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CONVERGENCE OF TWO SIMPLE METHODS FOR SOLVING MONOTONE

INCLUSION PROBLEMS IN REFLEXIVE BANACH SPACES

CHINEDU IZUCHUKWU1, SIMEON REICH2, YEKINI SHEHU3

Abstract. We propose two very simple methods, the first one with constant step sizes and the second one with
self-adaptive step sizes, for finding a zero of the sum of two monotone operators in real reflexive Banach spaces.
Our methods require only one evaluation of the single-valued operator at each iteration. Weak convergence re-
sults are obtained when the set-valued operator is maximal monotone and the single-valued operator is Lipschitz
continuous, and strong convergence results are obtained when either one of these two operators is required, in
addition, to be strongly monotone. We also obtain the rate of convergence of our proposed methods in real reflex-
ive Banach spaces. Finally, we apply our results to solving generalized Nash equilibrium problems for gas markets.

Keywords: Forward-backward type method; monotone inclusion; weak convergence; strong convergence; Ba-
nach spaces.
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1. Introduction

Let X∗ be the dual of a real reflexive Banach space X and let B : X → 2X
∗

be a set-valued operator. The Null
Point Problem (NPP) is formulated as follows:

Find v ∈ X such that 0∗ ∈ Bv.(1.1)

This problem is very important in optimization theory and related fields. Many optimization problems such as
minimization problems, equilibrium problems, and saddle point problems, can be modelled as Problem (1.1). For
instance, if B is the subdifferential of a proper, convex and lower semicontinuous function, then Problem (1.1)
is equivalent to the problem of minimizing this convex function. Also, Problem (1.1) describes the equilibrium
or stable state of an evolution system governed by the operator B, which is very important in ecology, physics
and economics, as well as in other fields (see [13]). One of the most popular methods for solving Problem
(1.1) is the Proximal Point Algorithm (PPA), which was introduced in Hilbert spaces by Martinet [23] in 1970.
The PPA was further developed by Rockafellar [34] and Bruck and Reich [9] in 1976 and 1977, respectively.
Since then, the PPA has been modified by several authors in order to solve Problem (1.1) (see, for example,
[4, 25, 31, 32, 33]). We mention, in particular, the paper by Reich and Sabach [32]. The authors of this paper
introduced the following modification of the PPA for solving Problem (1.1) in a reflexive Banach space:































x1 ∈ X

yn = ResgµnB
(xn)

Cn = {z ∈ X : Dg(z, yn) ≤ Dg(z, xn)}
Qn = {z ∈ X : 〈∇g(x1)−∇g(xn), z − xn〉 ≤ 0}
xn+1 = ProjgCn∩Qn

(x1), n ≥ 1,

(1.2)

where {µn} is a given sequence of positive real numbers, ResgB is the resolvent of B, ∇g is the gradient of g and
ProjgC is the Bregman projection of X onto a nonempty, closed and convex subset C of X.
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In the same paper, the authors studied two extensions of Algorithm (1.2) that solve Problem (1.1) for finitely
many maximal monotone operators in real reflexive Banach spaces.

Continuing the work of Reich and Sabach [32], Ogbuisi and Izuchukwu [27] studied the following inclusion
problem in a reflexive Banach space X:

Find v ∈ X such that 0∗ ∈ (A+ B) v,(1.3)

where A : X → X
∗ is a single-valued operator and B is as defined in (1.1).

If the operators are monotone, then Problem (1.3) can be referred to as a Monotone Inclusion Problem (MIP). It
is worth mentioning that if B = NC in Problem (1.3), where NC is the normal cone associated with a nonempty,
closed and convex subset C of X, then Problem (1.3) reduces to the classical variational inequality problem.
Also, when A = 0, we recover the NPP (1.1) as a special case of Problem (1.3). Furthermore, several problems
in signal processing, image recovery and machine learning can be formulated as Problem (1.3). Therefore, we
see that Problem (1.3) is quite general; it naturally includes many other important optimization problems such
as minimization problems, linear inverse problems, saddle-point problems, fixed point problems, split feasibility
problems, Nash equilibrium problems in noncooperative games, and many more. Several authors have studied
Problem (1.3) using the well-known forward-backward splitting method and its modifications in real Hilbert
spaces (see, for instance, [1, 3, 10, 14, 19, 39, 30, 21]).
In order to solve Problem (1.3) in reflexive Banach spaces, Ogbuisi and Izuchukwu [27] proposed the following
iterative method:































u, x1 ∈ C, C1 = C

yn = ∇g∗ (αn∇g(u) + βn∇g(xn) + γn∇g(T (xn)))

un = (ResgµB ◦Ag
µ)yn

Cn+1 = {z ∈ Cn : Dg(z, un) ≤ αnDg(z, u) + (1− αn)Dg(z, xn)}
xn+1 = ProjgCn+1

(x1), n ≥ 1,

(1.4)

where µ > 0, {αn}, {βn} and {γn} are sequences in (0, 1), Ag
µ := ∇g∗ ◦ (∇g−µA) and T is a Bregman strongly

nonexpansive mapping.
These authors proved that the sequence generated by Algorithm (1.4) converges to a common solution of Problem
(1.3) and the fixed point problem for the mapping T , provided that the solution set of the problem is nonempty,
A is Bregman inverse strongly monotone, B is maximal monotone, limn→∞ αn = 0, αn + βn + γn = 1, and
0 < a < βn, γn < b < 1.
Recently, Chang et al. [12] proposed a method similar to (1.4) (see [12, Algorithm (11)] for solving Problem
(1.3) when A is Bregman inverse strongly monotone and B is maximal monotone. Other recent methods for
solving the MIP (1.3), under the same assumptions on A and B in reflexive Banach spaces, can be found in
[26, 28, 29, 38, 40].

Very recently, Sunthrayuth et al. [37] proposed the following modification of Tseng’s splitting method [39]
for solving Problem (1.3) in a reflexive Banach space when A is monotone and Lipschitz continuous, and B is
maximal monotone:



















x1 ∈ X

yn = ResgµnB
∇g∗ (∇g(xn)− µnAxn)

zn = ∇g∗ (∇g(yn)− µn(Ayn −Axn))

xn+1 = ∇g∗ ((1 − αn)∇g(zn) + αn∇g(Tzn))) , n ≥ 1,

(1.5)

where {αn} is a sequence in (0, 1), µn = γlmn and mn is the smallest nonnegative integer such that

µn||Axn −Ayn|| ≤ µ||xn − yn||,(1.6)

with γ > 0, l ∈ (0, 1), µ ∈ (0, α) and α > 0.
Furthermore, they proposed a variant of (1.5)–(1.6) by replacing only (1.6) with a self-adaptive step size pro-
cedure (see [37, Algorithm 2]) for solving Problem (1.3) under the same assumptions on A and B in a reflexive
Banach space.
At this point we mention another modification of Tseng’s splitting method due to Shehu [36] for solving the
MIP (1.3) in the context of 2-uniformly convex and uniformly smooth Banach spaces, when A is monotone and
Lipschitz continuous, and B is maximal monotone.
Unfortunately, all these methods for solving the MIP (1.3), when A is monotone and Lipschitz continuous in
reflexive Banach spaces, require at each iteration at least two evaluations of A and this might affect the efficiency
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of these methods especially in situations where evaluating the operator A is expensive, for instance, in problems
arising from optimal control.

In this paper, inspired by the results in [12, 27, 21, 36, 37], we propose two methods for solving the MIP (1.3)
in real reflexive Banach spaces. Our methods have simple and elegant structures, and they only require one
evaluation of A at each iteration. We obtain weak convergence results when B is maximal monotone and A is
Lipschitz continuous, and we obtain strong convergence results when either A or B is required, in addition, to
be strongly monotone. We also obtain the rate of convergence of our proposed methods in real reflexive Banach
spaces and apply our results to solving generalized Nash equilibrium problems for gas markets.

The rest of our paper is organized as follows: Section 2 contains basic definitions and results. In Section 3, we
present and discuss the methods we propose. In Section 4, we obtain some convergence results for our methods.
As special cases, we also obtain methods for solving the NPP (1.1) and the variational inequality problem. In
Section 5, we consider a generalized Nash equilibrium approach for modelling gas markets and apply our results
to solving this problem. We then give some concluding remarks in Section 6.

2. Preliminaries

Let X be a real reflexive Banach space and let X∗ be its dual. Let g : X → (−∞,+∞] be a function. The domain
of g, denoted by domg, is defined by domg := {x ∈ X : g(x) < +∞}. The function g : X → (−∞,+∞] is called
proper if domg 6= ∅, and convex if g(λx + (1 − λ)y) ≤ λg(x) + (1 − λ)g(y) ∀x, y ∈ X, λ ∈ (0, 1). A function
g : domg ⊆ X → (−∞,∞] is said to be lower semicontinuous at a point x ∈ domg, if g(x) ≤ lim infn→∞ g(xn)
for each sequence {xn} in domg such that lim

n→∞
xn = x. It is is said to be lower semicontinuous on domg if it is

lower semicontinuous at each point in domg.

The Fenchel conjugate of g is the function g∗ : X∗ → (−∞,∞] defined by

g∗(x∗) := sup{〈x∗, x〉 − g(x) : x ∈ X}.
Let x ∈ int(domg), where int(domg) stands for the interior of the domain of g. Then for any y ∈ X, we define
the right-hand derivative of g at x by

g′(x, y) := lim
λ→0+

g(x+ λy)− g(x)

λ
.(2.1)

The function g is said to be Gâteaux differentiable at x if the limit in (2.1) exists as λ → 0 for each y ∈ X.
In this case, the gradient of g at x is the linear function ∇g(x), defined by 〈∇g(x), y〉 := g′(x, y) ∀y ∈ X. We
say that g is Gâteaux differentiable if it is Gâteaux differentiable at each x ∈ int(domg). If the limit in (2.1) is
attained uniformly for y ∈ X with ||y|| = 1, we say that g is Fréchet differentiable at x. If the limit in (2.1) is
attained uniformly for x ∈ C and for y ∈ X with ||y|| = 1, then we say that the function g is uniformly Fréchet
differentiable on the subset C of X.
The function g is said to be Legendre if it satisfies the following two conditions.

(i) g is Gâteaux differentiable, int(domg) 6= ∅ and dom∇g = int(domg);
(ii) g∗ is Gâteaux differentiable, int(domg∗) 6= ∅ and dom∇g∗ = int(domg∗).

It is well known that ∇g = (∇g∗)−1 in reflexive Banach spaces. Combining this fact with conditions (i) and (ii),
we get that ran∇g = dom∇g∗ = int(domg∗) and ran∇g∗ = dom∇g = int(domg), where rang denotes the range
of g.
We also know that conditions (i) and (ii) imply that the functions g and g∗ are Gâteaux differentiable and
strictly convex in the interior of their respective domains. Hence, g is Legendre if and only if g∗ is Legendre.

The bifunction Dg : domg × int(domg) → [0,+∞), defined by

Dg(x, y) := g(x)− g(y)− 〈∇g(y), x− y〉,(2.2)

is called a Bregman distance. If g is a Gâteaux differentiable function, then the Bregman distance has the
following important property, called the three point identity: for any x ∈ domg and y, z ∈ int(domg),

Dg(x, y) +Dg(y, z)−Dg(x, z) = 〈∇g(z)−∇g(y), x− y〉.(2.3)

A Gâteaux differentiable function g is called strongly convex (see [6, 24]), if there exists γ > 0 such that
〈∇g(x)−∇g(y), x− y〉 ≥ γ||x− y||2 or equivalently, g(y) ≥ g(x) + 〈∇g(x), y − x〉+ γ

2 ||x− y||2 ∀x, y ∈ domg.
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Remark 2.1. If g is a strongly convex function with constant γ > 0, then

Dg(x, y) ≥
γ

2
||x− y||2 ∀x ∈ domg, y ∈ int(domg).(2.4)

The function g : X → R ∪ {+∞} is said to be strongly coercive if

lim
||x||→∞

g(x)

||x|| = +∞.

Remark 2.2. (see [11]). If g : X → R is strongly coercive, then

(i) ∇g : X → X
∗ is one-to-one, onto and norm-to-weak* continuous;

(ii) {x ∈ X : Dg(x, y) ≤ r} is bounded for all y ∈ X and r > 0;
(iii) domg∗ = X

∗, g∗ is Gâteaux differentiable and ∇g∗ = (∇g)−1.

The operator A : X → X
∗ is said to be L-Lipschitz continuous if there exists L > 0 such that

‖Ax−Ay‖ ≤ L‖x− y‖ ∀x, y ∈ X.

A is called τ-strongly monotone if there exists τ > 0 such that

〈Ax−Ay, x− y〉 ≥ τ‖x− y‖2 ∀x, y ∈ X,

and monotone if

〈Ax −Ay, x− y〉 ≥ 0 ∀x, y ∈ X.

If B is a set-valued operator, that is, B : X → 2X
∗

, then B is called τ-strongly monotone if there exists τ > 0
such that

〈u− v, x − y〉 ≥ τ‖x− y‖2 ∀x, y ∈ X, u ∈ Bx, v ∈ By,
and monotone if

〈u− v, x− y〉 ≥ 0 ∀x, y ∈ X, u ∈ Bx, v ∈ By.
The monotone operator B is said to be maximal if the graph G(B) of B, defined by

G(B) := {(x, y) ∈ X× X
∗ : y ∈ Bx},

is not properly contained in the graph of any other monotone operator. In other words, B is maximal monotone
if and only if for (x, u) ∈ X×X

∗, the assumption that 〈u−v, x−y〉 ≥ 0 for all (y, v) ∈ G(B) implies that u ∈ Bx.
It is known [5, Corollary 2.4] that if g : X → R is Gâteaux differentiable, strictly convex and cofinite, then B is
maximal monotone if and only if ran(∇g+µB) = X

∗.
Let g : X → R be a Gâteaux differentiable function on X. Then the resolvent operator ResgµB associated with a

set-valued operator B and µ > 0, and relative to g, is the mapping ResgµB : X → 2X defined by

ResgµB := (∇g + µB)−1 ◦ ∇g.(2.5)

The resolvent operator is single-valued when B is monotone and g is strictly convex on int(domg).

Let C be a nonempty, closed and convex subset of a reflexive Banach space X. The mapping A : X → 2X
∗

is said to be Bregman inverse strongly monotone on the set C if C ∩ (domg) ∩ int(domg) 6= ∅ and for any
x, y ∈ C ∩ int(domg), ξ ∈ Ax and η ∈ Ay, we have 〈ξ − η,∇g∗(∇g(x)− ξ)−∇g∗(∇g(y)− η)〉 ≥ 0.

Let g : X → R ∪ {+∞} be a convex and Gâteaux differentiable function, and let C be a nonempty, closed and
convex subset of a real reflexive Banach space X. The Bregman projection of x ∈ int(domg) onto C ⊂ int(domg)
is the unique vector ProjgC(x) ∈ C satisfying (see [7]) Dg (ProjgC(x), x) = inf{Dg(y, x) : y ∈ C}.
The normal cone of C at a point z ∈ X is defined by

NCz := {d∗ ∈ X
∗ : 〈d∗, y − z〉 ≤ 0 ∀y ∈ C} if z ∈ C and ∅, otherwise.(2.6)

Lemma 2.3. [22] Let g : X → R be a proper, convex, lower semicontinuous and Gâteaux differentiable on
int(domg) such that ∇g∗ is bounded on bounded subsets of domg∗ . Let x∗ ∈ X and {xn} ⊂ X. If {Dg(x, xn)} is
bounded, so is the sequence {xn}.
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Lemma 2.4. [17] Let X be a Banach space, and let g : X → (−∞,∞] be a proper and strictly convex function
such that g is Gâteaux differentiable. Suppose that there exists a point p ∈ X such that the sequence {xn} in X

converges weakly to p. Then

lim sup
n→∞

Dg(p, xn) < lim sup
n→∞

Dg(q, xn)

for all q ∈ int(domg) with p 6= q.

Lemma 2.5. [2, Corollary 2.1 and Theorem 1.7] Let A : X → X
∗ be a monotone and Lipschitz continuous

operator, and let B : X → 2X
∗

be a maximal monotone operator. Then A+ B is maximal monotone.

3. Proposed Methods

In this section we present our proposed methods for solving the MIP (1.3). Throughout this section we assume
that the solution set of (1.3) is nonempty, that is, (A+B)−1(0∗) 6= ∅. We also assume for the rest of this paper
that the function g : X → R ∪ {+∞} is proper, convex, lower semicontinuous, uniformly Fréchet differentiable,
γ-strongly convex, strongly coercive and Legendre. In addition, we make the following assumptions.

Assumption 3.1. Let X be a real reflexive Banach space X, let X∗ denote its dual, and let A : X → X
∗ and

B : X → 2X
∗

be two operators satisfying the following conditions:

(a) A is monotone on X and B is maximal monotone on X,
(b) A is Lipschitz continuous on X with constant L > 0.

When L is known, we present the following method for solving the inclusion problem (1.3).

Algorithm 3.2. For arbitrary v0, v1 ∈ X and µ > 0, define the sequence {vn} by

vn+1 = ResgµB

(

∇g∗(∇g(vn)− µ(2Avn −Avn−1))
)

, n ≥ 1.

When L is unknown, we present the method below with self-adaptive step sizes for solving the inclusion problem
(1.3).

Algorithm 3.3. Let α ∈ (0, 1), µ0, µ1 > 0 and choose a nonnegative real sequence {dn} such that
∑∞

n=1 dn < ∞.
For arbitrary v0, v1 ∈ X, let the sequence {vn} be generated by

vn+1 = ResgµnB

(

∇g∗(∇g(vn)− ((µn + µn−1)Avn − µn−1Avn−1))
)

, n ≥ 1,

where

µn+1 =

{

min
{

α‖vn−vn+1‖X

‖Avn−Avn+1‖X∗
, µn + dn

}

, if Avn 6= Avn+1,

µn + dn, otherwise.
(3.1)

Remark 3.4.

• Clearly, Algorithms 3.2 and 3.3 only require one evaluation of A per iteration, unlike the methods in
[18, 35, 36, 37] which require two evaluations of A per iteration.

• Note that by (3.1), lim
n→∞

µn = µ, where µ ∈ [min{α
L
, µ1}, µ1 + d] with d =

∑∞
n=1 dn (see [20]).

• When dn = 0, then the step size µn in (3.1) is similar to the one in [16, 18, 37]. We recall that the step
size in [16, 18, 37] is monotonically decreasing; so their methods may depend on the choice of the initial
step size µ1. However, the step size given in (3.1) is non-monotonic and so the dependence on the initial
step size µ1 is reduced.

4. Convergence Results

4.1. Weak Convergence.

In this subsection we consider the weak convergence of the sequences generated by Algorithms 3.2 and 3.3. We
begin with those generated by Algorithm 3.2.
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Lemma 4.1. Let {vn} be generated by Algorithm 3.2 when Assumption 3.1(a) holds. Then

Dg(z, vn+1) ≤ Dg(z, vn) + µ〈Avn −Avn−1, z − vn〉+ µ〈Avn −Avn−1, vn − vn+1〉
+ µ〈Avn −Avn+1, z − vn+1〉 −Dg(vn+1, vn) ∀z ∈ (A+ B)−1(0∗).

Proof. Let z ∈ (A+ B)−1(0∗). Then −Az ∈ Bz.
By the definitions of vn+1 and ResgµB (see (2.5)), we obtain

vn+1 = (∇g + µB)−1 (∇g(vn)− µ(2Avn −Avn−1)) ,

which implies that

1

µ
(∇g(vn)− µ(2Avn −Avn−1)−∇g(vn+1)) ∈ Bvn+1.(4.1)

Hence, using the monotonicity of B, we get

0 ≤
〈

1

µ
(∇g(vn)− µ(2Avn −Avn−1)−∇g(vn+1)) +Az, vn+1 − z

〉

,

which implies that

0 ≤ 〈∇g(vn+1)−∇g(vn) + µ(2Avn −Avn−1)− µAz, z − vn+1〉
= 〈∇g(vn+1)−∇g(vn), z − vn+1〉+ µ〈Avn −Az, z − vn+1〉+ µ〈Avn −Avn−1, z − vn+1〉.(4.2)

Next, using the monotonicity of A, we see that

〈Avn −Az, z − vn+1〉 ≤ 〈Avn −Avn+1, z − vn+1〉.(4.3)

Now, using (4.3) in (4.2), and noting equation (2.3), we obtain

0 ≤ 〈∇g(vn+1)−∇g(vn), z − vn+1〉+ µ〈Avn −Avn+1, z − vn+1〉+ µ〈Avn −Avn−1, z − vn〉
+ µ〈Avn −Avn−1, vn − vn+1〉
= Dg(z, vn)−Dg(z, vn+1)−Dg(vn+1, vn) + µ〈Avn −Avn+1, z − vn+1〉+ µ〈Avn −Avn−1, z − vn〉
+ µ〈Avn −Avn−1, vn − vn+1〉,(4.4)

which yields the required conclusion. �

Theorem 4.2. Let Assumption 3.1 hold and let µ ∈
[

δ, γ(1−2δ)
2L

]

for some δ ∈ (0, 12 ) and γ > 0. Then the

sequence {vn} generated by Algorithm 3.2 converges weakly to an element of (A+ B)−1(0∗).

Proof. Using the Lipschitz continuity of A and (2.4), we obtain

µ〈Avn −Avn−1, vn − vn+1〉 ≤ µL‖vn − vn−1‖‖vn − vn+1‖

≤ µL

2

(

‖vn − vn−1‖2 + ‖vn+1 − vn‖2
)

≤ µLγ−1
(

Dg(vn, vn−1) +Dg(vn+1, vn)
)

.(4.5)

Since µ ≤ γ(1−2δ)
2L , we get that µLγ−1 ≤ 1

2 − 2δ
2 < 1

2 , which further gives that µLγ−1 − 1 ≤ −
(

1
2 + δ

)

. Using
these inequalities and (4.5) in Lemma 4.1, we see that

Dg(z, vn+1) ≤ Dg(z, vn) + µ〈Avn −Avn−1, z − vn〉+ µLγ−1Dg(vn, vn−1)

+ µ〈Avn −Avn+1, z − vn+1〉+ (µLγ−1 − 1)Dg(vn+1, vn)

≤ Dg(z, vn) + µ〈Avn −Avn−1, z − vn〉+
1

2
Dg(vn, vn−1)

+ µ〈Avn −Avn+1, z − vn+1〉 −
(1

2
+ δ
)

Dg(vn+1, vn).(4.6)

Now, for n ≥ 1, let

sn = Dg(z, vn) + µ〈Avn −Avn−1, z − vn〉+
1

2
Dg(vn, vn−1),

tn = δDg(vn+1, vn).
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Then (4.6) can be rewritten as

sn+1 ≤ sn − tn ∀n ≥ 1.(4.7)

We have sn ≥ 0 ∀n ≥ 1, because

sn = Dg(z, vn) + µ〈Avn −Avn−1, z − vn〉+
1

2
Dg(vn, vn−1)

≥ Dg(z, vn)− µLγ−1 (Dg(vn, vn−1) +Dg(z, vn)) +
1

2
Dg(vn, vn−1)

≥ Dg(z, vn)−
1

2
(Dg(vn, vn−1) +Dg(z, vn)) +

1

2
Dg(vn, vn−1)

=
1

2
Dg(z, vn) ≥ 0.(4.8)

Hence, (4.7) implies that the sequence {sn} is bounded and that lim
n→∞

tn = 0. Since {sn} is bounded, it follows

from (4.8) that {Dg(z, vn)} is also bounded, and using Lemma 2.3, we get that the sequence {vn} is bounded.
Let u be a weak cluster point of {vn}. Then we can choose a subsequence of {vn}, denoted by {vnj

}, such
that vnj

⇀ u. Once again, since lim
n→∞

Dg(vn+1, vn) = 1
δ

lim
n→∞

tn = 0, we obtain that lim
n→∞

‖vn+1 − vn‖ = 0

(by inequality (2.4)). Since g is strongly coercive, we get that lim
n→∞

‖∇g(vn+1) − ∇g(vn)‖ = 0 (because if g is

uniformly Fréchet differentiable, then ∇g∗ is uniformly continuous on bounded subsets of X∗). Also, since A is
Lipschitz continuous (hence uniformly continuous), we obtain that lim

n→∞
‖Avn −Avn−1‖ = 0.

Now, consider (v, w) ∈ G(A+ B). Then w −Av ∈ Bv. Using this, (4.1) and the monotonicity of B, we get that

〈w −Av − 1

µ

(

∇g(vnj
)− µ(2Avnj

−Avnj−1)−∇g(vnj+1)
)

, v − vnj+1〉 ≥ 0.(4.9)

Using (4.9) and the monotonicity of A, we obtain that

〈w, v − vnj+1〉 ≥ 〈Av +
1

µ

(

∇g(vnj
)− µ(2Avnj

−Avnj−1)−∇g(vnj+1)
)

, v − vnj+1〉

= 〈Av −Avnj+1, v − vnj+1〉+ 〈Avnj+1 −Avnj
, v − vnj+1〉

+〈Avnj−1 −Avnj
, v − vnj+1〉+

1

µ
〈∇g(vnj

)−∇g(vnj+1), v − vnj+1〉

≥ 〈Avnj+1 −Avnj
, v − vnj+1〉+ 〈Avnj−1 −Avnj

, v − vnj+1〉

+
1

µ
〈∇g(vnj

)−∇g(vnj+1), v − vnj+1〉.(4.10)

Passing to the limit as j → ∞ in (4.10), we see that 〈w, v − u〉 ≥ 0. Thus, using the maximal monotonicity of
A+ B (see Lemma 2.5), we conclude that u ∈ (A + B)−1(0∗).

We now show that {vn} converges weakly to u. It follows from (4.7) that the sequence {sn} is monotone for all
z ∈ (A+ B)−1(0∗), and since it is also bounded for all z ∈ (A+ B)−1(0∗), we get that

lim
n→∞

(

Dg(u, vn) + µ〈Avn −Avn−1, u− vn〉+
1

2
Dg(vn, vn−1)

)

exists.(4.11)

Since {vn} is bounded, Dg(vn, vn−1) → 0 as n → ∞, and A is Lipschitz continuous, it follows from (4.11) that
lim
n→∞

Dg(u, vn) exists.

Next, we show that u is unique. Suppose to the contrary that this is not true. Then there exists a subsequence
{vni

} ⊂ {vn} such that vni
⇀ ū with u 6= ū. Note that we can again show that ū ∈ (A + B)−1(0∗). Using

Lemma 2.4, we get

lim
n→∞

Dg(u, vn) = lim sup
j→∞

Dg(u, vnj
) < lim sup

j→∞
Dg(ū, vnj

)

= lim
n→∞

Dg(ū, vn) = lim sup
i→∞

Dg(ū, vni
)

< lim sup
i→∞

Dg(u, vni
) = lim

n→∞
Dg(u, vn),

which is a contradiction. The contradiction we have reached shows that u = ū. Therefore u is indeed unique, as
claimed. Thus the whole sequence {vn} converges weakly to an element of (A+ B)−1(0∗), as asserted. �

We now turn to Algorithm 3.3 and establish a weak convergence theorem for it.
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Theorem 4.3. Let Assumption 3.1 hold and let α ∈
(

δ, γ(1−2δ)
2

)

for some δ ∈ (0, 1
2 ) and γ > 0. Then the

sequence {vn} generated by Algorithm 3.3 converges weakly to an element of (A+ B)−1(0∗).

Proof. Let z ∈ (A+ B)−1(0∗). Following a method of proof which is similar to that of the proof of Lemma 4.1,
we obtain that

Dg(z, vn+1) ≤ Dg(z, vn) + µn−1〈Avn −Avn−1, z − vn〉+ µn−1〈Avn −Avn−1, vn − vn+1〉
+ µn〈Avn −Avn+1, z − vn+1〉 −Dg(vn+1, vn).(4.12)

From (3.1) and (2.4) it follows that

µn−1〈Avn −Avn−1, vn − vn+1〉 ≤ µn−1‖Avn −Avn−1‖‖vn − vn+1‖
≤ µn−1

µn

α‖vn − vn−1‖‖vn − vn+1‖

≤ µn−1

µn

α

2

(

‖vn − vn−1‖2 + ‖vn+1 − vn‖2
)

≤ µn−1

µn

αγ−1
(

Dg(vn, vn−1) +Dg(vn+1, vn)
)

.(4.13)

By Remark 3.4(ii) and the condition α ∈
(

δ, γ(1−2δ)
2

)

, we have that lim
n→∞

(

1− µn

µn+1
αγ−1

)

= 1−αγ−1 > 1
2 + δ.

Hence, there exists n0 ≥ 1 such that 1 − µn

µn+1
αγ−1 > 1

2 + δ ∀n ≥ n0; which further implies that µn

µn+1
αγ−1 <

1
2 − δ ∀n ≥ n0. Hence, (4.13) becomes

µn−1〈Avn −Avn−1, vn − vn+1〉 ≤
(

1

2
− δ

)

(

Dg(vn, vn−1) +Dg(vn+1, vn)
)

∀n ≥ n0.(4.14)

Using (4.14) in (4.12), we obtain

Dg(z, vn+1) ≤ Dg(z, vn) + µn−1〈Avn −Avn−1, z − vn〉+
(1

2
− δ
)

Dg(vn, vn−1)

+ µn〈Avn −Avn+1, z − vn+1〉 −
(1

2
+ δ
)

Dg(vn+1, vn)

≤ Dg(z, vn) + µn−1〈Avn −Avn−1, z − vn〉+
1

2
Dg(vn, vn−1)

+ µn〈Avn −Avn+1, z − vn+1〉 −
(1

2
+ δ
)

Dg(vn+1, vn) ∀n ≥ n0.(4.15)

For n ≥ n0, let

sn = Dg(z, vn) + µn−1〈Avn −Avn−1, z − vn〉+
1

2
Dg(vn, vn−1),

tn = δDg(vn+1, vn).

Then (4.15) can be rewritten as

sn+1 ≤ sn − tn ∀n ≥ n0.(4.16)

Using an argument similar to the one used regarding (4.8), we obtain that sn ≥ 0 ∀n ≥ n0. Hence, again
following the arguments used concerning (4.8) and noting that the sequence {µn} is bounded, we can show that
{vn} indeed converges weakly to an element of (A+ B)−1(0∗), as asserted. �

Remark 4.4. Theorem 4.2 and Theorem 4.3 extend Theorem 2.5 and Theorem 3.4 of [21], respectively, from
Hilbert space to all reflexive Banach spaces.

If we set A = 0 in Algorithm 3.2, then we obtain the following result concerning the solution of the NPP (1.1)
as a corollary of Theorem 4.2.

Corollary 4.5. Let Assumption 3.1 hold and let µ > 0. For arbitrary v1 ∈ X, let the sequence {vn} be generated
by

vn+1 = ResgµB(vn), n ≥ 1.

Then {vn} converges weakly to an element of B−1(0∗).
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Remark 4.6. We can replace µ with {µn} in Corollary 4.5 to obtain a corollary of Theorem 4.3.

If we set B = NC in Algorithms 3.2 and 3.3 (where NC is as defined in (2.6)), we get ResgµB = ProjgC . Hence,
we obtain the following new results as corollaries of Theorem 4.2 and Theorem 4.3, respectively. These results
concern the following variational inequality problem: Find v ∈ C such that 〈Av, u − v〉 ≥ 0 ∀u ∈ C, where
A : C → X

∗.
We denote the solution set of this problem by V I(C,A).

Corollary 4.7. Let Assumption 3.1 hold and let µ ∈
[

δ, γ(1−2δ)
2L

]

for some δ ∈ (0, 1
2 ) and γ > 0. For arbitrary

v0, v1 ∈ X and µ > 0, let the sequence {vn} be generated by

vn+1 = ProjgC

(

∇g∗(∇g(vn)− µ(2Avn −Avn−1))
)

∀n ≥ 1.

Then {vn} converges weakly to an element of V I(C,A).

Corollary 4.8. Let Assumption 3.1 hold and let α ∈
(

δ, γ(1−2δ)
2

)

for some δ ∈ (0, 12 ) and γ > 0. Let α ∈ (0, 1),

µ0, µ1 > 0 and choose a nonnegative real sequence {dn} such that
∑∞

n=1 dn < ∞. For arbitrary v0, v1 ∈ X, let
the sequence {vn} be generated by

vn+1 = ProjgC

(

∇g∗(∇g(vn)− ((µn + µn−1)Avn − µn−1Avn−1))
)

∀n ≥ 1,

where

µn+1 =

{

min
{

α‖vn−vn+1‖
||Avn−Avn+1||

, µn + dn

}

, if Avn 6= Avn+1,

µn + dn, otherwise.
(4.17)

Then {vn} converges weakly to an element of V I(C,A).

4.2. Rate of Convergence.

In this subsection we obtain rates of convergence for both Algorithm 3.2 and Algorithm 3.3.

It follows from Algorithm 3.2 (or Algorithm 3.3) that vn+1 = vn = vn−1 if and only if vn ∈ (A+B)−1(0∗). That
is,

vn+1 = vn = vn−1 ⇔ vn = ResgµB

(

∇g∗(∇g(vn)− µAvn)
)

⇔ vn = (∇g + µB)−1 ◦ ∇g
(

∇g∗(∇g(vn)− µAvn)
)

⇔ (∇g(vn)− µAvn) ∈ (∇g(vn) + µBvn)
⇔ vn ∈ (A+ B)−1(0∗).

In our theorems, we established that ||vn+1 − vn|| → 0 as n → ∞ (which also means that ||vn − vn−1|| → 0 as
n → ∞) whenever (A+ B)−1(0∗) is nonempty. Hence, using ||vn+1 − vn|| as a measure of the convergence rate,
we obtain in the next theorem a sublinear rate of convergence for Algorithm 3.2.

Theorem 4.9. Let Assumption 3.1 hold and let µ ∈
[

δ, γ(1−2δ)
2L

]

for some δ ∈ (0, 1
2 ) and γ > 0. Then

min
1≤j≤n

‖vj+1 − vj‖ = O(1/
√
n).

Proof. It follows from (4.6) that

δDg(vn+1, vn) ≤ Dg(z, vn)−Dg(z, vn+1) + µ〈Avn −Avn−1, z − vn〉

− µ〈Avn+1 −Avn, z − vn+1〉+
1

2
Dg(vn, vn−1)−

1

2
Dg(vn+1, vn).

This implies that

δ

n
∑

j=1

Dg(vj+1, vj) ≤ Dg(z, v1)−Dg(z, vn+1) + µ〈Av1 −Av0, z − v1〉

− µ〈Avn+1 −Avn, z − vn+1〉+
1

2
Dg(v1, v0)−

1

2
Dg(vn+1, vn)

= Dg(z, v1) + µ〈Av1 −Av0, z − v1〉+
1

2
Dg(v1, v0)− sn+1,(4.18)
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where we have

sn+1 = Dg(z, vn+1) + µ〈Avn+1 −Avn, z − vn+1〉+
1

2
Dg(vn+1, vn).

By (4.8), we also have sn+1 ≥ 0 ∀n ≥ 1. Hence, it follows from (4.18) and (2.4) that

n
∑

j=1

‖vj+1 − vj‖2 ≤ 2

δγ

[

Dg(z, v1) + µ〈Av1 −Av0, z − v1〉+
1

2
Dg(v1, v0)

]

.

Therefore,

min
1≤j≤n

‖vj+1 − vj‖2 ≤ 2

nδγ

[

Dg(z, v1) + µ〈Av1 −Av0, z − v1〉+
1

2
Dg(v1, v0)

]

.

This means that

min
1≤j≤n

‖vj+1 − vj‖ = O(1/
√
n).

�

Similarly to Theorem 4.9, we also have the following sublinear rate of convergence result for Algorithm 3.3.

Theorem 4.10. Let Assumption 3.1 hold and let α ∈
(

δ, γ(1−2δ)
2

)

for some δ ∈ (0, 1
2 ) and γ > 0. Then

min
1≤j≤n

‖vj+1 − vj‖ = O(1/
√
n).

4.3. Strong Convergence.

In order to obtain strong convergence of the sequences generated by our methods, we replace Assumption 3.1
with the following conditions.

Assumption 4.11. Let A : X → X
∗ and B : X → 2X

∗

be operators which satisfy the following conditions:

(a) A is monotone on X and B is maximal monotone and τ-strongly monotone on X,
(a)* A is τ-strongly monotone on X and B is maximal monotone on X,
(b) A is Lipschitz continuous on X with constant L > 0.

Lemma 4.12. Let a sequence {vn} be generated by Algorithm 3.2 when Assumption 4.11(a) or (a)* holds. Then

τµ‖vn+1 − z‖2 ≤ Dg(z, vn)−Dg(z, vn+1) + µ〈Avn −Avn−1, z − vn〉+ µ〈Avn −Avn−1, vn − vn+1〉
+ µ〈Avn −Avn+1, z − vn+1〉 −Dg(vn+1, vn) ∀z ∈ (A+ B)−1(0∗).

Proof. Let z ∈ (A + B)−1(0∗). Then −Az ∈ Bz. Using arguments similar to those used in obtaining (4.1), we
get

1

µ
(∇g(vn)− µ(2Avn −Avn−1)−∇g(vn+1)) ∈ Bvn+1.(4.19)

If we use Assumption 4.11(a), in particular, the τ -strong monotonicity of B, we get

τ‖vn+1 − z‖2 ≤
〈

1

µ
(∇g(vn)− µ(2Avn −Avn−1)−∇g(vn+1)) +Az, vn+1 − z

〉

,

which implies that

µτ‖vn+1 − z‖2 ≤ 〈∇g(vn+1)−∇g(vn), z − vn+1〉+ µ〈Avn −Az, z − vn+1〉+ µ〈Avn −Avn−1, z − vn+1〉.
Using the monotonicity of A and equation (2.3), we obtain

µτ‖vn+1 − z‖2 ≤ Dg(z, vn)−Dg(z, vn+1)−Dg(vn+1, vn) + µ〈Avn −Avn+1, z − vn+1〉+ µ〈Avn −Avn−1, z − vn〉
+ µ〈Avn −Avn−1, vn − vn+1〉,(4.20)

which is the desired inequality.
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On the other hand, if we use Assumption 4.11(a)*, then by the monotonicity of B, we obtain

0 ≤
〈

1

µ
(∇g(vn)− µ(2Avn −Avn−1)−∇g(vn+1)) +Az, vn+1 − z

〉

,

which implies that

0 ≤ 〈∇g(vn+1)−∇g(vn), z − vn+1〉+ µ〈Avn −Az, z − vn+1〉+ µ〈Avn −Avn−1, z − vn+1〉.(4.21)

Since A is τ -strongly monotone, it follows that

〈Avn −Az, z − vn+1〉 ≤ 〈Avn −Avn+1, z − vn+1〉 − τ‖vn+1 − z‖2.(4.22)

Now, using (4.22) in (4.21) and noting equation (2.3), we arrive at the desired conclusion. �

Theorem 4.13. Let Assumption 4.11(a),(b) or (a)*,(b) hold and let µ ∈
[

δ, γ(1−2δ)
2L

]

for some δ ∈ (0, 1
2 ) and

γ > 0. Then the sequence {vn} generated by Algorithm 3.2 converges strongly to u ∈ (A+ B)−1(0∗).

Proof. Let u ∈ (A + B)−1(0∗). Using similar arguments to those used in the proof of Theorem 4.2, we obtain
that {vn} is bounded, lim

n→∞
‖vn − vn+1‖ = 0, lim

n→∞
‖Avn −Avn+1‖ = 0 and lim

n→∞
Dg(u, vn) exists. Using these

facts in Lemma 4.12 and replacing z with u, we see that lim
n→∞

‖vn+1−u‖ ≤ 0, which implies that {vn} converges

strongly to u ∈ (A+ B)−1(0∗), as asserted. �

Similarly to Theorem 4.13, we have the following strong convergence theorem for Algorithm 3.3.

Theorem 4.14. Let Assumption 4.11(a),(b) or (a)*,(b) hold and let α ∈
(

δ, γ(1−2δ)
2

)

for some δ ∈ (0, 12 ) and

γ > 0. Then the sequence {vn} generated by Algorithm 3.3 converges strongly to u ∈ (A+ B)−1(0∗).

Remark 4.15. Similarly to Corollaries 4.5-4.8, we can obtain strong convergence results as corollaries of Theorems
4.13 and 4.14 for solving the NPP (1.1) and the variational inequality problem in real reflexive Banach spaces.

5. Application to generalized Nash Equilbirium Problems for gas markets

In this section we apply our results to solving a Generalized Nash Equilibrium Problem (GNEP) for which the
constraints are governed by a system of partial differential equations (PDEs). This type of problem is particularly
useful in the trading and transporting of natural gas because the dynamics of gas transport is often posed as
a system of PDEs. In [15], using a generalized Nash equilibrium approach with PDE-constraints, the authors
studied a two-node (production and consumption nodes) gas market.
Consider strategic firms that trade and transport natural gas through a pipeline system. That is, strategic gas
firms that decide on their production of gas at an injection node (production node) and on their sales at a
withdrawal node (consumption node) of a pipeline system with the aim of making maximum profit over a finite
period of time [0, T ]. Here we focus on a single pipe only. The flow through the pipe which connects the injection
node at x = 0 and withdrawal node at x = L (where L > 0 is the length of the pipe) is governed by a system of
PDEs with some boundary conditions. A detailed study of this system of PDEs can be found in [15, Section 3].

As in [15], let y := (p, q), where p and q are the pressure and mass flow, respectively, in the pipe. Note that
p and q are the state variables in the pipe. Also, denote the collection of a firm’s decisions by u. Then the
inclusion y = S(u) ∈ K (where the mapping S provides the solution of the system of PDEs for any given u and

K is a closed and convex set) describes the shared constraints of the firms. At any time t ∈ [0, T ], let qin(t)

denote the quantity of gas injected into the pipe at the production node at a cost of c(t)qin(t). We also denote

by qout(t) the quantity of gas withdrawn from the pipe at the consumption node due to the gas demand at

this node. Then the price of gas is given by an inverse demand function P (t, qout(t)). We assume that firm i

(i ∈ {1, . . . ,M}) strategically chooses the quantity qini (t) injected at the production node located at x = 0 at a

pressure pini (t) and the quantity qouti (t) sold at the consumption node x = L at a pressure pouti (t) at any time

t ∈ [0, T ]. These decision variables are grouped into ui := (pini , pouti , qini , qouti ), which belong to a closed and
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convex subset Ui of L
2(0, T )4.

Thus, the maximization problem for firm i is as follows::

max
ui∈Ui

∫ T

0

[

P

(

t,

M
∑

k=1

qoutk (t)

)

qouti (t)− ci(t)q
in
i (t)

]

dt−Ri(ui)(5.1)

such that 0 ≤ qini (t) ≤ q̄ini for a.e t ∈ (0, T ),(5.2)
∫ T

0

qouti (t)− qini (t) ≤ 0,(5.3)

S(u) ∈ K,(5.4)

where q̄ini is a product-specific capacity, u = (ui, u−i), ui collects the decisions of firm i, u−i collects the decisions
of all the other firms, and Ri is a convex function. The feasible set of firm i is the intersection of Ui with the
constraints (5.2)–(5.3) (see [15] for more details).

We note that the above maximization problem for strategic gas firms gives rise to the following GNEP for player
i (i ∈ {1, . . . ,M}):

min
ui∈U

∫ T

0

(

α(t)
M
∑

k=1

qoutk (t)− β(t)

)

qouti (t)dt + gi(ui)

(5.5)

such that ui ∈ Pad ×Qad
i ; S(ui, u−i) ∈ K,

where gi(ui) = gp(pi) + gqi (qi), the functions gp and gqi are proper convex and lower semicontinuous, β(t) −
α(t)qout(t) = P (t, qout(t)), P is a measurable function of t, the functions α and β are real-valued functions of

t, Pad and Qad
i are subsets of P := H1(0, T )2 (the space of pressures at the endpoints) and Q := H1(0, T )2

(the space of mass flow at the endpoints), respectively, and U := P ×Q denotes the space of decision variables
(controls) ui = (pi, qi) of each player. If for each i, gi is coercive and the subdifferential ∂gi of gi is defined

everywhere, then Pad and Qad
i are closed and convex.

Clearly, the GNEP (5.1)–(5.4) that models the gas market fits into the settings of the GNEP (5.5). That is, we
can recover the GNEP (5.1)–(5.4) from (5.5) by setting

gi(ui) =

∫ T

0

ci(t)q
in
i (t)dt+Ri(ui)

and Qad
i to capture the constraints (5.2)–(5.3).

The existence of solutions to the GNEP (5.5) for which all the pressures pi are identical was established in [15,
Theorem 4.1] under some conditions which are also satisfied by the GNEP (5.1)–(5.4).

We now apply our algorithms in Section 3 to solving the GNEP (5.5), which in turn solves the GNEP (5.1)–(5.4)
that models the gas market. To this end, we consider some change of variables as in [15].
Given y0 = (p0, q0), let p̂0(t) := (p0(0), p0(L)) and q̂0(t) := (q0(0)/M, q0(L)/M) for any t ∈ [0, T ]. Then

ûy0

i := (p̂0, q̂0), and the shifted decisions for player i are given by ûi = ui − ûy0

i . Let P̂ := {p̂ ∈ P : p(0) = 0}
and Q̂ := {q̂ ∈ Q : q(0) = 0}. Then P̂ad := {p̂ ∈ P̂ : p̂ + p̂0 ∈ Pad}, Q̂ad

i := {q̂ ∈ Q̂ : q̂ + q̂0 ∈ Qad
i }

and Ûad
i = P̂ad × Q̂ad

i . Let wi = (wp0
i , wpL

i , wq0
i , wqL

i ) ∈ Û , and define the mappings d1 : Û × ÛM−1 → Û∗,

d2 : Û → Û∗ and e ∈ Û∗ (where Û∗ is the dual space of Û) by

〈d1(ûi, û−i), wi〉Û∗,Û =

(

α

M
∑

k=1

q̂outk , wqL
i

)

L2(0,T )

,

〈d2(ûi), wi〉Û∗,Û
=
(

αq̂outi , wqL
i

)

L2(0,T )
,

〈e, wi〉Û∗,Û =
(

β − α̂q0(L), wqL
i

)

L2(0,T )
.
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Similarly, let zi = (zini , zouti ) ∈ Q̂, and define the mappings d̃1 : Q̂ × Q̂M−1 → Q̂∗, d̃2 : Q̂ → Q̂∗ and ẽ ∈ Q̂∗

(where Q̂∗ is the dual space of Q̂) by

〈d̃1(q̂i, q̂−i), zi〉Q̂∗,Q̂ =

(

α

M
∑

k=1

q̂outk , zouti

)

L2(0,T )

,

〈d̃2(q̂i), zi〉Q̂∗,Q̂ =
(

αq̂outi , zouti

)

L2(0,T )
,

〈ẽ, zi〉Q̂∗,Q̂
=
(

β − α̂q0(L), zouti

)

L2(0,T )
.

Then, by the proof of Theorem 4.1 in [15], we have that the inclusion

0∗ ∈ d̃1(q̂i, q̂−i) + d̃2(q̂i) + ∂ĝqi (q̂i) +N
Q̂ad

i

(q̂i) + (ηq̂)(5.6)

(where ηq̂ ∈ Q̂∗ and ĝqi (q̂i) = gqi (q̂i + q̂0)) holds for all ûi, which implies that the inclusion

0∗ ∈ d1(ûi, û−i) + d2(ûi) + ∂ĝi(ûi) +N
Ûad

i

(ûi) + Ŝ∗
i µ− e, ∀i ∈ {1, . . . ,M}(5.7)

also holds for û ∈ Û := ÛM , where µ ∈ NK(Ŝ(û)) and ĝi(ûi) = gp(p̂i + p̂0) + ĝqi (q̂i). Moreover, any solution û
of the inclusion (5.7) is a solution of the GNEP (5.5).

Now, let Ũ := P̂ × Q̂M and Z̃ := P̂ ∗ ×∏i Q̂
∗, define the operators Ã : Ũ → Z̃ and B̃ : Ũ → 2Z̃ by

Ã(p̃, q̂) := d̃1(q̂i, q̂−i) + d̃2(q̂i) and B̃(p̃, q̂) := ∂ĝqi (q̂i) +N
Q̂adi

(q̂i) + (ηq̂).

Then the inclusion (5.6) becomes

0∗ ∈ Ã(p̃, q̂) + B̃(p̃, q̂).

Also, Ã is linear, monotone and demicontinuous with full domain, and B̃ is maximal monotone with full domain
(see [15]). Hence, by setting A = Ã and B = B̃ in Algorithm 3.2 or Algorithm 3.3, we can apply our results to
approximating the solutions of the GNEP.

6. Conclusions

In this paper we have proposed two iterative algorithms for solving the monotone inclusion problem (1.3) in real
reflexive Banach spaces. As we have seen, the methods have simple and elegant structures, and they require
only one evaluation of the single-valued operator A at each iteration. We have established weak convergence
results when the set-valued operator B is maximal monotone, and A is monotone and Lipschitz continuous, and
we obtained strong convergence results when either A or B is, in addition, required to be strongly monotone.
We also obtained a rate of convergence result and applied our results to solving generalized Nash equilibrium
problems in real reflexive Banach spaces.

Acknowledgments.

The second author was partially supported by the Israel Science Foundation (Grant 820/17), by the Fund for
the Promotion of Research at the Technion and by the Technion General Research Fund.

Declarations

Conflict of interest. The authors declare that they have no conflict of interest.

Availability of data and material. Not applicable.

Code availability. Not applicable.

Authors’ contributions. All the authors contributed to this paper.



14 CHINEDU IZUCHUKWU1, SIMEON REICH2, YEKINI SHEHU3

References

[1] H. Attouch and A. Cabot, Convergence of a relaxed inertial forward-backward algorithm for structured monotone inclusions,
Appl. Math. Optim., 80 (2019), 547-598.

[2] V. Barbu, Nonlinear Differential Equations of Monotone Types Nonlinear Differential in Banach Spaces. Springer, New York
(2010).

[3] H.H. Bauschke and P.L. Combettes, Construction of best Bregman approximations in reflexive Banach spaces, Proc. Amer.

Math. Soc., 131 (2003), 3757-3766.
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