fixed t > 0 the difference jc" � c".t/j is uniformly
bounded in ".

The following result, essentially [17, lemma 3.2], summarizes this convergence.

PROPOSITION 3.1. For every T > 0 and every � > 0, the stochastic processes
Z" and ZWnW" for n � 2 converge almost surely and in every stochastic Lp space
with respect to the metric of C.Œ0; T �; C��/. We denote the limiting processes by Z
and ZWnW.

We outline an argument for Proposition 3.1 that is inspired by the treatment of
a (more complicated) renormalization procedure in [33, sec. 10]. We start with
an alternative representation of the ZWnW" . As explained above we have Z".t; � / Dp
2
R t
0 Pt�r dW".r/. It will be useful to introduce the processes

R";t .s; x/ D R
W1W
";t .s; x/ D

p
2

Z s

0

Pt�r dW".r; x/;

defined for s � t , and to define recursively

RWnW";t .s; x/ D n

Z s

rD0

RWn�1W";t .r; x/dR";t .r; x/:
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It can be checked easily using Itô’s formula and the relations (3.6) and (3.7) that
for any " > 0, we have

RWnW";t .t; x/ D Z
WnW
" .t; x/:

For any smooth function f WT2 ! R, the expectation

EZWnW" .t; f /
2
WD E

�Z
T2

ZWnW" .t; x/f .x/dx

�2
can now be calculated explicitly via Itô’s isometry, and we obtain1

EZWnW" .t; f /
2
D nŠ

2n

4n

Z
Œ0;t�n

X
j!i j�"�1

ˇ̌
yf .!1 C � � � C !n/

ˇ̌2 nY
jD1

ˇ̌
yPt�rj .!j /

ˇ̌2
dr;

where dr D dr1 � � � drn and where yPt .!/ D exp
�
�t�2j!j2

�
denotes the Fourier

transform of the heat kernel on the torus. This quantity converges as " goes to 0,
and the limit can be expressed as

nŠ 2n
Z

Œ0;t�n

Z
.T2/n

�Z
T2

f .x/

nY
jD1

Pt�rj .x � j́ /dx

�2
dz dr;

where dz D d´1 � � � d´n. A crucial observation now uses the Gaussian structure
of the noise and the fact that ZWnW" .t; f / is a random variable in the nth homoge-
nous Wiener chaos over this Gaussian noise (see [46, chap. 1] for a definition and
properties of Gaussian Wiener chaos). According to Nelson’s estimate (see [45]
or [46, chap. 1.5]) the estimate on EZWnW" .t; f /

2 can be turned into an equivalent
estimate on EZWnW" .t; f /

p. Then one can specialize this bound to f D �k.u � �/

(defined in (B.8)) and apply Proposition B.4 to obtain bounds on EkZWnW" .t; � /k
p
C��

that are uniform in ".
One can modify this argument to get bounds on EkZWnW" .t; � / � Z

WnW
" .s; � /k

p
C��

and then apply the Kolmogorov criterion for continuity in time.

1 To derive this formula we introduce the Fourier coefficients yR";t .s; !/, yRWnW";t .s; !/ (! 2 Z2) of
R";t .s; � / and RWnW";t .s; � /, respectively, and observe that

yR";t .s; !/ D
p
2

Z t

rD0

yPt�r .!/d �W .!; r/; j!j � "�1;
yRWnW";t .s; !/ D n

p
2

Z s

rD0

1

4

X
!1C!2D!

yRWn�1W";t .r; !1/ yPt�r .!2/d �W .!2; r/:
For instance, Z

T2

R";t .s; x/f .x/dx D

p
2

4

X
j!j�"�1

yf .!/

Z s

rD0

yPt�r .!/d �W .!; r/:
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In Sections 4 and 5, we will perform a similar argument for a linearized ver-
sion of the evolution equation (2.13). One obstacle we need to overcome is that
without the Gaussian structure of the noise, Nelson’s estimate is not available. In
Lemma 4.1, we replace it by a suitable version of the Burkholder-Davis-Gundy in-
equality. The price we have to pay is that various error terms caused by the jumps
need to be controlled.

It is useful to note that for fixed values of s and t , s < t , the processes RWnW";t .s; � /
actually converge in nicer spaces than the C�� . Indeed, R";t .s; � / D Pt�sZ".s; � /,
and by the convergence of Z".s/ in C�� and standard regularizing properties of
the heat semigroup (see, e.g., (8.23) and the discussion following it) R";t .s; x/
converges to

Rt .s; x/ WD
p
2

Z s

rD0

Pt�r dW.r; x/

in Ck for every k 2 N. In the same way, RWnWt;" converges to

(3.9) RWnWt .s; x/ D n

Z s

rD0

RWn�1Wt .r; x/dRt .r; x/ D Hn.Rt .s; x/; hRt . � ; x/is/:

Here the quadratic variation of the continuous martingale s 7! Rt .s; x/ for s < t

is given by

hRt . � ; x/is D 2

Z s

0

P2.t�r/.0/dr D
1

2

X
!2Z2

Z s

0

exp
�
�2.t � r/�2j!j2

�
dr;

where Pt .x/ is the heat kernel associated with the semigroup Pt .
Finally, note that the convergence of RWnWt .t; � / to ZWnW.t; � / in C�� can be quan-

tified. Using an argument in the same spirit as the one sketched above, one can see
that for all � > 0, 0 � � � 1, p � 2, and T > 0, there exists C D C.�; �; p; T /

such that

(3.10) EkZWnW.t; � / �RWnWt .s; � /k
p

C���� � C jt � sj
�p
2

for all 0 � s � t � T . A similar bound in the more complicated discrete situation
is derived below in (4.20).

In order to study the convergence of the nonlinear equations (3.2), we study the
remainder v" WD X"�Z". For " > 0, we observe that v" is a solution to the random
partial differential equation

@tv".t; x/ D �v" �

�
1

3
.v" CZ"/

3
� c".v" CZ"/

�
C A.v" CZ"/

D �v" �
�
v3" C 3v

2
"Z" C 3v"Z

W2W
" CZ

W3W
"

�
C A".t/.v" CZ"/;(3.11)

where we have set A".t/ WD A C c" � c".t/. Note that the noise term dW" has
disappeared from equation (3.11). Note furthermore that in the second line, we
have rewritten the right-hand side in terms of the processes Z"; ZW2W" ; and ZW3W" ,
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which converge to a nontrivial limit as " goes to 0. This is possible due to the
relation

Hn.´C v; c/ D

nX
kD0

�
n

k

�
Hk.´; c/v

n�k;

which holds for arbitrary ´; v 2 R and c > 0.
Equation (3.11) can be treated as a normal PDE, without taking into account

stochastic cancellations or stochastic integrals. The argument in [17] is concluded
by observing that (at least for small times) the solutions of (3.11) are stable under
approximation of the functions Z", ZW2W" ; and ZW3W" in C.Œ0;1/; C��/ as well as the
limit of A" as "! 0. In this way, local-in-time solutions are obtained in [17].

The authors then show that these solutions do not blow up in finite time for
almost every initial datum with respect to the invariant measure. For our purposes,
it is more convenient to have global existence for every initial datum in C�� for
� > 0 small enough, and we show this in the forthcoming article [43]. In order to
state the main result, it is necessary to briefly discuss the role of the initial datum
X0 2 C�� .

There are essentially two possibilities—either equation (3.4) is started with X0,
in which case the initial datum for (3.11) is 0, or the linear equation is started
with 0 and (3.11) is started with X0. The first option turns out to be slightly more
convenient. Hence we define Y.t/ WD PtX0 and set

(3.12)

zZ.t; � / D Y.t; � /CZ.t; � /;

zZW2W.t; � / D ZW2W.t; � /C 2Y.t; � /Z.t; � /C Y.t; � /2;

zZW3W.t; � / D ZW3W.t; � /C 3Y.t; � /Z.t; � /W2W C 3Y.t; � /2Z.t; � /C Y.t; � /3:

Notice that by the regularization property of the heat semigroup (see (8.23)), for
any t > 0, Y.t; � / is actually a smooth function and, in particular, the products
appearing in these expressions are well-defined. More precisely, for every ˇ > �,
there exists a constantC D C.�; ˇ/ such that for every t > 0, we get kY.t; � /kCˇ �
Ct�.�Cˇ/=2kX0kC�� , and hence

kY.t; � /2kC�� � Ct
�.�Cˇ/=2

kX0k2C�� ; kY.t; � /
2
kCˇ � Ct

�.�Cˇ/
kX0k2C�� ;

and kY 3.t; � /kC�� � Ct
�.�Cˇ/

kX0k3C�� ;

where we use the fact that Cˇ is an algebra for ˇ > 0 as well as the multiplica-
tive inequality, Lemma B.5. Using Lemma B.5 once more, we can conclude that
for every T > 0, there exists a random constant C0 (depending on T , �, ˇ, and
kX0kC�� and on the particular realization of Z, ZW2W, and ZW3W) such that

(3.13)
sup

0�t�T

k zZ.t; � /kC�� � C0; sup
0�t�T

t
ˇC�
2 k zZW2W.t; � /kC�� � C0;

sup
0�t�T

tˇC�k zZW3W.t; � /kC�� � C0 :
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After this preliminary discussion, we are now ready to state the main existence
result. For zZ; zZW2W, and zZW3W satisfying (3.13), consider the problem.

(3.14)
@tv D �v �

1

3
.v3 C 3 zZv2 C 3 zZW2Wv C zZW3W/C A.t/. zZ C v/;

v.0; � / D 0;

where

A.t/ WD AC lim
"!0

.c" � c".t// D A �
t

2
C

X
!2Z2nf0g

e�2t�
2j!j2

4�2j!j2
:(3.15)

Note that A.t/ only diverges logarithmically in t as t goes to 0, and in particular
any power of A.t/ is integrable at 0. The following theorem is essentially [43,
theorem 6.1]. (The continuity of the solution map is not stated explicitly there, but
it is contained in the method of proof).

THEOREM 3.2. For � > 0 small enough, fix an initial datum X0 2 C�� . For
.Z;ZW2W; ZW3W/ 2 .L1.Œ0; T �; C��//3, let . zZ; zZW2W; zZW3W/ be defined as in (3.12).
Let ST .Z;ZW2W; ZW3W/ denote the solution v on Œ0; T � of the PDE (3.14). Then
for any � > 0, the mapping ST is Lipschitz-continuous on bounded sets from
.L1.Œ0; T �; C��//3 to C.Œ0; T �; C2����.T2//.

Remark 3.3. The choice of two different time-dependent normalization constants
c" and c".t/ may not seem particularly elegant. Indeed, in [17, 33], all processes
are renormalized with time-independent constants. This is possible because in
those papers, the processes Z" and ZWnW" are replaced by similar processes that are
stationary in t . This can be done by adding a linear damping term and moving the
initial condition in (3.4) to t D �1 (as in [17]), or by cutting off the heat kernel
Pt outside of a ball (as in [33]). In the discrete setting below, however, the choices
for the linearized process presented here seem most convenient.

This discussion shows as well that there is no canonical choice of the renormal-
ization constant c" and hence no canonical value of the constant A. The different
procedures in [17] and [33] yield different choices of c". The difference between
these two constants remains bounded as " goes to 0, but it does not disappear in the
limit.

4 Bounds for the Linearized System
We now come back to the study of the discrete system. By Duhamel’s principle

and using the scaling relations (2.16) and (2.19), the evolution equation (2.13) can
be rewritten as

(4.1)

X .t; � / D P

t X

0


C

Z t

0

P

t�r K ?"

�
�
ˇ3

3
X3 .r; � /C .c C A/X .r; � /CE .r; � /

�
dr

C

Z t

rD0

P

t�rd M .r; � / on ƒ";
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where we use the convention
R t
0 D

R
.0;t�, and we denote by P t D e� t the

semigroup generated by � . For every t � 0, the operator P t acts on a function
Y Wƒ" ! R by convolution with a kernel, also denoted by P t . This kernel is
characterized by its Fourier transform (defined as in (A.1))

(4.2) yP

t .!/ D exp

�
t�2

�
yK .!/ � 1

��
if ! 2 f�N; : : : ; N g2:

Viewing P t as a Fourier multiplication operator (with yP t .!/ D 0 if ! … f�N;
: : : ; N g2) enables us to make sense of P t f for every f W T2 ! R. Further
properties of the operator P t are summarized in Lemmas 8.3 and 8.4 as well as
Corollary 8.7.

As explained above for the continuous equation, a crucial step in studying the
limiting behavior of X consists of the analysis of a linearized evolution. For
x 2 ƒ", we denote by

Z .t; x/ D

Z t

rD0

P

t�r dM .r; x/

the stochastic convolution appearing on the right-hand side of (4.1). The process
Z is the solution to the linear stochastic equation

(4.3) dZ .t; x/ D �Z .t; x/dt C dM .t; x/; Z .0; x/ D 0 ;

for x 2 ƒ"; t � 0. It will be convenient to work with the following family of
approximations to Z .t; x/. For s � t , we introduce

R;t .s; x/ WD

Z s

rD0

P

t�r dM .r; x/:

As explained above (see the discussion after (A.2)), we extendR;t .s; � / W ƒ" ! R
and Z .t; � / W ƒ" ! R to functions on all of T2 by trigonometric polynomials
of degree � N . Note that for any t and any x 2 T2, the process R;t . � ; x/ is a
martingale and R;t .t; � / D Z .t; � /.

As in the case of the continuous process, it is not enough to control Z , the
solution of the linearized evolution: we also need to control additional nonlinear
functions thereof. We introduce recursively the following quantities: for a fixed
t � 0 and x 2 T2, we set RW1W;t .s; x/ D R;t .s; x/. For n � 2, t � 0, and x 2 ƒ",
we set

(4.4) RWnW;t .s; x/ D n

Z s

rD0

RWn�1W;t .r�; x/dR;t .r; x/:

We use the notationRWn�1W;t .r�; x/ to denote the left limit ofRWn�1W;t . � ; x/ at r . This
definition ensures that .RWnW;t .s; x//0�s�t is a martingale. To define an extension of
RWnW;t .s; � / to arguments x 2 T2 n ƒ" for n � 2, it is advisable not to extend it by
a trigonometric polynomial of degree � N . Indeed, products are not well captured
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by this extension. It is more natural to define the extension recursively through its
Fourier series

(4.5) yRWnW;t .s; !/ WD n

Z s

rD0

1

4

X
z!2Z2

yRWn�1W;t .r�; ! � z!/d yR;t .r; z!/

and set RWnW;t .s; x/ WD
1
4

P
!2Z2

yRWnW;t .s; !/e
i�!�x . This definition coincides with

(4.4) onƒ", and for every n � 2 the functionRWnW;t .s; � /WT
2 ! R is a trigonometric

polynomial of degree � nN . For any n � 2 and for t � 0, x 2 T2, we define

(4.6) ZWnW .t; x/ WD R
WnW
;t .t; x/:

The main objective of this section is to prove uniform bounds on the Besov
norms of the processes ZWnW and RWnW;t . These bounds are stated in Proposition 4.2.

As a first step, we derive a general bound on pth moments of iterated stochastic
integrals. We start by introducing some more notation: Let F W Œ0;1/n�ƒn"��!
R be adapted and left-continuous in each of the n “time” variables. By adapted,
we mean that if s1; : : : ; sn � t , then for all y1; : : : ; yn, the random variable
F.s1; : : : ; sn; y1; : : : ; yn/ is measurable with respect to the sigma algebra gener-
ated byX up to time t . We recursively define iterated integrals InF.t/ as follows.
For n D 1, we set I1F.t/ D

R t
rD0

P
y2ƒ"

"2F.r; y/dM.r; y/. For n � 2, we set

InF.t/ WD

Z t

r1D0

X
y12ƒ"

"2 In�1F
.r1;y1/.r�1 /dM.r1; y1/;

where F .r1;y1/W Œ0;1/n�1 �ƒn�1" is defined as

F .r1;y1/.r2; : : : ; rn; y2; : : : ; yn/ D F.r1; : : : ; rn; y1; : : : ; yn/:

As above (but somewhat abusively here), we denote by In�1F
.r1;y1/.r�1 / the left

limit of r1 7! In�1F
.r1;y1/.r1/. With this definition, for every n and F , the

process t 7! InF.t/ is a martingale. Finally, given any F as above and 1 � ` � n,
we define

(4.7) F`.r1; : : : ; rn; ´1 : : : ; ´`; y`C1; : : : yn/ WDX
y1;:::;y`2ƒ

`
"

"2`F.r1; : : : ; rn; y1 : : : ; yn/
Ỳ
iD1

K .yi � ´i /I

i.e., F is convolved with the kernelK in the first ` spatial arguments. In what fol-
lows, when we write In�`F`.r1; : : : ; r`I ´1; : : : ´`/ we mean that the iterated sto-
chastic integral is taken with respect to the variables r`C1; : : : ; rn and y`C1; : : : ; yn
and evaluated at time t D r` (the variables r1; : : : ; r`; ´1; : : : ; ´` are just treated as
fixed parameters). Using the definition (4.4), it is easy to see that for x 2 ƒ" and
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0 � s � t , we can write RWnW;t .s; x/ D InF.s/ for

F.r1; : : : ; rn; y1; : : : ; yn/ D nŠ

nY
iD1

P

t�ri

.x � yi /:(4.8)

Furthermore, note that for every n, the mapping F 7! InF is linear in F .

LEMMA 4.1. Let n � 1 and let F W Œ0;1/n � ƒn" ! R and F` for 1 � ` � n be
deterministic and left-continuous in each time variable. Then for any p � 2, there
exists a constant C D C.n; p/ such that

(4.9)
�
E sup
0�r�t

jInF.r/j
p
� 2
p
� C

Z t

r1D0

� � �

Z rn�1

rnD0

X
z2ƒn"

"2nFn.r; z/2 drC Err.n/;

where we use the shorthand r D .r1; : : : rn/ and dr D drn � � � dr2 dr1. The error
term Err.n/ is given by

Err.n/ D C"4ı�2
nX
`D1

Z t

r1D0

: : :

Z r`�2

r`�1D0

X
´1;:::;´`�12ƒ"

"2.`�1/

�

�
E sup
0�r`�r`�1;
´`2ƒ"

ˇ̌
In�`F`.r`; z`/

ˇ̌p� 2p
dr`�1;(4.10)

where r` D .r1; : : : r`/, z` D .´1; : : : ; ´`/, dr`�1 D dr`�1 � � � dr2 dr1 (there is
no variable to integrate for ` D 1), and r0 D t .

PROOF. We proceed by induction. Let us consider the case n D 1 first. In order
to apply the Burkholder-Davis-Gundy inequality (Lemma C.1), we need to bound
the quadratic variation as well as the size of the jumps of the martingale I1F.t/.
The quadratic variation is given by

(4.11)

˝
I1F

˛
t

D

Z t

rD0

X
y2ƒ";;
xy2ƒ"

"4 F.r; y/F.r; xy/d hM . � ; y/;M . � ; xy/ir

D 4c2;2

Z t

0

X
y2ƒ";;
xy2ƒ"

"4 F.r; y/F.r; xy/
X
´2ƒ"

"2K .y � ´/K .xy � ´/C .r; ´/dr

D 4c2;2

Z t

0

X
´2ƒ"

"2
�X
y2ƒ"

"2F.r; y/K .y � ´/
�2
C .r; ´/dr

� 4c2;2

Z t

0

X
´2ƒ"

"2 F1.r; ´/
2 dr:

Here we have used (2.15) for the second equality and the deterministic estimate
0 � C .r; ´/ � 1 in the last inequality. Let us now turn to the jumps. We had
seen above that a jump of the spin �.k/ at microscopic position k D "�1´ causes a
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jump of size 2ı�1"2K .y � ´/ for M . With probability 1, two such jumps never
occur at the same time, so that we only have to estimate the impact of such an event
on I1F . If such an event takes place at (macroscopic) time r , then the martingale
I1F has a jump of absolute value

2"2ı�1
ˇ̌̌ X
y2ƒ"

"2F.r; y/K .y � ´/
ˇ̌̌
D 2"2ı�1jF1.r; ´/j:(4.12)

Hence the Burkholder-Davis-Gundy inequality implies that for every p > 0, we
have�

E sup
0�r�t

ˇ̌
I1F.r/

ˇ̌p� 2p
�

C.p/

�Z t

0

X
´2ƒ"

"2 F1.r; ´/
2 dr C "4ı�2 sup

0�r�t;
´2ƒ"

F1.r; ´/
2

�
;

which is what we wanted.
Let us now assume that (4.9) is established for n�1. In order to bound moments

of the martingale InF.t/, we bound again the quadratic variation and the size of
the jumps. For the jumps, we can see as in (4.12) that a jump of �.k/ at location
k D "�1´1 at time r1 causes a jump of InF of absolute value

2"2ı�1
ˇ̌̌ X
y12ƒ"

"2In�1F
.r1;y1/.r�1 /K .y1 � ´1/

ˇ̌̌
:

Recalling thatX
y12ƒ"

"2F .r1;y1/.r2; : : : ; rn; y2; : : : ; yn/K .y1 � ´1/ D

F1.r1; : : : ; rn; ´1; y2; : : : ; yn/

and that F 7! In�1F is linear, we can rewrite the quantity above as

2"2ı�1
ˇ̌̌ X
y12ƒ"

"2In�1F1.r
�
1 ; ´1/

ˇ̌̌
:

The corresponding error term in the bound for .E sup0�r�t
ˇ̌
InF.r/

ˇ̌p
/2=p thus

takes the form

(4.13) C.p/"4ı�2
�
E sup
0�r1�t;
´12ƒ"

ˇ̌
In�1F1.r1; ´1/

ˇ̌p� 2p
;

which is precisely the term corresponding to ` D 1 in (4.10).
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For the quadratic variation of InF.t/, we get as above in (4.11) that

(4.14)

˝
InF

˛
t

D

Z t

r1D0

X
y12ƒ";
xy12ƒ"

"4 In�1F
.r1;y1/.r1/In�1F

.r1;xy1/.r1/

� d hM . � ; y1/;M . � ; xy1/ir1

� 4c2;2

Z t

0

X
´12ƒ"

"2
� X
y12ƒ"

"2In�1F
.r1;y1/.r1/K .y1 � ´1/

�2
dr1

D 4c2;2

Z t

0

X
´12ƒ"

"2
�
In�1F1.r1; ´1/

�2
dr1:

In the first equality above, we have used the fact that F .r1;y1/.r�1 / D F
.r1;y1/.r1/

for Lebesgue almost every r1. Then Minkowski’s inequality (for the exponent
p
2
� 1) implies that

�
EhInF

˛p=2
t

� 2
p � 4c2;2

Z t

0

X
´12ƒ"

"2
�
EjIn�1F1.r1; ´1/j

p/
2
p dr1:(4.15)

But the induction hypothesis implies that for some C D C.n; p/, for every r1 � 0
and ´1 2 ƒ", we have

(4.16)

�
EjIn�1F1.r1; ´1/j

p
� 2
p

� C

Z r1

r2D0

� � �

Z rn�1

rnD0

X
´2;:::;´n2ƒ"

"2.n�1/Fn.r; z/2 dr0

C Err.r1; ´1/;

where dr0 D drn � � � dr2 and where the error term is given by

(4.17) Err.r1; ´1/ D C"4ı�2
nX
`D2

Z r1

r2D0

: : :

Z r`�2

r`�1D0

X
´2;:::;´`�12ƒ"

"2.`�2/

�

�
E sup
0�r`�r`�1;
´`2ƒ"

jIn�`F`.r`; z`/jp
� 2
p
dr0`;

with dr0
`
D dr` � � � dr2. We then obtain the desired estimate by plugging (4.16)

and (4.17) into (4.15). �

With Lemma 4.1 in hand, we now proceed to derive bounds on ZWnW .

PROPOSITION 4.2. There exists a constant 0 > 0 such that the following holds.
For every n 2 N, p � 1, � > 0, T > 0, 0 � � � 1

2
, and 0 < � � 1, there
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exists a constant C D C.n; p; �; T; �; �/ such that for every 0 � s � t � T and
0 <  < 0

E sup
0�r�t

RWnW;t .r; � /pC���2� � Ct�p C Cp.1��/;(4.18)

E sup
0�r�t

RWnW;t .r; � / �RWnW;s.r ^ s; � /pC���2� � C jt � sj�p C Cp.1��/;(4.19)

E sup
0�r�t

RWnW;t .r; � / �RWnW;t .r ^ s; � /pC���2� � C jt � sj�p C Cp.1��/:(4.20)

Remark 4.3. In particular, the bounds (4.18)–(4.20) imply that (under the same
conditions on p; �; �; �) we have

E
ZWnW .t; � /pC���2� � Ct�p C Cp.1��/;

E
ZWnW .t; � / �ZWnW .s; � /pC���2� � C jt � sj�p C Cp.1��/;

E
ZWnW .t; � / �RWnW;t .s; � /pC���2� � C jt � sj�p C Cp.1��/:

These weaker bounds are the key ingredient for the proof of tightness in Proposi-
tion 5.4 and for the proof of convergence in law in Theorem 6.2 below.

PROOF. Recalling thatRWnW;0.0; � / D 0, we see that the bound (4.18) is contained
in (4.19), so that it suffices to show (4.19) and (4.20). Furthermore, note that by
the monotonicity in p of stochastic Lp norms, it is sufficient to prove these bounds
for p large enough.

For any smooth function f WT2 ! R and any n, we write

RWnW;t .s; f / WD

Z
T2

RWnW;t .s; x/f .x/dx;

and similarly, ZWnW .t; f / WD RWnW;t .t; f /. Note that in general, neither f nor RWnW;t
(defined for all x 2 T2 as in (4.5)) is a trigonometric polynomial of degree � N ,
so that this integral does not coincide exactly with its Riemann sum approximation
on ƒ".

In order to obtain (4.19) and (4.20), we derive bounds on

(4.21) E sup
0�r�t

ˇ̌
RWnW;t .r; f / �R

WnW
;s.r ^ s; f /

ˇ̌p
and E sup

0�r�t

ˇ̌
RWnW;t .r; f / �R

WnW
;t .r ^ s; f /

ˇ̌p
for an arbitrary smooth test function f WT2 ! R and for an arbitrary p � 2. Later
we will specialize to f .x/ D �k.u � x/ (defined in (B.8)) for some u 2 T2 and
k � �1 to apply Proposition B.4.
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A simple recursion based on (4.5) shows that we haveRWnW;t .s; f / D InF
t .s/ for

0 � s � t , where for y D .y1; : : : ; yn/, r D .r1; : : : ; rn/, and ! D .!1; : : : ; !n/,

F t .y; r/ D
nŠ

4n

X
!2.Z2/n

yf .!1 C � � � C !n/

nY
jD1

yP

t�rj

.!j /e
�i�!j �yj

D nŠ

Z
T2

f .x/

nY
jD1

P

t�rj

.x � yj /dx:

Here, each P t�rj is viewed as a function on all of T2. Note that the kernelQn
jD1 P


t�rj

.x � yj / is a trigonometric polynomial of degree � nN in the x-
variable and a trigonometric polynomial of degree � N in each yj coordinate.

By linearity of the operator In, we get for any 0 � s � t and 0 � r � t that

RWnW;t .r; f / �R
WnW
;s.r ^ s; f / D In.F

t
� F s/.r/;

RWnW;t .r; f / �R
WnW
;t .r ^ s; f / D In.F

t1r12Œs;t�/.r/:

Here we use the convention to set P s�rj .x � yj / D 0 for rj > s.
Hence, by Lemma 4.1 there exists C D C.n; p/ such that

(4.22)
�
E sup
0�r�t

ˇ̌
RWnW;t .r; f / �R

WnW
;s.r; f /

ˇ̌p� 2
p �

C

nŠ

Z t

r1;:::;rnD0

X
z2ƒn"

"2n
�
F tn.r; z/ � F

s
n .r; z/

�2
drC Err

and

(4.23)
�
E sup
0�r�t

ˇ̌
RWnW;t .r; f / �R

WnW
;t .r ^ s; f /

ˇ̌p� 2
p �

C

.n � 1/Š

Z t

r1Ds

Z r1

r2;:::;rnD0

X
z2ƒn"

"2nF tn.r; z/
2 drC Err0:

Here F tn denotes the convolution of F t with the kernel K in all n spatial argu-
ments as defined in (4.7). In (4.22) and (4.23), we have used the symmetry of the
kernels F tn and F sn in their time arguments to replace the integrals over the sim-
plices 0 � rn � � � � � r1 � t and 0 � rn � � � � � r1 by integrals over Œ0; t �n and
Œ0; r1�

n�1. The precise form of the error terms Err and Err0 is discussed below.
We start by bounding the first term on the right-hand side of (4.22). Using

Parseval’s identity (A.3) in each of the j́ summations, we get for any fixed r
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z2ƒn"

"2n
�
F tn.r; z/ � F

s
n .r; z/

�2
D

.nŠ/2

4n

X
!2.Z2/n

j yf .!1 C � � � C !n/j
2

�

� nY
jD1

yP

t�rj
yK .!j / �

nY
jD1

yP s�rj
yK .!j /

�2
;

where as above we write ! D .!1; : : : ; !n/. For fixed ! and r we bound

(4.24)

� nY
jD1

yP

t�rj
yK .!j / �

nY
jD1

yP s�rj
yK .!j /

�2

� n

nX
kD1

�k�1Y
jD1

�
yP

t�rj
yK .!j /

�2� yP t�rk yK .!k/ � yP s�rk yK .!k/�2
�

nY
jDkC1

�
yP s�rj

yK .!j /
�2�

:

We perform the r-integrations for fixed values of k and ! for each term on the
right-hand side of (4.24) separately, recalling that for ! 2 f�N; : : : ; N g2 and for
any t � 0 we have yP t .!/ D exp.�t�2.1 � yK .!/// according to (4.2). For the
integrals over rj for j ¤ k we use the elementary estimate

(4.25)
Z t

0

e�.t�r/2` dr � e

Z 1
0

e�r.2`C
1
t
/dr D

e
1
t
C 2`

for ` D �2.1 � yK .!j // � 0. We split the integral over rk into an integral over
Œ0; s� and an integral over Œs; t �. Then for the same choice of ` we use the boundsZ s

0

�
e�.s�r/` � e�.t�r/`

�2
dr D

�
1 � e�.t�s/`

�2 Z s

0

e�.s�r/2` dr

� `

Z t�s

0

e�r` dr
1

2`

�
e

1
t�s
C 2`

;

as well as Z t

s

e�2.t�r/` dr �
e

1
t�s
C 2`

:(4.26)
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In this way we obtain for every k 2 f1; : : : ; ngZ
Œ0;t�n

k�1Y
jD1

�
yP

t�rj
yK .!j /

�2 � yP t�rk yK .!k/ � yP s�rk yK .!k/�2
�

nY
jDkC1

�
yP s�rj

yK .!j /
�2
dr

� en
k�1Y
jD1

ˇ̌
yK .!j /

ˇ̌2
1
t
C 2�2

�
1 � yK .!j /

� ˇ̌
yK .!k/

ˇ̌2
1
t�s
C 2�2

�
1 � yK .!k/

�
�

nY
jDkC1

ˇ̌
yK .!j /

ˇ̌2
1
s
C 2�2

�
1 � yK .!j /

� :
Here we have again made use of the convention yP s�rj .!j / D 0 for rj > s. We
only make this bound worse if we replace the 1

s
appearing in the last line of this

expression by 1
t
. Plugging this back into (4.22), summing over !, and using the

invariance of this expression under changing the value of k 2 f1; : : : ; ng, we obtain

(4.27)

1

nŠ

Z t

r1;:::;rnD0

X
z2ƒn"

"2n
�
F tn.r; z/ � F

s
n .r; z/

�2
dr

� en nŠ n2
1

4n

X
!2.Z2/n

ˇ̌
yf .!1 C � � � C !n/

ˇ̌2 ˇ̌
yK .!1/

ˇ̌2
1
t�s
C 2�2

�
1 � yK .!1/

�
�

nY
jD2

ˇ̌
yK .!j /

ˇ̌2
1
t
C 2�2

�
1 � yK .!j /

� :
The corresponding calculation for the integral in (4.23) is very similar (but

slightly simpler). After passing to spatial Fourier variables and performing the
integrations over r2; : : : ; rn using (4.25), we get

1

.n � 1/Š

Z t

r1Ds

Z r1

r2;:::;rnD0

X
z2ƒn"

"2nF tn.r; z/
2 dr

� en�1nŠ n
1

4n

X
!2.Z2/n

ˇ̌
yf .!1 C � � � C !n/

ˇ̌2 Z t

r1Ds

�
yP

t�r1
yK .!1/

�2
�

nY
jD2

ˇ̌
yK .!j /

ˇ̌2
1
r1
C 2�2

�
1 � yK .!j /

� dr1:
As above, we only make this bound worse if we replace the expression 1

r1
appearing

in the last line by 1
t
. Then we can perform the dr1 integral using (4.26). In this way
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we get the same upper bound (up to an inessential factor n) (4.27) for the integrals
appearing on the right-hand side of (4.22) and (4.23).

Now we specialize to f .x/ D �k.u�x/ for some u 2 T2 and k � �1. Note that
according to (B.9), for this choice of f , we have RWnW;t .s; f / D ıkR

WnW
;t .s; u/. For

this f , we recall from (B.7) that yf .!/ D �k.!/e�i�u�! . In particular, j yf .!/j � 1
for all ! 2 Z2 and yf .!/ D 0 for j!j … Ik , where Ik D 2kŒ3

4
; 8
3
� for k � 0 and

I�1 D Œ0; 4
3
�. Summarizing, we can conclude that for every n � 1 and p � 2,

there exists C D C.n; p/ such that for all 0 � s � t , k � �1 and u 2 T2 ,

(4.28)
�
E sup
0�r�t

ˇ̌
ıkR

WnW
;t .r; u/ � ıkR

WnW
;s.r ^ s; u/

ˇ̌p� 2p
�

C
X

P
!2Ik

ˇ̌
yK .!1/

ˇ̌2
1
t�s
C 2�2

�
1 � yK .!1/

� nY
jD2

ˇ̌
yK .!j /

ˇ̌2
1
t
C 2�2

�
1 � yK .!j /

� C Err;

where, for ! D .!1; : : : ; !n/ 2 .Z2/n, we write
P

! D
Pn
jD1 !j . In the same

way, we have

(4.29)
�
E sup
0�r�t

ˇ̌
ıkR

WnW
;t .r; u/ � ıkR

WnW
;t .r ^ s; u/

ˇ̌p� 2p
�

C
X

P
!2Ik

ˇ̌
yK .!1/

ˇ̌2
1
t�s
C 2�2

�
1 � yK .!1/

� nY
jD2

ˇ̌
yK .!j /

ˇ̌2
1
t
C 2�2

�
1 � yK .!j /

� C Err0:

We defer the analysis of the sum appearing on the right-hand side of both (4.28)
and (4.29) to Lemma 4.4 below and proceed to analyze the error terms Err and Err0,
going back to the setting of an arbitrary smooth f W T2 ! R for the moment. The
term Err on the right-hand side of (4.22) is given by

(4.30)

Err D C"4ı�2
nX
`D1

Z t

r1D0

: : :

Z r`�2

r`�1D0

X
´1;:::;´`�12ƒ"

"2.`�1/

�

�
E sup
0�r`�r`�1;
´`2ƒ"

ˇ̌
In�`

�
F t` � F

s
`

�
.r`; z`/

ˇ̌p� 2p
dr`�1;
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where as above r` D .r1; : : : r`/, z` D .´1; : : : ; ´`/, and dr`�1 D dr`�1 � � � dr1.
Here, for any 1 � ` � n and for fixed r`; z`, we have

(4.31)

ˇ̌
In�`.F

t
` � F

s
` /.r`; z`/

ˇ̌p
D

ˇ̌̌̌Z
T2

f .x/

�
RWn�`W;t .r`; x/

Ỳ
jD1

P

t�rj

? K .x � j́ /

�RWn�`W;s .r`; x/
Ỳ
jD1

P s�rj ? K .x � j́ /

�
dx

ˇ̌̌̌p

� p
RWn�`W;t .r`; � /

p
L1

�Z
T2

jf .x/j
Ỳ
jD1

ˇ̌
P

t�rj

? K .x � j́ /
ˇ̌
dx

�p

C p
RWn�`W;s .r`; � /

p
L1

�Z
T2

jf .x/j
Ỳ
jD1

ˇ̌
P s�rj ? K .x � j́ /

ˇ̌
dx

�p
;

where we use the convention RW0W;t D 1 and RWn�`W;s .r`; x/ D 0 for r` > s. By
Lemma B.3 and the definition of RWn�`W;t as a trigonometric polynomial of degree
� .n�`/N � nN , for every �0 > 0 there exists a constant C D C.n; �0/ such that

RWn�`W;t .r`; � /

L1
� C�2�

0RWn�`W;t .r`; � /

C��0 :

Hence, plugging (4.31) back into (4.30) and applying Minkowski’s inequality, we
get

(4.32)

Err � C.n; p; �0/"4 ı�2 �4�
0

�

nX
`D1

��
E sup
0�r�t

RWn�`W;t .r; � /
p
C��0 C E sup

0�r�s

RWn�`W;s .r; � /
p
C��0

� 2
p

�

Z t

r1D0

: : :

Z r`�2

r`�1D0

X
´1;:::;´`�12ƒ"

"2.`�1/

� sup
0�r`�r`�1;
´`2ƒ"

�Z
T2

jf .x/j
Ỳ
jD1

ˇ̌
P

t�rj

? K .x � j́ /
ˇ̌
dx

�2
dr`�1

�
:
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We turn to bounding Err0. In the same way,

(4.33)

Err0 D C"4ı�2
�
E sup
s�rn�t;
´12ƒ"

ˇ̌
In�1F

t
` .r1; ´1/

ˇ̌p� 2p
C C"4ı�2

nX
`D2

Z t

r1Ds

: : :

Z r`�2

r`�1D0

X
´1;:::;´`�12ƒ"

"2.`�1/

�

�
E sup
0�r`�r`�1;
´`2ƒ"

ˇ̌
In�`F

t
` .r`; z`/

ˇ̌p� 2p
dr`�1

� C.n; p; �0/"4ı�2�4�
0

�

nX
`D1

��
E sup
0�r�t

RWn�`W;t .r; � /
p
C��0

� 2
p

�

Z t

r1D0

: : :

Z r`�2

r`�1D0

X
´1;:::;´`�12ƒ"

"2.`�1/

� sup
0�r`�r`�1;
´`2ƒ"

�Z
T2

jf .x/j
Ỳ
jD1

ˇ̌
P

t�rj

? K .x � j́ /
ˇ̌
dx

�2
dr`�1

�
:

The integral appearing both on the right-hand side of (4.32) and (4.33) specialized
to the case f .x/ D �k.u � x/ for some k � �1 and u 2 T2 is bounded in
Lemma 4.5.

Actually, in the case n D 1, we obtain a slightly better bound, because the only
stochastic process RWn�`W;t appearing on the right-hand side of (4.32) and (4.33) is
RW0W;t D 1. Hence, the embedding from C��0 ! L1 is unnecessary, and we do not
need to introduce the factor �4�

0

.
Finally, summarizing our calculations (4.28) and (4.32) as well as the bounds

derived in Lemmas 4.4 and 4.5, we can conclude that for every n � 1, p � 2,
T � 0, � 2 Œ0; 1�, and � > 0, there exists a constant C D C.n; p; T; �; �/ such
that for all 0 <  < 0, 0 � s � t � T , u 2 T2, and every k � �1 ,

(4.34)

�
E sup
0�r�t

ˇ̌
ıkR

WnW
;t .r; u/ � ıkR

WnW
;s.r ^ s; u/

ˇ̌p� 2
p

� C jt � sj� 22k�.k C 2/n

C C2�4�
�

log.�1/
�2C6.n�1/ max

`D0;:::;n�1;
�Ds;t

�
E sup
0�r��

RW`W;� .r; � /kpC��� 2p ;
where as above we use the convention RW0W;t D 1. We can bound�

E sup
0�r�t

ˇ̌
ıkR

WnW
;t .r; u/ � ıkR

WnW
;t .r ^ s; u/

ˇ̌p� 2p
by exactly the same quantity, with the only difference being that the max in the
third line only needs to be taken with respect to � D t . The desired bounds (4.19)
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and (4.20) now follow easily by induction, as we now explain. The arguments are
identical for both bounds, so we restrict ourselves to (4.19).

For n D 1, the bound (4.34) reduces to�
E sup
0�r�t

jıkR;t .r; u/ � ıkr;s.r ^ s; u/j
p
� 2
p
�

C jt � sj� 22k�.k C 2/C C2
�
log.�1/

�2
;

so that (4.19) for n D 1 and p large enough (choosing p > 2
�

suffices) follows
from Proposition B.4. To pass from n � 1 to n, we observe that for every fixed
�0 > 0, the inductive hypothesis implies that

max
`D0;:::;n�1;
�Ds;t

�
E sup
0�r��

RW`W;� .r; � /kpC��0� 2p(4.35)

is uniformly bounded for t � T . Hence (4.34) turns into

(4.36)
�
E sup
0�r�t

ˇ̌
ıkR

WnW
;t .r; u/ � ıkR

WnW
;s.r ^ s; u/

ˇ̌p� 2p
�

C jt � sj� 22k�.k C 2/n C C2�4�
0�

log.�1/
�2C6.n�1/

for C D C.n; p; T; �; �0/. By choosing �0 D �
4

and applying Proposition B.4 for p
large enough, (4.19) follows for arbitrary n 2 N. �

LEMMA 4.4. Let n 2 N and c < xc be fixed. Let 0 <  < 0, where 0 is
the constant appearing in Lemma 8.2. For any k � 0 let Ik D 2kŒc; c�, and let
I�1 D Œ0; 2�1c�. Then for every T > 0 and � 2 Œ0; 1�, there exists a constant
C D C.n; c; c; �; T / such that for all k � �1 and 0 � s < t � T , we have

(4.37)
X

P
!2Ik

ˇ̌
yK .!1/

ˇ̌2
1
t�s
C 2�2

�
1 � yK .!1/

� nY
jD2

ˇ̌
yK .!j /

ˇ̌2
1
t
C 2�2

�
1 � yK .!j /

� �
C jt � sj�22k�.k C 2/n�1;

where for any ! D .!1; : : : ; !n/ 2 .f�N; : : : ; N g
2/n, we use the shorthand nota-

tion
P

! D
Pn
jD1 !j .

PROOF. We assume that 0 <  < 0 where 0 is the constant appearing in
Lemma 8.2. We only need to consider those ! with !j 2 f�N; : : : ; N g2 for all j
because all other summands vanish.

For j!j j � �1, we can use (8.8) and (8.14) to boundˇ̌
yK .!j /

ˇ̌2
1
t
C 2�2

�
1 � yK .!j /

� � 1
1
t
C

2
C1
j!j j2

� C.T /

�
1

1C j!j j2
^ t

�
:
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For j!j j > �1, we get essentially the same bound using (8.8), (8.11), and (8.14):

ˇ̌
yK .!j /

ˇ̌2
1
t
C 2�2

�
1 � yK .!j /

� � C

j!j j2
1

1
t
C

2
C1
�2

� C

�
1

1C j!j j2
^ t

�
:(4.38)

To bound the sum over these terms we claim that for any ! 2 Z2, 0 � � � 1,
and r > 0, we have the following bound:

G.n/.!/ WD
X

!2.Z2/n;P
!D!

�
1

1C j!1j2
^ r

� nY
jD2

1

1C j!j j2

� C.n; �/r�
1

1C j!j2.1��/
log.1C j!j/n�1:(4.39)

We show (4.39) by induction. For n D 1, it follows from an easy interpolation. For
n � 2, we observe that for any ! 2 Z2,

G.n/.!/ D
X

!1C!2D!

G.n�1/.!1/
1

1C j!2j2
:

To bound this sum, we split its index set A.!/ WD f.!1; !2/ 2 .Z2/2W !1 C !2 D
!g into the following three sets:

A1.!/ WD f.!1; !2/ 2 AW j!2j � 1
2
j!jg;

A2.!/ WD f.!1; !2/ 2 AW j!2j > 1
2
j!j and j!1j � 3j!jg;

A3.!/ WD f.!1; !2/ 2 AW j!1j > 3j!jg:

On A1.!/, we have by the triangle inequality that j!1j � 1
2
j!j, so that we can

bound

X
A1.!/

G.n�1/.!1/
1

1C j!2j2

� C
r�

1C
ˇ̌
1
2
!
ˇ̌2.1��/ log

�
1C 1

2
j!j
�n�2 X

j!2j�
1
2
j!j

1

1C j!2j2

� C
r�

1C j!j2.1��/
log

�
1C j!j

�n�1
:
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For the sum over A2.!/ we writeX
A2.!/

G.n�1/.!1/
1

1C j!2j2

� C
1

1C 1
4
j!j2

X
j!1j�3j!j

r�

1C j!1j2.1��/
log

�
1C j!1j

�n�2
� C

r�

1C j!j2.1��/
log

�
1C j!j

�n�1
:

Actually, the extra logarithm on the right-hand side of this bound is only necessary
in the case � D 0, but we do not optimize this. For the sum over A3.!/, we
observe that on A3 we have j!2j � 1

2
j!1j to write

X
A3.!/

G.n�1/.!1/
1

1C j!2j2

� C
X

j!1j�3j!j

r�

1C j!1j2.1��/
log.1C j!1j/n�2

1

1C 1
4
j!1j2

� C
r�

1C j!j2.1��/
log.1C j!j/n�1;

which finishes the proof of (4.39). Summing G.n/.!/ over all ! with j!j 2 Ik
establishes (4.37). �

LEMMA 4.5. There exists 0 > 0 such for any T > 0, there exists a constant
C D C.T / such that for any ` 2 N, 0 � t � T , k � �1, 0 <  < 0 and u 2 T2,
we have

(4.40)

Z t

r1D0

: : :

Z r`�2

r`�1D0

X
´1;:::;´`�12ƒ"

"2.`�1/

� sup
0�r`�r`�1;
´`2ƒ"

� Z
T2

j�k.u � x/j
Ỳ
jD1

ˇ̌
P

t�rj

? K .x � j́ /
ˇ̌
dx

�2
dr`�1

� C�4
�
log.�1/

�2C6.`�1/
:

PROOF. Throughout the calculation we make heavy use of the pointwise bounds
on P t ? K derived in Lemma 8.3. From now on we choose 0 as the constant
appearing in this lemma, and we assume that 0 <  < 0. Furthermore, for
notational simplicity we assume that u D 0, but the argument and the choice of
constants are independent of this.
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We start by fixing r1 > � � � > r`�1 > 0 and ´1; : : : ; ´`�1 2 ƒ" and bounding

(4.41) sup
0�r`�r`�1;
´`2ƒ"

� Z
T2

j�k.x/j
Ỳ
jD1

ˇ̌
P

t�rj

? K .x � j́ /
ˇ̌
dx

�2
�

sup
0�r�T

P r ? K2L1.T2/� Z
T2

j�k.x/j

`�1Y
jD1

ˇ̌
P

t�rj

? K .x � j́ /
ˇ̌
dx

�2
:

Lemma 8.3 implies that for 0 � r` � T we haveP r ? K2L1.T2/ � C.T /�4�log.�1/
�2
:

Hence we can write

(4.42)

Z t

r1D0

: : :

Z r`�2

r`�1D0

X
´1;:::;´`�12ƒ"

"2.`�1/

� sup
0�r`�r`�1;
´`2ƒ"

� Z
T2

j�k.x/j
Ỳ
jD1

ˇ̌
P

t�rj

? K .x � j́ /
ˇ̌
dx

�2
dr`�1

� C�4
�
log.�1/

�2 Z
T2

Z
T2

j�k.x1/jj�k.x2/jK .x1; x2/dx1 dx2;

where

K .x1; x2/

D

Z t

r1D0

: : :

Z r`�2

r`�1D0

X
´1;:::;´`�12ƒ"

"2.`�1/

�

`�1Y
jD1

ˇ̌
P

t�rj

? K .x1 � j́ /
ˇ̌ˇ̌
P

t�rj

? K .x2 � j́ /
ˇ̌
dr`�1

D
1

.` � 1/Š

�Z t

0

X
´2ƒ"

"2
ˇ̌
P r ? K .x1 � ´/

ˇ̌ˇ̌
P r ? K .x2 � ´/

ˇ̌
dr

�`�1
:

Here, in the second line we have used the symmetry of the integrand in the time
variables to replace the integral over the simplex r`�1 � � � � � r1 � t by an
integral over Œ0; t �`�1. We claim that (up to a power of log.�1/) the convolutionP
´2ƒ"

"2jP

r ? K .x1 � ´/jjP


r ? K .x2 � ´/j satisfies the same bounds (8.17)

and (8.18) as P r ? K . Indeed, we get for all x1; x2 2 T thatX
´2ƒ"

"2
ˇ̌
P r ? K .x1 � ´/

ˇ̌ˇ̌
P r ? K .x2 � ´/

ˇ̌
�P r ? K .x1 � �/L1.ƒ"/ P r ? K .x2 � �/L1.ƒ"/
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with the obvious conventions kf kL1.ƒ"/ WD
P
´2ƒ"

"2jf .´/j and kf kL1.ƒ"/ WD
sup´2ƒ" jf .´/j for any function f Wƒ" ! R. According to (8.17), we have
uniformly over x 2 T2 and 0 � r � T that kP r ? K .x � �/kL1.ƒ"/ �

C.log.�1//2.t�1 ^ �2/.
On the other hand, (8.17) and (8.18) imply that

(4.43)
P r ? K .x � �/L1.ƒ"/ �

C log.�1/2
X
´2ƒ"

"2
�

1

jx � ´j2
^ �1

�
� C log.�1/3:

Combining these bounds, we getX
´2ƒ"

"2
ˇ̌
P r ? K .x1 � ´/

ˇ̌ˇ̌
P r ? K .x2 � ´/

ˇ̌
� C

�
log.�1/

�5
.t�1 ^ �2/

for a constant C that is uniform in 0 � r � T and 0 <  < 0.
Integrating this bound over r for any fixed x1; x2 2 T2 bringsZ t

0

X
´2ƒ"

"2
ˇ̌
P r ? K .x1 � ´/

ˇ̌ˇ̌
P r ? K .x2 � ´/

ˇ̌
dr

� C
�
log.�1/

�5�Z 2

0

�2 dr C

Z t

2
r�1 dr

�
� C

�
log.�1/

�6
:

Plugging this back into (4.42) leads toZ t

r1D0

: : :

Z r`�2

r`�1D0

X
´1;:::;´`�12ƒ"

"2.`�1/

� sup
0�r`�r`�1;
´`2ƒ"

� Z
T2

j�k.x/j
Ỳ
jD1

ˇ̌
P

t�rj

? K .x � j́ /
ˇ̌
dx

�2
dr`�1

� C�4
�
log.�1/

�2C6.`�1/
k�kk

2
L1.T2/:

By recalling that according to Lemma B.1, k�k.x1/k2L1.T2/ � C uniformly in
k � �1, we get the desired conclusion (4.40). �

For technical reasons, below in Lemma 7.4 we will need an additional bound on
Z that states that the very high frequencies of Z are actually much smaller than
predicted by Proposition 4.2. We define

Z
high
 .t; x/ D

X
2k�

�2

10

ıkZ .t; x/:
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LEMMA 4.6. There exists a constant 0 > 0 such that any p � 1, T > 0, and
� > 0, there exists a constant C D C.p; T; �/ such that for all 0 � s � t � T and
0 <  < 0,

E
Zhigh

 .t; � /
p
L1
� Cp.1��/:(4.44)

PROOF. In the proof of Proposition 4.2, we had already seen in (4.28) that for
all k � 0, we have�

E
ˇ̌
ıkZ .t; u/

ˇ̌p� 2
p � C

X
j!j22kŒ 3

4
; 8
3
�

ˇ̌
yK .!/

ˇ̌2
1
t
C 2�2

�
1 � yK .!/

� C Err:(4.45)

According to (4.34), we have

Err � C2
�
log.�1/

�2
:

In order to bound the first expression in (4.45), recall that we are only interested
in k with 2k � �2

10
. In particular, for  small enough all frequencies appearing in

this sum are much larger than �1. For such !, the bounds derived in Lemma 4.4

are suboptimal. Indeed, the bound (4.38) can be improved to

(4.46)

ˇ̌
yK .!j /

ˇ̌2
1
t
C 2�2

�
1 � yK .!j /

� � C

j!j j4
1

1
t
C

2
C1
�2

� C2
�

1

1C j!j j2
^ t

�
;

where we have used the fact that j!j � �2

10
3
4

. Following the rest of the argument
as before, we see that

E
Zhigh

 .t; � /
p
C�� � C

p
C Cp log.�1/p;

and the desired bound follows from Lemma B.3. �

5 Tightness for the Linearized System
In this section, we continue the discussion of the processesZWnW andRWnW;t defined

in (4.5) and (4.6). The first main result is Proposition 5.3, which states that RWnW;t
can be approximately written as a Hermite polynomial applied to R;t . In Propo-
sition 5.4, we combine this result with the bounds obtained in Proposition 4.2 to
show tightness for the family ZWnW in an appropriate space.

We start by comparing the quadratic variation hR;t . � ; x/it to the bracket pro-
cess ŒR;t . � ; x/�t (see Appendix C for the different notions of quadratic variation
for a martingale with jumps). Implicitly in the proof of Lemma 4.1, we have al-
ready seen that for x 2 ƒ" and 0 � s � t , we have

hR;t . � ; x/is D 4c
2
;2

Z s

0

X
´2ƒ"

"2
�
P

t�r ?" K

�2
.x � ´/C .r; ´/dr:(5.1)
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LEMMA 5.1. For x 2 ƒ", let

(5.2) Q;t .s; x/ D ŒR;t . � ; x/�s � hR;t . � ; x/is;

where s 7! ŒR;t . � ; x/�s is the bracket process of the martingale R;t . � ; x/. Let
0 > 0 be the constant appearing in Lemma 8.2. For any t � 0, � > 0, and
1 � p < C1, there exists C D C.t; �; p/ such that for 0 <  < 0,

E sup
x2ƒ"

sup
0�s�t

jQ;t .s; x/j
p
� Cp.1��/:

PROOF. By monotonicity of stochastic Lp norms, it suffices to show the state-
ment for p large enough. We wish to apply the Burkholder-Davis-Gundy inequality
to the martingale Q;t . � ; x/ for a fixed x 2 ƒ" and in order to do so, we need to
estimate the quadratic variation and the jumps of this martingale.

Since the martingale R;t . � ; x/ is of finite total variation, its bracket process is
simply

ŒR;t . � ; x/�s D
X
0<r�s

�
�rR;t . � ; x/

�2
:

Moreover, as the process s 7! hR;t . � ; x/is is continuous, the jumps ofQ;t . � ; x/
are identical to those of s 7! ŒR;t . � ; x/�s .

Recall that an update of the spin �.k/ at microscopic position k D "�1´ causes
a jump of size 2ı�1"2K .y � ´/ for M .y/. If such an event takes place at the
macroscopic time s, then the martingaleR;t . � ; x/ has a jump at time s of absolute
value

(5.3) 2"2ı�1
�
P

t�s ?" K

�
.x � ´/ � 2"2ı�1kKkL1.ƒ"/ � 3;

where we have used the fact that kP t kL1.ƒ"/ D 1; cf. (8.16). Under the same
circumstance, the jump of the martingale Q;t . � ; x/ at time s is�

2"2ı�1
�
P

t�s ?" K

�
.x � ´/

�2
� .3/2:

This gives us the required estimate on the jumps of Q;t . � ; x/. We now turn to
its quadratic variation. It is the same as the quadratic variation of the process
s 7! ŒR;t . � ; x/�s , hence,

hQ;t . � ; x/it D

Z t

0

X
´2ƒ"

C .s; ´/

˛

�
2"2ı�1

�
P

t�s ?" K

�
.x � ´/

�4
ds

�
16"6

˛ı4

Z t

0

X
´2ƒ"

"2
�
P

t�s ?" K

�4
.´/ds;

where we used the fact that C .s; ´/ � 1. Using again (5.3) in the formP t�s ?" KL1.ƒ"/ � 22"2
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yields

(5.4) hQ;t . � ; x/it � 2
6 "

24

˛ı4

Z t

0

X
´2ƒ"

"2
�
P

t�s ?" K

�2
.´/ds:

We now use ."22˛ı4/ � 2 and (4.25) to obtain

(5.5) hQ;t . � ; x/it � 2
7e2

X
!2f�N;:::;N g2

ˇ̌
yK .!/

ˇ̌2
t�1 C 2�2

�
1 � yK .!/

� :
For 0 <  < 0, the bounds (8.11) and (8.14) imply that the sum over j!j � �1

is bounded uniformly. By (8.8) and (8.14), the sum over j!j � C�1 is smaller
than C.t/ log.�1/. We have shown the deterministic bound

(5.6) hQ;t . � ; x/it � C
2 log.�1/:

By the Burkholder-Davis-Gundy inequality (Lemma C.1), it follows that for all
p > 0,

E sup
0�s�t

jQ;t .s; x/j
p
� Cp logp=2.�1/;

where C D C.p; t/, and in particular the constant does not depend on x 2 ƒ".
The conclusion is then obtained using the observation that

(5.7) E sup
x2ƒ"

sup
0�s�t

jQ;t .s; x/j
p
�

X
x2ƒ"

E sup
0�s�t

jQ;t .s; x/j
p

and choosing p sufficiently large. �

LEMMA 5.2. Let 0 > 0 be the constant appearing in Lemma 8.2. For any t � 0
and 1 � p < C1, there exists C D C.t; p/ > 0 such that for every 0 <  < 0,�

E sup
x2ƒ"

ˇ̌̌ X
0�s�t

�
�sR;t . � ; x/

�2 ˇ̌̌p�1=p
� C log.�1/:

PROOF. We observe thatX
0�s�t

�
�sR;t . � ; x/

�2
D Q;t .t; x/C hR;t . � ; x/it :

By Lemma 5.1, it thus suffices to show that

(5.8) sup
x2ƒ"

hR;t . � ; x/it � C log.�1/:

We learn from (5.1) (as when passing from (5.4) to (5.5)) that

hR;t . � ; x/it � 4c
2
;2

X
!2f�N;:::;N g2

ˇ̌
yK .!/

ˇ̌2
t�1 C 2�2

�
1 � yK .!/

� :
We obtain (5.8) arguing in the same way as from (5.5) to (5.6). �
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We are now ready to prove that the RWnW;t can approximately be represented as
a Hermite polynomial applied to R;t . Recall the recursive definition (3.5) of the
Hermite polynomials Hn D Hn.X; T / as well as the identities (3.6) and (3.7) for
their derivatives.

We aim to bound the quantity

(5.9) E WnW;t .s; x/ WD Hn.R;t .s; x/; ŒR;t . � ; x/�s/ �R
WnW
;t .s; x/

for any x 2 T2. Here, we view ŒR;t . � ; x/�s as defined on all of T2 by extending
it as a trigonometric polynomial of degree � N . Recall that according to (4.6),
RWnW;t .t; x/ D Z

WnW
 .t; x/.

PROPOSITION 5.3 (ZWnW as a Hermite polynomial). Let 0 be the constant appear-
ing in Lemma 8.2. Then for any n 2 N, � > 0, t > 0, and 1 � p <1, there exists
C D C.n; p; t; �/ > 0 such that for every 0 <  < 0,�

E sup
x2T2

sup
0�s�t

ˇ̌
E WnW;t .s; x/

ˇ̌p�1=p
� C1�� :

PROOF. We start by reducing the bound on the spatial supremum over x 2 T2

to the pointwise bounds for x in a grid. According to the definition, for every n
the function E WnW;t is a trigonometric polynomial of degree � nN . For n D 1,
Lemma B.6 implies that we can control the supremum over x 2 T2 by the supre-
mum over x 2 ƒ" at the price of losing an arbitrarily small power of ". For n � 2,
this lemma does not apply directly, but we can circumvent this problem by refining
the grid. Indeed, set ƒ.n/" D fx 2 "

n
Z2 W �1 < x1; x2 � 1g. Then Lemma B.6

applies (the fact that the number of grid points in this lemma is an odd multiple
of the dimension is just for convenience of notation), and we can conclude that
supx2T2 jE

WnW
;t .s; x/j � C.�/"

�� sup
x2ƒ

.n/
"
jE WnW;t .s; x/j. Finally, as in (5.7) we can

reduce the bound on the supremum over x 2 ƒ.n/" to bounds on a single point
x 2 ƒ

.n/
" . We now proceed to derive such a bound.

The proof proceeds by induction on n. For n D 1, it is obviously true since
E W1W;t D 0. We now assume n � 2.

To begin with, we observe that for any n, there exists C such that for every
x; t 2 R and every jhj � 1; jsj � 1,ˇ̌̌̌

Hn.x C h; t C s/ �Hn.x; t/ � @XHn.x; t/h

�
1

2
@2XHn.x; t/h

2
� @THn.x; t/s

ˇ̌̌̌
� C.jxjn�2 C jt j.n�2/=2 C 1/.jhj3 C jsj2/:

(5.10)

We fix x 2 ƒ.n/" and use the shorthand notation

R.s/ D .R;t .s; x/; ŒR;t . � ; x/�s/:
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By Itô’s formula (see Lemma C.1 and Remark C.3),

Hn.R.s// D

Z s

rD0

@THn.R.r
�//d ŒR;t . � ; x/�r

C

Z s

rD0

@XHn.R.r
�//dR;t .r; x/

C
1

2

Z s

rD0

@2XHn.R.r
�//d ŒR;t . � ; x/�r

C Err.s; x/;

where Err.s; x/ is the error term caused by the jumps,

Err.s; x/ D
X
0<r�s

�
�rHn.R/ � @THn.R.r

�//�r ŒR;t . � ; x/��

� @XHn.R.r
�//�rR;t . � ; x/

�
1

2
@2XHn.R.r

�//
�
�rR;t . � ; x/

�2�
:

We have seen in (5.3) that uniformly over r and x 2 ƒ", we have j�rR;t . � ; x/j �
3 . Together with Lemma B.6, this implies that

(5.11) sup
0�r�t

sup
x2ƒ

.n/
"

j�rR;t . � ; x/j � C
1��

for any given � > 0, where C D C.�/. Therefore,

�r ŒR;t . � ; x/�� D
�
�rR;t . � ; x/

�2
�
�
C1��

�2
:

As a consequence, we can apply the estimate in (5.10) on the error term to get

jErr.s; x/j � C
�

sup
0�r�s

j.r; x/jn�2 C sup
0�r�s

ŒR;t . � ; x/�
.n�2/=2
r C 1

�
�

X
0<r�s

˚�
�rR;t . � ; x/

�3
C
�
�rR;t . � ; x/

�4	
:

In view of (5.11), it is clear that the summand .�rR;t . � ; x//4 can be neglected.
From (5.11) and Lemma 5.2, we obtain that for every 1 � p < C1, there exists C
such that for every s � t ,�

E sup
x2ƒ"

ˇ̌̌ X
0�r�s

�
�rR;t . � ; x/

�3 ˇ̌̌p�1=p
� C1�� log.�1/;

and using Lemma B.6, we can replace the supremum over x 2 ƒ" by a supre-
mum over x 2 ƒ.n/" in this bound (at the price of changing the exact value of the
arbitrarily small �).
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By the bounds derived in Lemma 4.1, Proposition 4.2, and Lemma 5.2, we also
get that for every � > 0, there exists C > 0 such that for every s � t and x 2 ƒ.n/" ,�

E
ˇ̌̌

sup
0�r�s

jR;t .r; x/j
n�2
C sup
0�r�s

ŒR;t . � ; x/�
.n�2/=2
r C 1

ˇ̌̌p�1=p
� C�� :

It follows from these observations that for every � > 0 and 1 � p < C1, there
exists C such that uniformly over x 2 ƒ",

(5.12)
�
E sup
s�t
jErr.s; x/jp

�1=p
� C1�� :

Going back to the relation in (5.11), we can use (3.6) and (3.7) to see that @THnC
@2XHn=2 D 0, so the first and third integrals in (5.11) cancel out. Using (3.6) again,
we arrive at

Hn.R.s// D n

Z s

rD0

Hn�1.R.r
�//dR;t .r; x/C Err.s; x/:

In view of the definition (4.4) of RWnW;t .s; x/ (which remains valid for x 2 ƒ.n/" ), we
can rewrite this as

(5.13) E WnW;t .s; x/ D n

Z s

rD0

E Wn�1W;t .r�; x/dR;t .r; x/C Err.s; x/:

Assuming that the proposition is true for the index n � 1, we want to prove that
it holds for the index n. In fact, it suffices to prove that for every � > 0, every
t > 0, and every p sufficiently large, there exists C > 0 such that uniformly over
x 2 ƒ",

(5.14)
�
E sup
0�s�t

ˇ̌
E WnW;t .s; x/

ˇ̌p�1=p
� C1�� ;

since we can later on argue as in (5.7) to conclude. The error term in (5.13) will
not cause any trouble by (5.12).

There remains to consider the integral in the right-hand side of (5.13). Since
this integral is a martingale as s varies, we can use the Burkholder-Davis-Gundy
inequality provided that we can estimate its quadratic variation and its maximal
jump size. The quadratic variation at time t is bounded by

n2 sup
s�t

ˇ̌
E Wn�1W;t .s; x/

ˇ̌2
hR;t . � ; x/it ;

with hR;t . � ; x/it � C log.�1/ by (5.8). The maximal jump size is bounded by

n sup
s�t

ˇ̌
E Wn�1W;t .s; x/

ˇ̌
sup
s�t
j�s. � ; x/j;

and we already saw that sups�t j�sR;t . � ; x/j � C
1�� . The induction hypoth-

esis and the Burkholder-Davis-Gundy inequality thus lead to (5.14), and the proof
is complete. �
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Finally, we are ready to conclude by proving the tightness of the processesZWnW .
Before we state the result, recall that for any separable metric space S , we denote
by D.RC;S/ the space of cadlag functions on RC taking values in S, endowed
with the Skorokhod topology (see [7, chaps. 16 and 18]). Recall in particular that
according to [7, theorem 16.4], a family of processes is tight on D.RC;S/ as soon
as their restrictions to all compact time intervals are tight.

PROPOSITION 5.4. For any fixed n 2 N and any � > 0, the family fZWnW ;  2
.0; 1

3
/g is tight on D.RC; C��/. Any weak limit is supported on C.RC; C��/. Fur-

thermore, for any p � 1 and T > 0, we have

(5.15) sup
2.0; 1

3
/

E sup
0�t�T

ZWnW .t; � /pC�� <1:
PROOF. We can restrict ourselves to considering 0 <  < 0, where 0 is the

constant appearing in Lemma 8.2 and Proposition 4.2. We fix a T > 0 and show
tightness in D.Œ0; T �; C��/.

Our strategy is similar to that of [44]. Let m 2 N be fixed below. The estimate
(4.19) implies that for all s ¤ t 2 mN0, all p � 1, �0 > 0, � � 1

2m
, and n 2 N,

we have

(5.16) E
ZWnW .t; � / �ZWnW .s; � /pC��0�2� � C.jt � sj� C  12 /p � C jt � sj�p;

where C D C.n; p; �0; T; �/. We now define the following continuous interpola-
tion for ZWnW : set zZWnW .t; � / D ZWnW .t; � / for t 2 mN0, and interpolate linearly
between these points. It is easy to check that zZWnW satisfies

E
 zZWnW .t; � / � zZWnW .s; � /pC��0�2� � C jt � sj�p

for all values of s; t 2 Œ0; T �, and hence the Kolomogorov criterion implies the
desired properties when ZWnW is replaced by zZWnW .

We claim that for any � > 0 and p � 1, we have

(5.17) E sup
0�t�T

sup
x2T2

ˇ̌
zZWnW .t; x/ �Z

WnW
 .t; x/

ˇ̌p
� C.n; p; T; �/ .1��/p:

Once we have established this bound, the proof is complete.
By monotonicity of Lp norms, it is sufficient to establish (5.17) for large p. We

treat the case n D 1 first. In view of Lemma B.6, it suffices to establish (5.17) with
the supremum over x 2 T2 replaced by the supremum over x 2 ƒ". We fix an
interval Ik D Œkm; .k C 1/m� for some k 2 N0 and an x 2 ƒ", and we start
with the estimate

sup
t2Ik

ˇ̌
zZ .t; x/ �Z .t; x/

ˇ̌
� 2 sup

t2Ik

ˇ̌
Z .t; x/ �Z .k

m; x/
ˇ̌
:
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Using the definition (4.3) of Z , the definition of M just above (2.14), as well as
(2.9), we get for any t 2 Ik

Z .t; x/ �Z .k
m; x/

D

Z t

km
�Z .s; x/ds C

�
M .t; x/ �M .k

m; x/
�

D

Z t

km
�Z .s; x/ds �

1

ı

�Z t=˛

mk=˛

Lh

�
s;
x

"

�
ds

�
(5.18)

C
1

ı

�
h

�
t

˛
;
x

"

�
� h

�
kr

˛
;
x

"

��
:

We bound the terms on the right-hand side of (5.18) one by one: using the definition
of � , we get for the first term that

sup
x2ƒ"

sup
t2Ik

ˇ̌̌̌ Z t

km
�Z .s; x/ds

ˇ̌̌̌
�
C

2

Z
Ik

kZ .s; � /kL1.T2/ds

�
C.�0/

2C2�
0

Z
Ik

kZ .s; � /kC��0 ds:

In the second inequality we have used Lemma B.3 for an arbitrary �0 > 0. Hence
we get for any p � 1

E sup
k�T �m

sup
x2ƒ"

sup
t2Ik

ˇ̌̌̌ Z t

km
�Z .s; x/ds

ˇ̌̌̌p
�

X
k�T �m

E sup
x2ƒ"

sup
t2Ik

ˇ̌̌̌ Z t

km
�Z .s; x/ds

ˇ̌̌̌p
� C.�0; p/

X
k�T �m

�.2C2�
0/pE

�Z
Ik

kZ .s; � /kC��0 ds

�p
� C.�0; p; T /�m�.2C2�

0/pmp sup
0�t�TCm

EkZ .s; � /k
p

C��0 :

By (4.18), the supremum on the right-hand side of this expression is bounded by a
constant depending on T , �0, and p, so that the whole expression can be bounded
by

C.�0; p; T /p.m.1�
1
p
/�.2C2�0//:

Choosingm � 3, �0 small enough, and p large enough, we can obtain any exponent
of the form p.1 � �/ for  (�0 < �

4
and p > 3

2�
suffice).

For the second term on the right-hand side of (5.18), we use the deterministic
estimate jLh .s; k/j � 2, which holds for any k 2 ƒN and any time s to get for
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any x 2 ƒ" and k � T �m and any t 2 Ik

1

ı

�Z t=˛

mk=˛

Lh

�
s;
x

"

�
ds

�
� 2

m

˛ı
� 2m�3:

Hence this term satisfies the estimate (5.17) as soon as m � 4.
Let us turn to the third term on the right-hand side of (5.18). The process

h . � ;
x
"
/ only evolves by jumps. Let us recall that a jump event at position j 2 ƒN

at time s 2
�km
˛
; t
˛

�
causes a jump of magnitude 2� .x" ; j / � 3

2 for h . � ; x" /.
Hence, we have

sup
x2ƒ"

sup
t2Ik

1

ı

�
h

�
t

˛
;
x

"

�
� h

�
km

˛
;
x

"

��
� 3Jk;

where Jk is the total number of jumps at all locations j 2 ƒN during the time
interval

�km
˛
; .kC1/

m

˛

�
. According to (2.7), the jump rate at any given location

is always bounded by 1, so the total jump rate is bounded by jƒ"j. This implies
that for every k, the random variable Jk is stochastically dominated by Poi.�/,
a Poisson random variable with mean � D m˛�1jƒ"j � Cm�6. We impose
m > 6, so that this rate goes to 0. We note that

E sup
k�T �m

J
p

k
�

X
k�T �m

EJ p
k
� T �mE Poi.�/p:

Since EŒPoi.�/p� � C.p/m�6, we arrive at

(5.19) pE
�

sup
k�T �m

J
p

k

�
� C.p; T /p�6;

and as above we can obtain the exponent p.1� �/ by choosing p > 6
�

. Summariz-
ing these calculations and invoking Lemma B.6, we see that for any � > 0, m > 6,
and p > 6

�
there exists a constant C D C.p; T; �/ such that

(5.20) E sup
k�T �m

sup
x2T2

sup
t2Ik

ˇ̌
Z .t; x/ �Z .k

m; x/
ˇ̌p
� Cp.1��/;

which establishes (5.17) in the case n D 1.
We now proceed to prove (5.17) in the case n � 2. According to Proposition 5.3,

it suffices to show

E sup
0�t�T

sup
x2T2

ˇ̌
Hn.Z.t; x// �BHn.Z/.t; x/

ˇ̌p
� C .1��/p;

where Z.t; x/ WD .Z .t; x/; ŒR;t . � ; x/�t / and BHn.Z/ denotes the process ob-
tained by evaluating Hn.Z.t; x// at points t 2 mN exactly and taking the linear
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interpolation in between. It is easy to see that for fixed x 2 T2 and t 2 Ik we have

(5.21)

ˇ̌
Hn.Z.t; x// �BHn.Z/.t; x/

ˇ̌
� C.n/

�
1C sup

t2Ik

jZ .t; x/j
n
C sup
t2Ik

ŒR;t . � ; x/�
.n=2/
t

�
�

�
sup
t2Ik

jZ .t; x/ �Z .k
m; x/j

C sup
t2Ik

jŒR;t . � ; x/�t � ŒR;km. � ; x/�km j
�
:

We have already established (5.15) for n D 1, which yields a bound on all moments
of supt2Ik jZ .t; x/j

n as well as (5.20), so that it remains to bound the terms in-
volving the bracket process. We start with the last term on the right-hand side of
(5.21). For a fixed k, we write s D km and get for any t 2 Ik

(5.22) jŒR;t . � ; x/�t � ŒR;s. � ; x/�sj �X
0�r�s

ˇ̌
.�rR;t . � ; x//

2
� .�rR;s. � ; x//

2
ˇ̌
C

X
s�r�t

�r.R;t . � ; x//
2:

Recall that a jump of spin �.k/ for k D "�1´ at time r causes a jump of absolute
value 2"2ı�1P t�r ?" K .x � ´/ for R;t . � ; x/, so that the first term on the right-
hand side of (5.22) can be bounded byX
0�r�s

ˇ̌
�r.R;t . � ; x//

2
� .�rR;s. � ; x//

2
ˇ̌
�

4
"4

ı2
J sup
´2ƒ"

sup
0�r�s

ˇ̌�
P

t�r ?" K .´/

�2
�
�
P s�r ?" K .´/

�2ˇ̌
;

where J is the total number of jumps at any point in ƒN and any point in time
before T in macroscopic time, which corresponds to T=˛ in microscopic units.
As the jump rate at any given point is always bounded by 1, J is stochastically
dominated by a Poisson variable Poi.�/ with mean � � CT"�2˛�1 � CT �6,
which implies in particular that for every p � 1,

EJ p � C.p; T /�6p:

On the other hand, for any 0 � r � s and ´ 2 ƒ", we can writeˇ̌�
P

t�r ?" K .´/

�2
�
�
P s�r ?" K .´/

�2ˇ̌
�
ˇ̌
P

t�r ?" K .´/C P


s�r ?" K .´/

ˇ̌ˇ̌
P

t�r ?" K .´/ � P


s�r ?" K .´/

ˇ̌
� C�2 log.�1/

ˇ̌
P

t�r ?" K .´/ � P


s�r ?" K .´/

ˇ̌
;



44 J.-C. MOURRAT AND H. WEBER

where we have made use of (8.17) in the last line. We continue by bounding bru-
tally ˇ̌

P

t�r ?" K .´/ � P


s�r ?" K .´/

ˇ̌
D

ˇ̌̌̌
1

4

X
!2f�N;:::;N g2

ei�!�´ yK .!/
�
e
t�r

2
. yK .!/�1/

� e
s�r

2
. yK .!/�1/�ˇ̌̌̌

� C�4
t � s

2
;

where we have used the bound j yK .!/j � 1 twice. Summarizing these bounds, we
get for any p

E sup
k�T �m

sup
x2ƒ"

sup
t2Ik

� X
0�r�s

ˇ̌
�r.R;t . � ; x//

2
� .�rR;km. � ; x//

2
ˇ̌�p
�

C.p; T /mp �8p log.�1/p;

which is bounded by C.p; T /p.2��/ as soon as m � 10.
For the second term on the right-hand side of (5.22), we write using (5.3)X

km�r�.kC1/m

�r.R;t . � ; x//
2
� C2Jk;

where as above Jk is the total number of jumps at all locations j 2 ƒN during the
time interval

�km
˛
; .kC1/

m

˛

�
. Repeating the argument that leads to (5.19), we get

that for m > 6

2p E sup
k�T �m

J
p

k
� C.p; T /2p�6:

Summarizing these calculations, we get that for m � 10 and p > 6
�

, there exists
C D C.p; T; �/ such that

E sup
k�T �m

sup
x2ƒ"

sup
t2Ik

jŒR;t . � ; x/�t � ŒR;km. � ; x/�km j
p
� Cp.2��/:(5.23)

Finally, going back to (5.21), it remains to bound

E
�

sup
k�T �m

sup
x2ƒ"

sup
t2Ik

ŒR;t . � ; x/�
.n=2/
t

�p
� C

X
k�T �m

E
 ŒR;km. � ; � /�.n=2/km

p
L1.ƒ"/

C C E sup
k�T �m

sup
x2ƒ"

sup
t2Ik

jŒR;t . � ; x/�t � ŒR;km. � ; x/�km j
p:

In view of (5.23), the second term can be neglected. Using Lemma 5.2, we see that
the first term is bounded by C.p; T /�m log.�1/mp. Plugging all of this back
into (5.21), invoking Lemma B.6 once more, and using Hölder’s inequality (with a
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large exponent on the terms in the last line of (5.21)) we get for any � > 0 and p
large enough

E sup
x2ƒ"

sup
0�t�T

ˇ̌
Hn.Z.t; x// �BHn.Z/.t; x/

ˇ̌p
� C.n; p; T; �/p.1��/;

and the proof is complete. �

6 Convergence in Law of the Linearized System
The aim of this section is to prove the convergence in law ofZ and the approx-

imate Wick powersZWnW to the solution of the stochastic heat equation and its Wick
powers. We will only be able to show the convergence in law of Z and ZWnW up to
a stopping time that depends on X (the “nonlinear” dynamics), which we do not
control for now. For a fixed � 2 .0; 1

2
/, any m > 1, and 0 <  < 1, we set

(6.1) �;m WD infft � 0 W kX .t; � /kC�� � mg:

Theorem 6.1 below states, roughly speaking, that Z converges to Z (the solution
of the stochastic heat equation introduced in Section 3) “until �;m.” In order to
state this properly, we introduce a different extension of Z beyond �;m. We start
by modifying the microscopic jump process � for times t � �;m. Indeed, for
k 2 ƒN and for t � 0, define

�;m.t; k/ WD

(
�.t; k/ if t < �;m

˛
;

� 0;m.t; k/ otherwise:

Here � 0;m is a spin system with � 0;m.�;m=˛; k/ D �.�;m=˛; k/ and with jumps
occurring for every t > �;m=˛ and every k 2 ƒN at rate 1

2
, independently from � .

We now construct processes M;m and Z;m following exactly the construction
ofM andZ with � replaced by �;m. For t � 0 and k 2 ƒN we set h;m.t; k/ D
.�;m.t; � / ? � /.k/ and, as in (2.9), we set

(6.2) m;m.t; k/ WD h;m.t; k/ � h;m.0; k/ �

Z t

0

L s
;m h;m.s; k/ds;

where L s
;m is defined as in (2.5) with c replaced by

(6.3) cs;m D

(
c if s < �;m

˛
;

1
2

otherwise

(in other words, L s
;m is the infinitesimal generator of � 0;m).

Finally, let M;m.t; x/ WD
1
ı
m;m.

t
˛
; x
"
/. The processes M;m. � ; x/ are martin-

gales with quadratic variations given by (2.15) with C replaced by

(6.4) C;m.s; ´/ WD c
s
;m.�;m.s=˛/; ´="/:

Let RWnW;t;m and ZWnW;m be defined as iterated stochastic integrals just as RWnW;t and
ZWnW in (4.4), (4.5), and (4.6), but with M replaced by M;m. It is clear that for
s � �;m, we have RWnW;t;m.s; � / D RWnW;t .s; � /. Furthermore, the main results of



46 J.-C. MOURRAT AND H. WEBER

the previous two sections, i.e., Proposition 4.2, Lemma 5.1, and Proposition 5.3,
as well as Proposition 5.4, hold true unchanged if RWnW;t and ZWnW;m are replaced by
RWnW;t;m and ZWnW;m. Indeed, the only property used in these proofs concerning the
jump rate C is the fact that it is bounded by 1, and this remains true for C;m.

THEOREM 6.1 (Convergence of Z ). Let � 2 .0; 1
2
/ and m > 1. As  tends to 0,

the processesZ;m converge in law toZ with respect to the Skorokhod topology on
D.RC; C��/, where Z is defined in Proposition 3.1.

PROOF. As in equation (4.3) on T2, we have that

(6.5) Z;m.t; x/ D

Z t

0

�Z;m.s; x/ds CM;m.t; x/:

As explained above, Proposition 5.4 also applies to the family of processes Z;m.
Therefore, for any fixed m > 1 the family .Z;m/2.0;1=3/ is tight for the Sko-
rokhod topology on D.RC; C��/. Let zZ be a subsequential limit of Z;m as 
tends to 0. It suffices to show that the law of SZ is that of Z. In order to see this, we
appeal to the martingale characterization of this law, as recalled in Theorem D.1
below. By Proposition 5.4, SZ must take values in C.RC; C��/.

Let � 2 C1.T2/. We define

M;�.t/ D .Z;m.t/; �/ �

Z t

0

.Z;m.s/;��/ds;

where .f; g/ D
R
f .x/g.x/dx. More generally, when f is a distribution and g

a smooth test function, we write .f; g/ to denote the evaluation of f on g. As
.f;�g/ D .�f; g/, the process M;� is a martingale.

Let us first see that for any s � 0,

(6.6) j.Z;m.s/;��/ � .Z;m.s/;��/j � C
2�2�
kZ;m.s/kC��

for a constant C D C.�/. Indeed, according to the definitions of � and K (see
the discussion below (2.13) as well as (2.18))

��.x/ D c;1
1

2

X
´2Z2

2K.´/

�
�

�
x C

"


´

�
� �.x/

�

D c;1
1

2

X
´2Z2

2K.´/

� X
jD1;2

@j�.x/
"


j́

C
1

2

X
j1;j2D1;2

@j1@j2�.x/
"2

2
j́1 j́2

C
1

6

X
j1;j2;j3D1;2

@j1@j2@j3�.x/
"3

3
j́1 j́2 j́3

�
C Err:

The error term Err is readily seen to be bounded by C2 uniformly in x. Further-
more, by the symmetry of K, all of the sums involving odd powers of j́ vanish.
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The only remaining contribution is

��
1

2
c;1

X
´2Z2

2K.´/´21;

where we used symmetry of the kernel again. The Riemann sum converges to the
integral

R
K.´/´21 d´ D 2, and the error is bounded by C2 (see Remark 2.4).

Therefore, we get
k�� ���kL1 � C

2:

The estimate (6.6) thus follows from Lemma B.3 and the fact that the Fourier co-
efficients of Z with frequency larger than N � �2 vanish.

For any L > 0 and ´ 2 D.RC; C��/, we define

TL.´/ D infft � 0 W k´kC�� > Lg;

and for any t � 0,

M´;�.t/ D .´.t/; �/ �

Z t

0

.´.s/;��/ds:

The first condition from Theorem D.1 that needs to be checked is that MSZ;� is
a local martingale. For some s � 0, we give ourselves a bounded continuous
function F W D.RC; C��/ ! R that is measurable with respect to the � -algebra
over D.Œ0; s�; C��/, and we consider, for t � s,

GL;t .´/ D
�
M´;�.t ^ TL.´// �M´;�.s ^ TL.´//

�
F.´/;

where we slightly abuse notation by writing M´;�.t ^ TL.´// to denote the process
that is equal to M´;�.t/ if t < TL.´/, and is equal to the left limit of M´;� at TL.´/
otherwise. Let us define

Loc D fL > 0 W P ŒkSZkC�� has a local maximum at height L� > 0g:

Noting that

Loc �
[

n;m2N;
s2QC

�
L > 0 W P

h
sup

t Wjt�sj�1=m

kSZ.t/kC�� D L
i
�
1

n

�
;

we see that this set is countable. For L … Loc, the process SZ belongs a.s. to the set
of continuity points of the mapping�

D.RC; C��/ ! R
´ 7! TL.´/:

Similarly, SZ belongs a.s. to the set of continuity points of the mapping�
D.RC; C��/ ! R

´ 7! GL;t .´/:
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By the continuous mapping theorem, GL;t .Z;m/ thus converges in law to GL;t .SZ/
along the subsequence  ! 0. Since ´ 7! GL;t .´/ is uniformly bounded, the ex-
pectations converge as well; i.e., EŒGL;t .Z;m/� converges to EŒGL;t .SZ/� along
the subsequence  ! 0. Moreover, MZ;m;�.t ^ TL.Z;m// is very close to
M;�.t ^ TL.Z;m//, as shown by (6.6) (and where we use the same abuse of
notation on t ^ TL.Z;m/). More precisely,

E
�ˇ̌

GL;t .Z;m/

�
�
M;�.t ^ TL.Z;m// �M;�.s ^ TL.Z;m//

�
F.Z;m/

ˇ̌�
� C.�/t2�2�LkF kL1 :

By the martingale property of M;�.t/, we have

E
��
M;�.t ^ TL.Z;m// �M;�.s ^ TL.Z;m//

�
F.Z;m/

�
D 0;

so EŒGL;t .Z;m/� tends to 0 as  tends to 0. This implies that EŒGL;t .SZ/� D 0, and
thus that .MSZ;�.t ^ TL.

SZ///t�0 is a martingale. Since the set Loc is countable,
we can choose a sequence Ln … Loc that goes to infinity with n. For such a
sequence, TLn.SZ/ tends to infinity a.s. as n tends to infinity. We have thus proved
that MSZ;� is a local martingale, which is what we wanted.

For ´ 2 D.RC; C��/, let

�´.t/ D .M´;�.t//
2
� 2tk�k2

L2
:

In order to verify the assumptions of Theorem D.1, it remains to see that �SZ is a
local martingale. The reasoning is similar except that, unlike the first part, the ar-
gument relies on the presence of the stopping time �;m. Let us see how. Recalling
M;m from (6.5), we have

M;�.t/ D .M;m.t/; �/;

which coincides with .M .t/; �/ if t � �;m. If we also assume that � is a trigono-
metric polynomial of degree K < 1 (i.e., �.x/ D 1

4

P
j!j j�K

y�.!/ei�!�x), then
by (A.3), we have the identity

.M;m.t/; �/ D
X
x2ƒ"

"2M;m.t; x/�.x/

for �2 � K. By (2.15), the predictable quadratic variation of M;� is given by

hM;�it D 4c
2
;2

Z t

0

X
x;y;´2ƒ"

"6�.x/�.y/K .x � ´/K .y � ´/C;m.s; ´/ds

with C;m as in (6.4). The central point is the observation that for t < �;m,

(6.7)
ˇ̌̌̌
C;m.t; ´/ �

1

2

ˇ̌̌̌
D

ˇ̌̌̌
C .t; ´/ �

1

2

ˇ̌̌̌
� C.�/1�2�kX .t/kC�� ;

whereas for t > �;m, we have C;m D 1
2

by definition.
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Indeed, to see (6.7) we note that by (2.7) and (2.12),ˇ̌̌̌
C .t; ´/ �

1

2

ˇ̌̌̌
� ˇ

ˇ̌
h .�.t=˛/; ´="/

ˇ̌
D ˇıjX .t; ´/j:

Moreover, since the Fourier coefficients of X with frequency larger than �2

vanish, we obtain from Lemma B.3 that

kX .t/kL1 � C
�2�
kX .t/kC�� :

Recalling that ı D  and ˇ � 2 for  sufficiently small, we obtain (6.7). From
this, we deduce that the quadratic variation of M;� at time t is close to

2"6
Z t

0

X
x;y;´2ƒ"

�.x/�.y/K .x � ´/K .y � ´/ds

up to an error controlled by 1�2� . It is then clear that this tends to 2tk�k2
L2

as 
tends to 0. We obtain that the martingale

M2
;�.t/ � hM;�it

is close to �Z;m.t/ up to an error that vanishes as  tends to 0. We can now
proceed as in the first part to obtain that �SZ is a local martingale. Recall that we
have assumed that � is a trigonometric polynomial. But by Remark D.4, this is
sufficient to characterize the law of SZ, and the proof is complete. �

We can now prove the convergence in law of the iterated integrals as well. As
above, for the moment we can only prove this “before the stopping time �;m.”

Recall the definitions of the processes RWnWt and ZWnW in Section 3. Furthermore,
recall that for x 2 T2, the process s 7! Rt .s; x/ D RW1Wt .s; x/, defined for s < t ,
is a continuous martingale with quadratic variation given by

(6.8) hRt . � ; x/is D
1

2

X
!2Z2

Z s

0

exp.2.t � r/�2j!j2/dr;

and that for s < t and x 2 T2, we have the exact identity

(6.9) RWnWt .s; x/ D Hn.Rt .s; x/; hRt . � ; x/is/:

THEOREM 6.2 (Convergence ofZWnW ). For every m 2 N and n 2 N, the processes
.ZW1W;m; : : : ; Z

WnW
;m/ (defined as in the beginning of this section) converge ( jointly) in

law to .ZW1W; : : : ; ZWnW/ with respect to the topology of D.RC; C��/n.

PROOF. As explained at the beginning of this section, the results from Sec-
tions 4 and 5 remain true if RWnW;t and ZWnW are replaced by RWnW;t;m and ZWnW;m. In
particular, by Proposition 5.4, the family of processes .ZWnW;m/2.0; 1

3
/ is tight with

respect to the topology of D.RC; C��/ for every given n. This implies immedi-
ately that for every n, the family of vectors .ZW1W;m; : : : ; Z

WnW
;m/,  2 .0;

1
3
/, is tight

with respect to the topology of D.RC; C��/n. It remains to check the convergence
of the finite-dimensional distributions.



50 J.-C. MOURRAT AND H. WEBER

From now on, we use the shorthand notation Z D .ZW1W;m; : : : ; Z
WnW
;m/ and Z D

.ZW1W; : : : ; ZWnW/ to denote the random vectors of interest. It will also be useful
to use R;t D .RW1W;t;m; : : : ; R

WnW
;t;m/ and Rt D .RW1Wt ; : : : ; R

WnW
t /. We fix a K 2 N

and times t1 < � � � < tK . Furthermore, let F W .C��/n�K ! R be bounded and
uniformly continuous (with respect to the product metric on .C��/n�K). We need
to show that

lim
!0

ˇ̌
EF

�
Z .t1/; : : : ;Z .tK/

�
� E

�
Z.t1/; : : : ;Z.tK/

�ˇ̌
D 0:

To this end, fix s1 < t1; : : : ; sK < tK and write

(6.10)

ˇ̌
EF

�
Z .t1/; : : : ;Z .tK/

�
� EF

�
Z.t1/; : : : ;Z.tK/

�ˇ̌
� E

ˇ̌
F
�
Z .t1/; : : : ;Z .tK/

�
� F

�
R;t1.s1/; : : : ;R;tK .sK/

�ˇ̌
C
ˇ̌
EF

�
R;t1.s1/; : : : ;R;tK .sK/

�
� EF

�
Rt1.s1/; : : : ;RtK .sK/

�ˇ̌
C E

ˇ̌
F
�
Rt1.s1/; : : : ;RtK .sK/

�
� F

�
Z.t1/; : : : ;Z.tK/

�ˇ̌
:

Recall the estimates (3.10) and (4.20) that allow us to control all moments of
kZ .ti / � R;ti .si /k.C��/n uniformly in  . Since F is uniformly continuous, we
can thus make the first and last terms on the right-hand side of (6.10) small uni-
formly in  by choosing jti � si j small enough. Therefore, in order to conclude,
it suffices to show the convergence in law of the vector .R;t1.s1/; : : : ;R;tK .sK//
to .Rt1.s1/; : : : ;RtK .sK// for fixed values of si < ti .

We will show the stronger statement that this convergence in law holds with
respect to the topology of .L1/n�K . By Proposition 5.3, it suffices to show that

H`.R;ti ;m.si ; x/; ŒR;ti ;m. � ; x/�si /; ` D 1; : : : ; n; i D 1; : : : ; K;

converges in law to .Rt .s1/; : : : ;Rt .sK// in L1. By (6.9) and Lemma 5.1, it
suffices to show the two convergences

(6.11)
�
R;t1;m.s1/; : : : ; R;tK ;m.sK/

� (law)
���!
!0

�
Rt1.s1/; : : : ; RtK .sK/

�
;

and

(6.12)
�
hR;t1;m. � ; � /is1 ; : : : ; hR;tK ;m. � ; � /isK

� (law)
���!
!0�

hRt1. � ; � /is1 ; : : : ; hRtK . � ; � /isK
�
;

both being understood for the .L1/K topology. (The joint convergence in law of
(6.11) and (6.12) would follow immediately since the right-hand side of (6.12) is
deterministic.) As for (6.11), note that R;t;m.s/ D P


t�sZ;m.s/. We learn from

Corollary 8.7 and Proposition 4.2 that for i D 1; : : : ; K,�P ti�si � Pti�si �Z;m.si /L1 ���!!0
0
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almost surely. So it suffices to check the convergence of Pti�siZ .si / toRti .si / D
Pti�siZ.si /. The estimate (8.23) ensures that the mapping(

C�� ! L1

Z 7! Pt�sZ

is continuous, so the convergence in (6.11) follows from Theorem 6.1 and the
continuous mapping theorem.

Turning now to (6.12), we learn from (5.1) that for x 2 ƒ",

hR;ti ;m. � ; x/isi D 4c
2
;2

Z si

0

X
´2ƒ"

"2
�
P

ti�r

?" K
�2
.´ � x/C;m.r; ´/dr;

where C;m.s; ´/ satisfies (6.7). We can thus conclude that the quadratic variation
hR;ti ;m. � ; x/isi is given by

2

Z si

0

X
´2ƒ"

"2
�
P

ti�r

?" K
�2
.´ � x/dr

up to an error that is bounded uniformly over x 2 ƒ" (we also used the bound
(2.17), which implies that jc2;2 � 1j � C

2 and the calculation (5.5)–(5.6), which
yields a logarithmic bound on the sum). The latter quantity is equal to

(6.13)
1

2

Z si

0

X
!2f�N;:::;N g2

exp
�
�2.ti � r/

�2.1 � yK .!//
�ˇ̌
yK .!/

ˇ̌2
dr:

By (8.4) and (8.14), for any fixed j!j � �1, we getˇ̌
exp

�
�2.ti � r/

�2
�
1 � yK .!/

��ˇ̌
yK .!/

ˇ̌2
� exp

�
�2.ti � r/�

2
j!j2

�ˇ̌
� C exp

�
�2.ti � r/

j!j2

C1

��
.ti � r/ j!j

3
C 2j!j2

�
:

(6.14)

From the elementary boundZ s

0

e�.t�r/` dr � se�.t�s/`;

we can conclude that after integrating the bound (6.14) over Œ0; si � and summing
over j!j � �1, we obtain a quantity that is bounded by C.si ; ti / . In the same
way (using (8.14) once more), we obtain that the sum arising in (6.13) restricted to
indices j!j > �1 is smaller than

� si
X

!2f�N;:::;N g2;

j!j>�1

exp
�
�2.ti � si /

1

C12

�
� Csi

�2 exp
�
�2.ti � si /

1

C12

�
;



52 J.-C. MOURRAT AND H. WEBER

and a similar bound holds true for the limiting quantity exp.�2.ti � r/�2j!j2/.
Hence we can conclude that uniformly over x 2 ƒ" we get the deterministic boundˇ̌

hR;ti ;m. � ; x/isi � hRti . � ; x/isi
ˇ̌
� C.si ; ti /

1�2� :

It only remains to refer to Lemma B.6 to conclude that the convergence (6.12) also
holds for the extensions to arbitrary x 2 T2. �

7 Analysis of the Nonlinear Equation
In this section, we summarize the calculations of the previous sections and prove

our main result, Theorem 2.1. Throughout this section, � > 0 will be assumed
to be small enough and fixed. We furthermore fix X0 2 C�� . We denote by
X 2 C.RC; C��/ the solution of the renormalized limiting evolution equation
with initial datum X0 as constructed in Section 3. Throughout the section, we
make use of the bounds on K and P t collected in Section 8.

Recall that the rescaled field X .t; x/ was defined in (2.12). Recall furthermore
that it satisfies the evolution equation (2.13), or equivalently, its mild form (4.1).
For the reader’s convenience, we repeat here that (4.1) states

(7.1)

X .t; � / D P

t X

0


C

Z t

0

P

t�sK ?"

�
�
ˇ3

3
X3 .s; � /

C .c C A/X .s; � /CE .s; � /

�
ds

CZ .t; � / on ƒ":

This equation is only valid on the grid points x 2 ƒ" because the extension by
trigonometric polynomials does not commute with cubing X . Therefore, our first
step consists of deriving an equation that holds for all x 2 T2.

The problem is only caused by a large ! in Fourier space. Indeed, as long as
j!i j <

N
3

, we have

(7.2) ExtŒ.ei�!�x/3� D ŒExt ei�!�x�3;

where as before, we have used Ext to denote the extension operator for a function
ƒ" ! R to a function T2 ! R by trigonometric polynomials of degree � N .
In order to control the error caused by the extension, we will use the notation
introduced above Lemma 4.6 and write

(7.3) X
high
 D

X
2k�

�2

10

ıkX and X low
 D

X
2k<

�2

10

ıkX

so that X D X
high
 C X low

 . It is now convenient to collect some error terms in
the first lemma, and to this end we discuss some notation. For x 2 ƒ", we set
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c .s; x/ D ŒR;s. � ; x/�s , and we extend this to all x 2 T2 as a trigonometric
polynomial. Recall that in (3.15) we had defined

A.s/ WD A �
s

2
C

X
!2Z2nf0g

e�2s�
2j!j2

4�2j!j2
:

Finally, recall that Q;s was defined in Lemma 5.1.
With this notation at hand, we are ready to state the following result.

LEMMA 7.1. For every t � 0, we have on T2

(7.4)

X .t; � / D P

t X

0


C

Z t

0

P

t�sK ?

�
�
1

3
X3 .s; � /C .c .s; � /

C A.s//X .s; � /C Err.1/.s; � /
�
ds

CZ .t; � /:

For every T > 0 and � > 0, there exists C D C.T; �; �/ such that the error term
satisfies for all 0 � s � T and 0 <  < 0

(7.5)

kErr.1/.s; � /kL1.T2/

� C�10���
�
kX .s; � /k

5
C�� C 1

�
�
�

2
3 s�

1
3 C

Xhigh
 .s; � /


L1.T2/ C kQ;s.s; � /kL1.ƒ"/

�
:

PROOF. We get from (7.1) that

Err.1/ D err.1/ C err.2/ C err.3/;

where

err.1/.s; � / D E .s; � / �
1

3
.ˇ3 � 1/Ext

�
X3 .s; � /

�
;

err.2/.s; � / D �
1

3

�
Ext

�
X3 .s; � /

�
�
�
ExtX .s; � /

�3�
;

err.3/.s; � / D .c C A � c .s; � / � A.s//X .s; � /:

The first term is easily bounded using the definition of E in (2.14) and the as-
sumption (2.19) and (2.20) on ˇ. On ƒ" we get

kerr.1/.s; � /kL1.ƒ"/ � C
2
kX .s; � /k

5
L1.ƒ"/

C C2 log.�1/kX .s; � /k3L1.ƒ"/:

By using Lemma B.6 this bound can easily be extended to x 2 T2 at the expense
of losing an arbitrarily small power of  . Furthermore, as we have already seen
at several places, we can use Lemma B.3 and the fact that �X .!/ D 0 for ! …
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f�N; : : : ; N g2 to bound the L1 norm by the C�� norm. In this way we get for any
arbitrarily small � > 0

kerr.1/.s; � /kL1.T2/ � C.�; �/
2���10�

�
kX .s; � /k

5
C�� C 1

�
:

For the second term, we get on T2

Ext
�
X3
�
� .ExtX /3

D
�
Ext
��
X low


�3�
�
�
ExtX low



�3i
C Ext

�
X

high


�
3
�
X low


�2
C 3X low

 X
high
 C

�
X

high


�2��
�
�
ExtXhigh



�
3
�
ExtX low



�2
C 3ExtX low

 ExtXhigh
 C

�
ExtXhigh



�2��
:

According to (7.2), the term ŒExt..X low
 /3/ � .ExtX low

 /3� vanishes. By using
Lemma B.6, the remaining terms can easily be bounded, so that we obtain

(7.6)
kerr.2/.s; � /kL1.T2/ � C.�/

��
Xhigh

 .s; � /

L1.T2/

�
�X low

 .s; � /
2
L1.T2/ C

Xhigh
 .s; � /

2
L1.T2/

�
:

Finally, we bound the terms appearing in the bracket on the right-hand side of
(7.6) by

X low
 .s; � /


L1.T2/ �

X
2k<

�2

10

kıkX .s; � /kL1.T2/

�

X
2k<

�2

10

2�k�kX .s; � /kC��

� C.�/�2�kX .s; � /kC�� ;

and in the same way

Xhigh
 .s; � /


L1.T2/ �

X
2k�

�2

10

kıkX .s; � /kL1.T2/ � C
�2�
kX .s; � /kC�� :

Note that the number of terms appearing in the last sum is uniformly bounded in  .
We will see below that this last bound does not capture the true behavior of Xhigh

 ,
but it is sufficient for this particular part of the estimate (7.6).
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In order to bound err.3/, we recall that the precise value of c was defined in
(2.20). Then we get for x 2 T2

c C A � c .s; x/ � A.s/ D
X

!2f�N;:::;N g2;
!¤0

j yK .!/j
2

4�2.1 � yK .!//
� ŒR;s. � ; x/�s

C
s

2
�

X
!2Z2;
!¤0

exp.�2s�2j!j2/
4�2j!j2

:

Recall from (5.2) that for x 2 ƒ", ŒR;r. � ; x/�r D hR;r. � ; x/ir C Q;r.s; x/.
Furthermore, according to (5.1) we get for x 2 ƒ"

hR;s. � ; x/is

D 4c2;2

Z s

0

X
´2ƒ"

"2
�
P s�r ?" K

�2
.x � ´/C .r; ´/dr

D 2

Z s

0

X
´2ƒ"

"2
�
P s�r ?" K

�2
.x � ´/ dr C err.4/.s; x/

D
1

2

Z s

0

X
!2f�N;:::;N g2

exp
�
�
2r

2

�
1 � yK .!/

��ˇ̌
yK .!/

ˇ̌2
dr C err.4/.s; x/

D
s

2
C

X
!2f�N;:::;N g2;

!¤0

ˇ̌
yK .!/

ˇ̌2
4�2

�
1 � yK .!/

�
�

�
1 � exp

�
�
2s

2

�
1 � yK .!/

���
C err.4/.s; x/;

where for any � > 0

err.4/.s; x/ D 4
�
c2;2 � 1

� Z s

0

X
´2ƒ"

"2
�
P s�r ?" K

�2
.x � ´/C .r; ´/dr

C 4

Z s

0

X
´2ƒ"

"2
�
P s�r ?" K

�2
.x � ´/

�
C .r; ´/ �

1

2

�
dr

� C.T; �/ 2�� C C.T; �; �/1�2���kX .t/kC�� ;

using (2.17) and (6.7) as well as the fact that
R s
0

P
´2ƒ"

"2.P

s�r ?"K /

2.x�´/dr

is bounded by C.T / log.�1/ � C.T; �/�� .
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Summarizing these calculations, we get

c C A � c .s; � / � A.s/CQ;s.s; x/C err.4/.s; x/

D

X
!2f�N;:::;N g2;

!¤0

ˇ̌
yK .!/

ˇ̌2
4�2

�
1 � yK .!/

� exp
�
�
2s

2

�
1 � yK .!/

��

�

X
!2Z2;
!¤0

exp.�2s�2j!j2/
4�2j!j2

:

We bound the difference between the sums over j!j < �1 term by term. We write

(7.7)

ˇ̌̌̌ ˇ̌
yK .!/

ˇ̌2
4�2

�
1 � yK .!/

� exp
�
�
2s

2

�
1 � yK .!/

��
�

exp.�2s�2j!j2/
4�2j!j2

ˇ̌̌̌

� exp.�2s�2j!j2/
ˇ̌̌̌ ˇ̌

yK .!/
ˇ̌2

4�2
�
1 � yK .!/

� � 1

4�2j!j2

ˇ̌̌̌

C

ˇ̌
yK .!/

ˇ̌2
4�2

�
1 � yK .!/

� ˇ̌̌̌ exp
�
�
2s

2

�
1 � yK .!/

��
� exp.�2s�2j!j2/

ˇ̌̌̌
:

Using Lemma 8.1, we can bound the expression on the right-hand side of (7.7) for
j!j < �1 by

Ce�2s�
2j!j2 

j!j
C Ce

�
sj!j2

C1
1

j!j2
s j!j3 � C

1

j!j1C
2
3

s�
1
3 :

So, summing over 0 < j!j < �1 results in a contribution that is bounded by
C2=3s�1=3. Of course, the choice of the exponents here is essentially arbitrary—
we could have obtained any bound of the type �s��=2 for 0 � � < 1—but this
choice is convenient.

For j!j � �1, the terms in the sum involving yK are not a good approximation
to the corresponding limiting terms, so we simply bound each sum separately. For
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the first one, using (8.11) and (8.14), we obtainX
!2f�N;:::;N g2;

j!j��1

ˇ̌
yK .!/

ˇ̌2
4�2

�
1 � yK .!/

� exp
�
�
2s

2

�
1 � yK .!/

��

� C
X

!2f�N;:::;N g2;

j!j��1

2

j!j4
exp

�
�

2s

C12

�

� C
2
3 s�

1
3

X
!2f�N;:::;N g2;

j!j��1

1

j!j2
� C

2
3 s�

1
3 ;

while for the second one,X
!2Z2;
!��1

exp.�2s�2j!j2/
4�2j!j2

� C.�/s�
1
3 

2
3
�� :

Summarizing our calculations, we get the desired estimate on Err.1/. �

For m � 1, recall the definition of the stopping time �;m in (6.1) and the defini-
tion of the processes Z;m (see the discussion following (6.3)). It will be useful to
introduce an auxiliary process X;m.t; x/, t � 0, x 2 T2, as the solution of (7.4)
with Z replaced by Z;m and Err.1/ replaced by

(7.8) Err.1/m .s/ WD

(
Err.1/.s/ if s � �;m;
0 else:

The existence and uniqueness of this process for fixed  > 0 follows by an elemen-
tary ODE argument, which we omit. Of course, X;m.t; � / and X .t; � / coincide
on the event ft < �;mg. Note that according to (7.5), by choosing � > 0 and � > 0
small enough, for s � �;m we have the deterministic bound

(7.9)

Err.1/m .s; � /

L1.T2/ � C.T;m/

�

1
2 s�

1
3 C �

1
6

Xhigh
 .s; � /


L1.T2/

C �
1
6 kQ;s.s; � /kL1.ƒ"/

�
:

We will require yet another process that approximates X . For any 0 � t � T ,
we define

SX;m.t; � / D PtX
0
CZ;m.t; � /C ST

�
Z;m; Z

W2W
;m; Z

W3W
;m

�
.t; � /;

where ST is the solution operator to the continuous problem, defined in Theo-
rem 3.2. Recall that the definition of the operator ST involves the choice of initial
datum X0, which we keep fixed. The following lemma is an immediate conse-
quence of the main results of Sections 3 and 6. (The initial datum of the limiting
evolution X is X0 2 C�� .)
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LEMMA 7.2. For any T > 0, let F WD.Œ0; T �; C��/! R be uniformly continuous
and bounded. We have

lim
!0

ˇ̌
E
�
F
�
SX;m

��
� EŒF .X/�

ˇ̌
D 0:

PROOF. For t 2 Œ0; T �, we can write

X.t; � / D PtX
0.�/CZ.t; � /C ST .Z;ZW2W; ZW3W/.t; � /:

In Theorem 6.2, it was shown that the triple .Z;m; ZW2W;m; Z
W3W
;m/ convergences in

law with respect to the topology of D.Œ0; T �; C��/3 to the triple .Z;ZW2W; ZW3W/.
As the limit is continuous, we can conclude that the convergence also holds with
respect to the metric of L1.Œ0; T �; C��/3.

On the other hand, Theorem 3.2 ensures that the operator ST is uniformly con-
tinuous on bounded sets from L1.Œ0; T �; C��/3 to, say, C.Œ0; T �; C1.T2//. Note
that the evolution Y.t/ D PtX0 is in C.Œ0; T �; C��/ by properties of the heat semi-
group Pt . In particular, the mapping that sends .Z;ZW2W; ZW3W/ to

PtX
0
CZ.t; � /C ST .Z;ZW2W; ZW3W/.t; � /

is continuous from L1.Œ0; T �; C��/3 to D.Œ0; T �; C��/. This implies the desired
result. �

It remains to bound the difference between SX;m and X (or X;m). Note that
these two processes are naturally defined on the same probability space, so that we
can derive almost sure error bounds. For most of the remainder of this section we
collect bounds to show that for every fixed m � 1, T > 0, and bounded uniformly
continuous function F WD.Œ0; T �; C��/! R, we have

(7.10) lim sup
!0

E
ˇ̌
F
�
SX;m

�
� F.X;m/

ˇ̌
D 0:

Once (7.10) is established, it can be combined with Lemma 7.2, implying the con-
vergence in law of X;m to X for every fixed m � 1. The stopping time �;m can
then be removed by a soft argument that will be explained in the proof of our main
result, Theorem 2.1, at the end of the section.

We start by treating the initial datum. To this end we set Y .t; � / D P

t X

0


on T2. Lemma 8.4 and the uniform bound on kX0 kC�� imply that for � > 0 and
ˇ > 0, we have

(7.11) kY .t; � /kCˇ�� t
�Cˇ
� C.T; ˇ; �/

uniformly in  and in t 2 Œ0; T �. This is slightly worse than the bound available for
the continuous equation, where we have uniform control on kY.t; � /kCˇ t

.�Cˇ/=2

for all values of �; ˇ > 0. The bound is weaker due to the bad behavior of P t on
high Fourier modes observed in Lemma 8.4, but is sufficient for our needs.

We set

(7.12)
v;m.t; x/ WD X;m.t; x/ �Z;m.t; x/ � Y .t; x/; t � 0; x 2 T2;

xv;m.t; x/ WD SX;m.t; x/ �Z;m.t; x/ � Y.t; x/; t � 0; x 2 T2:
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So the desired bound (7.10) follows as soon as we have established bounds on
sup0�t�T kY.t; � /�Y .t; � /kC�� as well as sup0�t�T kxv;m.t; � /�v;m.t; � /kC1=2
for fixed T and m.

The first of these bounds is established in the following lemma.

LEMMA 7.3. For every T > 0 we have

(7.13) sup
0�t�T

kY.t; � / � Y .t; � /kC�� ! 0:

PROOF. For any t � 0 we can write

kY.t; � / � Y .t; � /kC�� �
Pt�X0 �X0 �C�� C �Pt � P t �X0C�� :(7.14)

The operator Pt is bounded on C�� uniformly in t , so that the first term is bounded
by CkX0 � X0 kC�� ! 0. For the second term, we use the assumption that states
that the X0 are uniformly bounded in C��C� for some small � > 0, as well as the
fact that kP t � PtkC��C�!C�� � C.T; �; �/

�=2 according to (8.34). So (7.13)
is established. �

We now turn to the terms v;m and xv;m. As in Section 3, we have to include the
initial conditions in the renormalized powers of Z;m. We define

(7.15)

zZ;m.t; � / WD Y .t; � /CZ;m.t; � / ;

zZW2W;m.t; � / WD Z
W2W
;m.t; � /C 2Y .t; � /Z;m.t; � /C Y .t; � /

2;

zZW3W;m.t; � / WD Z
W3W
;m.t; � /C 3Y .t; � /Z

W2W
;m.t; � /C 3Y .t; � /

2Z;m.t; � /

C Y .t; � /
3:

Furthermore, we define SZ;m, zZW2W;m, and zZW3W;m in exactly the same way as we de-
fined zZ;m, zZW2W;m, and zZW3W;m in (7.15), with the only difference that all occurrences
of Y .t; � / are replaced by Y.t; � / D PtX0.

With these notations in place, we can observe that xv;m D ST .Z;m; ZW2W;m; ZW3W;m/
satisfies

xv;m.t; � / D�

Z t

0

Pt�s‰;m.s/ds;(7.16)

where we have set

(7.17)
‰;m.s/ WD

1

3

�
xv3;m.s/C 3

SZ;m.s/xv
2
;m.s/C 3

zZW2W;m.s/xv;m.s/C
zZW3W;m.s/

�
� A.s/

�
xv;m.s/C zZ

W1W
;m.s/

�
:

In the next lemma, we establish a similar expression for v;m. To this end, recall the
definition of E WnW;t in (5.9). We denote by E WnW;t;m the corresponding quantity with
R;t , RWnW;t replaced by R;t;m, RWnW;t;m. As discussed above, Proposition 5.3 holds
as well (in fact, with the same constant) with E WnW;t replaced by E WnW;t;m.
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LEMMA 7.4. For all  > 0 and t � 0 we have on T2

v;m.t; � / D �

Z t

0

P

t�sK ?

�
‰;m.s/C Err.1/m C Err.2/m .s; � /

�
ds;(7.18)

where

(7.19)
‰;m.s/ WD

1

3

�
v3;m.s/C 3

zZ;m.s/v
2
;m.s/C 3

zZW2W;m.s/v;m.s/C
zZW3W;m.s/

�
� A.s/

�
v;m.s/C zZ;m.s/

�
:

The error term Err.1/m was bounded in (7.9), while for Err.2/m , we have for 0 � s � T
and for 0 <  < 0

(7.20)

Err.2/m .s; � /

L1.T2/

� C.T; �; �/
�E W3W;s;mL1.T2/
C
�
kv;m.s; � /kL1.T2/ C s

����
�E W2W;s;mL1.T2/�:

PROOF. Using (7.4), we see that v;m satisfies for any t � 0 on T2

v;m.t; � / D

Z t

0

P

t�sK ?"

�
�
1

3

�
v;m C zZ;m

�3
.s; �

�
C
�
c .s; � /C A.s/

��
v;m C zZ;m

�
.s; � /

C Err.1/m .s; � /

�
ds:

The term Err.1/m .s; x/ was already controlled in (7.9). For the rest, we write

1

3

�
v;m C zZ;m

�3
� c . � ; � /

�
v;m C zZ;m

�
D

1

3
v3;m C v

2
;m
zZ;m C v;m zZ

W2W
;m C

1

3
zZW3W;m C err.1/ C err.2/;

where

err.1/.s; � / D v;m.s; � /
�
zZ2;m.s; � / � c .s; � / � zZ

W2W
;m.s; � /

�
;

err.2/.s; � / D
1

3

�
zZ3;m.s; � / � 3c .s; � / zZ;m.s; � / � zZ

W3W
;m.s; � /

�
:

To control err.1/, we write, using (7.15),

zZ2;m.s; � / � c .s; � / � zZ
W2W
;m.s; � /

D
�
Z2;m C 2Y Z;m C Y

2


�
.s; � / � c .s; � / �

�
ZW2W;m C 2YZ;m C Y

2


�
.s; � /

D Z2;m.s; � / � c .s; � / �Z
W2W
;m.s; � /

D E W2W;s;m.s; � /:
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For err.2/, we write using (7.15) once more (and dropping the arguments to im-
prove readability)�

zZ3;m � 3c zZ;m � zZ
W3W
;m

�
D
�
Z3;m C 3YZ

2
;m C 3Y

2
 Z;m C Y

3


�
� 3c .Z;m C Y /

�
�
ZW3W;m C 3YZ

W2W
;m C 3Y

2
 Z;m C Y

3


�
D
�
Z3;m � 3cZ;m �Z

W3W
;m

�
C 3Y

�
Z2;m � c �Z

W2W
;m

�
D E W3W;s;m C 3YE

W2W
;s;m:

By assumption, X0 is bounded in C�� . The bound (7.11) thus ensures that for
any � > 0, we have a uniform bound on s�C�kYkL1.T2/ from which the desired
bound follows. �

In the next lemma, we combine the expressions (7.16) and (7.18) to derive a
bound on sup0�t�T kxv;m.t; � / � v;m.t; � /kC1=2 .

LEMMA 7.5. Let � > 0 be the constant appearing in the boundedness assumption
in Theorem 2.1 and let � > 0 be small enough. For every 0 � t � T and 0 <  <
0, we have

(7.21)

kxv;m.t; � / � v;m.t; � /kC1=2

� SC1

Z t

0

.t � s/�
1
3 s�

1
6 kxv;m.s; � / � v;m.s; � /kC1=2 ds

C SC1
�

�
2 C

X0 �X0C�� �C Err.3/.t/;

where the constant SC1 depends on �, �, T , kX0kC��C� , and kX0 kC��C� as well
as the random quantities

sup
0�s�T

kxv;m.s; � /kC1=2 ; sup
0�s�T

kv;m.s; � /kC1=2 ;

sup
0�s�T

Z;m.s; � /C�� ; sup
0�s�T

ZW2W;m.s; � /C�� ; sup
0�s�T

ZW3W;m.s; � /C�� :
The error term Err.3/ satisfies for every T � 0, p � 2, and 0 < � < 5

6

E sup
0�t�T

jErr.3/.t/jp � SC2�p(7.22)

for a constant SC2 D SC2.p; T; �; sup0�s�T kv;m.s; � /kL1.T2//.
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PROOF. For any t � 0 and  > 0, we get by combining (7.16) and (7.18)

(7.23)

xv;m.t; � / � v;m.t; � / D �

Z t

0

�
Pt�s � P


t�s ? K

�
‰;m

�
s
�
ds

�

Z t

0

P

t�s ? K ?

�
‰;m.s/ �‰;m.s/

�
ds

C

Z t

0

P

t�s ? K ?

�
Err.1/m .s; � /C Err.2/m .s; � /

�
ds;

where ‰;m.s/ was defined in (7.17) and ‰;m.s/ was defined in (7.19). Using the
multiplicative inequality, Lemma B.5, we can bound for every s � 0

(7.24)

k‰;m.s/kC��

� kxv;m.s; � /k
3
C1=2 C C.�/k

SZ;m.s; � /kC��kxv;m.s; � /k
2
C1=2

C C.�/
 zZW2W;m.s; � /C��kxv;m.s; � /kC1=2 C  zZW3W;m.s; � /C��

C A.s/
�
kxv;m.s; � /kC1=2 C kSZ;m.s; � /kC��

�
;

where we have chosen � > 0 small enough to assure � < 1
2

. Recalling the defini-
tion of SZ;m, zZW2W;m, and zZW3W;m just below (7.15), we get for s � 0

kSZ;m.s; � /kC�� � kZ;m.s; � /kC�� C kY.s; � /kC��

� kZ;m.s; � /kC�� C CkX
0
kC�� ;

and for any x� > 0 zZW2W;mC�� � ZW2W;mC�� C C.�; x�/.kZ;mkC��kY kC�Cx� C kY kC�Cx�kY kC�� / zZW3W;mC�� � kZW3W;mkC�� C C.�; x�/�ZW2W;mC��kY kC�Cx� C kZ;mkC��kY k2C�Cx�
C kY k2C�Cx�kY kC��

�
;

where we have omitted the arguments .s; � / for all functions in the inequality. The
regularity bound (8.23) for the heat semigroup Pt implies that for any � � ��

(7.25) kY.t/kC� � C.�/t
�
�C�
2 kX0kC�� :

Furthermore, the definition (3.15) of A.s/ shows that jA.s/j � C log.s�1/. By
combining these bounds, we get the following (brutal) bound uniformly over 0 �
s � T :

(7.26)
k‰;m.s/kC�� � C.�; T /

�
kxv;m.s; � /k

3
C1=2 C 1

�
s�

1
4

�X03C�� C 1�
�
�
kZ;m.s/kC�� C

ZW2W;m.s/C�� C ZW3W;m.s/C�� �;
where we have assumed that � and x� are small enough to ensure that the exponent
on s in the term kY.s/k2C�Cx� � C.T; �; x�/s

�.2�Cx�/kX0k2C� satisfies 2� C x� � 1
4

.
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Combining Lemma 8.4 and Corollary 8.7, we observe that for any � < 3
4
�
�
2

and
x� > 0, there exists a constant C D C.T; �; x�/ such that uniformly over 0 � t � T ,�Pt � P t ? K�C��!C

1
2
� C�t���

1
4
��
2
�x� :(7.27)

Indeed, a combination of (8.24), (8.26), and (8.29) in conjunction with the standard
regularity estimate for the heat semigroup (8.23) yields that for any 0 � ˇ � 2 and
x� > 0, we have uniformly over 0 � t � T�Pt � P t ? K�C��!C��Cˇ�x� � C.ˇ; x�; T /t

�
ˇ
2 :

Interpolating between this bound and (8.35) yields (7.27).
For any x� > 0 and � > 0 small enough, we can thus bound the first term on the

right-hand side of (7.23) uniformly over 0 � s � T :Z t

0

�
Pt�s � P


t�s ? K

�
‰;m

�
s
�
ds


C1=2

� C.x�; �; T /

Z t

0

.t � s/�
�
2
� 1
4
�x�.t � s/�

�
2
�x��

‰;m.s/C��
� Ct

1
2
�
�C�
2
�2x��;(7.28)

where the constant C on the right-hand side depends on x�, �, T , and kXkC�� but
also on the random quantities

sup
0�s�T

kxv;m.s; � /kC1=2 ; sup
0�s�T

kZ;m.s; � /kC�� ;

sup
0�s�T

ZW2W;m.s; � /C�� ; sup
0�s�T

ZW3W;m.s; � /C�� :
In the inequality in (7.28) we have chosen �, �, and x� small enough to ensure that
the quantity on the right-hand side of the integral in the second line is integrable
as s ! t . By choosing � and x� small enough we can still choose � D 1

2
. Then

the right-hand side of (7.28) is bounded by C1=2 where C depends on T and
kXkC�� as well as all the random quantities listed above.

As we will now see, the second term on the right-hand side of (7.23) can be
treated in a similar way. Using again the multiplicative inequality, Lemma B.5, as
well as the definitions of zZ;m, zZW2W;m, zZW3W;m, SZ;m, zZW2W;m, and zZW3W;m in (7.15) and
below, we get for all s � 0 and any x� > 0 that‰;m.s/ �‰;m.s/C��
� C.�; x�; T /

�
kxv;m.s; � / � v;m.s; � /kC1=2 C kY.s; � / � Y .s; � /kC��

�
� .1C A.s//

�
kxv;m.s; � /k

2
C1=2 C kv;m.s; � /k

2
C1=2 C kZ;m.s; � /k

2
C��

C
ZW2W;m.s; � /C�� C kY.s; � /k2C�Cx� C kY .s; � /k2C�Cx� C 1�:

Arguing as in the proof of Lemma 7.3, we see that

kY.s; � / � Y .s; � /kC�� � CkX
0
�X0 kC�� C C.�; �; T /

�
2 ;
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where � > 0 is the constant appearing in the boundedness condition in the state-
ment of our main result, Theorem 2.1. Furthermore, using (7.11) (or Lemma 8.4),
we get for any x� > 0

kY.s; � /k2C�Cx� � C.�; x�/s
�2��x�

kX0kC�� ;

kY .s; � /k
2
C�Cx� � C.�; x�; T /s

�4��3x�
X0C�� :

(As stated above, the bounds for the approximated heat semigroup are weaker than
the bounds in the continuous equation.)

This estimate, together with (8.29), gives the following bound on the second
term on the right-hand side of (7.23) for any x� > 0:Z t

0

P

t�sK ?

�
‰;m.s/ �‰;m.s/

�
ds


C1=2

� C.�; x�; T /

Z t

0

.t � s/�
1
4
��
2
�x�
‰;m.s/ �‰;m.s/C�� ds

� C

Z t

0

.t � s/�
1
4
��
2
�x�s�4��3x�(7.29)

�
�
kxv;m.s/ � v;m.s/kC1=2 C

X0 �X0C�� C  �2 �ds
for a constant C that depends on �, x�, �, T , kX0kC��C� , and kX0 kC��C� as well
as the random quantities

sup
0�s�T

kxv;m.s; � /kC1=2 ; sup
0�s�T

kv;m.s; � /kC1=2 ;

sup
0�s�T

kZ;m.s; � /kC�� ; sup
0�s�T

ZW2W;m.s; � /C�� :
Here we have absorbed the logarithmic divergence of A.s/ as s ! 0 into the term
s�4��3x� by choosing a slightly larger x�. If �; x� > 0 are small enough, the integral
in the last inequality of (7.29) can be bounded by

C

Z t

0

.t � s/�
1
3 s�

1
6 kxv;m.s/ � v;m.s/kC1=2 ds C C

X0 �X0C�� C C �2 :
For the last term on the right-hand side of (7.23), using (8.29) once more, we

get for any x� > 0Z t

0

P

t�s K ?

�
Err.1/m .s; � /C Err.2/m .s; � /

�
ds


C1=2
�

C.x�; T /

Z t

0

.t � s/�
1
4
�x�
Err.1/m .s; � /C Err.2/m .s; � /


L1

ds:
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Recall that according to (7.8), for s > �;m we have Err.1/m .s/ D 0. Otherwise,
according to (7.9), we have

(7.30)

Err.1/m .s; � /

L1.T2/ � C.T;m/

�

1
2 s�

1
3 C �

1
6

Xhigh
 .s; � /


L1.T2/

C �
1
6 kQ;s.s; � /kL1.ƒ"/

�
:

For the second term on the right-hand side of this estimate we writeXhigh
 .s; � /


L1.T2/

�
Zhigh

 .s; � /

L1.T2/ C

vhigh
;m .s; � /


L1.T2/ C

Y high
 .s; � /


L1.T2/

�
Zhigh

 .s; � /

L1.T2/ C C

1
kv;m.s; � /kC

1
2

C C.�; x�; T /1t�
1C�
2
�x�
X0C�� :

Here, vhigh
;m and Y high

 .s; � / are defined analogously to (7.3). From this definition, it
follows immediately that kvhigh

;m .s; � /kL1.T2/ is controlled by C1kv;m.s; � /kC1=2
and similarly for Y high

 . We have also used once more the estimates provided in
Lemma 8.4 to control the C1=2 norm of Y .s/.

According to (7.20), we have for any x� > 0Err.2/m


L1.T2/ � C.t; �; x�/

�E W3W;s;mL1.T2/
C
�
kv;m.s; � /kL1.T2/ C s

���x�
�E W2W;s;mL1.T2/�:

Summarizing all of these calculations, we get

kv;m.t; � / � xv;m.t; � /

C1 �

SC1

Z t

0

.t � s/�
1
3 s�

1
6 kv;m.s/ � xv;m.s/kC1 ds

C SC1
�

�
2 C

X0 �X0C�� �C Err.3/.t/

for a constant SC1 that depends on all of the quantities listed below (7.28) and (7.29).
The error term takes the form

Err.3/.t/

� C.x�; T /

Z t

0

.t � s/�
1
4
�x�

�

�
�

1
6 kX

high
 .s; � /kL1.T2/ C 

� 1
6 kQ;s.s; � /kL1.ƒ"/

C
E W3W;s;mL1.T2/

C
�
kv;m.s; � /kL1.T2/ C s

���x�
�
kE W2W;s;mkL1.T2/

�
ds;
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In particular, we can conclude from Lemmas 4.6, 5.1, and 5.3 that for any p � 2,

E sup
0�t�T

jErr.3/.t/jp � C.p; T; �; sup0�s�T kv;m.s; � /kL1.T2//
�p

for any � < 5
6

. So the desired result follows. �

We are now ready to conclude the proof of our main result.

PROOF OF THEOREM 2.1. We define the events AZr D AZr .;m/ and AE D

AE.;m/ for r and m � 1 by

AZr WD
˚
kZ;mkC�� � r;

ZW2W;mC�� � r;
ZW3W;mC�� � r on Œ0; T �

	
;

AE
WD
˚

sup
0�t�T

jErr.3/.t/j � 
1
2

	
:

Recall that
xv;m D ST

�
Z;m; Z

W2W
;m; Z

W3W
;m

�
:

By Theorem 3.2, there exists a constant C.T; r/ such that on the event AZr ,

(7.31) sup
0�t�T

kxv;m.t; � /kC1=2 � C.T; r/:

Let r0 D C.T; r/C 2 and let zT D zT ./ be the stopping time defined by

zT D infft � 0 W kv;m.t; � /kC1=2 � r0g:

By a suitable version of Gronwall’s inequality (see, e.g., [35, lemma 5.7]), we
deduce that there exists a constant C depending on T and r and the choice of small
constants �; � > 0 in Theorem 2.1 such that in the event AZr \AE, we have

(7.32) sup
0�t�zT^T

kv;m.t; � / � xv;m.t; � /kC1=2 � C
�

�
2 C

X0 �X0C�� �
(recall that the quantity in the supremum above is a continuous function of t ). In
particular, for  sufficiently small,

sup
0�t�zT^T

kv;m.t; � / � xv;m.t; � /kC1=2 � 1:

Together with (7.31), this implies thatv;m. zT ^ T; � /C1=2 � r0 � 1:

By continuity of t 7! kv;m.t; � /kC1=2 , this implies that zT � T , and thus that (7.32)
can be upgraded to

(7.33) sup
0�t�T

kv;m.t; � / � xv;m.t; � /

C1=2 � C

�

�
2 C

X0 �X0C�� �
in the event AZr \AE and for  > 0 small enough (depending in r). Recalling that

X;m D v;m CZ;m C Y and SX;m D xv;m CZ;m C Y;
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we deduce from (7.33) and Lemma 7.3 that for every m; r � 1 and every bounded
uniformly continuous mapping F W D.Œ0; T �; C��/! R,

(7.34) lim
!0

E
�ˇ̌
F
�
SX;m

�
� F

�
X;m

�ˇ̌
1AZr \AE

�
D 0:

Let us write xAZr and xAE for the complementary events of AZr and AE, respec-
tively. Note that in (7.34), the indicator function of the event AE does no harm,
since it follows from (7.22) and Chebyshev’s inequality that

(7.35) lim
!0

P Œ xAE� D 0:

Let " > 0. We now argue that by choosing r sufficiently large, we can make the
probability of the event xAZr smaller than " as  ! 0. In order to do so, let us
introduce the stopping times

�Z;r;m D inf
˚
t � 0 W max

�
kZ;m.t/kC�� ;

ZW2W;m.t/C�� ; ZW3W;m.t/C�� � � r
	
;

�Z;r D inf
˚
t � 0 W max

�
kZ.t/kC�� ;

ZW2W.t/C�� ; ZW3W.t/C�� � � r
	
:

Recall from Theorem 6.2 that .Z;m; ZW2W;m; Z
W3W
;m/ converges in law to .Z;ZW2W;

ZW3W/ for the topology of D.RC; C��/3. Arguing as in the proof of Theorem 6.1,
we see that for every r outside of a countable set Loc (the set of r such that t 7!
max.kZ;m.t/kC�� ; kZW2W;m.t/kC�� ; kZ

W3W
;m.t/kC�� / attains with positive probability

the value r as a local maximum), the random variable �Z;r;m converges in law to �Z;r

as  ! 0 (keeping m fixed). By Proposition 3.1, the random variable

sup
0�t�T

max
�
kZ.t/kC�� ; kZ

W2W.t/kC�� ; kZ
W3W.t/kC��

�
is finite a.s., so it suffices to choose r sufficiently large to ensure that

P Œ�Z;r � T � � ":

Enlarging r if necessary, we can also make sure that r … Loc, and thus get

(7.36) lim sup
!0

P
�
xAZr
�
� lim sup

!0

P
�
�Z;r;m � T

�
� P Œ�Z;r � T � � ":

We decompose

jEŒF .X;m/� � EŒF .X/�j �ˇ̌
E
�
F
�
SX;m

��
� EŒF .X/�

ˇ̌
C E

�ˇ̌
F
�
SX;m

�
� F

�
X;m

�ˇ̌
1AZr \AE

�
C kF kL1P

�
xAZr [ xAE�:

By Lemma 7.2, (7.34), (7.35), and (7.36), we obtain that

lim sup
!0

jEŒF .X;m/� � EŒF .X/�j � "kF kL1 :

Since " > 0 was arbitrary, this proves that X;m converges in law to X as  tends
to 0 for any fixed value of m.
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We can now remove m by a similar reasoning. Recall the definition of �;m in
(6.1),

�;m D infft � 0 W kX;m.t/kC�� � mg;

and set
�m D infft � 0 W kX.t/kC�� � mg:

Arguing as above, we obtain that for every m outside of a countable set Loc0, the
stopping time �;m converges in law to �m. Moreover, we know from Theorem 3.2
that sup0�t�TC1 kX.t/kC�� is almost surely finite. Hence, for any given " > 0,
we can choose m D m.T; "/ sufficiently large and outside of Loc0 so that

lim sup
!0

P Œ�;m � T � � ":

Recalling that X;m and X coincide up to �;m, this implies that

lim sup
!0

P ŒX;m ¤ X � � ":

Since X;m converges in law to X , this concludes the proof of Theorem 2.1. �

8 Some Bounds on the Kernels K and P


t

In this section, we collect some facts about the kernels K and the approximate
heat semigroups P t . We start by summarizing some properties of the Fourier
transform yK ofK . Recall that for 0 <  < 1

3
and ! 2 f�N; : : : ; N g2, it is given

by

(8.1) yK .!/ D
X
x2ƒ"

"2K .x/e
�i�!�x

D c;1
X
x2Z2?

2K.x/e�i�."=/!�x;

where K is the smooth function introduced at the beginning of Section 2. In the
second equality, we have used the fact that K has compact support in B.0; 3/ to
replace the sum over 

"
ƒ?" by a sum over Z2? WD Z2 n f0g. Recall our choice of

scaling in (2.16) and (2.17), in particular " D 2c;2.
For some of the following calculations, it is useful to view yK as a function of a

continuous parameter by evaluating (8.1) for all ! 2 R2. The function yK defined
in this way is smooth and .2N C 1/ periodic in both coordinates. We will typically
evaluate it only for ! 2 Œ�N � 1

2
; N C 1

2
�2. Furthermore, we have for all ! and

for j D 1; 2

(8.2) @j yK .!/ D �i
"


�c;1

X
x2Z2

2xjK.x/e
�i�."=/!�x

and

(8.3) @2j
yK .!/ D �

"2

2
�2c;1

X
x2Z2

2x2j K.x/e
�i�."=/!�x :



CONVERGENCE OF ISING-KAC TOˆ42 69

In (8.2) and (8.3), we can sum over Z2 instead of Z2? because the summand at
x D 0 vanishes. This will be slightly more convenient below.

For small  , the expression (8.1) approximates yK.!/, where the continuous
Fourier transform yK.!/ is defined as

yK.!/ WD

Z
R2

K.x/e�i�!�x dx; ! 2 R2:

The following lemmas state that some properties of yK.!/ also hold for yK , uni-
formly in  . We begin with pointwise estimates.

LEMMA 8.1. There exists a constant C > 0 such that for all 0 <  < 1
3

and for
j!j � �1 we have for j D 1; 2ˇ̌

�2.1 � yK .!// � �
2
j!j2

ˇ̌
� C j!j3;(8.4) ˇ̌

��2@j yK .!/ � 2�
2!j

ˇ̌
� C j!j2;(8.5) ˇ̌

��2@2j
yK .!/ � 2�

2
ˇ̌
� C j!j:(8.6)

PROOF. For any j!j � �1, a Taylor expansion yields

(8.7)

1 � yK .!/ D c;1
X
x2Z2

2K.x/.1 � e�i�."=/!�x/

D c;1
X
x2Z2

2K.x/

�
i�

"


! � x C

1

2

�
�
"


! � x

�2�
C Err;

where

jErrj �
"3

3
j!j3

�3

6
c;1

X
x2Z2

2jxj3K.x/ � C3j!j3:

By the symmetry of the kernel K.x/, we haveX
x2Z2

2K.x/.! � x/ D 0 and
X
x2Z2

2x1x2K.x/ D 0:

Furthermore, for j D 1; 2, the sums

c;1
X
x2Z2?

2K.x/x2j

converge to
R

R2 K.x/x
2
j dx D 2 as  ! 0 and the error is controlled by C2, so

(8.4) follows.
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The remaining bounds (8.5) and (8.6) follow in a similar manner: For (8.5), we
write

�@j yK .!/ D i
"


�c;1

X
x2Z2

2xjK.x/.e
�i�."=/!�x

� 1/

D 2�2!j c;1c
2
;2

X
x2Z2

2x2j K.x/C Err0

for an error term Err0 that is bounded by C j!j23 uniformly for j!j � �1. Here
we have used the symmetry of the kernel K to add the term �1 in the first equality
and to remove the sum over x1x2 in the Taylor expansion in the second line. The
bound then follows as above.

In the same way, we write

�@2j
yK .!/ D

"2

2
�2c;1

X
x2Z2

2 x2j K.x/e
�i�."=/!�x

D 2�2c;1c
2
;2

X
x2Z2

2x2j K.x/C Err
00

;

where Err
00

� C j!j and the bound (8.6) follows. �

LEMMA 8.2. There exists a constant C such that for all ! 2 Œ�N � 1
2
; N C 1

2
�2,

0 <  < 1
3

, and j D 1; 2, we have the following:

(1) Estimates most useful for j!j � �1.ˇ̌
yK .!/

ˇ̌
� 1;(8.8) ˇ̌

@j yK .!/
ˇ̌
� C.j!j ^ 1/;(8.9) ˇ̌

@2j
yK .!/

ˇ̌
� C2:(8.10)

(2) Estimates most useful for j!j � �1.

j!j2
ˇ̌
yK .!/

ˇ̌
� C;(8.11)

j!j2
ˇ̌
@j yK .!/

ˇ̌
� C;(8.12)

j!j2
ˇ̌
@2j
yK .!/

ˇ̌
� C2:(8.13)

Furthermore, there exist constants C1 > 0 and 0 > 0 such that for all 0 <  < 0
and ! 2 Œ�N � 1

2
; N C 1

2
�2 ,�
1 � yK .!/

�
�

1

C1
.j!j2 ^ 1/:(8.14)

PROOF. To see (8.8), we writeˇ̌
yK .!/

ˇ̌
� c;1

X
x2Z2?

2K.x/ D 1:
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For j!j � �1, equations (8.9) and (8.10) follow directly from Lemma 8.1. For
j!j � �1, the bounds (8.11)–(8.13) are stronger, so it suffices to establish those.

The argument for (8.11) is very similar to the argument used in the proof of
Lemma B.1. Indeed, for any function f W Z2 ! R, we set

�f .x/ D 
�2

X
xx2Z2;
xx�x

.f .xx/ � f .x//;

where xx � x means that xx and x are adjacent in Z2. Similar to (B.1), for fixed
! 2 R2 we set e! W x 7! e�i�."=/!�x , and we get that

��e! D 2
�2

2X
jD1

.1 � cos."�!j //e! :

After a summation by parts, we get

yK .!/ D
1

2�2
P2
jD1.1 � cos."�!j //

c;1
X
x2Z2

2 .�� zK.x//e!.x/;(8.15)

where zK.x/ D K.x/ for x ¤ 0 and zK.0/ D 0.
Recalling our scaling ((2.16) and (2.17)), it is easy to see that

1

�2
P2
jD1.1 � cos."�!j //

� C
1

2j!j2

uniformly over " and j!i j � N C 1
2

. On the other hand, the fact that K is a
C2 function with compact support shows that the sum on the right-hand side of
(8.15) is bounded when restricted to points x that are not 0 or adjacent to 0. For
those five points x that are, we bound� zK.x/ � 8=2. Hence, the sum over these
five points weighted with 2 is bounded by 40. This finishes the proof of (8.11).

The arguments for (8.12) and (8.13) are almost identical to the argument for
(8.11). Indeed, performing the same summation by parts as in (8.15), we getˇ̌

@j yK .!/
ˇ̌
� C



j!j2

X
x2Z2

2 j�� .xjK.x//j

and ˇ̌
@2j
yK .!/

ˇ̌
� C

2

j!j2

X
x2Z2

2
ˇ̌
��

�
x2j K.x/

�ˇ̌
:

Note that the problem caused by the fact that K.0/ was defined replaced by 0 has
disappeared in these expressions. By assumption, both xjK.x/ and x2j K.x/ are
C2 functions with compact support, so that the sums appearing here are uniformly
bounded. This shows (8.12) and (8.13).

Let us proceed to the proof of (8.14). From (8.11), we get the existence of c > 0
such that for ! � c�1, we have yK .!/ � 1

2
. Hence (8.14) holds for such !.
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Next, we treat ! with j!j < c�1 for a c > 0 to be fixed below. For such ! (8.4)
implies the existence of C such that

1 � yK .!/ � �
2
j!j22 � C j!j33 � .�2 � Cc//j!j22;

which can be bounded from below by �2

2
j!j22 if we choose c small enough.

Finally, in order to treat the case c�1 � j!j � c�1, we observe that the
Riemann sums

K .
�1!/ D c;1

X
x2Z2?

2K.x/e�i�c;2 !�x

approximate yK.!/ uniformly for j!j 2 Œc; xc �. On the other hand, yK is the Fourier
transform of a probability measure with a density on R2, and as such, it is contin-
uous and has jyK.!/j < 1 if ! ¤ 0. In particular, jyK.!/j is bounded away from 1

uniformly for j!j 2 Œc; c�. Combining these facts, we see that for  small enough,
K .!/ is bounded away from 1 uniformly in c�1 � j!j � c�1. This shows
(8.14). �

The next lemma provides some pointwise estimates on the kernels P t ?K that
are used in the proof of Lemma 4.5. On ƒ", P


t .�/ is a Markov kernel for every

t � 0:

(8.16) x 2 ƒ") P

t .x/ � 0 and

X
x2ƒ"

"2P

t .x/ D 1:

Recall our convention to define K and P t for all x 2 T2 by extending them as
trigonometric polynomials of degree � N . We note that for x … ƒ", the properties

K .x/ D c;1
2

"2
K.x/ and P t .x/ � 0 do not hold in general.

LEMMA 8.3. Let 0 > 0 be the constant introduced in Lemma 8.2. For every
T > 0, there exists a constant C D C.T / such that for all 0 <  < 0, 0 � t � T ,
and x 2 T2, we have

(8.17)
ˇ̌
P

t ? K .x/

ˇ̌
� C

�
t�1.log.�1//2 ^ �2 log.�1/

�
and

(8.18) jxj2
ˇ̌
P

t ? K .x/

ˇ̌
� C log.�1/:

PROOF. We writeˇ̌
P

t ? K .x/

ˇ̌
�
1

4

X
!2f�N;:::;N g2

exp
�
t�2

�
yK .!/ � 1

��ˇ̌
yK .!/

ˇ̌
:
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We first bound the sum over ! satisfying j!j � �1. According to (8.8) and (8.14),
there exists C1 > 0 such that for 0 <  < 0

X
j!j��1

exp
�
t�2

�
yK .!/ � 1

��ˇ̌
yK .!/

ˇ̌
�

X
j!j��1

exp
�
�
t

C1
j!j2

�
� C.t�1 ^ �2/;

for a universal constant C . On the other hand, using (8.11) and (8.14), we get

X
!2f�N;:::;N g2;

j!j>�1

exp
�
t�2

�
yK .!/ � 1

�� ˇ̌
yK .!/

ˇ̌
�

C
X

!2f�N;:::;N g2;

j!j>�1

exp
�
�

t

C12

�
1

j!j2
:

If t � 4C12 log.�1/ (and recalling that according to (2.16), N � �2), then

X
!2f�N;:::;N g2;

j!j>�1

exp
�
�

t

C12

�
1

j!j2
� 5�4 exp

�
�

t

C12

�
� 5�44 D 5:

Otherwise, if t < 4C12 log.�1/, we have

X
!2f�N;:::;N g2;

j!j>�1

exp
�
�

t

C12

�
1

j!j2
� C�2 log.�1/ � Ct�1

�
log.�1/

�2
;

which shows (8.17).
The proof of (8.18) is again similar to the proof of Lemma B.1 and the proof

of Lemma 8.2. As in those arguments, we define a discrete Laplace operator, this
time acting on functions f WZ2 ! R and defined as

(8.19) �f .!/ D
X
x!2Z2;
x!�!

.f .x!/ � f .!//:

As above, for fixed x 2 T2 we set ex W ! 7! ei�!�x , and we get that

��ex D 2

2X
jD1

.1 � cos.�xj //ex :
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In this way, after a summation by parts over Z2, we get for all x 2 T2 and t � 0
that

(8.20)

ˇ̌
P

t ? K .x/

ˇ̌
�

1

2
P2
jD1.1 � cos.�xj //

�
1

4

X
!2f�N�1;:::;NC1g2

ˇ̌
��

�
exp

�
t�2

�
yK .!/ � 1

��
yK .!/

�ˇ̌
:

Recall that the yP t and yK are defined as 0 outside of f�N: : : : ; N g2. Hence by
(8.19), the discrete Laplacian of yP t yK is 0 outside of f�N � 1; : : : ; N C 1g2.

We treat the sum over the boundary points, i.e., over those ! D .!1; !2/ for
which at least one !j satisfies j!j j D N or j!j j D N C 1, first. For such an ! we
bound brutally using (8.11)

ˇ̌
�� yP


t
yK .!/

ˇ̌
� 4

ˇ̌
yP

t
yK .!/

ˇ̌
C

X
x!2Z2;
x!�!

ˇ̌
yP

t
yK .x!/

ˇ̌
�

C

j!j2
� C2:

There are 16N C 8 � C�2 such boundary points, so that the sum over these
points in (8.20) is bounded uniformly in 0 <  < 0 and t .

In order to bound the discretized Laplacian appearing on the right-hand side
of (8.20) at interior points !, it is useful to pass to continuous coordinates. If
f WR2 ! R is C2, then for ! 2 Z2, equation (8.19) can be rewritten as

j�f .!/j D

ˇ̌̌̌ X
jD1;2

Z 1

�1

@2j f .! C �ej /.1 � j� j/d�

ˇ̌̌̌
�

X
jD1;2

sup
�2Œ�1;1�

ˇ̌
@2j f .! C �ej /

ˇ̌
;(8.21)

where e1 and e2 are the standard unit basis vectors of R2. In order to apply this to
bound (8.20), we calculate for j D 1; 2

(8.22) @2j
�
e�.
yK�1/ yK

�
D

e�.
yK�1/

�
�2
�
@j yK

�2 yK C ��@2j yK� yK C @2j yK C 2�.@j yK /2�;
where to improve readability we have dropped the arguments ! and set � WD t�2.

We now use the bounds derived in Lemmas 8.1 and 8.2 to bound the terms on
the right-hand side of this expression one by one. For the first term, we write for
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0 <  < 0, j!j � �1, and j D 1; 2

sup
�2Œ�1;1�

e�.
yK .!C�ej /�1/�2

�
@j yK .! C �ej /

�2 yK .! C �ej /
� C sup

�2Œ�1;1�

exp
�
�
t

C1
j! C �ej j

2

�
t2
ˇ̌
! C �ej j

2

� C exp
�
�

t

2C1
j!j2

�
e
t
C1 2t2.j!j2 C 1/;

where we have used (8.8), (8.9), and (8.14) in the first inequality. The sum over
f! 2 Z2W j!j � �1g of the terms appearing in the last line is bounded uniformly
in 0 � t � T and 0 <  < 1.

For the second term, we write in a similar way for j!j � �1 and j D 1; 2

sup
�2Œ�1;1�

e�.
yK .!C�ej /�1/�@2j

yK .! C �ej / yK .! C �ej / �

C exp
�
�

t

2C1
j!j2

�
e
t
C1 t;

where we have used (8.8), (8.10), and (8.14). The sum over j!j � �1 of these
terms is again uniformly bounded for 0 � t � T and 0 <  < 1.

For the third term on the right-hand side of (8.22) and j!j � �1, we use the
!-independent bound

e�.
yK�1/

�
@2j
yK
�
� C2;

which follows immediately from (8.10) once we observe that e�. yK�1/ � 1.
Finally, for the fourth term we write

2e�.
yK .!/�1/�

�
@j yK .!/

�2
� C exp

�
�
t

C1
j!j2

�
t

2
4j!j2 � C2;

which shows that the sum over j!j � �1 of these terms is uniformly bounded.
For the sums over j!j � �1, we note that by (8.14), for 0 <  < 0 the terms

e�.
yK�1/�2 and e�. yK�1/� are uniformly bounded for j!j � �1, so that we can

bound the whole expression on the right-hand side of (8.22) by

C
��
@j yK

�2 yK C �@2j yK� yK C @2j yK C 2�@j yK�2� �
C

�
2

j!j6
C

2

j!j4
C

2

j!j2

�
:

Taking local maxima over ! C �ej only changes the constant in this expression.
The sum over f! 2 f�N C 1; : : : ; N � 1g2 W j!j > �1g of this expression can be
bounded by a constant times log.�1/. Hence the proof is complete. �
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Finally, we summarize the regularizing properties of these approximate heat
operators P t as well as P t ?K . We recall that the usual heat operator Pt satisfies

(8.23) kPtXkC�Cˇ � C.ˇ/t
�
ˇ
2 kXkC�

for all � 2 R, ˇ � 0, and t � 0.
In the following lemma, we discuss analogous bounds for the approximate oper-

ators. Recall that the operators P t andK? are naturally defined on trigonometric
polynomials of degree � N , and are otherwise viewed as Fourier multiplication
operators (that is, they evaluate to 0 on trigonometric monomials of degree > N ).
Their behavior is quite different on frequencies that are small compared to �1

and on frequencies that are large compared to �1, so we treat those two cases
separately. Our argument essentially follows [28, lemma A.5].

LEMMA 8.4. Let 0 be the constant introduced in Lemma 8.2 and fix c1; c2 > 0,
T > 0, and � > 0.

(1) For every ˇ > 0 and 0 � � � 1, there exists a constant C D C.c1; T; �;

ˇ; �/ such that for all functions X W T2 ! R with �X.!/ D 0 for j!j �
c1
�1, we have for all 0 <  < 0, 0 � t � T , and � 2 RP t XC�Cˇ�� � Ct�ˇ2 kXkC� ;(8.24) �P t � Pt�XC��� � �C�t��2 kXkC� � ^ �C�kXkC�C��;(8.25)

kK ? XkC��� � CkXkC� ;(8.26)

kK ? X �XkC��� � C
2�
kXkC�C2� :(8.27)

(2) For every ˇ > 0, there exists C D C.c2; T; �; ˇ/ such that for any dis-
tribution X on T2 with yX.!/ D 0 for j!j � c2

�1, we have for all
0 <  < 0, 0 � t � T , and � 2 R

(8.28)
P t XC�Cˇ�� � Ct�ˇkXkC� :

If furthermore 0 � ˇ � 2, then

(8.29)
P t .K ? X/C�Cˇ�� � Ct�ˇ2 kXkC� :

Remark 8.5. There are two reasons for the (arbitrarily small) loss of regularity
� in these estimates. It is caused on the one hand by the logarithmic divergence
that appears in the last line of the estimate (8.30) below. This could probably
be removed by performing additional integrations by parts. A second (arbitrarily
small) loss of regularity is caused by the fact that in (8.30), we derive a bound on
a discrete L1 norm over ƒ" rather than on the L1 norm over T2. This allows us to
avoid boundary terms in the integration by parts.

Remark 8.6. The approximate heat operator P t is not as regularizing on high
frequencies as Pt is, as can be seen in the estimate (8.28). The usual rescaling
is recovered when one also convolves with K as in (8.29), but only for ˇ � 2.
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PROOF. We start by discussing the regularization properties of an abstract Four-
ier multiplication operator. Suppose that T is a Fourier multiplication operator with
symbol �T W Z2 ! C vanishing for ! … f�N; : : : ; N g2. We aim to derive a bound
on kık.TX/kL1.T2/ D kT ıkXkL1.T2/ for k satisfying 2k 3

4
� N . By definition,

ık.TX/ D 0 for all larger k.
In order to avoid boundary terms in (8.30) below, we will actually derive bounds

on kT ıkXkL1.ƒ"/ and then use Lemma B.6 to conclude that

kT ıkXkL1.T2/ � C.�/"
��
4 kT ıkXkL1.ƒ"/ � C.�/2

�
2
k
kT ıkXkL1.ƒ"/I

i.e., we encounter an arbitrarily small loss of regularity.
We start by defining auxiliary cutoff functions x�k for k � �1 as follows. Sup-

pose that x� W R2 ! RC is smooth and symmetric, that it coincides with the
constant function 1 on B.0; 3/nB.0; 1

2
/, and that x� vanishes outside of the annulus

B.0; 4/ n B.0; 1
3
/. For k 2 N0, set x�k.!/ D x�.2�k!/. Let x��1 W R2 ! RC be

smooth and suppose that it coincides with 1 on B.0; 3
2
/ and that it vanishes outside

of B.0; 2/. Finally, set x�k.x/ D 1
4

P
!2Z2 x�k.!/ e

i�!�x .
For any k � �1, we have according to Young’s inequality

kT ıkXkL1.ƒ"/ D kT ?" x�k ?" ıkXkL1.ƒ"/ � kT ?" x�kkL1.ƒ"/kıkXkL1.ƒ"/

� kT ?" x�kkL1.ƒ"/2
�k�
kıkXkC� :

In this calculation, we identified T with its integral kernel. In order to bound the
L1 norm appearing on the right-hand side of this estimate, we write for k � 4

kT ? x�kkL1.ƒ"/

D

X
x2ƒ"

"2
ˇ̌̌̌
1

4

X
!2f�N;:::;N g2

�T .!/x�.2�k!/ei�!�x ˇ̌̌̌

D

X
x22kƒ"

22k"2
ˇ̌̌̌
1

4

X
!22�kZ2;
j!j j�2

�kN

2�2k�T .2k!/x�.!/ei�!�x ˇ̌̌̌

D

X
x22kƒ"

22k"2
1

1C 22k
P
jD1;2 2.1 � cos.�2�kxj //

�

ˇ̌̌̌
1

4

X
!22�kZ2;
j!j j�2

�kN

2�2k �T .2k!/x�.!/.1 ��k/ei�!�x ˇ̌̌̌ �
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� C
X

x22kƒ"

22k"2
1

1C jxj2

ˇ̌̌̌
1

4

X
!22�kZ2;
j!j j�2

�kN

2�2k.1 ��k/.
�T .2k!/x�.!//ˇ̌̌̌

� C log.2k/ sup
1
5
�j!j�5

j.1 ��k/.
�T .2k!/x�.!//j:(8.30)

This time, the discrete Laplacian is defined as

�kf .!/ D 2
2k

X
x!22�kZ2;
j!j j�2

�kN;
x!�!

.f .x!/ � f .!//;

and the nearest-neighbor relation is to be understood with periodic boundary condi-
tions on f! 2 2�kZ2 W j!j j � 2�kN g. The integration by parts is also understood
with periodic boundary conditions on this discrete torus. (This is why we had to
restrict the sum to x 2 ƒ"—only for such x is ! 7! ei�!�x an eigenfunction for
�k .) In the fourth inequality in (8.30), we have used the fact that x� has compact
support contained in B.0; 4/ n B.0; 1

3
/, which ensures that for k � 4 the discrete

Laplacian is supported in B.0; 5/ n B.0; 1
5
/.

In all of our applications, �T is defined and smooth on all of R2, and not only on
the grid points in Z2. As in (8.21), we can then replace the local supremum over
the discrete Laplacian by a local supremum over the derivatives in the continuum.
We get for k � 4 and 2kC15 � N

sup
1
5
�j!j�5

ˇ̌
.1 ��k/.

�T .2k!/x�.!//ˇ̌ � C sup
1
5
�j!j�5

j�T .2k!/j
C C sup

1
5
�j!j�5;

jD1;2

ˇ̌
@j�T .2k!/ˇ̌

C C sup
1
5
�j!j�5;

jD1;2

ˇ̌
@2j
�T .2k!/ˇ̌:

(8.31)

In the case k D �1; : : : ; 3, we get easily

(8.32) kT ?x�kkL1.T2/ �
Z

T2

ˇ̌̌̌
1

4

X
!2f�N;:::;N g2

�T .!/x�k.!/ˇ̌̌̌dx � C sup
j!j�32

jT .!/j:

The case where boundary terms appear in (8.30), i.e., those k for which 2k 3
4
�

N < 2k5, requires some extra care (recall that we had already excluded k with
2k 3
4
� N from our discussion in the beginning of the proof) . For such k the termˇ̌̌̌

1

4

X
!22�kZ2;
j!j j�2

�kN

2�2k.1 ��k/
��T .2k!/x�.!/�ˇ̌̌̌
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appearing in the sixth line of (8.30) has to be bounded in a different way. The
sum over those ! D .!1; !2/ for which j!1j; j!1j < 2�kN can be bounded by
C sup1=5�j!j�5 j.1 � �k/.�T .2k!/x�.!//j as in (8.30) but the boundary terms for
which at least one of the j!j j D 2�kN require a different argument: We illustrate
the case where ! D .!1; N / with j!1j < 2�kN , the argument for the other cases
being the same. In this case the discrete second derivative in the !2-direction ap-
pearing in ��k.�T .2k!/x�.!// gives (dropping the argument !1 to improve read-
ability)

x�.2�kN/22k
��T .N � 1/C �T .�N/ � 2�T .N /�

C 2k
�
x�.�N/ � x�.N/

�
2k
��T .�N/ � �T .N /�

C 2k
�
x�.2�kN/ � x�.2�k.N � 1//

�
2k
��T .N / � �T .N � 1/�

C yT .2�kN/22k
�
x�.2�k.N � 1//C x�.�2�kN/ � 2x�.2�kN/

�
:

In the application we have in mind in this lemma, �T is the restriction of a 2NC1
periodic function to the grid that is well adapted to our choice of the periodic
boundary condition for �k . Hence the discrete first and second derivatives of�T can be bounded as before. However, x� does not have this property. The discrete
first derivative .x�.�N/�x�.N// vanishes by the symmetry assumption on x�, but the
discrete second derivative appearing in the last line of (8.33) can only be bounded
by

22kjx�.2�k.N � 1//C x�.�2�kN/ � 2x�.2�kN/j D

22kjx�.2�k.N � 1// � x�.2�kN/j � 2k sup
!
jr x�.!/j:

Fortunately, there are only � C2k such boundary terms so that the Riemann factor
2�2k gives the uniform bound (8.31) on these terms as well.

We are now ready to apply these bounds to the operators of interest. The bounds
on ıkX for k � 3 follow from (8.32), so from now on we assume that k � 4. For
P

t we have for 0 <  < 0, for j!j � �1, and j D 1; 2,

yP

t .!/ D exp

�
�
t

2

�
1 � yK .!/

��
� exp

�
�
t j!j2

C1

�
;

@j yP

t .!/ D

yP

t .!/

t

2
@j yK .!/ � C

p
t exp

�
�
t j!j2

C1

�
.
p
t j!j/;

@2j
yP

t .!/ D

yP

t .!/

�
t2

4

�
@j yK .!/

�2
C

t

2
@2j
yK .!/

�
� Ct exp

�
�
t j!j2

C1

�
.t j!j2 C 1/;(8.33)
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where we have used the bounds on yK and its derivatives stated in Lemmas 8.1
and 8.2.

The first of these bounds immediately yields, for any ˇ � 0,

sup
1
5
�j!j�5

ˇ̌
yP

t .2

k!/
ˇ̌
� exp

�
�

t

25C1
22k

�
� .2�kt�

1
2 /ˇ sup

x>0

xˇe
� x2

25C1 :

Similar bounds on the first and second derivatives of yP t follow in the same way
from the remaining estimates in (8.33). Indeed, both of these bounds behave
slightly better for small t—we gain a factor t1=2 in the bound for the first de-
rivative, and a factor t in the bound for the second derivative. The desired bound
(8.24) then follows.

To get bounds on P t � Pt , we writeˇ̌
yP

t .!/ �

yPt .!/
ˇ̌
D

ˇ̌̌̌
exp

�
�
t

2

�
1 � yK .!/

��
� exp.�t�2j!j2/

ˇ̌̌̌
� exp

�
�
t j!j2

C1

� ˇ̌̌̌
t

2

�
1 � yK .!/

�
� t�2j!j2

ˇ̌̌̌
� C exp

�
�
t j!j2

C1

�
t j!j2 j!j � C.�/�

�
t�

�
2 ^ j!j�

�
;

the last inequality being valid for any 0 � � � 1. In the third inequality we have
made use of (8.4). For the derivatives, we writeˇ̌

@j yP

t .!/ � @j

yPt .!/
ˇ̌

� 2�2t j!j
ˇ̌
yP

t .!/ �

yPt .!/
ˇ̌
C yPt .!/

ˇ̌̌̌
�
t

2
@j yK .!/ � 2t�

2!j

ˇ̌̌̌
� C C Ce

�
tj!j2

C1 t j!j2 � C:

Here, in the second inequality we have used (8.5). Note that as above in the bound
for @j yP


t we gain a factor

p
t with respect to the bound for yP t .

Finally, for the second derivatives we have, using (8.5) and (8.6),ˇ̌
@2j
yP

t .!/ � @

2
j
yPt .!/

ˇ̌
� j4�4t2 !2j � 2�

2t j
ˇ̌
yP

t .!/ �

yPt .!/
ˇ̌

C yP

t .!/

�ˇ̌̌̌
t2

4
.@j yK .!//

2
� 4�4t2!2j

ˇ̌̌̌
C

ˇ̌̌̌
t

2
@2j
yK .!/C 2�

2t

ˇ̌̌̌�
� Ct

1
2 :

We can now deduce (8.25) by repeating the argument below (8.33).
The bounds (8.26) and (8.27) follow immediately from (8.8), (8.9), and (8.10)

as well as the bound ˇ̌
yK .!/ � 1

ˇ̌
� C2j!j2;
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uniformly in j!j � �1, which is an immediate consequence of (8.4).
We now pass to the bounds for j!j � �1. In order to get (8.28), we write for

j!j � �1 with ! 2 f�N; : : : ; N g2

yP

t .!/ D exp

�
�
t

2

�
1 � yK .!/

��
� exp

�
�

t

C12

�
� exp

�
�
t j!j

2C1

�
;

@j yP

t .!/ D

yP

t .!/

t

2
@j yK .!/ � C exp

�
�

t

C12

�
t

2
;

@2j
yP

t .!/ D

yP

t .!/

�
t2

4

�
@j yK .!/

�2
C

t

2
@2j
yK .!/

�
� C2 exp

�
�

t

C12

��
t2

4
C

t

2

�
:

In this case, we write for ˇ � 0

sup
1
5
�j!j�5

ˇ̌
yP

t .2

k!/
ˇ̌
� exp

�
�

t

25C1
2k
�
� .2�kt�1/ˇ sup

x>0

xˇe
� x
25C1 ;

and as before similar bounds on the first and second derivatives of yP t follow in
the same way, so that (8.28) follows. Observe the exponent t�ˇ , which yields a
weaker bound than the t�ˇ=2 one gets in the case of the heat operator Pt .

Finally, for P t K we write for j!j � �1ˇ̌
yP

t .!/

yK .!/
ˇ̌
� exp

�
�

t

C12

�
C

2j!j2
� C.�/

1

t�j!j2�

for any 0 � � � 1. For the derivatives, we getˇ̌
@j yP


t .!/

yK .!/
ˇ̌
C
ˇ̌
yP

t .!/@j

yK .!/
ˇ̌

� C exp
�
�

t

C12

�
t

2
1

2j!j2
C C exp

�
�

t

C12

�


2j!j2

� C.�/


t�j!j2�

and ˇ̌
@2j
�
e
t

2
. yK�1/ yK

�ˇ̌
� e

t

C1
2

�
t2

4

�
@j yK

�2 yK C t

2

�
@2j
yK
�
yK C @

2
j
yK C 2

t

2

�
@j yK

�2�
� Ce

t

C1
2

�
t2

4
2

6j!j6
C

t

2
2

6j!j6
C

2

2j!j2
C 2

t

2
2

4j!j4

�
� C

2

t�j!j2�
:

Hence (8.29) follows as well. �
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COROLLARY 8.7. Let 0 be the constant appearing in Lemma 8.2. For any T > 0,
� > 0, ˇ > 0, and 0 � � � 1, there exists a constant C D C.T; �; ˇ; �/ such that
for every 0 <  < 0, 0 � t � T , � 2 R, and distribution X on T2,�P t � Pt�XC��� � �C�t��kXkC� � ^ �C�kXkC�C��:(8.34) �P t K � Pt�XC��� � �C�t��2 kXkC� � ^ �C�kXkC�C��:(8.35)

PROOF. To see (8.34), we split X into its Littlewood-Paley blocks ıkX , sep-
arating those with 2k � �1 from those with 2k > �1. For the blocks with
2k � �1, the necessary bound is stated in (8.25). Indeed, this bound is even
better, because it has the term t�� replaced by t��=2.

For the blocks with 2k > �1, we bound brutallyık�P t � Pt�XL1.T2/ � P t ıkXL1.T2/ C kPtıkXkL1.T2/
� 2�k.�C�/

�P t ıkXC�C� C kPtıkXkC�C��
� 2��k�

�P t ıkXkC�C� C kPtıkXC�C��:(8.36)

Then the bound (8.34) follows from (8.28), and this is where we pick up the
term t��.

To get (8.35), we argue in a similar way. For ıkX with 2k � �1, we boundık�P t K � Pt�XL1.T2/ �ık�P t .K � 1/X�L1.T2/ C ık�P t � Pt�XL1.T2/:
The bound then follows from a combination of (8.24), (8.25), and (8.27). For
2k > �1, we argue as in (8.36) with (8.28) replaced by (8.29). �

Appendix A Extension by Trigonometric Polynomials
In this appendix, we recall some properties of the extensions of functions on a

grid by trigonometric polynomials. For any function Y W ƒ" ! R, we define the
Fourier transform �Y through

(A.1) �Y .!/ D (Px2ƒ"
"2 Y.x/e�i�!�x if ! 2 f�N; : : : ; N g2;

0 if ! 2 Z2 n f�N; : : : ; N g2:

In this context, Fourier inversion states

(A.2) Y.x/ D
1

4

X
!2Z2

�Y .!/ei�!�x for all x 2 ƒ":

It is thus natural to extend Y to all of T2 D Œ�1; 1�2 by taking (A.2) as a definition
of Y.x/ for x 2 T2 n ƒ". More explicitly, for Y W ƒ" ! R, we define .ExtY / W
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T2 ! R as

ExtY.x/ D
1

4

X
!2f�N;:::;N g2

X
y2ƒ"

"2 ei�!�.x�y/ Y.y/

D

X
y2ƒ"

"2

4
Y.y/

Y
jD1;2

sin.�
2
.2N C 1/.xj � yj //

sin
�
�
2
.xj � yj /

� :

The extension of Y defined in this way is smooth and real valued. The function
ExtY is the unique trigonometric polynomial of degree � N that coincides with Y
on ƒ". This extension has the nice property that several identities that should hold
approximately are in fact exactly true.

First of all, by the continuous Fourier inversion we see that for ! 2 Z2

�Y .!/ D Z
T2

e�i�!�x .ExtY /.x/dxI

i.e., the discrete Fourier transform of Y onƒ" and the continuous Fourier transform
of its extension coincide. Furthermore, if X; Y W ƒ" ! R and Z WD X ?" Y , then
the discrete Fourier transform (A.1) satisfies �Z.!/ D �X.!/�Y .!/. As the Fourier
transform of �Z.x/ D R

T2.ExtX/.x � y/.ExtY /.y/dy satisfies the same identity,
we can conclude that Z and zZ coincide on ƒ". Finally, in the current context,
Parseval’s identity statesX

x2ƒ"

"2X.x/Y.x/ D
1

4

X
!2Z2

�X.!/�Y .!/
D

Z
T2

.ExtX/.x/.ExtY /.x/dx:(A.3)

Throughout the article, we use these nice identities to freely jump from discrete
to continuous expressions, depending on which one is more convenient. When no
confusion is possible, we omit the operator Ext and simply use the same symbol
for a function ƒ" ! R and its extension.

Appendix B Besov Spaces
The aim of this appendix is to recall some facts about Besov spaces on the

torus Tn, which we identify with Œ�1; 1�n. We begin with a technical lemma.

LEMMA B.1. Let � be a smooth function with compact support. For every " > 0,
let

�".x/ D
X
!2Zn

ei�!�x�."!/; x 2 Tn:

For every p; p0 2 Œ1;C1� with 1=p C 1=p0 D 1, we have

sup
0<"�1

"n=p
0

k�"kLp.Tn/ < C1:
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Remark B.2. This lemma would follow from very simple scaling arguments if we
were considering the continuous Fourier transform instead of the discrete Fourier
series.

PROOF. Since k�"k
p

Lp.Tn/ � k�"k
p�1

L1.Tn/k�"kL1.Tn/, it suffices to prove the
lemma for p D 1 and p D 1. Since � is bounded and compactly supported, the
result is clear for p D1. In order to cover the case p D 1, we define

{�".x/ D "
n
X
!2"Zn

ei�!�x �.!/;

so that "n�"."x/ D {�".x/. It is then clear that {�" is bounded uniformly over " and
that k�"kL1.Tn/ D k{�"kL1.Tn="/. In order to conclude the proof, it thus suffices
to check that {�" decays uniformly fast enough at infinity. In order to do so, we
introduce

�"f .!/ D "
�2

X
!02"Zn;
!0�!

.f .!0/ � f .!//;

where !0 � ! is the usual nearest-neighbor relationship in "Zn. Writing ex W ! 7!
eix�! , we observe that

(B.1) �"ex D 2"
�2

nX
iD1

.cos."�xi / � 1/ex :

For every positive integer k, repeated integration by parts yields

(B.2)
X
!2"Zn

�k"ex.!/�.!/ D
X
!2"Zn

ex.!/�
k
"�.!/:

Since � is smooth and compactly supported, j�k"�j is bounded uniformly over ",
and thus ˇ̌̌

"n
X
!2"Zn

ex.!/�
k
"�.!/

ˇ̌̌
� Ck

for some constant Ck . Combining this with (B.1) and (B.2), we obtain that

j {�".x/j �
Ck�

"�2
Pn
iD1.1 � cos."�xi //

�k :
Hence, there exists C 0

k
such that uniformly over " 2 .0; 1� and x 2 Tn=",

(B.3) j {�".x/j �
C 0
k

jxj2k
;

and this is sufficient to conclude the proof. �
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We learn from [3, prop. 2.10] that one can find smooth, rotationally invariant
functions z�, � taking values in Œ0; 1� and such that

supp z� � B.0; 4=3/;(B.4)

supp� � B.0; 8=3/ n B.0; 3=4/;(B.5)

8! 2 Rd ; z�.!/C
C1X
kD0

�.!=2k/ D 1;(B.6)

where we write suppf to denote the support of f , and B.0; r/ to denote the eu-
clidean ball of radius r . Recall that any distribution Z on Tn can be written (see,
e.g., [3, prop. 2.12]) as the Fourier series

Z.x/ D
1

2n

X
!2Zd

�Z.!/ei�!�x where �Z.!/ D Z
Td

Z.x/ e�i�!�x dx

(this expression has to be interpreted as testing the distribution Z against the test
function x 7! e�i�!�x). We use the partition of unity provided by (B.6) to de-
compose any distribution u over Tn as a sum of (smooth) functions with localized
spectrum. More precisely, we let

(B.7)

��1 D z�; �k D �.�=2
k/; k � 0;

ıkZ.x/ D
1

2n

X
!2Zd

�k.!/�Z.!/ei�!�x; k � �1;

so that

Z D

C1X
kD�1

ıkZ:

For any � 2 R and 1 � p; q � 1, we define

kZkB�p;q WD

� 1X
kD�1

�
2k�kıkZkLp.Tn/

�q� 1q
D
�2k�kıkZkLp.Tn/�k��1`q

with the usual interpretation (as a supremum) for q D 1. We define the Besov
space B�p;q as the closure of C1.Tn/ with respect to this norm. Note that if
p; q D 1, this deviates slightly from the standard definition to take all distri-
butions for which this norm is finite. Our choice to take a slightly smaller space
has the advantage to yield separable spaces.

The operator ık is best thought of as a convolution operator. Letting

(B.8) �k.x/ D
1

2n

X
!2Zd

�k.!/e
i�!�x; k � �1;

we observe that

(B.9) ıkZ D �k ? Z;
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where ? denotes the convolution in Tn.

LEMMA B.3. For every � > 0, there exists C D C.�/ such that for any R � 1, if�Z.!/ D 0 for all ! 2 Zn such that j!j > R, then

kZkL1.Tn/ � CR
�
kZkC�� :

PROOF. By definition of the Besov norm

kıkZkL1.Tn/ � 2
k�
kZkC�� :

Let l be the smallest integer such that 2l > R. The assumption on Z ensures that

Z D

lX
kD0

ıkZ;

hence

kZkL1.Tn/ �

lX
kD0

kıkZkL1.Tn/ � kZkC��
lX

kD0

2k� � C2l�kZkC�� :

We get the result by observing that 2l � 2R. �

The following Kolmogorov-like lemma is used for deriving a priori bounds in
Section 4.

PROPOSITION B.4. Let r 7! Z.r; � / be a cadlag process taking values in C1.Tn/.
For any � 2 R, 1 < p < 1, and �? < � � n

p
, there exists a constant C D

C.p; n; �; �?/ such that

E sup
0�r<1

kZ.r; � /k
p
C�? � C sup

k�0

sup
x2Tn

2k�p E sup
0�r<1

jıkZ.r; x/j
p:

PROOF. Let x� W Rn ! R be a smooth nonnegative function that is identical
to 1 on the unit ball B.0; 3/ and with compact support contained in B.0; 4/. For
k � �1, set

x�k.x/ D
1

2n

X
!2Zn

ei�!�x x�.2�k!/; x 2 Tn:

For any k � �1, we have ıkZ ? x�k D ıkZ, and hence by Hölder’s inequality we
get that for any 0 � r <1,

sup
x2Tn

jıkZ.r; x/j D sup
x2Tn

ˇ̌̌̌Z
Tn

ıkZ.r; x � y/x�k.y/dy

ˇ̌̌̌
� kıkZ.r; � /kLp.Tn/kx�kkLp0 .Tn/;

where 1
p
C

1
p0
D 1. Lemma B.1 implies that

kx�kkLp0 .Tn/ � C.p; n/2
kn
p ;
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so that
kıkZ.r; � /k

p

L1.Tn/ � C.p; n/2
kn
kıkZ.r; � /k

p

Lp.Tn/:

Using this estimate, we get

sup
0�r<1

sup
k��1

2kp�?kıkZ.r; � /k
p

L1.Tn/

� sup
0�r<1

X
k��1

2kp�?kıkZ.r; � /k
p

L1.Tn/

� C.p; n/
X
k��1

2kp.�?C
n
p
/ sup
0�r<1

kıkZ.r; � /k
p

Lp.Tn/:

Therefore,

E sup
0�r<1

kZ.r; � /k
p
C�?

� C.p; n/
X
k�0

2kp.�?C
n
p
/

Z
Tn

E sup
0�r<1

jıkZ.r; x/j
p dx

� C.p; n/
X
k�0

2kp.�?C
n
p
��/ sup

x2Tn
sup
k�0

2k�p E sup
0�r<1

jıkZ.r; x/j
p

� C.p; n; �; �?/ sup
x2Tn

sup
k�0

2k�p E sup
0�r<1

jıkZ.r; x/j
p: �

In Section 7, we make use of the following multiplicative inequality.

LEMMA B.5. Let ˇ < 0 < � with � C ˇ > 0. Then the mapping .Z1; Z2/ 7!
Z1Z2 defined forZ1; Z2 2 C1 extends uniquely to a continuous bilinear mapping
from C� � Cˇ ! Cˇ . That is, there exists a constant C depending only on � and ˇ
such that

kZ1Z2kCˇ � CkZ1kC�kZ2kCˇ :

The proof of this statement in the case of the full space can be found in sections
2.6 and 2.5 of [3] (see in particular theorem 2.85). The argument on the torus is
exactly the same, so we do not replicate it here.

Finally, we provide a bound on the L1 norm of a function defined by extension
from a grid by trigonometric polynomials.

LEMMA B.6. For N 2 N, set " D 2
2NC1

and let ƒ" D fx 2 "Zn W �1 < xi <

1 for i D 1; : : : ; ng. For any Z W ƒ" ! R, we define the extension

ExtZ.x/ D
X
´2ƒ"

"n

2n
Z.´/

nY
jD1

sin
�
�
2
.2N C 1/.xj � j́ /

�
sin
�
�
2
.xj � j́ /

� ;

defined for all x 2 Tn. Then for any � > 0, there exists a constant C D C.�; n/

such that
kExtZkL1.Tn/ � C"

��
kZkL1.ƒ"/:
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PROOF. For p > 1 we get from Young’s inequality thatX
´2ƒ"

"n

2n

nY
jD1

ˇ̌̌̌
sin
�
�
2
.2N C 1/.xj � j́ /

�
sin
�
�
2
.xj � j́ /

� ˇ̌̌̌

�

� X
´2ƒ"

"n

2n

nY
jD1

ˇ̌̌̌
sin
�
�
2
.2N C 1/.xj � j́ /

�
sin
�
�
2
.xj � j́ /

� ˇ̌̌̌p� 1
p

D .2N C 1/
n.p�1/
p

� X
´2ƒ"

nY
jD1

ˇ̌̌̌
sin
�
�
2
.2N C 1/.xj � j́ /

�
.2N C 1/ sin

�
�
2
.xj � j́ /

� ˇ̌̌̌p� 1
p

� C.n/"�
n.p�1/
p

� X
ź2f�N;:::;N gn

nY
jD1

�
1 ^

1

jźj j

�p� 1
p

In the last line we have made use of the index change źi D b2.N C 1/.xi � ´i /c
(interpreted with periodic boundary condition on f�N; : : : ; N g). Now by choosing
p D n

n��
> 1 we obtain the desired result. �

Appendix C Martingales and an Itô Formula with Jumps
LetM D .M.t//t�0 be a cadlag square-integrable martingale (withM.0/ D 0).

Its predictable quadratic variation hM it is the unique predictable increasing (in
the wide sense) process such thatM 2.t/�hM it is a martingale. Its bracket process
is

ŒM �t DM
2.t/ � 2

Z
M.s�/dM.s/;

where M.s�/ is the left limit of M at time s. A convenient way to think about
these processes consists in noting that the bracket process is the limit in probability
of

n�1X
iD0

�
M.tiC1/ �M.ti /

�2
as the subdivision 0 D t0 � � � � � tn D t gets finer and finer [37, theorem 4.47],
while the predictable quadratic variation is the limit of

n�1X
iD0

EŒ.M.tiC1/ �M.ti //
2
j Fti �;

where .Ft /t�0 is the underlying filtration [37, prop. 4.50]. In particular, if M is
of finite total variation, then the bracket process is simply the sum of the jumps
squared:

ŒM �t D
X
0<s�t

.�sM/2;
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where �sM D M.s/ � M.s�/. If M has continuous sample paths, then the
predictable quadratic variation and the bracket process coincide [37, theorem 4.47].
In every case, ŒM �t � hM it is a martingale [37, prop. 4.50].

Let .�.t//t�0 be a Feller process. Denote by L its infinitesimal generator, with
domain D.L /. For f 2 D.L /, the process

Mf .t/ WD f .�.t// � f .�.0// �

Z t

0

L f .�.s//ds

is a martingale. Moreover, if f 2 2 D.L /, then its predictable quadratic variation
is given by

hMf it D

Z t

0

�f .�.s//ds;

where �f D L .f 2/ � 2fL f is the so-called carré du champ (see, for instance,
[42, app. B]). When L is the operator defined in (2.5), we have

�f .�/ D
X
j2ƒN

c .�; j /
�
f .�j / � f .�/

�2
:

The Burkholder-Davis-Gundy inequality below plays a key role in our analysis.

LEMMA C.1 (Burkholder-Davis-Gundy inequality). Let M be a cadlag square-
integrable martingale. For any p > 0, there exists a constant C D C.p/ such that
for all T > 0,

E
�

sup
0�t�T

jM.t/jp
�
� C

�
E
�
hM i

p
2

t

�
C E

�
sup

0�t�T

j�tM j
p
��
;

where we recall that �tM WDM.t/ �M.t�/ denotes the jump of M at t .

PROOF. The case of discrete-time martingales is covered by [36, theorem 2.11].
The continuous-time case can be recovered by approximation. Alternatively, one
can consult, for instance, [40]. �

The following result, which can be found for instance in [50, theorem II.7.31],
is akin to the fundamental theorem of calculus, but with integrands that may have
jumps.

LEMMA C.2. Let X D .X .1/; : : : ; X .n// W RC ! Rn be a cadlag process such
that for every i , X .i/ is of bounded total variation. Let f W Rn ! R be a contin-
uously differentiable function. Then f .X/ W R ! R is of bounded total variation
and

f .X.t// � f .X.0// D

nX
iD1

Z t

sD0

@f

@xi
.X.s�//dX .i/.s/

C

X
0<s�t

�
�sf .X/ �

nX
iD1

@f

@xi
.X.s�//�sX

.i/

�
;

(C.1)
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where we recall our notation �sF D F.s/ � F.s�/ and
R t
sD0 D

R
s2.0;t�.

Remark C.3. In the setting of Lemma C.2, let us assume for simplicity that n D 1.
Recall that the bracket process of X is then given by

ŒX�t D
X
0<s�t

.�sX/
2:

If f is twice continuously differentiable, we can rewrite (C.1) as

f .X.t// � f .X.0//

D

Z t

sD0

f 0.X.s�//dX.s/C
1

2

Z t

sD0

f 00.X.s�//d ŒX�s

C

X
0<s�t

�
�sf .X/ � f

0.X.s�//�sX �
1

2
f 00.X.s�//.�sX/

2

�
;

which is nothing but Itô’s formula; see [50, theorem II.7.32].

Appendix D Martingale Characterization
of the Stochastic Heat Equation

Recall that we write .Pt /t�0 D .et�/t�0 for the semigroup associated with
the Laplacian on T2. Let W be a cylindrical Wiener process over L2.T2/. The
solution Z of the stochastic heat equation

(D.1)

(
dZ D �Z dt C

p
2 dW

Z.0; � / D ´0

is defined by

Z.t/ D Pt´0 C
p
2

Z t

0

Pt�s dW.s/:

If � 2 C1.T2/ is a smooth test function, and if we write .´; �/ for the evaluation
of ´ 2 S 0.T2/ against �, we have

.Z.t/; �/ D .´0; Pt�/C
p
2

Z t

0

Pt�s� dW.s/

for every t � 0.
The goal of this section is to give a martingale characterization of the law of Z.

THEOREM D.1 (Uniqueness for the martingale problem). Let SZ be a random pro-
cess in C.RC;S 0.T2//. For every � 2 C1.T2/, define

M�.t/ D .SZ.t/; �/ � .SZ.0/; �/ �

Z t

0

.SZ.s/;��/ds

and
��.t/ DM2

�.t/ � 2tk�k
2
L2
:
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If for every � 2 C1.T2/, the processes .M�.t//t�0 and .��.t//t�0 are local
martingales, then SZ has the same law as Z the solution of (D.1) with initial con-
dition ´0 D SZ.0/.

Remark D.2. Since SZ is assumed to take values in C.RC;S 0.T2//, the martingales
.M�.t//t�0 and .��.t//t�0 are automatically continuous.

Remark D.3. The fact that .��.t//t�0 is a local martingale identifies .2tk�k2
L2
/t�0

as the quadratic variation of .M�.t//t�0. In particular, for every t � 0, M�.t/ is
square-integrable,

(D.2) E
�
M2

�.t/
�
D 2tk�k2

L2
;

and .M�.t//t�0 and .��.t//t�0 are (true) martingales.

Remark D.4. Theorem D.1 remains true if we only know that M� and �� are con-
tinuous local martingales for every trigonometric polynomial �. Indeed, it suffices
to argue by density using (D.2).

Our proof of Theorem D.1 begins by showing that the martingale property can
be extended to smooth test functions that also depend on the time variable.

LEMMA D.5 (Time-dependent martingale characterization). Let SZ be a random
process in C.RC;S 0.T2//. For every  2 C1.RC � T2/, we let

M .t/ D .SZ.t/;  .t// � .SZ.0/;  .0// �

Z t

0

.SZ.s/; .@s C�/ .s//ds

and

� .t/ DM2
 .t/ � 2

Z t

0

k .s/k2
L2
ds:

The processes .M .t//t�0 and .� .t//t�0 are continuous martingales under the
assumptions of Theorem D.1.

PROOF. We decompose .SZ.t/;  .t// � .SZ.0/;  .0// into

(D.3) .SZ.t/;  .t// � .SZ.0/;  .t//C .SZ.0/;  .t// � .SZ.0/;  .0//:

By the assumptions of Theorem D.1, we can rewrite the first difference asZ t

0

.SZ.s/;� .t//ds CM .t/.t/;

and we decompose the integral further into

(D.4)
Z t

0

.SZ.s/;� .s//ds C

Z t

0

.SZ.s/;�. .t/ �  .s///ds DZ t

0

.SZ.s/;� .s//ds C

Z t

sD0

Z t

uDs

.SZ.s/;�@u .u//du ds:
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The second difference appearing in (D.3) can be rewritten asZ t

0

.SZ.0/; @s .s//ds D

Z t

0

.SZ.s/; @s .s//ds �

Z t

0

.SZ.s/ � SZ.0/; @s .s//ds:

By the assumptions of Theorem D.1, we can rewrite the second integral in the
right-hand side above asZ t

sD0

�Z s

uD0

.SZ.u/;�@s. .s//duCM@s .s/.s/

�
ds:

The double integral cancels with that appearing in the right-hand side of (D.4). We
thus obtain

.SZ.t/;  .t// � .SZ.0/;  .0// DZ t

0

.SZ.s/; .@s C�/ .s//ds CM .t/.t/ �

Z t

0

M@s .s/.s/ds;

so that

(D.5) M .t/ DM .t/.t/ �

Z t

0

M@s .s/.s/ds:

By Remark D.3, M .t/ is square-integrable for any t � 0. If we denote by
.Ft /t�0 the underlying filtration, we observe that

EŒM .tC s/�M .t/ j Ft � DM .tCs/.t/�M .t/.t/�

Z tCs

t

M@r .r/.t/dr:

By linearity, this is equal to 0, and thus .M .t//t�0 is a martingale. We now
compute its quadratic variation. Since

t 7!

Z t

0

M@s .s/.s/ds

and t 7!M .t/.t0/ are of bounded variation, we can write

d hM it D d hM .t/it D 2k .t/k
2
L2
dt;

that is,

hM it D 2

Z t

0

k .s/k2
L2
ds;

and the proof is complete. �

PROOF OF THEOREM D.1. Let � 2 C1.T2/, and � 2 C1.Œ0; t � � T2/ be the
bounded solution of the backward heat equation(

.@s C�/�.s/ D 0 for s 2 .0; t/;
�.t/ D �:

We learn from Lemma D.5 that

M�.t/ D .
SZ.t/; �.t// � .SZ.0/; �.0//
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is a martingale with quadratic variation

2

Z t

0

k�.s/k2
L2
ds:

Clearly, �.s/ D Pt�s�, so we can rewrite M�.t/ as

M�.t/ D .
SZ.t/; �/ � .SZ.0/; Pt�/

and the quadratic variation as

2

Z t

0

kPt�s�k
2
L2
ds:

By polarization, it follows that the quadratic covariation at time t between M�1
and M�2

is

2

Z t

0

.Pt�s�1; Pt�s�2/ds

for every �1; �2 2 C1.T2/. Since Mx� is a continuous martingale for every �,
the fact that the quadratic covariations are deterministic implies that the law of
.Mx�.t//t�0;�2C1.T2/ is determined uniquely. Letting Z be the solution of (D.1)
with ´0 D SZ.0/, we observe that the quadratic covariations of

M0
�.t/ WD .Z.t/; �/ � .Z.0/; Pt�/

are the same as those of .Mx�.t//t�0;�2C1.T2/, so the proof is complete. �

Acknowledgments. We would like to thank David Brydges, Christophe Garban,
and Krzysztof Gawedzki for discussions on the nearest-neighbor Ising model and
quantum field theory. We would also like to thank Rongchan Zhu and Xiangchan
Zhu for pointing out an error in an earlier version of this article. HW was supported
by an EPSRC First Grant.

Bibliography
[1] Aizenman, M. Geometric analysis of �4 fields and Ising models. I, II. Comm. Math. Phys. 86

(1982), no. 1, 1–48. 2.2
[2] Albeverio, S.; Röckner, M. Stochastic differential equations in infinite dimensions: so-

lutions via Dirichlet forms. Probab. Theory Related Fields 89 (1991), no. 3, 347–386.
doi:10.1007/BF01198791 1

[3] Bahouri, H.; Chemin, J.-Y.; Danchin, R. Fourier analysis and nonlinear partial differential
equations. Grundlehren der mathematischen Wissenschaften, 343. Springer, Heidelberg, 2011.
doi:10.1007/978-3-642-16830-7 B, B, B

[4] Baik, J.; Deift, P.; Johansson, K. On the distribution of the length of the longest increas-
ing subsequence of random permutations. J. Amer. Math. Soc. 12 (1999), no. 4, 1119–1178.
doi:10.1090/S0894-0347-99-00307-0 1

[5] Bertini, L.; Giacomin, G. Stochastic Burgers and KPZ equations from particle systems. Comm.
Math. Phys. 183 (1997), no. 3, 571–607. doi:10.1007/s002200050044 1

http://dx.doi.org/doi:10.1007/BF01198791
http://dx.doi.org/doi:10.1007/978-3-642-16830-7
http://dx.doi.org/doi:10.1090/S0894-0347-99-00307-0
http://dx.doi.org/doi:10.1007/s002200050044


94 J.-C. MOURRAT AND H. WEBER

[6] Bertini, L.; Presutti, E.; Rüdiger, B.; Saada, E. Dynamical fluctuations at the critical point:
convergence to a nonlinear stochastic PDE. Teor. Veroyatnost. i Primenen. 38 (1993), no. 4,
689–741; reprinted in Theory Probab. Appl. 38 (1993), no. 4, 586–629. doi:10.1137/1138062
1, 2.2

[7] Billingsley, P. Convergence of probability measures. Wiley Series in Probability and Statistics,
493. Wiley, New York, 2009. 2.2, 5

[8] Camia, F.; Garban, C.; Newman, C. M. Planar Ising magnetization field I. Uniqueness of the
critical scaling limit. Ann. Probab. 43 (2015), no. 2, 528–571. doi:10.1214/13-AOP881 1

[9] Camia, F.; Garban, C.; Newman, C. M. Planar Ising magnetization field II. Properties of the
critical and near-critical scaling limits. Ann. Inst. Henri Poincaré Probab. Stat. 52 (2016), no. 1,
146–161. doi:10.1214/14-AIHP643 1

[10] Cassandro, M.; Marra, R.; Presutti, E. Upper bounds on the critical temperature for Kac poten-
tials. J. Statist. Phys. 88 (1997), no. 3-4, 537–566. doi:10.1023/B:JOSS.0000015163.27899.8f
1, 2.1

[11] Catellier, R.; Chouk, K. Paracontrolled distributions and the 3-dimensional stochastic quanti-
zation equation. Preprint, 2013. arXiv:1310.6869 [math.PR] 1, 2.2

[12] Chelkak, D.; Duminil-Copin, H.; Hongler, C.; Kemppainen, A.; Smirnov, S. Convergence of
Ising interfaces to Schramm’s SLE curves. C. R. Math. Acad. Sci. Paris 352 (2014), no. 2,
157–161. doi:10.1016/j.crma.2013.12.002 1

[13] Chelkak, D.; Hongler, C.; Izyurov, K. Conformal invariance of spin correlations in the planar
Ising model. Ann. of Math. (2) 181 (2015), no. 3, 1087–1138. doi:10.4007/annals.2015.181.3.5
1

[14] Corwin, I. The Kardar-Parisi-Zhang equation and universality class. Random Matrices Theory
Appl. 1 (2012), no. 1, 1130001, 76 pp. doi:10.1142/S2010326311300014 1

[15] Corwin, I. Macdonald processes, quantum integrable systems and the Kardar-Parisi-Zhang uni-
versality class. Preprint, 2014. arXiv:1403.6877 [math-ph] 1

[16] Corwin, I.; Quastel, J.; Remenik, D. Renormalization fixed point of the KPZ universality class.
J. Stat. Phys. 160 (2015), no. 4, 815–834. doi:10.1007/s10955-015-1243-8 1

[17] Da Prato, G.; Debussche, A. Strong solutions to the stochastic quantization equations. Ann.
Probab. 31 (2003), no. 4, 1900–1916. doi:10.1214/aop/1068646370 1, 1.1, 3, 3, 3, 3, 3.3

[18] Da Prato, G.; Zabczyk, J. Stochastic equations in infinite dimensions. Encyclopedia of Mathe-
matics and Its Applications, 45. Cambridge University Press, Cambridge, 2008. 3

[19] Davis, P. J.; Rabinowitz, P. Methods of numerical integration. Dover, Mineola, N.Y., 2007. 2.4
[20] Dembo, A.; Tsai, L.-C. Weakly asymmetric non-simple exclusion process and the Kardar-

Parisi-Zhang equation. Comm. Math. Phys. 341 (2016), no. 1, 219–261. doi:10.1007/s00220-
015-2527-1 1

[21] Ellis, R. S. Entropy, large deviations, and statistical mechanics. Classics in Mathematics.
Springer, Berlin, 2006. 1

[22] Fritz, J.; Rüdiger, B. Time dependent critical fluctuations of a one-dimensional local mean field
model. Probab. Theory Related Fields 103 (1995), no. 3, 381–407. doi:10.1007/BF01195480
1, 2.2

[23] Gärtner, J. Convergence towards Burgers’ equation and propagation of chaos for weakly
asymmetric exclusion processes. Stochastic Process. Appl. 27 (1988), no. 2, 233–260.
doi:10.1016/0304-4149(87)90040-8 1

[24] Giacomin, G.; Lebowitz, J. L.; Presutti, E. Deterministic and stochastic hydrodynamic equa-
tions arising from simple microscopic model systems. Stochastic partial differential equations:
six perspectives, 107–152. Mathematical Surveys and Monographs, 64. American Mathemati-
cal Society, Providence, R.I., 1999. doi:10.1090/surv/064/03 1, 1, 2.2

[25] Glimm, J.; Jaffe, A. Quantum physics. Springer, New York-Berlin, 1981. 1
[26] Glimm, J.; Jaffe, A.; Spencer, T. Phase transitions for '42 quantum fields. Comm. Math. Phys.

45 (1975), no. 3, 203–216. 1

http://dx.doi.org/doi:10.1137/1138062
http://dx.doi.org/doi:10.1214/13-AOP881
http://dx.doi.org/doi:10.1214/14-AIHP643
http://dx.doi.org/doi:10.1023/B:JOSS.0000015163.27899.8f
http://arxiv.org/abs/1310.6869
http://dx.doi.org/doi:10.1016/j.crma.2013.12.002
http://dx.doi.org/doi:10.4007/annals.2015.181.3.5
http://dx.doi.org/doi:10.1142/S2010326311300014
http://arxiv.org/abs/1403.6877
http://dx.doi.org/doi:10.1007/s10955-015-1243-8
http://dx.doi.org/doi:10.1214/aop/1068646370
http://dx.doi.org/doi:10.1007/s00220-015-2527-1
http://dx.doi.org/doi:10.1007/s00220-015-2527-1
http://dx.doi.org/doi:10.1007/BF01195480
http://dx.doi.org/doi:10.1016/0304-4149(87)90040-8
http://dx.doi.org/doi:10.1090/surv/064/03


CONVERGENCE OF ISING-KAC TOˆ42 95

[27] Gonçalves, P.; Jara, M. Nonlinear fluctuations of weakly asymmetric interacting particle sys-
tems. Arch. Ration. Mech. Anal. 212 (2014), no. 2, 597–644. doi:10.1007/s00205-013-0693-x
1

[28] Gubinelli, M.; Imkeller, P.; Perkowski, N. Paracontrolled distributions and singular PDEs. Fo-
rum Math. Pi 3 (2015), e6, 75 pp. doi:10.1017/fmp.2015.2 1, 8

[29] Guerra, F.; Rosen, L.; Simon, B. The P.�/2 Euclidean quantum field theory as classical statis-
tical mechanics. I. Ann. of Math. (2) 101 (1975), no. 1, 111–189. doi:10.2307/1970988 1

[30] Guerra, F.; Rosen, L.; Simon, B. The P.�/2 Euclidean quantum field theory as classical statis-
tical mechanics. II. Ann. of Math. (2) 101 (1975), no. 2, 191–259. doi:10.2307/1970989 1

[31] Hairer, M. An introduction to stochastic PDEs. Preprint, 2009. arXiv:0907.4178 [math.PR] 3
[32] Hairer, M. Solving the KPZ equation. Ann. of Math. (2) 178 (2013), no. 2, 559–664.

doi:10.4007/annals.2013.178.2.4 1
[33] Hairer, M. A theory of regularity structures. Invent. Math. 198 (2014), no. 2, 269–504.

doi:10.1007/s00222-014-0505-4 1, 2.2, 3, 3.3
[34] Hairer, M.; Ryser, M. D.; Weber, H. Triviality of the 2D stochastic Allen-Cahn equation. Elec-

tron. J. Probab. 17 (2012), no. 39, 14 pp. doi:10.1214/EJP.v17-1731 3
[35] Hairer, M.; Weber, H. Rough Burgers-like equations with multiplicative noise. Probab. Theory

Related Fields 155 (2013), no. 1-2, 71–126. doi:10.1007/s00440-011-0392-1 7
[36] Hall, P.; Heyde, C. C. Martingale limit theory and its application. Probability and Mathematical

Statistics. Academic Press, New York–London, 1980. C
[37] Jacod, J.; Shiryaev, A. N. Limit theorems for stochastic processes. Second edition. Grundlehren

der mathematischen Wissenschaften, 288. Springer, Berlin, 2003. doi:10.1007/978-3-662-
05265-5 C

[38] Johansson, K. Shape fluctuations and random matrices. Comm. Math. Phys. 209 (2000), no. 2,
437–476. doi:10.1007/s002200050027 1

[39] Jona-Lasinio, G.; Mitter, P. K. On the stochastic quantization of field theory. Comm. Math.
Phys. 101 (1985), no. 3, 409–436. doi:10.1007/BF01216097 1

[40] Lenglart, E.; Lépingle, D.; Pratelli, M. Présentation unifiée de certaines inégalités de la théorie
des martingales. Seminar on Probability, XIV (Paris, 1978/1979) (French), 26–52. Lecture
Notes in Mathematics, 784. Springer, Berlin, 1980. C

[41] Mikulevicius, R.; Rozovskii, B. L. Martingale problems for stochastic PDE’s. Stochastic partial
differential equations: six perspectives, 243–325. Mathematical Surveys and Monographs, 64.
American Mathematical Society, Providence, R.I., 1999. 1

[42] Mourrat, J.-C. A quantitative central limit theorem for the random walk among random con-
ductances. Electron. J. Probab. 17 (2012), no. 97, 17 pp. doi:10.1214/EJP.v17-2414 C

[43] Mourrat, J.-C.; Weber, H. Global well-posedness of the dynamic ˆ4 model in the plane.
Preprint, 2015. arXiv:1501.06191 [math.PR] 3, 3, 3

[44] Müller, C.; Tribe, R. Stochastic p.d.e.’s arising from the long range contact and long
range voter processes. Probab. Theory Related Fields 102 (1995), no. 4, 519–545.
doi:10.1007/BF01198848 5

[45] Nelson, E. The free Markoff field. J. Functional Analysis 12 (1973), 211–227. 3
[46] Nualart, D. The Malliavin calculus and related topics. Second edition. Probability and Its Ap-

plications (New York). Springer, Berlin, 2006. 3
[47] Parisi, G.; Wu, Y. S. Perturbation theory without gauge fixing. Sci. Sinica 24 (1981), no. 4,

483–496. 1
[48] Prähofer, M.; Spohn, H. Scale invariance of the PNG droplet and the Airy process. J. Statist.

Phys. 108 (2002), no. 5-6, 1071–1106. doi:10.1023/A:1019791415147 1
[49] Prévôt, C.; Röckner, M. A concise course on stochastic partial differential equations. Lecture

Notes in Mathematics, 1905. Springer, Berlin, 2007. 3

http://dx.doi.org/doi:10.1007/s00205-013-0693-x
http://dx.doi.org/doi:10.1017/fmp.2015.2
http://dx.doi.org/doi:10.2307/1970988
http://dx.doi.org/doi:10.2307/1970989
http://arxiv.org/abs/0907.4178
http://dx.doi.org/doi:10.4007/annals.2013.178.2.4
http://dx.doi.org/doi:10.1007/s00222-014-0505-4
http://dx.doi.org/doi:10.1214/EJP.v17-1731
http://dx.doi.org/doi:10.1007/s00440-011-0392-1
http://dx.doi.org/doi:10.1007/978-3-662-05265-5
http://dx.doi.org/doi:10.1007/978-3-662-05265-5
http://dx.doi.org/doi:10.1007/s002200050027
http://dx.doi.org/doi:10.1007/BF01216097
http://dx.doi.org/doi:10.1214/EJP.v17-2414
http://arxiv.org/abs/1501.06191
http://dx.doi.org/doi:10.1007/BF01198848
http://dx.doi.org/doi:10.1023/A:1019791415147


96 J.-C. MOURRAT AND H. WEBER

[50] Protter, P. E. Stochastic integration and differential equations. Second edition. Stochastic Mod-
elling and Applied Probability, 21. Springer, Berlin, 2005. doi:10.1007/978-3-662-10061-5 C,
C.3

[51] Quastel, J. Introduction to KPZ. Current developments in mathematics, 2011, 125–194. Inter-
national Press, Somerville, Mass., 2012. 1

[52] Simon, B.; Griffiths, R. B. The .'4/2 field theory as a classical Ising model. Comm. Math.
Phys. 33 (1973), 145–164. doi:10.1007/BF01645626 1

[53] Smirnov, S. Conformal invariance in random cluster models. I. Holomorphic
fermions in the Ising model. Ann. of Math. (2) 172 (2010), no. 2, 1435–1467.
doi:10.4007/annals.2010.172.1441 1

JEAN-CHRISTOPHE MOURRAT
École Normale Supérieure Lyon
UMPA
46, allée d’Italie
69007 Lyon
FRANCE
E-mail: jean-christophe.

mourrat@ens-lyon.fr

HENDRIK WEBER
University of Warwick
Mathematics Institute
Coventry CV4 7AL
UNITED KINGDOM
E-mail: hendrik.weber@

warwick.ac.uk

Received June 2015.
Revised February 2016.

http://dx.doi.org/doi:10.1007/978-3-662-10061-5
http://dx.doi.org/doi:10.1007/BF01645626
http://dx.doi.org/doi:10.4007/annals.2010.172.1441
mailto:jean-christophe.\mourrat@ens-lyon.fr
mailto:hendrik.weber@\warwick.ac.uk

	1. Introduction
	2. Setting and Main Result
	3. Analysis of the Limiting SPDE
	4. Bounds for the Linearized System
	5. Tightness for the Linearized System
	6. Convergence in Law of the Linearized System
	7. Analysis of the Nonlinear Equation
	8. Some Bounds on the Kernels K_ and P_t
	Appendix A. Extension by Trigonometric Polynomials
	Appendix B. Besov Spaces
	Appendix C. Martingales and an Itô Formula with Jumps
	Appendix D. Martingale Characterizationof the Stochastic Heat Equation
	Bibliography

