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CONVERGENCE OF THE VORTEX METHOD FOR VORTEX SHEETS*

RUSSEL E. CAFLISCH# AND JOHN S. LOWENGRUB’

Abstract. Computation of the evolution of vortex sheets is delicate because of Kelvin-Helmholtz
instability and singularity formation (infinite curvature). Convergence of the point vortex method and the
vortex blob method is demonstrated for vortex sheets with both spatial and temporal discretization and
with simulated roundoff error. The initial data is assumed to be a small analytic perturbation of a flat,
uniform sheet. The proof works for a short time interval, certainly less than the first time of singularity
formation. The analysis is performed in an analytic function space using the abstract Cauchy-Kowalewski
Theorem. A numerical-analytic interpretation of analyticity is given.
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1. Introduction. Computation of the evolution ofvortex sheets in two-dimensional,
incompressible inviscid flow is delicate because of Kelvin-Helmholtz instability and
singularity formation (infinite curvature of the sheet). Numerical roundoff error can
excite the physical instability to produce irregular results well before the physically
correct singularity formation and roll-up of the sheet. Krasny [13], [14] has overcome
this difficulty by two methods: a point vortex method with filtering to eliminate spurious
high wavenumber components and a vortex blob method. A successful method based
on series expansion was used by Meiron, Baker, and Orszag [15].

The aim of this paper is to prove convergence of the vortex method for a vortex
sheet that is initially a small analytic perturbation of a fiat, uniform sheet. The
perturbation is required to be periodic for simplicity. The time interval for convergence
is small. Certainly it does not include the first singularity time, so that the result does
not include vortex sheet roll-up. Our convergence result applies to the point vortex
method and to the vortex blob method, with spatial and temporal discretization and
with simulated roundoff error. Stability for the point vortex method is maintained by
the assumption of analyticity. The use of vortex blobs improves the stability, but
decreases the accuracy of the method (see Theorem 2 for a precise statement).

Analyticity for the vortex sheet is needed to stabilize the Kelvin-Helmholtz
instability. In fact the vortex sheet problem is known to be well posed in an analytic
function space [5], [10], [17] but ill posed in certain nonanalytic spaces [6], [11]. The
Cauchy-Kowalewski Theorem in abstract and discretized versions (see [2], [16], and
Theorems 3 and 4 below) is the basic tool for construction of solutions in this paper.

One of the main contributions of this paper is to clarify the meaning of analyticity
for numerical analysis: A function f(z) is analytic in a strip IIm zl< p if (roughly
speaking) its Fourier transform decays like If(k)l < c e -olkl. If the function is discretized
with a length scale h, then the maximum wavenumber is k,,, h -. Analyticity of such
discretized functions can be detected if the inequality on its transform can be verified.
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VORTEX METHOD FOR VORTEX SHEETS 1061

This gives a restriction on the size of roundoff error er, that,

(1.1) lerl<ce-/h
for some constants c and p. This constraint on h and [erl is our interpretation of
analyticity for numerical analysis.

Constraint (1.1) is severe, but seems to be optimal in the presence of Kelvin-
Helmholtz instability. It is in qualitative agreement with the numerical results of Krasny
[13], [14], but no quantitative numerical study of the relation between e and h has
been made. The constraint needs to be applied only to roundoff error, not to discretiz-
ation error, since for analytic functions the discretization error is also analytic. For
this problem the factor p will be proportional to UT, in which U is a characteristic
velocity and T is the time over which convergence is proved. We expect this interpreta-
tion of analyticity to be useful for numerical analysis of many other ill-posed problems.

As a prerequisite to the convergence theorem, we prove global existence for
analytic solutions to Krasny’s desingularized vortex sheet equation (without discretiz-
ation). This result is for arbitrary analytic initial data, without any assumed closeness
to a flat sheet and does not use the Cauchy-Kowalewski Theorem. The same result
was proved independently by Christoph Borgers [4]. Borgers also proved convergence
for solutions of the discretized, desingularized equation, but with a rate that depends
on the desingularization size , whereas our convergence result is uniform in &

The vortex blob method was first proposed in [7], and convergence of the blob
method for smooth flow in R and R is proved in [1], [3], [8], [9], and [12]. Vortex
sheet initial data is too singular to be included in those results, since they do not work
in the presence of the Kelvin-Helmholtz instability. The results here are the first proof
of convergence for the point vortex method in any context, and are made possible by
the analytic function setting (for the sheet’s profile).

The vortex sheet equations, some notation, and the main convergence result will
be given in the next section. Global existence for the desingularized equations will
also be stated in that section and proved in 3. An outline of the convergence proof
and a statement of the Cauchy-Kowalewski Theorem are presented in 4. In 5 several
technical lemmas are proved. Then stability and consistency proofs are presented in

6 and 7.

2. The vortex sheet equation and the convergence result. The position in the plane
of a vortex sheet is described by the complex function z(3’, t) in which 3’ R is the
circulation variable. We will sometimes extend 3’ to be complex, as a mathematical
construction. Evolution of the sheet is governed by the Birkhoff-Rott equation

(2.1) O,z*(3", t)=(2i)-PVf (z(3", t)-z(3"+, t)) -1 d,

in which the integral is a principle value and z*(3")= ("/). For 3’ real, z*(3")= z(3").
An equilibrium solution for (2.1) is z 3’ corresponding to a flat sheet of uniform

strength. For perturbations of a flat sheet, write z 3’ + s(% t), so that the Birkhoff-Rott
equation becomes

(2.2) O,s*(% t)=(Zri)-PV f_(-+s(3", t)-s(3"+, t))-’ d.

If in addition s has period 2r in 3’, then (2.2) becomes

(2.3) O,s*(3", t)= B[s](3’, t)=-(4’i)-PV cot (-: + s(3’)- s(3’+ )) d(.
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Although the cotangent introduces some complexity, the bounded region of integration
in (2.3) will simplify our analysis.

Next we define several approximations to (2.3) that result from desingularization
by length scale 6, discretization in circulation variable 3’ by h, and discretization in
time by At. The solutions of the approximate equations are

SD:

SA:

desingularized by 6,

desingularized by 6, discretized by h,

desingularized by 6, discretized by h and At.

They satisfy the equations

(2.4) O,s*(3", t)= Ba[sa](y, t),

(2.5) O,s*o(mh, t)= Bo[so](mh, t),

(2.6) D,s*a(mh, (n + 1)At)= Bo[sa](mh, nat)+el
in which

(2.7) B[s](3", t) (47ri)- I cos 1/2(s s’- ) sin 1/2(s* s*’-)
sin 1/2(s s c) sin 1/2(s* Ss-; so)+ 6 2 d:,

N cos (SD S’D -jh sin 1/2( S*D S*D’ -jh
(2.8) BD[SD](mh, t)=(4’i)-lh

j=l sin 1/2(SD-- s’o-jh) sin 1/2(s*o-s*o’-jh)+ 62,

(2.9) D,s*x(mh, nat) At-l(s*x(mh, nat)- s*x(mh, (n 1)At)).

In these equations N is a large integer, At and 6 are small parameters, h---27rN-1 -< m -< N, and n => 0. In (2.7), s s(3’, t), s s(3, + sc, t), and similarly for s*. In
the sum in (2.8), so so(mh, t), s’o so((m+j)h, t), and similarly for s*o, s*. Initial
data will be prescribed for (2.3), (2.4)-(2.6). The forcing term e is included to simulate
roundott error. It is divided by At since D, has been applied to the equation.

Note that (2.4) is a desingularization of (2.3) and is exactly (2.3) if 6 0. Equations
(2.5) and (2.6) are vortex blob equations and are discretizations of (2.4). If 6 0, (2.5)
and (2.6) become the equations for the point approximation to (2.3) (with and without
time discretization), and the operator Bo becomes the point vortex operator

N

(2.10) Bp[SD](mh, t) (aTri)-h cot-(s-- S’D--jh).

Existence and uniqueness for solutions of the periodic Birkhoff-Rott equation
(2.3) are proved in [5], [17]. For the &equation (2.4) they are proved in Theorem
below. Existence and uniqueness for the discretized equations (2.5), (2.6) are easy to
prove, since the vorticity is always positive and thus time invariance of the Hamiltonian

log (sin (s(mh)-s((m+j)h)-jh)) prevents singularities from forming.
Analysis of the discretized operator Bo uses the discrete Fourier Transform defined

for discrete functions SD by
N

(2.11) gdD(k)= N-’ sD(jh) e -ikjh

j:l

in which so is assumed to be 27r-periodic, h 27r/N and k 1, , N, or equivalently,
k =-N/2+l,. , N/2 since ga(k+N) ga(k).

Convergence of the approximations above is stated using the following norms:

(2.12) IIIs]llo: sup
Ilmvl<o



VORTEX METHOD FOR VORTEX SHEETS 1063

(2.13) IIsllo Ig(k)l el’l,

N/2

(2.14) Ilsollo-- E I(k)l e4’(’,
--N/2+l

in which

(2.15) 4(k, )= min (lkl, -).

Now we state the .main results of this paper.
TIEORZM (Global existence for -equation). Suppose that So(3,) s( 3", O)

is analytic and 27r-periodic in 3" and satisfies IIIsollloo < e < o,, and that 0 < < 1. Then
there is a unique periodic analytic solution s(3/, t) for the desingularized vortex sheet
equation (2.4) for all >-O. It satisfies

(2.16) IIIs(t)lllo,(,-<- c e;’/

in which p(t)= c e-’/, and c and h are constants depending only on po and R.
We note that Theorem 1 is not a near-linear result, as there is no smallness

requirement on s.
TEOREM 2 (Convergence of the vortex method). Let be sufficiently small and

let So(y) s(y, t=0) satisfy [[So[Ioo< <1 (in particular So is analytic in ). Let

s(% o) So(),
(2.17)

SD( mh, O) szx( mh, O) so(mh

and assume that the roundoff error satisfies

(2.18) lell_-< eat max (h, 6) max (e-/, e-/)

for all 3" and t. Then for 6 >= O, h > O, and e >= 0 sufficiently small (independent of the
initial data), there are unique solutions SA, SD, and s of (2.4)-(2.6) with this initial data

for < aapo. These solutions satisfy:
(a) Convergence of &equation)

(2.19) Ils(t)-s(t)l]o(,)<-_ c;

(b) (Convergence for spatial (3’) discretization)

(2.20) IIs( t)- so(t)II o(, -< c( + h);

(c) (Convergence for spatial and temporal discretization)

(2.21) Is(t-nAt)-s(nht)llo(,) < c(/h/e/At),

in which p( t) apo- a- t. Then constant a can be any number less than 1, and a depends
only on a, , and po.

The factors At and h are included in (2.18) because we have applied D, and will
apply to the equation for SA. They are insignificant compared to the exponential
term. This theorem is uniform in 6 and thus shows convergence of the point vortex
and vortex blob methods for vortex sheets. The estimates (2.20) and (2.21) show that
6 does not help accuracy. According to (2.18), inclusion of 6 does allow larger roundoff
error, since it helps stabilize the growth of the error. The point vortex method conver-
gence is stated in (2.20), (2.21) with 3 =0, which leads to the following corollary.
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COROLLARY. If Sp is the solution of the point vortex equation Dtsp Bp[sp]q-e/At,
with roundoff error satisfying

]e]<=eAthe-p/h,

then

(2.22) t[s(t)- Sp(t)[I,,-<- c( h + e + At).

3. Global existence and uniqueness for the desingularized equation. Here we prove
Theorem 1. The proof relies on an iteration scheme and does not use the Abstract
Cauchy-Kowaleski Theorem. We show at each iteration that the approximate solution
is analytic in IIm el< p,(t), as defined in the theorem, and satisfies the bound (2.16).
The necessary introduction of trigonometric function, as in (2.3) for the periodic
problem rather than (2.2), makes the proof complicated technically. This section is
independent of the rest of the paper.

We introduce some space-saving notation and make some preparatory estimates.
Denote

E[s] Isl / Is’l / Is*l /

C[s]=sin(s-s’-)2
sin (s*-s*’-)2

+ ,2,

A2[s]= sin
2

+ cos

Al[S] = A2[s] + A2[s*]

in which s s(3,, t), s’= s(3,+ sc, t), s*= s*(3,, t), s*’= s*(3,+ sc, t). We first estimate
A[s]. We break this into two cases"

Case 1. If Isin ((s-s’-)/2)l< 1, .then clearly A2[s] <2.
Case 2. If [sin ((s-s’-)/2l> (i.e., if s-s’ has a large imaginary part), then

A2[s] <2lsin ((s-s’-/2)l+ 1. Therefore, for all s,

(3.1) al[s]<4+2 sin(s-s’-) +2 sin(-so)s*s*’2
Second, we estimate C[s]- which is the denominator in the integral operator.

On the real line Im 3’ 0, s*= g, and s*’= g’ so that

C[s]= sin (s- s’-)
2

A similar estimate is needed off the real line, where s* # K By a Taylor expansion in
Im % it follows that for Jim 3,[ =<

so that

sin
2

-sin sup
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This estimate allows us to replace g and g’ in the definition of C[s] by s* and s*’ with
a controllable error, so that IC[s]l can be bounded below as

Ic[s]l- sin
2

Combine this with (3.1) to obtain

(3.2) IC[s]l>-_ sin
2

Now we are ready to solve (5.4) by induction and the contraction mapping
principle. Let

So( y, t) So( y) Vt

and let

o,s*.+,(% t)= n[s.](% t).
(3.3)

Sn+ g/, O So "}/

Note that s, is 27r-periodic in y. We will show that

(3.4) IIIs t)lll o,, + IIIso t)ltl o,,, --< c ex’/48

by induction, in which p(t) is defined in Theorem 1. Suppose (3.4) is true for n and
show it is true for n + 1. Differentiate (3.3) or (2.4) in y to obtain

(3.5)

where

Estimate

(3.6)

O,sn*+,(’y, t)=/ G,[sn] d

G,[s.] k,[s. s’., s*. s*.’](s.r s’.)
+ k=[ s. s’., s.* s.*’]( s*., s.,).*’

k,[s.-s’.,s*.-s*.’]
sin ((s.* s*’- so)/2) + 2 sin ((s. s’ so)/2) sin ((s.* s*’- sc)/2)

2 [sin ((s. s’.- )/2) sin ((s.* s.*’- sc)/2) + 62]

(3.7)
6 cos ((s. s’. )/2) cos ((s* s.*’- )/2)

k[s. s’., s*- s’] =-- [sin ((s. s’.- :)/2) sin ((s.* s.*’- :)/2)+ 62] 2.

It follows that

(3.8)

(3.9)

so that

(3.10)

Similarly,

(3.11)

Ik, s. s; s*. s.*’]l < 1/2l c[ s, ][-2A ,[ s, 2,
62

Ik2Es. s’., s*.]l <---{ICEs.]l-2a,Es.]

lolls.I[

1
Gz[S. s._] dscOt(s*+-s*.)(y, t)

47ri
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where

G2[Sn, Sn-1]-- ll[Sn --Gl[Sn_l]

G:[ s.. s. ,] k,[ s. s’ * ’*s. s. ](s,, s,)

Sn_l- S 1](Sn_ly T--kl[Sn-l--Sn-1, --8n

+ kz[ Sn S’n, S S, ](Sn,- S,,)
_,-- ,](SL *’k2[sn-1 Sn-1, 17 Sn--1 7)"

Therefore G2[s., s._] is partially estimated by taking derivatives of G[s.], and hence
of the products k .(s.-s;) and k2" (s-s’), with respect to s.-s and s-s’.
The result is that

(3.12)
IG2[Sn, Sn--,]l sup {C[s]-2Al[S]2IE[(sn- Sn-1)T]

+sup {C[s]-4A,[s]4}(E[sn_,v]-+ E[snv])E[(sn Sn-,)]

in which the sup is taken over all As s s’ on the line segment connecting As sn s’n
and zs2 s, 1-s’ and similarly for s*n--l

Since by our induction hypothesis Sn and Sn- (if n--> 1) satisfy (3.4), then for
]Im Yl =</91(t), we have

(3.13) [C[Sn](’)/

and similarly

sin( sn-s’n-)2 ( *’e)sin
Sn*--S,

Sn-1 Sn-1 - sin n--1(3.14) C[Sn_l]l __--> sin
2

+ 62

Using (3.13), (3.14), and (3.1) we obtain

(3.15) Ial[Sn]l ca-4E[sny],
(3.16) JG2[s,,]J <- c6-S[(E[s,-,,]+ E[sn,])E[sn --Sn-1] +

Combine (3.15), (3.16) along with our induction hypothesis (3.4) and (3.5), (3.11) to get

It is clear that similar but simpler estimates hold for lls+,(t)lllo,(, and
(t)lllo,(,). Integration of (3.17) and (2.18) using (3.4) for n and large enough choice of
A, establishes (3.4) for n + 1.

Now let

(3.19) U,+=s+-s,,

(3.20) Vn+, S+,,
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so that for some

(3.21)

(3.22)

Define the following norm:

(3.23) u, vii sup e-,’lll UIIl,<, + sup

From (3.21), (3.22) it follows that

u+, Vn+ll] c1-{6-2/A1+ 6-8(A-8-+A1) -1 exp ((A-8+hl-h2)t)}

Consequently, by proper choice of A and A2, we obtain

(3.24)

This shows that the sequence sn has a unique limit s. Since s is the uniform limit of
analytic functions s,, it is analytic in IIm yl<= pl(t).

4. Outline of convergence proof. The proof of Theorem 2 involves the usual
estimates of consistency and stability errors as well as roundoff error. The effect of
these errors is stabilized by the assumption of analyticity. The basic tool for analyzing
the resulting solutions is the Cauchy-Kowalewski Theorem. Since the operators in the
Birkhoff-Rott equation are not differential operators, we use the Abstract Cauchy-
Kowalewski Theorem [2], [16], as well as a new but simple generalization to discrete
time.

TrEOREM 3 (Cauchy-Kowalewski Theorem, continuous time). Let 3,, with norm

I1’ I1 for p > O, be a scale of Banach spaces satisfying r,, Gp, 11"11.,> I1"11 for
p’ > p > O. Suppose that A u, t) satisfies

(i) There are constants C, R, K, Po such that for any 0 < p < p’< po, A(u, t) is a

continuous mapping of { u 3,,: Ilull,< R} {t) into.
(ii) For any p < p’ < po, any u, v 3 with u I1, < R, v < R, and any t,

(4.1) IlA(u, t)-A(v, t)[Io <= C(’-)-lll u- llo,.

(iii) A(0, t) is continuous in with values in 3 for every 0< p < po and satisfies

(4.2) IIA(O, t)llK(po-p)-.
Then the equation

d
(4.3)

dt
u(t)= A(u, t), u(O) =0

has a unique solution u(t) ,(,, with Ilu(t)ll,, < e for Itl < apo and p(t) Do- a-’ltl,
in which the inverse speed is a c min (C -1, R/K) and c is an absolute constant.
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THEOREM 4 (Cauchy-Kowalewski Theorem, discrete time). Let 0 < At < 1. Under
the same hypotheses as Theorem 3, the discrete-time equation (with Dt defined in (2.9))

(4.4) Dtu(nAt) A(u, nat), u(0) =0

has a solution tl(nAt)llo(t) with Ilu(nAt)ll,,<g for [nlAt<apo and p(t)=
po-a-llnlAt.

Note that the results of Theorem 4 are independent of the discretization size
Estimates for (2.3)-(2.6) will be found after differentiating the equations. The

usefulness of this differentiation is like that of differentiating a nonlinear differential
equation to get a quasilinear equation. For the spatially discrete (in y) equations (2.5),
(2.6) it is convenient to introduce the finite ditierence operator @ based on discrete
Fourier transform by

(4.5) @s=(i sgn (k)6(k, 6)gd(k)) vd,

in which b(k, 6)=min ([ki, 6 -2) as in (2.15). This represents a cutoff derivative.
Now we begin the proof of Theorem 2. By recombining (2.3)-(2.6) and applying

0v or @ to them, we obtain the following equations for s, s, so, and sa:

(4.6)

(4.7)

(4.8)

(4.9)

O,sr =OrB[s],

0, (s s)r 0r (B[s]- B[s])+ 0r (B[s]- B[s]),

O,(s- SD) (B[s]- BD[S]) + @(BD[S]- BD[SD]),

D,(S- sa) (D, -O,)@s + (B[s]- Bo[s]) + (Bo[s] Bo[sa]) e/At

with initial data

(4.10) sr (y, 0) Soy(y),

(4.11) (s- s)r(y, 0) 0,

(4.12) (s-so)=O,

(4.13) (s-sa) =0.

By the first assumption of Theorem 2, Ilsolloo < < 1. Thus the analytic existence
results of [5], [14] show that the BirkhofI-Rott equation (4.6), (4.10) has a solution
s(y, t) with Ilsr(t)llo2,) < K for Itl < a2po and p2(t) Po- t a_. The other assumptions
of Theorem 2 imply that

(4.14) II@el/Atlloo
In the next three sections, we prove the following bounds.
Consistency bounds. For any p’> p >0, any 6->0, any h =27r/N, and any s

satisfying

< c(p p)-3llovsllo,,(4.15) IIo,(B[s]- B[s])llo ’-

(4.16)

If s satisfies (2.3) then

(4.17)
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In particular if s is an exact solution of the vortex sheet equation (2.3) with
IIsllo,<<l, then for ap2(t)>p>O (so that we may take p’=p2(t) in (4.15)-
(4.17)),

(4.15’) I[o(B[s]- B[s]) lifo <-- c6(po- p)-’,

(4.16’) (U[s]- Uo[s])ll,o --< c(h + 6)(po- p)-’,

(4.17’) I1(0,- D,)s II,, <-- cAt(po-P)-
for any number c < 1, with c a constant depending on a.

Stability bounds. For any p’> p>0, any >-0, and any s, g satisfying
II011,< ,
(4.18) Ila(n[s]- n[]) II. --< c(p’- p)-’ Ilo(s ) I[.,.

For any such p, p’, and 6 and any s, g satisfying @s o’ < K, gll,, < ,
(4.19)

Discretization bounds. For any p’> p > 0, any 6---0 and any s,

(4.20) IIsllap <=

(4.21) Ilsll,o ---< Ilsllo.
Now we are ready to apply the Cauchy-Kowalewski Theorems 3 and 4 to solving

the equations above.
(a) 3-equation. To solve (4.7) (or (2.4)) for s with s known, set

(4.22) u=Or(s-s),

(4.23) a(u, t)=Or(B[s]-B[s])+Or(B[s]-B[s- u]).

Assumptions (i)-(iii) of Theorem 3, with R K c6, C c, are implied by estimates
(4.15’), (4.18), which yield

(4.24)
lid(0’ t)ll < c6(po-p)-’,

lid(u)- a(a)llo < c(p’-- p)-II u

for cep2(t)>p’>p>O, with a<l. Therefore a solution u=(s-s) r for (4.7), (4.11)
exists for t<=aapo with p(t)=apo-a-t and tlullo,)_<-c, i.e., with

(4.25) II(s s)(t)I1., <-- c.

(b) Space discretization. To solve (4.8) for s, set

u=(s-so),
(4.26)

A(u, t)= (B[s]- BD[S])+ (BD[S]-- BD[S--

@-l is well defined since k is discrete and g(0) can be set to 0. Use the norm I1"
and bound IIsllo --< II0sllo by (4.20). Assumptions (i)-(iii) are implied, with R K
c(h + 6), C c, by the estimates (4.16’) and (4.19), i.e.,

(4.27)
IIm(0, t)llo<=c(h+
[IA(u, t)-A(a,
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for ap2(t)>p’>p>O. Therefore a solution U=@(S--SD) for (4.8), (4.12) exists for
t<=aapo and Ilullf,,<-c(h+6), i.e., with

(4.28) II(s- SD)(t)]]v, <- c(h + 6).

(c) Space and time discretizations. To solve (4.9) for s, set

u=(s-s),
(4.29)

a(u, t) (0,- D,)s + (B[s]- BD[S]) + (BD[S]- BD[S- -’ U])+ el/t.
Use the norm . [[. Estimates (4.14), (4.17’), (4.19), and (4.16’)imply that

(4.30)
A(0, t) ]J,o N c(h + + At + e)(po-p)-’,

lA(u, t)-A(a, t)]l" < c(p’-p)-’llu-all,o,,
By Theorem 4, with R K c(h + 6 +t + e), C c, there is a solution u (s s)
for (4.9), (4.13) for tNapo and Ilullo(,c(h++t+), i.e., with

(4. [ o(, c(h + + + .
Combination of results (4.25), (4.28), and (4.31) yields the results (2.19)-(2.21)

of Theorem 2. Therefore the proof of Theorem 2 is complete once the inequalities
(4.15)-(4.21) are verified.

5. Technical lemmas. In this section several technical lemmas are presented on
the discrete Fourier transform, the analytic norms, a trigonometric integral, an
expansion of the integrand or summand of B or BD, and the trapezoidal rule. The
first two lemmas present basic facts about the discrete Fourier transform and the
analytic norms.

LEMMA 1. (Discrete Fourier Transform). Let Ilsv]]o <. Then for-N/Z<-.k<-_
N/2,

(5.) I(-U)(k)l<-_e-’/2 min ([[s[[o, N-1211sllo).
Proof Let h 27r/N. Estimate

N

I(- d)(k)l I(k)- N-’ 2 e-’hs(jh)]
j=l

(k) N -1 E (1) e-2=i(k-,)j/N
l=--eo j=l

rnO

m#O

e-oN min {]]S[[p, 2N-1lls]]o},
which finishes the proof of Lemma 1.

LEMMA 2. (The norm I]" lifo.) For any 6 >- 0 and p’> p > O,

(5.3)

(5.4)

(5.5)

(5.6)

0 fllo C P! P)--lll f[[ o’,
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Proof (i) Since O(k, 6)= min (]k[, (--2), then

(5.7) ch(m+n, 6)<=oh(m, 6)+oh(n, 6).

Since the convolution formula works for the discrete Fourier transform, it follows that

fg la, Y, 12 f" (1) d (k- l) e"(’’

(ii) First bound (k, 6) e-’(’a)cAp- with Ap=p’-p. Thus

IIfllo 2 b(k,a)ld(k)le
Ikl<=s/2

_-< sup
IklN/2 IklN/2

Estimate (5.4) is derived in a similar way.
(iii) Use an intermediate step of (5.2) to estimate

/11o
IklN/2

/2

If" (k)l e "’+(k’a)

Ik[(If(k)l + I(i" -f)(k)l) elkl

(5.9)
m-t-n

E H (6) II *(6)
/l+.-.+l,,,+l, k j= .j= m+l

(i2),+,+, fo - (sin _) ()
dsC,

j=, (sin2 s/2 + 82) N

22 Ikl e"lkll/(k)l

-ILII,
which finishes the proof of Lemma 2. E]

Estimation ofthe operator B, its approximations, and their differences is performed
in the Fourier norms. In order to deal with the nonlinearity of the kernel of B, Ba,
and BD with the Fourier transform, we expand the integrand in power series in (s- s’)
and (s*-s*’). In other words, we wish to express Ba, B and BD as a sum of integrals
of the form

,.,., f= (sin :/2)r0()
(5.8) Fa [s](y, t)=

J-= (s-s’)(s*-s*’)"(sin2/2+62) dsc,

where m + n + r= 2N-1 is odd and () is a smooth function in and is also even.
This allows for the easy calculation of the Fourier transform"

m+n
m,,r[sJ(k,t)= E H (6) H *(1)

l+...+lm+,,=k j=l j=m+l

m+, (sin /2)ro()
(1 e*’e d

(sin2 /2+ 62) uj=

E Ikl eOll(I/(k)l+ E If(k+mN)l)
Ikl<=N/2

mO
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in which lm+n+ 12N_ and 12N--k. Thus we are led to an estimate of a

trigonometric integral in order to estimate
We will first give an expansion lemma, which will tell us how to expand the kernels

of B, B, BD. Then we will give the trigonometric integral lemma.
LEMMA 3. (Expansion lemma for B, B, BD, Bp.) Let x, y, w, satisfy

lyl < ll/2, Il < and Iw[ < 1. Define
cos (x- so)/2 sin (y- )/2

F(x, y, , fi)
sin (x- )/2 sin (y- :)/2 + 62

Then

F(x, y, , 6)- F(x, y, , O)= 2 X sin
N=I m+n+r=2N-1

(5.10)
[a.(, 6)(sin2 /2+ 6)----am.r(, 0) (sin /2)-],

F(x,y,,6)-F(,,(,)= [am.vqr()(x-)+bm.vq(()(y-)]
(5.11) = +.+V+q+r=ZN-2

xy"Pq(sin /2)(sin /2 + 62) -N,

(5.12)

1
cot(-x :) + (1 + W) -1 cot SO/2

x + 2w sin so/2 "w
x

a,.. sinm+2
x "+ Y.,. =o /2 .,=o (sin so/Z)

in which amnr, amnpqr, bmnpqr, a,,,., b,. are smooth functions of and 8, which are even in
with

E Cr[lamnpqrl-t-la’.pqr] + Ibrnnpqrl-+-Ib’m.pqrl] <
m+n+p+q=M r-=l

m+n=M r=l

a,..(, 8)- a,..(, O) 62d(, 8)

for any c where d is smooth in and 3 and depends only on c.
The proof of this lemma is quite tedious and uninstructive. It involves products

of expansions, repeated use of the binomial theorem, and various trigonometric
identities. The main idea, however, is quite general and can be used in the context of
many other problems. The idea simply is that since the kernels are analytic in the
x, y, w variables, we can express them as power series in these variables. In our
convergence proof, we will have

X-- S--S,
(5.13) y=s*-s*’,

W--Sy.

We emphasize that this lemma is merely a tool for obtaining bounds on B, B, BD,
and our argument depends only on the existence of such an expansion and not on its
exact form.

As we have seen in (5.9), the estimation of the Fourier transform of B, B, BD
requires the estimate of several trigonometric integrals. We therefore need the following
lemma.
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LEMMA 4. (Trigonometric integrals). Let 6 > O, kl,"’, k2n, k be any numbers
and d/ a smooth function which is even in . Then,

j-----1 sin /
0() d <-_ c [kjl

j=l

f." ( e’",,e-1)(eike-l-2yiksin/2) S

(5.15)
m=l

;n}7 sin- /2 0()

(5.16) sink {(sin /2+)- -(sin /2)-}() d < cN
m=l

,,=, (sin s:/2+ a2),/2 q,(s:) ds: -<_ c ,,,=,I-I &(k,,,,

(5.18) ( ] sin (kmjh/2) ).j=O m=l (sin2 (jh/2)+62)1/20(Jh) <-c m=lI-I th(k,,,, t),

in which d?(k, 6) =min (]kl, t -2) as before and c< constant sup
Remarks. The first three estimates (5.14)-(5.16) of Lemma 4 are used for con-

sistency and are not delicate. The last two estimates (5.17) and (5.18) are used for
stability bounds and require more care. As will be seen in the next section, these last
two estimates show that B is no worse than a derivative. We also believe that this
result could be improved by replacing 6 -2 by 6 -1 in the definition of &, but we were
unable to prove this.

ProofofLemma 4. The first three estimates are straightforward. Denote the integral
on the left side of (5.17) as In(0, k, ., kn). We will obtain estimate (5.18) by induction.
We first estimate 11. Replace q by the more general function

(5.19) q :r(sin2 /2 + 62) -r/2.

To estimate I1, denote [x] integer part of x, and

0(2)
f(s:) (sin2 :+ 12) 1/2"

Decompose 11 as

(5.20) I,(b) J, + J2 + J3,

in which

(5.21)

(5.22)

sin (k, so:/2)IJl[
o (sin s:/2 + t2) 1/2 (:) d

<= I[=/"’ k’lO(#) d
-2rr sup IoI,

sin k /2
k,/4a,,/k, (sin :/2 + 62) /2

=/2 sin k(2
a,/4=/, (sin 7 }2),/ (2) d
/2

2
k,/]/, (+)/ d < c sup
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since Ir/2-[k,/4](2r/k,)l< r/4, and

(5.23)

k/4](4"n/k

r/k
sin k,/2)f(/2) d

2[kl/4]jE ( 2"tr(j+l)/kl

d 27rj/kl

sin (kl)f(t) d

[kl/43 f "rr(2j+l)/kl
<_-2

d2,rcj/kl
Isin (k,)l [f()-f(+ "n/k)l d

[k|/4] f "tr(2j+l)/kl
<_-2 E "n’k- supf’()] d(

j=l d2wj/k

2 E sup If’()l
2rj/k :< .n-(2j+ )/k

ck- 2 sup sup kl)r+l 2 (r+3)/2
j=l (sin2 (2rj/ +

-< c sup (101 + Y
,,1/... (y2+ 1)

Combine (5.19)-(5.23) to obtain (5.17) for n 1.
Now, a simple estimate is that In(q)= (r/2)sup 14,16 so that for n->1

(5.24) In (q)-<- c sup 116 -2(n-1).

Next, differentiate In+(q) with respect to kn+l and use a trigonometric identity to find
that

d In+,(, kl,
(5.25) dkn+l

1/2{In(q, k,,-.., kn+ kn+l) + In(O, kl,’’’, kn kn+,)}

in which tp qsC(sin s/2+ 6)-1/ which is again of the form (5.19). Also,

In+,(,k,,. ,kn, O)--O

so that

(5.26)

In+,( q, k,, kn+l)

1 [" k,,+ z

I [In(O, k,, kn q-- kn+,)+ In(O, k,, k kn+,)] dkn.
2ao

Now, let kl, , kn+l be ordered by decreasing magnitude. We have already established
(5.17) for n 1. By way of induction, we suppose that (5.17) is true for n and show
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it for n+l. If Ik,+,l> -2, then (5.24)implies (5.17). If Ikn+,l< 3 -2, then (5.26)and
(5.17), with a rearrangement of the k;’s, for n imply that

Iln+,(,kl,. ,k.+,)

<-c ch(kj 3) ch(k-k, 3)+ch(kn+k, 3) dk
\j=2

(5.27)

n-1

<= c [[ ch(k, 3)lk,+, min (Ik, I, 6 -2)
j=2

n+l

-<_ c I1 4(k, a)
j=2

since [k,]> ]kn+l] which finishes the induction and proves (5.17) after rearrangement
of the kj’s. Estimate (5.18) is proved similarly.

Lemma 5. (Trapezoidal rule for periodic functions.) Iff() has period 2vr and
sup Ifeel < c < oo then the error er in the trapezoidal rule for integration, i.e.,

N

(5.28) er f() d h Y f(jh ),

has the bound

(5.29) lerl <- ch 2 sup

Proof Following [1] use the Poisson summation formula, but for 2r- periodic
functions, i.e.,

N

(5.30) h Ef(jh)=2r E f(mN),

which is easy to prove. Since I2of() d= 2vrf(0), then

lel=2rr I(mN)l
m-O

(5.31) 2,rrN-2 m-2le(rnN)l
4vr2N -2 sup Ifeel(E rn-2)

6. Stability estimates. In this section, the stability error bounds (4.18), (4.19) are
derived. To prove (4.18), we require bounds on the Fourier coefficients of the difference
Ba[s]-Ba[g]. To evaluate and estimate these Fourier coefficients, expand the integral
operator B using Lemma 3, with x s- s’, y- s*-s*’. Then use the integral bounds
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in Lemma 4. The expansion is

(B[s]- B[])(y, t)

(6.1)

--, g, g*,[F(s-s’,s*-s*’ ,8)-F(g s, ,,8)]dsC

N=I m+n+p+q+r
=2N-2

[{() ’ () s* -*,mnpqr,S--S--,-]’- )--t-bmnpqr( -s*’ -1-

(s s’)m(s*- S*’)’( ,’)P(*-- *’)q (sin2 sc/2)r(sine so/2 + 82)-N dsc,
in which s s(y), s’= s(y+ so), etc. The Fourier transform in , of this is

(B[s]- Bo[])^(k, t)
m+n m+n+p m+n+p+q

N=I m+n+p+q+r kl+...+k j=l j=m+l j=m+n+l j=m+n+p+l
=2N--2 =k

(6.2)

(sin2/2) (l-e%e) (sin2/2+a2)-
{a mnpqrk mpqrk

where M=m+n+p+q+l and (k). Now, for a() that is even in

J a()(sin /2)2-- (1-ek,e) (sin2 /2+ a2)- dg
j=l

(6.3) (-2i)v a()(sin /2+ ae)- ee/a sin d
j=l

(-2i) M+’ a()(sin /2+)- sin d
j=l

in which kM+ k2N- 1, k: k. From Lemma 4, J is bounded by

j=l

(6.4)
M

c sup (lal+la’l)H Ikl.
Using a amnpq or bmnpq and the bounds from Lemma 3, we estimate B[s]- B[g] by

M=I k+...+k j=l

where C is a constant depending on C and amnpqr, bmnpqr,

M k+...+kM
=k

Multiply both sides by ell and sum over k to obtain

IIB[s]- B[]IIo 2c, sup
c, IIs, llo’ Cl llllo

tls, 11
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so that

(6.6) liBels]- B[]II, IIs- gll,.
Finally (4.18) follows from (6.6) and (5.4). Inequality (4.19) is proved in an analogous
fashion.

7. Consistency. The consistency estimates are less delicate than the stability esti-
mates, since they involve known smooth functions. However, to obtain bounds that
are uniform in 6, we remove the singularity in B, which leads to a second derivative
term in the trapezoidal rule approximation. This term was first noticed by Van de
Vooren [15]. As before, evaluation of the Fourier coefficients for estimation by the
norms I1" IIo requires power series expansion of the kernels of the integral operators
B, B, etc., using Lemma 3. The resulting terms of the series are integrated and bounded
using Lemma 4.

First estimate B-B. As in the previous section, the Fourier transform can be
written in terms of the trigonometric integral in (5.10). From Lemma 3 this is bounded as

m+n

[(B[s]-B[s])^(k)[ E E E I-I (kj) H *(kj)
N=I m+n+r kl+...+knj=l j=m+l

=2N-1 =k

(7 1)
(sin /2) sin k/2 {a(, )(sin /2+)

j=l

M

2 c’lkl 2 I-I
M=I j=

It follows that for II0sJl, < and p’> p > O,

--amn(, 0)(sin /2)-2N)} ds

(7.2) liB[s]- B[s]ll, cS(p’-p)-llo,sllo,,
which with (5.4) implies (4.15).

Next estimate B-Bp. In order to apply error estimates for the trapezoidal rule,
the singularity in B must be removed. Following Van de Vooren [15] write

B[s](y)=(47ri)- cot(s-s’-s) ds
(7.3)

1
=(47ri)-’ cot-(s-s’-)+2(s+ 1)- cot sods,

in which s s(y) is independent of s and the second term in the integral integrates
to zero. The integrand in (7.3), which we denote by f(y, ), is now analytic in : and
has the value f(y, 0)=(1 + s)-2s. According to the trapezoidal rule for periodic
functions

N/2-1 }f(y, jh) + er(y)
j=--N/2+I

N 1
(7.4) h j21= cot - s() s( y +jh -jh + h( 1 + sv( y) )-2svv() + eT( y)

By[s](3/) + h(1 + s)-Zs + eT(3’).
The Van de Vooren term e2 --h(1 + s)-Zs is bounded by

(7.5) e2 o -<- h s
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In order to estimate the p-norm of the error er(7) for the trapezoidal method,
return to the expansion of the kernel of B[s](y, t) given in Lemma 3, i.e.,

f(7, so) amn()
(St--s)ms’y

St
m,n:O (sin (/2) m+2 --s-2sr sin /2)

(7.6)

+ bm
(s -s)

m= (sin /2) m-l"

We now give the strategy for obtaining this discretization error. By Lemma 5,

(7.7) er(y)= 2 f(Y, raN)
rn0

so that

r(k)= 2 fv^e(k, mN)
mO

where sc and 3’ denote the Fourier transform in sc and y, respectively. Thus

I(k)l <- ]fe"(k, mg)[

(7.8) 2N-22 mN)[
m

N42N-2 sup IfYe(k, e)l 2

N

f(k, )= Y E [I (kj)
N=I k+’..+kN=k j=l

(7.9) "( E
m+n=N-1

amn(j=m+2lkJl) mllj=2 \(eii--l)sin,/2,,I

sin2 /2 j=l
ei"e-1) )sinsC/2

sin/2

Then by Lemma 4,

N+I

(7.10) Ifa(k,:)l-<lk[ E E Ikl fI Ikjll(kj)l.
N kl+.. "+kN j=

=k

Combine this with (7.8) to get

N+I

(7.11) [r(k)[<=ch2lkl E E I/1 II Ikll(k)l.
N=I kl+-"+k j=l

=k

Multiplying by elkl and summing over k, we get

(7.12) e-[[o
for Ilsrl]o,< K and p’>p>0. Combining (7.5) and (7.12) gives

(7.13) IlBEs-I
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Now, as in the estimate of B-B, we can show analogously that
< c6(p p)-i(7.14) B[s]- B,[s] Jl, ’-

which together with (7.13) proves (4.16).
Finally, estimate the time discretization error to be

(7.15) (0,- D,)s((n + 1)At) t

By differentiating (2.3) for s in t, we obtain

(7.16) Os* PV (s,- s’)0.,, cot (s s’- ()/2 d(.

This can be expanded in powers of s-s’ and s*-s*’ using Lemma 3, and then the
Fourier transform norm ]]Os can be estimated from Lemma 4. Since O,s*= B[s],
the result is

(7.17)
Ila oB[s]l

(p’-p)-’llosll,,.
Use (7.17), (7.15), and (5.5) to obtain (4.17). This concludes the proof of
Theorem 2.

Acknowledgment. We thank Robert Krasny for many illuminating conversations
and especially for his suggestion that our convergence proof would work for the point
vortex approximation by using Van de Vooren’s correction term.

Note aSclel in proof. Convergence of the point vortex method for smooth flows
has been recently proved by Goodman, Hou, and Lowengrub in 2 and by Hou and
Lowengrub in s (both to appear in Comm. Pure Appl. Math.). Hou and Lowengrub
have also shown convergence with spectral accuracy for a modified point vortex method
for vortex sheets, which was developed by Shelley to eliminate the Van de Vooren
correction term. Their proof requires analytic initial data and exponentially small
roundoff error but does not use the discrete Abstract Cauchy-Kowalewski Theorem.
As a result it is much simpler than the analysis of this paper.

REFERENCES

[1] C. ANDERSON AND C. GREENGARD, On vortex methods, SIAM J. Numer. Anal., 22 (1985), pp.
413-440.

[2] K. ASANO, A note on the abstract Cauchy-Kowalewski theorem, Proc. Japan Acad. Ser. A Math. Sci.
64 (1988), pp. 102-105.

[3] J. Y. BEALE AND A. MAJDA, Vortex methods I: convergence in three dimensions, Math. Comp., 39
(1982), pp. 1-27.

[4] C. BORGERS, On the numerical solution of the regularized Birkhoff equation, Math. Comp., to appear.
[5] R. CAFLISCH AND O. F. ORELLANA, Long time existence for a slightly perturbed vortex sheet, Comm.

Pure Appl. Math., 39 (1986), pp. 807-838.
[6], Singularity solutions and ill-posedness for the evolution of vortex sheets, SIAM J. Math. Anal.,

20 (1989), pp. 293-307.
[7] A. J. CHORIN, Numerical study of slightly viscous flow, J. Fluid Mech., 57 (1973), pp. 785-796.
[8] G. COTTET, Mdthodes particulaires pour l’dquation d’Euler dans le plan, Thse 3brae Cycle, University

of Paris, 1986.
[9] V. M. DEL PRETE AND O. H. HALD, Convergence of vortex methods for Euler’s equations, Math.

Comp., 32 (1978), pp. 791-809.
[10] J. DUCHON AND R. ROBERT, Global vortex sheet solutions of Euler equations in the plane, Comm.

Partial Differential Equations, to appear.



1080 RUSSEL E. CAFLISCH AND JOHN S. LOWENGRUB

11 D. EBIN, lll-posedness of the Rayleigh- Taylor and Helmholtz problem for incompressible fluids, Comm.
Partial Differential Equations, 13 (1988), pp. 1265-1295.

[12] O. H. HALD, Convergence of vortex methods for Euler’s equations, III, SIAM J. Numer. Anal., 24
(1987), pp. 538-582.

[13] R. KRASNY, On the singularity formation in a vortex sheet and the point vortex approximation, J. Fluid
Mech., 167 (1986), pp. 65-93.

[14] Desingularization of periodic vortex sheet roll-up, J. Comp. Phys., 65 (1986), pp. 292-313.
[15] D. I. MEIRON, G. R, BAKER, AND S. A. ORSZAG, Analytic structure of vortex sheet dynamics, Part 1,

Kelvin-Helmholtz instability, J. Fluid Mech., 114 (1982), pp. 283-298.
[16] T. NISHIDA, A note on a theorem of Nirenberg, Differential Geometry, 12 (1977), pp. 629-633.
[17] P. L. SULEM, C. SULEM, C. BARDOS, AND U. FRISCH, Finite time analyticity for the two and three

dimensional Kelvin-Helmholtz instability. Comm. Math. Phys., 80 (1981), pp. 485-516.
[18] A. V. VAN DE VOOREN, A numerical investigation of the rolling-up of vortex sheets, Proc. Roy. Soc.

London, Ser. A, 373 (1980), pp. 67-91.


