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Abstract

Let φ = (φ1, . . . , φr)T be a refinable vector of compactly supported functions
in L2(IR). It is shown in this paper that there exists a refinable vector φ̃ of
compactly supported functions in L2(IR) such that φ̃ is dual to φ if and only if
the shifts of φ1, . . . , φr are linearly independent. This result is established on
the basis of a complete characterization of the convergence of vector subdivision
schemes associated with exponentially decaying masks. As an application of the
general theory, two interesting examples of biorthogonal double wavelets are
constructed.



1.1 Introduction

We are interested in multiple refinable functions and multiple wavelets. Sup-
pose φ1, . . . , φr are complex-valued functions on IR. Denote by φ the vector
(φ1, . . . , φr)T , the transpose of (φ1, . . . , φr). We say that φ is refinable if it
satisfies the following refinement equation:

φ =
∑

α∈ZZ
a(α)φ(2 · − α), (1.1)

where each a(α) is an r × r matrix of complex numbers.
Let L2(IR) denote the linear space of all square integrable complex-valued

functions on IR. It is well known that L2(IR) is a Hilbert space with the inner
product given by

〈f, g〉 :=
∫

IR

f(x)g(x) dx,

where g(x) denotes the complex conjugate of g(x). The norm of f ∈ L2(IR) is
given by ‖f‖2 := 〈f, f〉1/2. More generally, for 1 ≤ p <∞, we define

‖f‖p :=
(∫

IR

|f(x)|p dx
)1/p

.

For p = ∞, define ‖f‖∞ to be the essential supremum of |f | on IR. Let Lp(IR)
denote the linear space of all functions f for which ‖f‖p <∞. Equipped with
the norm ‖·‖p, Lp(IR) is a Banach space. By (Lp(IR))r we denote the linear
space of all vectors f = (f1, . . . , fr)T such that f1, . . . , fr ∈ Lp(IR). The norm
on (Lp(IR))r is defined by

‖f‖p :=
(∑r

j=1
‖fj‖p

p

)1/p

, f = (f1, . . . , fr)T ∈ (Lp(IR))r .

Suppose φ = (φ1, . . . , φr)T and φ̃ = (φ̃1, . . . , φ̃r)T belong to (L2(IR))r. We say
that the shifts of φ1, . . . , φr and the shifts of φ̃1, . . . , φ̃r are biorthogonal, if

〈φj(· − α), φ̃k(· − β)〉 = δjkδαβ ∀ j, k = 1, . . . , r, α, β ∈ ZZ, (1.2)

where δjk and δαβ stand for the Kronecker sign. If this is the case, then φ̃ is said
to be a dual to φ. If, in addition, φ and φ̃ are refinable, then φ and φ̃ are a pair
of biorthogonal vectors of multiple refinable functions. Biorthogonal multiple
wavelets are generated from biorthogonal multiple refinable functions. In the
scalar case (r = 1), a basic theory of biorthogonal wavelets was established by
Cohen, Daubechies, and Feauveau [6].

Suppose φ = (φ1, . . . , φr)T is a refinable vector of compactly supported
functions in L2(IR). Under what conditions does there exist a refinable dual
vector of compactly supported functions? The main purpose of this paper is to
address this fundamental question.
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Let φ = (φ1, . . . , φr)T and φ̃ = (φ̃1, . . . , φ̃r)T be dual vectors of compactly
supported functions in L2(IR). Suppose c1, . . . , cr are sequences on ZZ such that

r∑
j=1

∑
α∈ZZ

cj(α)φj(· − α) = 0.

Taking inner product of both sides of the above equation with φ̃k(· − β) and
employing the dual relation (1.2), we obtain ck(β) = 0 for all β ∈ ZZ and all
k = 1, . . . , r. In other words, the shifts of φ1, . . . , φr are linearly independent.
Thus, linear independence is a necessary condition for the existence of a dual
vector of compactly supported functions. This fact was observed by Dahmen
and Micchelli in [9, Proposition 4].

Let φ = (φ1, . . . , φr)T be a refinable vector of compactly supported functions
in L2(IR) such that the shifts of φ1, . . . , φr are linearly independent. In Section 3
we shall show that there exists a refinable vector φ̃ = (φ̃1, . . . , φ̃r)T of compactly
supported functions in L2(IR) such that the dual relation (1.2) holds true. In
other words, linear independence is also a sufficient condition for the existence
of a dual refinable vector of compactly supported functions. Thus, we give a
complete answer to the aforementioned fundamental question.

For the scalar case (r = 1), Lemarié-Rieusset [30] proved that for any min-
imally supported refinable function, there exists a compactly supported dual
refinable function. See Chui and Wang [3] for a discussion on minimally sup-
ported refinable functions, and Jia and Wang [26] for a characterization of the
linear independence of the shifts of a refinable function in terms of its mask.
However, being minimally supported is not an appropriate condition for either
the multivariate setting or the multiple setting.

Suppose φ = (φ1, . . . , φr)T is a vector of compactly supported functions in
L2(IR) such that the shifts of φ1, . . . , φr are linearly independent. If φ satisfies
the refinement equation (1.1), then the matrix M :=

∑
α∈ZZ a(α)/2 must have

a simple eigenvalue 1 and its other eigenvalues are less than 1 in modulus (see
[9]). Throughout this paper we assume that this condition is satisfied.

The key to our investigation of multiple refinable functions will be a study
of vector subdivision schemes, which are of independent interest. Subdivision
schemes have been studied mainly for the case in which the mask a is finitely
supported. In the scalar case (r = 1), the uniform convergence of station-
ary subdivision schemes was investigated by Cavaretta, Dahmen, and Micchelli
[1]. In [18] Jia gave a characterization for the Lp-convergence of a subdivi-
sion scheme (1 ≤ p ≤ ∞). In particular, the L2-convergence of a subdivision
scheme was characterized in terms of the spectral radius of a certain finite ma-
trix associated to the mask. His results were extended by Han and Jia [15]
to the multivariate setting. For the vector case (r > 1), Cohen, Daubechies,
and Plonka [7] obtained some sufficient conditions for L∞-convergence and L2-
convergence of cascade algorithms, and Shen [35] gave a characterization for
the L2-convergence of cascade algorithms. In [23], Jia, Riemenschneider, and
Zhou provided a characterization for the Lp-convergence of subdivision schemes
(1 ≤ p ≤ ∞).
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For the reason which will become clear later, we need to consider the case
where the mask a is not finitely supported but decays exponentially fast. Let a
be such a mask. Let Qa be the bounded linear operator on (L2(IR)r) given by

Qaφ :=
∑

α∈ZZ
a(α)φ(2 · − α), φ = (φ1, . . . , φr)T ∈ (L2(IR))r. (1.3)

Let y = (y1, . . . , yr) be a left eigenvector of M corresponding to the eigen-
value 1, that is, yM = y and y 6= 0. In the scalar case (r = 1), M = (1), so y is
chosen to be 1. The vector y will be fixed throughout this paper. By L2,c(IR)
we denote the linear space of all compactly supported functions in L2(IR). A
vector φ = (φ1, . . . , φr)T ∈ (L2,c(IR))r is said to satisfy the moment conditions
of order 1 if

y
∑

α∈ZZ
φ(· − α) = 1.

We say that the (vector) subdivision scheme associated with a converges in the
L2-norm, if there exists a vector φ ∈ (L2(IR))r such that for any φ0 ∈ (L2,c(IR))r

satisfying the moment conditions of order 1, the sequence Qn
aφ0 converges to

φ in the L2-norm. If this is the case, then φ is a solution of the refinement
equation (1.1).

The Kronecker product of two matrices is a useful tool in our study of vector
refinement equations. Let us recall some basic properties of the Kronecker
product from [28]. Suppose

A = (aij)1≤i≤m,1≤j≤n and B = (bij)1≤i≤r,1≤j≤s

are two matrices. The (right) Kronecker product of A and B, written A⊗B, is
defined to be the block matrix

A⊗B :=


a11B a12B · · · a1nB
a21B a22B · · · a2nB

...
...

. . .
...

am1B am2B · · · amnB

 .
For three matrices A,B, and C of the same type, we have

(A+B)⊗ C = (A⊗ C) + (B ⊗ C);
A⊗ (B + C) = (A⊗B) + (A⊗ C).

If A,B,C,D are four matrices such that the products AC and BD are well
defined, then

(A⊗B)(C ⊗D) = (AC)⊗ (BD).

If λ1, . . . , λr are the eigenvalues of an r × r matrix A and µ1, . . . , µr are the
eigenvalues of an r × r matrix B, then the eigenvalues of A ⊗ B are λjµk,
j, k = 1, . . . , r. See [28, Chap. 12] for a proof of these results.

The Kronecker product was used by Goodman, Jia, and Micchelli [13] in
their study of the spectral radius of a bi-infinite periodic and slanted matrix. It
was also employed by Jiang [27] in his work on the regularity of matrix refinable
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functions, and by Zhou [36] in his investigation of the joint spectral radius of a
finite collection of matrices.

For µ > 0, let Eµ denote the linear space of all sequences u on ZZ for which

‖u‖Eµ
:=

∑
α∈ZZ

|u(α)|eµ|α| <∞.

Equipped with the norm ‖·‖Eµ
, Eµ becomes a Banach space. Note that a similar

space was used by Cohen and Daubechies [5]. Let Er
µ denote the linear space

of all mappings u from ZZ to Cr for which there exist u1, . . . , ur ∈ Eµ such that
u(α) = (u1(α), . . . , ur(α))T for all α ∈ ZZ. The norm on Er

µ is defined by

‖u‖Er
µ

:= max
1≤j≤r

‖uj‖Eµ
.

By Er×r
µ we denote the linear space of all mappings g from ZZ to Cr×r for which

there exist gjk ∈ Eµ, j, k = 1, . . . , r, such that g(α) = (gjk(α))1≤j,k≤r for all
α ∈ ZZ. The norm on Er×r

µ is defined by

‖g‖Er×r
µ

:= max
1≤j,k≤r

‖gjk‖Eµ
.

Suppose the mask a belongs to Er×r
µ for some µ > 0. Let b be defined by

b(α) :=
∑

β∈ZZ
a(β)⊗ a(α+ β)

/
2, α ∈ ZZ. (1.4)

Then b lies in Er2×r2

µ . Let Tb be the transition operator on Er2

µ defined by

Tbu(α) :=
∑

β∈ZZ
b(2α− β)u(β), α ∈ ZZ, (1.5)

where u ∈ Er2

µ . It is easily seen that Tb is a bounded operator. The transition
operator plays an important role in our study of refinement equations. When r =
1 and b is finitely supported, transition matrices were introduced by Deslauriers
and Dubuc [10] in their study of interpolatory subdivision schemes. In [14],
Goodman, Micchelli, and Ward connected transition operators with subdivision
operators in their work on spectral radius formulas.

The transition operator Tb defined by (1.5) is a compact operator. Indeed, if b
is finitely supported, then Tb is the limit of a sequence of finite-rank operators, so
Tb is a compact operator. In general, we can find a sequence b(N) (N = 1, 2, . . .)
of elements of Er2×r2

µ with finite support such that ‖b(N) − b‖
Er2×r2

µ
→ 0 as

N →∞. It follows that ‖Tb(N)−Tb‖ → 0 as N →∞. As the limit of a sequence
of compact operators, Tb itself is a compact operator. The reader is referred to
[34, Chap. 4] for a basic theory of the spectral properties of compact operators.
In particular, if we denote by ρ(Tb) the spectral radius of Tb, then ρ(Tb) = |σ|
for some eigenvalue σ of Tb.

Recall that M is the matrix
∑

α∈ZZ a(α)/2. By (1.4) we have∑
α∈ZZ

b(α)
/
2 =

(∑
β∈ZZ

a(β)
/
2
)
⊗

(∑
α∈ZZ

a(α+ β)
/
2
)

= M ⊗M.
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Thus, the matrix
∑

α∈ZZ b(α)/2 has a simple eigenvalue 1 and its other eigen-
values are less than 1 in modulus. Also, recall that y is a left eigenvector of M
corresponding to the eigenvalue 1. Hence, we have

(y ⊗ y)(M ⊗M) = (yM)⊗ (yM) = M ⊗M.

In other words, y ⊗ y is a left eigenvector of M ⊗ M corresponding to the
eigenvalue 1.

In Section 2 we will establish a characterization for the L2-convergence of a
vector subdivision scheme. Suppose a ∈ Er×r

µ . Let b ∈ Er2×r2

µ be defined by
(1.4), and let Tb be the transition operator on Er2

µ given by (1.5). Consider the
subspace V of Er2

µ defined by

V :=
{
v ∈ Er2

µ : (y ⊗ y)
∑

α∈ZZ
v(α) = 0

}
. (1.6)

We will show that the subdivision scheme associated with a converges in the
L2-norm if and only if V is invariant under Tb and ρ(Tb|V ) < 1.

Finally, in Section 4 we shall apply the general theory to construction of
biorthogonal multiple wavelets. Two examples are given. In the first example,
the wavelets are piecewise linear functions with short support. In the second
example, the wavelets are almost in C2, and the dual wavelets are in C1. All
the wavelets and dual wavelets are either symmetric or anti-symmetric about
the origin. The approximation and smoothness properties of these wavelets will
be analyzed.

1.2 Vector Subdivision Schemes

This section is devoted to a study of vector subdivision schemes. We shall es-
tablish a characterization for the L2-convergence of a vector subdivision scheme
in terms of the corresponding transition operator.

Let `(ZZ) denote the linear space of all complex-valued sequences on ZZ, and
let `0(ZZ) denote the linear space of all finitely supported sequences on ZZ. The
difference operators ∇ and ∆ on `(ZZ) are defined by

∇u := u− u(· − 1) and ∆u := −u(·+ 1) + 2u− u(· − 1), u ∈ `(ZZ).

For β ∈ ZZ, we denote by δβ the sequence on ZZ given by

δβ(α) =
{

1 for α = β,
0 for α ∈ ZZ \ {β}.

In particular, we write δ for δ0.
Let u ∈ `(ZZ). For 1 ≤ p <∞, we define

‖u‖p :=
(∑

α∈ZZ
|u(α)|p

)1/p

.
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For p = ∞, define ‖u‖∞ to be the supremum of |u| on ZZ. Let `p(ZZ) denote
the linear space of all sequences u for which ‖u‖p < ∞. Equipped with the
norm ‖·‖p, `p(ZZ) becomes a Banach space. By `p(ZZ → Cr) we denote the
linear space of all sequences u such that u(α) = (u1(α), . . . , ur(α))T for some
u1, . . . , ur ∈ `p(ZZ) and for all α ∈ ZZ. Obviously, u 7→ (u1, . . . , ur)T is a canon-
ical isomorphism between `p(ZZ → Cr) and (`p(ZZ))r. Thus, we may identify
`p(ZZ → Cr) with (`p(ZZ))r. The norm of u = (u1, . . . , ur)T is given by

‖u‖p :=
(∑r

j=1
‖uj‖p

p

)1/p

.

Equipped with this norm, (`p(ZZ))r becomes a Banach space. We also identify
`p(ZZ → Cr×r) with (`p(ZZ))r×r. The spaces (`(ZZ))r, (`0(ZZ))r, (`(ZZ))r×r, and
(`0(ZZ))r×r are defined analogously. The difference operators ∇ and ∆ can be
naturally extended to (`(ZZ))r and (`(ZZ))r×r.

For two functions f, g in L2(IR), f � g is defined as follows:

f � g(x) :=
∫

IR

f(x+ y)g(y) dy, x ∈ IR.

In other words, f � g is the convolution of f with the function y 7→ g(−y),
y ∈ IR. It is easily seen that f � g lies in C0(IR), the space of continuous
functions on IR which vanish at ∞ (see [12, p. 232]). In particular, f � g is
uniformly continuous. Clearly,

‖f � g‖∞ ≤ ‖f‖2‖g‖2.

Moreover, ‖f‖2
2 = (f�f)(0).

For a matrix A = (aij)1≤i,j≤r, the vector

(a11, . . . , ar1, a12, . . . , ar2, . . . , a1r, . . . , arr)T

is said to be the vec-function of A and written as vecA. Suppose A,X, and B
are three r × r matrices. Then we have (see [28, p. 410])

vec(AXB) = (BT ⊗A)vecX. (2.1)

For φ, ψ ∈ (L2(IR))r, let φ� ψT be defined as follows:

φ� ψT :=


φ1 � ψ1 φ1 � ψ2 · · · φ1 � ψr

φ2 � ψ1 φ2 � ψ2 · · · φ2 � ψr
...

...
. . .

...
φr � ψ1 φr � ψ2 · · · φr � ψr

 .
Suppose φ ∈ (L2(IR))r is a solution of the refinement equation (1.1), where

the mask a is assumed to be in (`1(ZZ))r×r for the time being. It follows from
(1.1) that

φ� φT =
∑
α∈ZZ

∑
β∈ZZ

a(α)φ(2 · − α)� φT (2 · − β)a(β)
T
.
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Note that
φ(2 · − α)� φT (2 · − β) =

1
2
φ� φT (2 · − α+ β).

In light of (2.1) we obtain

vec
(
a(α)φ(2 · − α)� φT (2 · − β)a(β)

T )
= 1

2a(β)⊗ a(α) vec (φ� φT )(2 · − α+ β).

Therefore,

vec (φ� φT ) =
∑
α∈ZZ

∑
β∈ZZ

1
2
a(β)⊗ a(α) vec(φ� φT )(2 · − α+ β). (2.2)

Let f := vec(φ � φT ). Then f lies in (C0(IR))r2
, the linear space of r2 × 1

vectors of functions in C0(IR). It follows from (2.2) that f satisfies the following
refinement equation:

f =
∑

α∈ZZ
b(α)f(2 · − α),

where b is given by (1.4). For c, d ∈ (`1(ZZ))r×r, let c � d be defined by

(c � d)(α) :=
∑

β∈ZZ
d(β)⊗ c(α+ β), α ∈ ZZ.

Then b = a � a/2.
Iterating (1.3) n times yields

Qn
aφ =

∑
α∈ZZ

an(α)φ(2n · − α), n = 1, 2, . . . , (2.3)

where each an is independent of the choice of φ. In particular, a1 = a. Conse-
quently, for n > 1 we have

Qn
aφ = Qn−1

a (Qaφ) =
∑

β∈ZZ an−1(β)(Qaφ)(2n−1 · − β)
=

∑
β∈ZZ

∑
α∈ZZ an−1(β)a(α)φ(2n · − 2β − α)

=
∑

α∈ZZ

[∑
β∈ZZ an−1(β)a(α− 2β)

]
φ(2n · − α).

This establishes the following iteration relation for an (n = 1, 2, . . .):

a1 = a and an(α) =
∑
β∈ZZ

an−1(β)a(α− 2β), α ∈ ZZ. (2.4)

Similarly, for f ∈ (C0(IR))r2
we have

Qn
b f =

∑
α∈ZZ

bn(α)f(2n · − α), (2.5)

where bn (n = 1, 2, . . .) are given by the following iteration relation:

b1 = b and bn(α) =
∑
β∈ZZ

bn−1(β)b(α− 2β), α ∈ ZZ. (2.6)
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The sequences an and bn are related by the following equation:

bn(α) =
∑

β∈ZZ
an(β)⊗ an(α+ β)

/
2n, α ∈ ZZ, n = 1, 2 . . . . (2.7)

This will be proved by induction on n. By the definition of b, (2.7) is true for
n = 1. Suppose n > 1 and (2.7) is valid for n− 1. For α ∈ ZZ, by (2.4) we have∑

β∈ZZ an(β)⊗ an(α+ β)
=

∑
β∈ZZ

∑
γ∈ZZ

∑
η∈ZZ

(
an−1(γ)a(β − 2γ)

)
⊗

(
an−1(η)a(α+ β − 2η)

)
=

∑
β∈ZZ

∑
γ∈ZZ

∑
η∈ZZ

(
an−1(γ)⊗ an−1(η + γ)

)(
a(β)⊗ a(α− 2η + β)

)
=

∑
η∈ZZ 2nbn−1(η)b(α− 2η),

where the induction hypothesis has been used to derive the last equality. This
together with (2.6) establishes (2.7).

Let φ0 and ψ0 be two elements in (L2(IR))r. By using the same argument
as was done in the proof of (2.2), we obtain

vec
(
(Qn

aφ0)� (Qn
aψ0)T

)
=

∑
α∈ZZ

∑
β∈ZZ 2−nan(β)⊗ an(α) vec(φ0 � ψT

0 )(2n · − α+ β).

This in connection with (2.7) shows that, for n = 1, 2, . . .,

vec
(
(Qn

aφ0)� (Qn
aψ0)T

)
= Qn

b

(
vec(φ0 � ψT

0 )
)
. (2.8)

We claim that, for w ∈ Cr2
and n = 1, 2, . . .,

Tn
b (wδβ)(α) = bn(2nα− β)w ∀α, β ∈ ZZ. (2.9)

This will be proved by induction on n. When n = 1, (2.9) follows from (1.5).
Suppose n > 1 and (2.9) is valid for n− 1. We have

Tn
b (wδβ) = Tn−1

b

(
Tb(wδβ)

)
= Tn−1

b

(∑
γ∈ZZ b(2γ − β)wδγ

)
=

∑
α∈ZZ

∑
γ∈ZZ bn−1(2n−1α− γ)b(2γ − β)wδα

=
∑

α∈ZZ bn(2nα− β)wδα,

where (2.6) has been used to derive the last equality. This completes the induc-
tion procedure. It follows from (2.9) that

Tn
b (w∇δβ)(α) = ∇bn(2nα− β)w, ∀α, β ∈ ZZ. (2.10)

Recall that y is a left eigenvector of the matrix M =
∑

α∈ZZ a(α)/2 corre-
sponding to the eigenvalue 1. Let e1, . . . , er be a basis for Cr such that ye1 = 1
and yej = 0 for j = 2, . . . , r. Let ejk := ek ⊗ ej for j, k = 1, . . . , r. Then
{ejk : j, k = 1, . . . , r} is a basis for Cr2

such that (y⊗y)e11 = 1 and (y⊗y)ejk = 0
for (j, k) 6= (1, 1).

The following theorem gives a necessary condition for the L2-convergence of
a vector subdivision scheme with an exponentially decaying mask.
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Theorem 1.2.1 Let a ∈ Er×r
µ for some µ > 0 and let b be given by (1.4). If

the subdivision scheme associated with a converges in the L2-norm, then

lim
n→∞

‖Tn
b v‖∞ = 0 ∀ v ∈ V, (2.11)

where Tb is the transition operator defined in (1.5) and V is the linear space
given by (1.6).

Proof. Suppose that the subdivision scheme associated with a converges in the
L2-norm. Let φ0 and ψ0 be two elements in (L2,c(IR))r satisfying the moment
conditions of order 1. Then both sequences φn := Qn

aφ0 and ψn := Qn
aψ0

converge to the same limit function φ in the L2-norm. For n = 0, 1, . . ., let
fn := vec(φn � ψT

n ), and let f := vec(φ� φT ). Then

‖fn − f‖∞ = ‖vec
(
φn � ψT

n − φ� φT
)
‖∞

≤ ‖vec
(
φn � (ψn − φ)T

)
‖∞ + ‖vec

(
(φn − φ)� φT

)
‖∞

≤ ‖φn‖2‖ψn − φ‖2 + ‖φn − φ‖2

∥∥φ‖2.

This shows that fn converges to f uniformly.
In particular, choose φ0 = ψ0 = e1χ, where χ is the characteristic function

of the unit interval [0, 1). Then both φ0 and ψ0 satisfy the moment conditions
of order 1. But vec ((e1χ) � (e1χ)T ) = e11h, where h is the hat function given
by h(x) := max{1−|x|, 0}, x ∈ IR. With the help of (2.8), we see that Qn

b (e11h)
converges to f uniformly. Since f is uniformly continuous, ‖f−f(·−2−n)‖∞ → 0
as n→∞. Consequently,

lim
n→∞

‖Qn
b (e11h)−Qn

b (e11h)(· − 2−n)‖∞ = 0.

But (2.5) implies

Qn
b (e11h)−Qn

b (e11h)(· − 2−n) =
∑

α∈ZZ
∇bn(α)e11h(2n · − α).

It follows that
lim

n→∞
‖∇bne11‖∞ = 0. (2.12)

Furthermore, we observe that, for j = 2, . . . , r, e1χ and (e1 + ej)χ both satisfy
the moment conditions of order 1. Hence, Qn

a(e1χ) and Qn
a(e1 + ej)χ both

converge to the same limit φ in the L2-norm. This shows that, for j = 2, . . . , r,
‖Qn

a(ejχ)‖2 → 0 as n → ∞. Choosing φ0 = ejχ and ψ0 = ekχ in (2.8), we
obtain

vec
(
(Qn

a(ejχ))� (Qn
a(ekχ))T

)
= Qn

b (ejkh), j, k = 1, . . . , r, n = 1, 2, . . . .

Therefore,
lim

n→∞
‖Qn

b (ejkh)‖∞ = 0, for (j, k) 6= (1, 1).

But by (2.5) we have

Qn
b (ejkh) =

∑
α∈ZZ

bn(α)ejkh(2n · − α).

9



This shows that

lim
n→∞

‖bnejk‖∞ = 0, (j, k) 6= (1, 1). (2.13)

To summarize, we have shown that (2.12) and (2.13) are necessary conditions
for the subdivision scheme associated with a to converge in the L2-norm.

Let v be an element of V . Then v can be expressed as

v =
r∑

j=1

r∑
k=1

∑
β∈ZZ

cjk(β)ejkδβ ,

where cjk ∈ Eµ, j, k = 1, . . . , r. Since v ∈ V , we have (y ⊗ y)
∑

α∈ZZ v(α) = 0.
But (y ⊗ y)e11 = 1 and (y ⊗ y)ejk = 0 for (j, k) 6= (1, 1). Hence,

0 = (y ⊗ y)
∑
α∈ZZ

v(α) = (y ⊗ y)
r∑

j=1

r∑
k=1

∑
β∈ZZ

cjk(β)ejk =
∑
β∈ZZ

c11(β).

So c11 can be written as
∑

β∈ZZ d(β)∇δβ , where d is given by

d(β) :=
{
c11(β) + c11(β − 1) + c11(β − 2) + · · · for β ≤ −1,
−c11(β + 1)− c11(β + 2)− c11(β + 3)− · · · for β ≥ 0.

Clearly, d belongs to `1(ZZ). The relations (2.12) and (2.13) together with (2.9)
and (2.10) imply that, for every β ∈ ZZ and (j, k) 6= (1, 1),

lim
n→∞

‖Tn
b (e11∇δβ)‖∞ = 0 and lim

n→∞
‖Tn

b (ejkδβ)‖∞ = 0.

In light of the expression of v, (2.11) follows at once.

Condition (2.11) is also sufficient for the L2-convergence of the vector sub-
division scheme associated with mask a. To see this, we first show that, for any
ψ ∈ (L2,c(IR))r,

‖Qn
aψ‖2

2 ≤ r‖Tn
b v(0)‖∞, n = 1, 2, . . . , (2.14)

where
v(α) := vec (ψ � ψT )(α), α ∈ ZZ.

Let g := vec (ψ � ψT ), ψn := Qn
aψ, and gn := vec (ψn � ψT

n ) (n = 1, 2, . . .).
Then we have

‖ψn‖2
2 ≤ r‖gn(0)‖∞. (2.15)

But (2.8) tells us that gn = Qn
b g. Hence,

gn(0) = (Qn
b g)(0) =

∑
α∈ZZ

bn(α)g(−α) =
∑
β∈ZZ

bn(−β)g(β). (2.16)
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Furthermore, for n = 1, 2, . . ., we have

Tn
b v(α) =

∑
β∈ZZ

bn(2nα− β)v(β), α ∈ ZZ. (2.17)

This will be proved by induction on n. By the definition of Tb, (2.17) is true for
n = 1. Suppose (2.17) is valid for n− 1. For α ∈ ZZ, we have

Tn
b v(α) = Tn−1

b (Tbv)(α)
=

∑
β∈ZZ bn−1(2n−1α− β)(Tbv)(β)

=
∑

β∈ZZ

∑
γ∈ZZ bn−1(2n−1α− β)b(2β − γ)v(γ)

=
∑

γ∈ZZ

[∑
β∈ZZ bn−1(β)b(2nα− γ − 2β)

]
v(γ)

=
∑

γ∈ZZ bn(2nα− γ)v(γ),

where (2.6) has been used to derive the last equality. This completes the in-
duction procedure. It follows from (2.16) and (2.17) that gn(0) = Tn

b v(0). This
togetehr with (2.15) implies (2.14).

If a is finitely supported and the matrix M :=
∑

α∈ZZ a(α)/2 has a simple
eigenvalue 1 and its other eigenvalues are less than 1 in modulus, then we must
have ρ(Tb) ≥ 1. Indeed, if ρ(Tb) < 1, then (2.14) tells us that Qn

a(e1χ) would
converge to 0 in the L2-norm. On the other hand, it was proved in [23] that
the limit of Qn

a(e1χ) must be a nonzero vector of functions in L2(IR). This
contradiction demonstrates ρ(Tb) ≥ 1.

When a ∈ Er×r
µ , this conclusion remains valid. To see this, we recall the fol-

lowing fact from functional analysis (see [34, Theorem 10.20]). Let A,A1, A2, . . .
be bounded linear operators on a Banach space. Suppose ‖An − A‖ → 0 as
n→∞. Then for a given ε > 0 there exists some n0 such that ρ(An) < ρ(A)+ε
for all n ≥ n0. In order to apply this result, we find sequences a(N) (N = 1, 2, . . .)
such that each a(N) is supported on [−N,N ], y

∑
α∈ZZ a

(N)(α)/2 = y, and
‖a(N)−a‖Er×r

µ
→ 0 asN →∞. Let b(N) := a(N)�a(N)/2. Then ‖Tb(N)−Tb‖ → 0

as N → ∞. If ρ(Tb) < 1, then ρ(Tb(N)) < 1 for sufficiently large N . But the
latter is impossible. Therefore, we must have ρ(Tb) ≥ 1.

Let a ∈ Er×r
µ for some µ > 0. We say that a satisfies the basic sum rule if

y
∑

α∈ZZ
a(2α) = y

∑
α∈ZZ

a(2α− 1) = y.

Let b be given by (1.4). If a satisfies the basic sum rule, then b satisfies the
basic sum rule stated as follows:

(y ⊗ y)
∑

α∈ZZ
b(2α) = (y ⊗ y)

∑
α∈ZZ

b(2α− 1) = y ⊗ y.

The converse of this statement is also true. Moreover, if b satisfies the basic
sum rule, then the space V given by (1.6) is invariant under Tb.

We are in a position to establish the main result of this section.

Theorem 1.2.2 Let a ∈ Er×r
µ for some µ > 0 and let b be given by (1.4). Then

the subdivision scheme associated with a converges in the L2-norm if and only
if

11



(a) a satisfies the basic sum rule, and
(b) ρ(Tb|V ) < 1.

Proof. Suppose the subdivision scheme associated with a converges in the L2-
norm. Then (2.11) is valid, by Theorem 2.1. If V is not invariant under Tb,
then there exists v ∈ V such that Tbv /∈ V . Note that the codimension of V in
Er2

µ is 1. Hence, any u ∈ Er2

µ can be represented as u = w + c(Tbv) for some
w ∈ V and c ∈ C. It follows from (2.11) that

lim
n→∞

‖Tn
b u‖∞ = 0 ∀u ∈ Er2

µ .

Consequently, ρ(Tb) < 1. But we have proved ρ(Tb) ≥ 1. This contradiction
shows that V is invariant under Tb.

Since V is invariant under Tb, we have Tb(ejk∇δ) ∈ V for j, k = 1, . . . , r. It
follows that∑

α∈ZZ

(y ⊗ y)
[
b(2α)− b(2α− 1)

]
ejk = (y ⊗ y)

∑
α∈ZZ

Tb(ejk∇δ)(α) = 0.

Since the above relation is true for all j, k = 1, . . . , r, we deduce that

(y ⊗ y)
∑

α∈ZZ

[
b(2α)− b(2α− 1)

]
= 0.

But
(y ⊗ y)

∑
α∈ZZ

[
b(2α) + b(2α− 1)

]
= 2(y ⊗ y).

Therefore, b satisfies the basic sum rule. Consequently, a also satisfies the basic
sum rule.

Since Tb is a compact operator, ρ(Tb|V ) = |τ | for some eigenvalue τ of Tb|V .
Suppose Tbv = τv for some v ∈ V with v 6= 0. It follows that Tn

b v = τnv for
n = 1, 2, . . .. By (2.11), ‖Tn

b v‖∞ converges to 0 as n→∞. Therefore, |τ |n → 0
as n→∞. This shows ρ(Tb|V ) = |τ | < 1, as desired.

It remains to prove the sufficiency of conditions (a) and (b). For this purpose,
let φ0 be an r × 1 vector of compactly supported functions in L2(IR) such that
φ0 satisfies the moment conditions of order 1. We wish to prove that Qn

aφ0 is a
Cauchy sequence in (L2(IR))r. We observe that

Qn+1
a φ0 −Qn

aφ0 = Qn
a(Qaφ0 − φ0) = Qn

aψ, (2.18)

where ψ := Qaφ0 − φ0. Since y
∑

α∈ZZ φ0(· − α) = 1 and a satisfies the basic
sum rule, we have

y
∑

α∈ZZ(Qaφ0)(· − α) = y
∑

α∈ZZ

∑
β∈ZZ a(β)φ0(2 · − 2α− β)

=
∑

β∈ZZ y
[∑

α∈ZZ a(β − 2α)
]
φ0(· − β) =

∑
β∈ZZ yφ0(· − β) = 1.

In other words, Qaφ0 also satisfies the moment conditions of order 1. Conse-
quently,

y
∑

α∈ZZ
ψ(· − α) = 0.
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Let v(α) := vec (ψ�ψT )(α), α ∈ ZZ. Then the above relation and (2.1) imply

(y ⊗ y)
∑
α∈ZZ

v(α) = (y ⊗ y)
∑
α∈ZZ

∫
IR

vec
(
ψ(α+ x)ψ(x)

T )
dx = 0.

Hence v lies in V . Since ρ(Tb|V ) < 1, by (2.14) we see that there exist two
constants C > 0 and t ∈ (0, 1) such that

‖Qn
aψ‖2 ≤ Ctn, n = 1, 2, . . . .

Since 0 < t < 1, this together with (2.18) tells us thatQn
aφ0 is a Cauchy sequence

in (L2(IR))r. Thus, Qn
aφ0 converges in the L2-norm for every φ0 in (L2,c(IR))r

satisfying the moment conditions of order 1. If ψ0 is another such vector, then
y

∑
α∈ZZ(φ0 − ψ0)(· − α) = 0. By what has been proved, Qn

a(φ0 − ψ0) converges
to 0 in the L2-norm. In other words, Qn

aφ0 and Qn
aψ0 converge to the same

limit. We conclude that the subdivision scheme associated with a converges in
the L2-norm.

1.3 Biorthogonal Multiple Refinable Functions

Let φ = (φ1, . . . , φr)T be a refinable vector of compactly supported functions
in L2(IR). In this section we show that there exists a dual refinable vector of
compactly supported functions in L2(IR) if and only if the shifts of φ1, . . . , φr

are linearly independent.
The linear independence of the shifts of a finite number of compactly sup-

ported functions was characterized by Jia and Micchelli [21] in terms of the
Fourier transform of these functions. The Fourier-Laplace transform of a com-
pactly supported integrable function f is defined by

f̂(ζ) :=
∫

IR

f(x)e−ixζ dx, ζ ∈ C.

Let φ1, . . . , φr be compactly supported integrable functions. It was proved in
[21] that the shifts of φ1, . . . , φr are linearly independent if and only if, for any
ζ ∈ C, the sequences (φ̂j(ζ + 2βπ))β∈ZZ (j = 1, . . . , r) are linearly independent.
This result is also valid if φ1, . . . , φr are compactly supported distributions.

Another important concept is stability. Let φ1, . . . , φr be a finite number
of functions in Lp(IR) (1 ≤ p ≤ ∞). We say that the shifts of φ1, . . . , φr are
Lp-stable if there exist two positive constants C1 and C2 such that, for arbitrary
finitely supported sequences λ1, . . . , λr on ZZ,

C1

r∑
j=1

‖λj‖p ≤
∥∥∥∥ r∑

j=1

∑
α∈ZZ

φj(· − α)λj(α)
∥∥∥∥

p

≤ C2

r∑
j=1

‖λj‖p .

Given a function φ on IR, set φ◦ :=
∑

α∈ZZ |φ(· − α)|. By Lp(IR) we denote the
linear space of all functions φ for which (φ◦)p is integrable on the interval [0, 1].
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Let φ1, . . . , φr be functions in Lp(IR) (1 ≤ p ≤ ∞). It was proved by Jia and
Micchelli [21] that the shifts of φ1, . . . , φr are Lp-stable if and only if, for any
ξ ∈ IR, the sequences (φ̂j(ξ + 2βπ))β∈ZZ (j = 1, . . . , r) are linearly independent.
In particular, when φ1, . . . , φr are compactly supported, linear independence
implies stability.

In what follows, by Ir we denote the r × r identity matrix. The complex
conjugate of a matrix M is denoted by M∗. For f = (f1, . . . , fr)T and g =
(g1, . . . , gr)T in (L2(IR))r, we define

〈f, gT 〉 :=


〈f1, g1〉 〈f1, g2〉 · · · 〈f1, gr〉
〈f2, g1〉 〈f2, g2〉 · · · 〈f2, gr〉

...
...

. . .
...

〈fr, g1〉 〈fr, g2〉 · · · 〈fr, gr〉

 .
Thus, f and g are dual to each other if and only if

〈f(· − γ), gT 〉 = δγ,0Ir ∀ γ ∈ ZZ.

Let a be an element in (`0(ZZ))r×r such that M :=
∑

α∈ZZ a(α)/2 has a simple
eigenvalue 1 and its other eigenvalues are less than 1 in modulus. Let y be a
nonzero 1× r vector such that yM = y. It was proved by Heil and Colella [16]
that there exists a unique distributional solution φ of the refinement equation
(1.1) such that φ is compactly supported and yφ̂(0) = 1. Similarly, let ã be an
element in (`0(ZZ))r×r such that the matrix M̃ :=

∑
α∈ZZ ã(α)/2 has a simple

eigenvalue 1 and its other eigenvalues are less than 1 in modulus. Let ỹ be
a 1 × r vector such that ỹM̃ = ỹ and ỹy∗ = 1. Then there exists a unique
distributional solution φ̃ of the refinement equation

φ̃ =
∑

α∈ZZ
ã(α)φ̃(2 · − α) (3.1)

such that φ̃ is compactly supported and ỹ ˆ̃φ(0) = 1.

Theorem 1.3.1 The vectors φ and φ̃ belong to (L2(IR))r and are dual to each
other if and only if
(a)

∑
α∈ZZ a(α)ã(α+ 2γ)∗ = 2δγ,0Ir for all γ ∈ ZZ, and

(b) the subdivision schemes associated with both a and ã converge in the L2-
norm.

Proof. Suppose φ ∈ (L2(IR))r and φ̃ ∈ (L2(IR))r are dual to each other. Then
we have 〈φ(·−γ), φ̃T 〉 = δγ,0Ir for all γ ∈ ZZ. By using the refinement equations
(1.1) and (3.1) we see that, for each γ ∈ ZZ,

〈φ(· − γ), φ̃T 〉 =
∑

α∈ZZ

∑
β∈ZZ〈a(α)φ(2 · − 2γ − α), φ̃(2 · − β)T ã(β)T 〉

=
∑

α∈ZZ a(α)ã(α+ 2γ)∗
/
2.

Hence, condition (a) is satisfied. Moreover, φ and φ̃ are dual to each other
implies that the shifts of φ1, . . . , φr are stable. By [23, Theorem 3.2], the subdi-
vision scheme associated with a is L2-convergent. The same reason shows that
the subdivision scheme associated with ã also converges in the L2-norm.
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Now suppose conditions (a) and (b) are satisfied. If φ0 ∈ (L2(IR))r and
φ̃0 ∈ (L2(IR))r are dual to each other, then condition (a) tells us that Qaφ0 and
Qãφ̃0 are also dual to each other. We choose the initial vectors φ0 and φ̃0 as
follows. Let f1 := χ[0,1) and, for j = 2, . . . , r, let

fj :=
2j−1∑
k=0

(−1)kχ[k/2j ,(k+1)/2j),

where χ[s,t) denotes the characteristic function of the interval [s, t). It is easily
seen that f := (f1, . . . , fr)T is dual to itself (see [23, Theorem 8.1] for the
construction of f). Since yỹ∗ = 1, we can find two r× r matrices A and Ã such
that the first column of A is ỹ∗, the first column of Ã is y∗, and Ã∗A = Ir.
Let φ0 := Af and φ̃0 := Ãf . Then φ0 and φ̃0 satisfy the moment conditions of
order 1 (with respect to y and ỹ). Moreover, φ0 and φ̃0 are dual to each other.
Therefore, for n = 1, 2, . . ., Qn

aφ0 and Qn
ã φ̃0 are dual to each other. In other

words, 〈
(Qn

aφ0)(· − γ), (Qn
ã φ̃0)T

〉
= δγ,0Ir ∀ γ ∈ ZZ. (3.2)

But condition (b) tells us that ‖Qn
aφ0 − φ‖2 → 0 and ‖Qn

ã φ̃0 − φ̃‖2 → 0 as
n→∞. Letting n→∞ in (3.2), we obtain

〈φ(· − γ), φ̃T 〉 = δγ,0Ir ∀ γ ∈ ZZ.

This proves that φ and φ̃ are dual to each other.

Taking the Fourier transforms of both sides of (1.1) and (3.1), we obtain

φ̂(ξ) = H(ξ/2)φ̂(ξ/2) and ˆ̃
φ(ξ) = H̃(ξ/2)ˆ̃φ(ξ/2), ξ ∈ IR, (3.3)

where

H(ξ) :=
∑
α∈ZZ

a(α)e−iαξ
/
2 and H̃(ξ) :=

∑
α∈ZZ

ã(α)e−iαξ
/
2. (3.4)

It is easily seen that condition (a) is equivalent to

H(ξ)H̃(ξ)∗ +H(ξ + π)H̃(ξ + π)∗ = Ir ∀ ξ ∈ IR. (3.5)

Moreover, Theorem 2.2 tells us that condition (b) is equivalent to

ρ(Tb|V ) < 1 and ρ(Tb̃|Ṽ ) < 1, (3.6)

where b̃ := ã � ã/2, V is the space given by (1.6), and

Ṽ :=
{
v ∈ Er2

µ : (ỹ ⊗ ỹ)
∑

α∈ZZ
v(α) = 0

}
. (3.7)

Thus, Theorem 3.1 can be restated as follows: The vectors φ and φ̃ belong to
(L2(IR))r and are dual to each other if and only if both (3.5) and (3.6) hold
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true. Since a is finitely supported, [23, Theorem 7.1] tells us that, in (3.6),
V can be chosen to be the minimum invariant subspace of Tb generated by
e11(∆δ), e22δ, . . . , errδ, and Ṽ can be chosen in a similar way.

For the scalar case (r = 1), Lawton [29] first gave a characterization for
orthogonality of the shifts of a refinable function in terms of the spectral radius of
the corresponding transition matrix. Cohen and Daubechies [4] established the
above form of characterization of biorthogonality of a pair of refinable functions.
In [31], Long and Chen extended the results in [4] to the multivariate setting.
Note that an essential ingredient of the proof of [4, Theorem 4.3] is the fact that
a univariate trigonometric polynomial has only finitely many zeros in the interval
[−π, π]. So the extension to the multivariate setting is not trivial. For the vector
case (r > 1), on the basis of the work of Long, Chen, and Yuan [32], Shen [35]
proved that φ and φ̃ are dual to each other is equivalent to conditions (3.5), (3.6),
and an additional condition on the eigenvectors of Tb and Tb̃ corresponding to
the eigenvalue 1. However, as was demonstrated above, the condition on the
eigenvectors of Tb and Tb̃ is redundant.

Let φ = (φ1, . . . , φr)T be a vector of compactly supported functions in L2(IR)
such that the shifts of φ1, . . . , φr are linearly independent. Suppose φ satisfies
the refinement equation (1.1) with a finitely supported mask a. Then there
exists ã ∈ (`0(ZZ))r such that the r × r matrices H(ξ) and H̃(ξ) given by (3.4)
satisfy (3.5). To see this, we first show that the r × (2r) matrix

[H(ξ) H(ξ + π) ] (3.8)

has full rank r for every ξ ∈ C. Suppose to the contrary that there exists some
ξ ∈ C such that this matrix has rank less than r. Then there exists a nonzero
1× r vector t = (t1, . . . , tr) such that tH(ξ) = 0 and tH(ξ + π) = 0. By (3.3)
we have

tφ̂(2ξ + 4βπ) = tH(ξ)φ̂(ξ + 2βπ) = 0 ∀β ∈ ZZ

and

tφ̂(2ξ + 2π + 4βπ) = tH(ξ + π)φ̂(ξ + π + 2βπ) = 0 ∀β ∈ ZZ.

It follows that tφ̂(2ξ + 2βπ) = 0 for all β ∈ ZZ. Thus, the shifts of φ1, . . . , φr

would be linearly dependent. This contradiction shows that the matrix in (3.8)
has full rank r for every ξ ∈ C. Let

P (z) :=
∑

α∈ZZ
a(α)zα/2, z ∈ C \ {0}.

Then P (z) is an r × r matrix of Laurent polynomials and H(ξ) = P (e−iξ) for
ξ ∈ C. By what has been proved, the matrix

[P (z) P (−z) ]

has full rank r for every z ∈ C\{0}. Hence, by a well-known result from algebra,
there exist two r× r matrices U(z) and V (z) of Laurent polynomials such that

[P (z) P (−z) ]
[
U(z)
V (z)

]
= Ir, z ∈ C \ {0}.
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Let Q(z) := (U(z) + V (−z))/2. Then we have

[P (z) P (−z) ]
[
Q(z)
Q(−z)

]
= Ir, z ∈ C \ {0}.

Let K(ξ) := Q(e−iξ)∗, ξ ∈ C. Then

H(ξ)K(ξ)∗ +H(ξ + π)K(ξ + π)∗ = Ir ∀ ξ ∈ C. (3.9)

We may express K(ξ) as
∑

α∈ZZ c(α)e−iαξ/2 for some c ∈ (`0(ZZ))r×r. However,
there is no guarantee that the subdivision scheme associated with c will converge
in the L2-norm. To overcome this difficulty, we first construct an exponentially
decaying mask ã such that the subdivision scheme associated with ã converges
in the L2-norm and the r × r matrices H(ξ) and H̃(ξ) given by (3.4) satisfy
(3.5). In the process, the bracket product of two functions in L2(IR) introduced
by Jia and Micchelli [20, Theorem 3.2] will be used. For f, g ∈ L2(IR), their
bracket product is defined by

[f, g](e−iξ) :=
∑
β∈ZZ

f̂(ξ + 2βπ)ĝ(ξ + 2βπ), ξ ∈ IR.

We are in a position to establish the main result of this section.

Theorem 1.3.2 Let φ = (φ1, . . . , φr)T be an r×1 vector of compactly supported
functions in L2(IR) with linearly independent shifts. Suppose that φ satisfies the
refinement equation (1.1) with a finitely supported mask a. Then there exists
a refinable vector φ̃ = (φ̃1, . . . , φ̃r)T of compactly supported functions in L2(IR)
such that φ̃ is dual to φ.

Proof. Let
G(ξ) :=

(
[φj , φk](e−iξ)

)
1≤j,k≤r

, ξ ∈ IR.

Then G(ξ) is 2π-periodic. Since the shifts of φ1, . . . , φr are stable, the Gram
matrix G(ξ) is positive definite for every ξ ∈ IR (see [20, Theorem 4.1]). Let
φ̃ = (φ̃1, . . . , φ̃r)T be given by

̂̃
φ(ξ) := G(ξ)−1φ̂(ξ), ξ ∈ IR.

Then φ̃1, . . . , φ̃r decay exponentially fast and have stable shifts. In particular,
φ̃1, . . . , φ̃r belong to L2(IR). For every ξ ∈ IR we have∑

β∈ZZ
̂̃
φ(ξ + 2βπ)φ̂(ξ + 2βπ)∗ = G(ξ)−1

∑
β∈ZZ φ̂(ξ + 2βπ)φ̂(ξ + 2βπ)∗

= G(ξ)−1G(ξ) = Ir.

This shows that φ̃ is dual to φ. Moreover, φ̃ is refinable. Indeed, we have

̂̃
φ(ξ) = G(ξ)−1φ̂(ξ) = G(ξ)−1H(ξ/2)φ̂(ξ/2)

= G(ξ)−1H(ξ/2)G(ξ/2)̂̃φ(ξ/2).

17



Consequently, ̂̃
φ(ξ) = H̃(ξ/2)̂̃φ(ξ/2),

where
H̃(ξ) = G(2ξ)−1H(ξ)G(ξ), ξ ∈ IR.

Clearly, H̃ is 2π-periodic. Since φ̃ is dual to φ, H and H̃ satisfy the relation
(3.5). Suppose H̃(ξ) = (h̃jk(ξ))1≤j,k≤r, where

h̃jk(ξ) =
∑

α∈ZZ
ãjk(α)e−iαξ

/
2, ξ ∈ IR.

Each sequence ãjk decays exponentially fast. That is, there exists some µ > 0
such that ãjk ∈ Eµ for all j, k = 1, . . . , r. Let ã := (ãjk)1≤j,k≤r. Then ã ∈ Er×r

µ .
Since the shifts of φ̃1, . . . , φ̃r are stable, from the proof of [23, Theorem 3.1]
we see that the subdivision scheme associated with ã is L2-convergent. Let
b̃ := ã � ã/2 and let Ṽ be the linear space given in (3.7). By Theorem 2.2 we
have ρ(Tb̃|Ṽ ) < 1.

Let
M :=

∑
α∈ZZ

a(α)
/
2 and M̃ :=

∑
α∈ZZ

ã(α)
/
2.

There exists a unique 1×r vector y such that yM = y and yφ̂(0) = 1. Similarly,

there exists a unique 1 × r vector ỹ such that ỹM̃ = ỹ and ỹ
̂̃
φ(0) = 1. The

duality of φ and φ̃ implies yỹ∗ = 1. Since the subdivision scheme associated
with ã converges in the L2-norm, Theorem 2.2 tells us that ã satisfies the basic
sum rule:

ỹ
∑

α∈ZZ
ã(2α) = ỹ

∑
α∈ZZ

ã(2α− 1) = ỹ.

For N = 1, 2, . . ., we can find ã(N) ∈ (`0(ZZ))r×r such that each ã(N) is finitely
supported and ‖ã(N) − ã‖Er×r

µ
→ 0 as N →∞. For ξ ∈ IR, let

H̃N (ξ) :=
∑

α∈ZZ
ã(N)(α)e−iαξ

/
2, ξ ∈ IR,

and

εN (ξ) := Ir −
[
H(ξ)H̃N (ξ)∗ +H(ξ + π)H̃N (ξ + π)∗

]
, ξ ∈ IR. (3.10)

Then εN is π-periodic: εN (ξ) = εN (ξ + π) for all ξ ∈ IR. Let

FN (ξ) := H̃N (ξ) + εN (ξ)∗K(ξ), ξ ∈ IR,

where K is an r× r matrix of trigonometric polynomials satisfying (3.9). Thus,
by (3.9) and (3.10) we have

H(ξ)FN (ξ)∗ +H(ξ + π)FN (ξ + π)∗

=
[
H(ξ)H̃N (ξ)∗ +H(ξ + π)H̃N (ξ + π)∗

]
+

[
H(ξ)K(ξ)∗ +H(ξ + π)K(ξ + π)∗

]
εN (ξ)

= (Ir − εN (ξ)) + εN (ξ) = Ir.
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Write
FN (ξ) =

∑
α∈ZZ

c(N)(α)e−iαξ
/
2, ξ ∈ IR,

where each c(N) ∈ (`0(ZZ))r×r. Since ‖ã(N) − ã‖Er×r
µ

→ 0 as N → ∞, by the

construction of FN we also have ‖c(N) − ã‖Er×r
µ

→ 0 as N →∞. Observe that

ã satisfies the basic sum rule. Hence, we may choose ã(N) (N = 1, 2, . . .) in such
a way that each c(N) satisfies the basic sum rule (with respect to ỹ):

ỹ
∑

α∈ZZ
c(N)(2α) = ỹ

∑
α∈ZZ

c(N)(2α− 1) = ỹ.

Let M̃ (N) :=
∑

α∈ZZ c
(N)(α)/2. For sufficiently large N , 1 is a simple eigenvalue

of M̃ (N) and its other eigenvalues are less than 1 in modulus. Let b̃(N) :=
c(N) � c(N)/2. Then b̃(N) → b̃ in the space Er2×r2

µ as N →∞. But ρ(Tb̃|Ṽ ) < 1,
where Ṽ is the linear space given in (3.7); hence ρ(Tb̃(N) |Ṽ ) < 1 for sufficiently
large N . Therefore, by Theorem 2.2, the subdivision scheme associated with
c(N) converges in the L2-norm. By Theorem 3.1, the limit f is an r × 1 vector
of compactly supported functions in L2(IR) and f is dual to φ. The proof of the
theorem is complete.

1.4 Biorthogonal Multiple Wavelets

In this section we apply the general theory developed so far to the construction
of biorthogonal multiple wavelets.

The first nontrivial example of continuous symmetric orthogonal double
wavelets was constructed by Donovan, Geronimo, Hardin, and Massopust in
[11] by means of fractal interpolation. In [2], Chui and Lian constructed orthog-
onal double wavelets with symmetry by using refinement equations. However,
they did not prove that the double refinable functions they constructed are func-
tions in L2(IR) with orthogonal shifts. In [23], Jia, Riemenschneider, and Zhou
did that and constructed an entire family of orthogonal double wavelets that
are continuous and have symmetry.

Biorthogonal wavelets have advantages over orthogonal wavelets in several
aspects. In particular, biorthogonal wavelets can be constructed from spline
functions, and the coefficients in the corresponding filters can be chosen to be
rational numbers. For Hermite cubic splines, Dahmen, Han, Jia, and Kunoth [8]
found a refinable dual vector of continuous functions and constructed biorthog-
onal double wavelets on the interval.

In this section, we will give two examples of biorthogonal double wavelets. In
the first example, the wavelets are piecewise linear functions with short support.
In the second example, the wavelets are almost in C2, and the dual wavelets
are in C1. All the wavelets and dual wavelets are either symmetric or anti-
symmetric about the origin.

Let us start with multiresolution of L2(IR). Suppose φ = (φ1, . . . , φr)T is a
refinable vector of compactly supported functions in L2(IR). Let S denote the
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closed linear subspace of L2(IR) generated by φ1, . . . , φr. For k ∈ ZZ, let Sk be
the 2k-dilate of S:

Sk := {g(2k·) : g ∈ S}.

It was proved by Jia and Shen [25] that (Sk)k∈ZZ forms a multiresolution of
L2(IR). In other words, Sk ⊂ Sk+1 for k ∈ ZZ, ∪k∈ZZSk is dense in L2(IR), and
∩k∈ZZSk = {0}. Suppose the shifts of φ1, . . . , φr are linearly independent. By
Theorem 3.2, there exists a refinable vector φ̃ = (φ̃1, . . . , φ̃r)T of compactly
supported functions in L2(IR) such that φ̃ and φ are dual to each other. Let S̃
denote the closed linear subspace of L2(IR) generated by φ̃1, . . . , φ̃r. For k ∈ ZZ,
let S̃k be the 2k-dilate of S̃. Then (S̃k)k∈ZZ also forms a multiresolution of
L2(IR). We wish to find ψ1, . . . , ψr ∈ S1 and ψ̃1, . . . , ψ̃r ∈ S̃1 such that

〈ψj , φ̃k(· − γ)〉 = 0 ∀ j, k = 1, . . . , r and γ ∈ ZZ, (4.1)

〈φj , ψ̃k(· − γ)〉 = 0 ∀ j, k = 1, . . . , r and γ ∈ ZZ, (4.2)

and
〈ψj , ψ̃k(· − γ)〉 = δγ,0δjk ∀ j, k = 1, . . . , r and γ ∈ ZZ. (4.3)

Let W be the closed linear space of L2(IR) generated by the shifts of ψ1, . . . , ψr,
and let W̃ be the closed linear space of L2(IR) generated by the shifts of
ψ̃1, . . . , ψ̃r. If (4.1), (4.2), and (4.3) are true, then S1 is the direct sum of
S0 and W , and S̃1 is the direct sum of S̃0 and W̃ . As was done in [4, Theorem
5.1], it can be proved that{

2k/2ψj(2k · − α) : j = 1, . . . , r, k ∈ ZZ, α ∈ ZZ
}

forms a Riesz basis for L2(IR), and{
2k/2ψ̃j(2k · − α) : j = 1, . . . , r, k ∈ ZZ, α ∈ ZZ

}
forms the dual basis.

Suppose

ψ =
∑
α∈ZZ

c(α)φ(2 · − α) and ψ̃ =
∑
α∈ZZ

c̃(α)φ̃(2 · − α). (4.4)

Then (4.1), (4.2), and (4.3) are respectively equivalent to the following equa-
tions: ∑

β∈ZZ
c(β)ã(2γ + β)∗ = 0 ∀ γ ∈ ZZ, (4.5)∑

β∈ZZ
c̃(β)a(2γ + β)∗ = 0 ∀ γ ∈ ZZ, (4.6)∑

β∈ZZ
c(β)c̃(2γ + β)∗ = 2δγ,0Ir ∀ γ ∈ ZZ. (4.7)

Before giving two examples of biorthogonal double wavelets, we take a brief
review of the approximation and smoothness properties of multiple refinable
functions and multiple wavelets.
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Let φ = (φ1, . . . , φr)T be a vector of compactly supported distributions
on IR. We say that φ has accuracy k if the shift-invariant space generated
by φ1, . . . , φr contains all polynomials of degree less than k. If, in addition,
φ1, . . . , φr are functions in Lp(IR) (1 ≤ p ≤ ∞), then φ has accuracy k if and
only if the shift-invariant space generated by φ1, . . . , φr provides approximation
order k (see [19]).

Now suppose φ satisfies the refinement equation (1.1) with mask a. The
optimal accuracy of φ was characterized in terms of the mask by Heil, Strang,
Strela [17], and by Plonka [33] under the condition that the shifts of φ1, . . . , φr

be linearly independent. In [22], Jia, Riemenschneider, and Zhou gave a char-
acterization for the accuracy without the assumption of linear independence.

In the following we give a characterization for the accuracy of φ in a form
slightly different from that of [17]. For m = 0, 1, 2, . . ., set

Em :=
1
m!

∑
α∈ZZ

(2α)ma(2α) and Om :=
1
m!

∑
α∈ZZ

(2α− 1)ma(2α− 1).

Theorem 1.4.1 Let φ = (φ1, . . . , φr)T be a vector of compactly supported dis-
tributions. Suppose φ satisfies the refinement equation (1.1) with mask a. Let
k be a positive integer. If there exist 1 × r vectors cm = (cm1, . . . , cmr) (m =
0, 1, . . . , k − 1) such that

j∑
m=0

(−1)m2j−mcj−mEm = cj and
j∑

m=0

(−1)m2j−mcj−mOm = cj (4.8)

are true for j = 0, 1, . . . , k− 1, and if c0 6= 0, then φ has accuracy k. Moreover,
under the condition c0φ̂(0) = 1, we have

xj

j!
=

∑
α∈ZZ

j∑
m=0

αm

m!
cj−mφ(x− α), j = 0, 1, . . . , k − 1, x ∈ IR.

Conversely, if φ has accuracy k, and if the shifts of φ1, . . . , φr are linearly inde-
pendent, then there exist 1× r vectors cm (m = 0, 1, . . . , k− 1) satisfying c0 6= 0
and the conditions in (4.8).

In fact, Theorem 4.1 remains true if, for ξ = 0 and ξ = π, the sequences
(φ̂j(ξ + 2βπ))β∈ZZ (j = 1, . . . , r) are linearly independent.

We use the generalized Lipschitz space to measure smoothness of a given
function. By (Lip∗(ν, Lp(IR)))r we denote the linear space of all vectors f =
(f1, . . . , fr)T such that f1, . . . , fr ∈ Lip∗(ν, Lp(IR)). The optimal smoothness
of a vector f ∈ (Lp(IR))r in the Lp-norm is described by its critical exponent
νp(f) defined by

νp(f) := sup
{
ν : f ∈

(
Lip∗(ν, Lp(IR))

)r
}
.

It is easily seen that
ν∞(f) ≥ ν2(f)− 1/2.
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In [24], Jia, Riemenschneider, and Zhou gave a characterization for the
smoothness order of a refinable vector of functions in terms of the p-norm joint
spectral radius of two matrices associated with the mask. In particular, for the
case p = 2, Theorem 3.4 of [24] can be restated as follows.

Theorem 1.4.2 Suppose φ = (φ1, . . . , φr)T ∈ (L2(IR))r is a compactly sup-
ported solution of the refinement equation (1.1) with mask a. Let b := a � a/2
and let Tb be the corresponding transition operator. Then, for any positive in-
teger k,

ν2(φ) ≥ − log2

√
ρ(Tb|W ),

where W is the minimal invariant subspace of Tb generated by ejj(∆kδ), j = 1, . . . , r.
Moreover, ν2(φ) = − log2

√
ρ(Tb|W ), provided

k > − log2

√
ρ(Tb|W )

and the shifts of φ1, . . . , φr are stable.

We are ready to provide two examples of biorthogonal double wavelets.
Example 4.3 Let φ1 and φ2 be two functions on IR given by

φ1(x) :=


3x+ 2 for x ∈ [−2/3,−1/3],
1 for x ∈ [−1/3, 1/3],
−3x+ 2 for x ∈ [1/3, 2/3],
0 for x ∈ IR \ [−2/3, 2/3],

and

φ2(x) :=


−3x− 2 for x ∈ [−2/3,−1/3],
3x for x ∈ [−1/3, 1/3],
−3x+ 2 for x ∈ [1/3, 2/3],
0 for x ∈ IR \ [−2/3, 2/3].

Then φ1 is symmetric about the origin, and φ2 is anti-symmetric about the
origin. It can be directly verified that the shifts of φ1 and φ2 are linearly
independent.

The vector φ = (φ1, φ2)T is refinable:

φ(x) = a(−1)φ(2x+ 1) + a(0)φ(2x) + a(1)φ(2x− 1), x ∈ IR,

where the mask a is given by

a(−1) =
[

1/2 1/2
−1/2 −1/2

]
, a(0) =

[
1 0
0 1/2

]
, a(1) =

[
1/2 −1/2
1/2 −1/2

]
.

Since the shifts of φ1 and φ2 are linearly independent, Theorem 3.2 tells us
that there exists a dual refinable vector of compactly supported functions in
L2(IR). The corresponding mask ã must satisfy condition (a) of Theorem 3.1.
We choose ã such that ã(α) = 0 for α ∈ ZZ \ {−1, 0, 1}, and

ã(−1) =
[

1/2 1/2
−7/8 −7/8

]
, ã(0) =

[
1 0
0 1/2

]
, ã(1) =

[
1/2 −1/2
7/8 −7/8

]
.
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Then ã possesses the desired property. Moreover, the subdivision schemes as-
sociated with a and ã converge in the L2-norm (see [24, Example 5.2]). Let
φ̃ = (φ̃1, φ̃2)T be the solution of the refinement equation with mask ã such that̂̃
φ1(0) = 1 and ̂̃

φ2(0) = 0. Then φ̃ ∈ (L2(IR))2 is dual to φ. It was proved in [24]
that ν∞(φ̃) = 0.375 and the optimal accuracy of φ̃ is 2.

In order to construct biorthogonal wavelets ψ and ψ̃ we need to find c ∈
(`0(ZZ))2 and c̃ ∈ (`0(ZZ))2 such that they satisfy (4.5), (4.6), and (4.7). We
choose c and c̃ such that c(α) = c̃(α) = 0 for α ∈ ZZ \ {−1, 0, 1},

c(−1) =
[
−1/2 −1/2
1/2 1/2

]
, c(0) =

[
1 0
0 7/2

]
, c(1) =

[
−1/2 1/2
−1/2 1/2

]
,

and

c̃(−1) =
[
−1/2 −1/2
1/8 1/8

]
, c̃(0) =

[
1 0
0 1/2

]
, c̃(1) =

[
−1/2 1/2
−1/8 1/8

]
.

If ψ = (ψ1, ψ2)T and ψ̃ = (ψ̃1, ψ̃2)T are given by (4.4), then ψ1, ψ2 and ψ̃1, ψ̃2

are biorthogonal double wavelets.

Example 4.4 Consider the following refinement equation:

φ =
∑

α∈ZZ
a(α)φ(2 · − α),

where the refinement mask a is supported on {−1, 0, 1} and

a(−1) =
[

1/2 3/2
−1/8 −1/2

]
, a(0) =

[
1 0
0 1/2

]
, a(1) =

[
1/2 −3/2
1/8 −1/2

]
.

It was proved in [24, Example 4.2] that the shifts of φ1 and φ2 are linearly
independent. Moreover, ν∞(φ) = 2 and the optimal accuracy of φ is 3. By The-
orem 3.2, there exists a dual refinable vector of compactly supported functions
in L2(IR). We choose ã to be the sequence supported on {−2,−1, 0, 1, 2} and
given by

ã(−2) =
[
−53/512 −7/256
359/512 99/512

]
, ã(−1) =

[
1/2 25/256

−421/128 −161/256

]
,

ã(0) =
[

309/256 0
0 281/256

]
, ã(1) =

[
1/2 −25/256

421/128 −161/256

]
,

ã(2) =
[
−53/512 7/256
−359/512 99/512

]
.

It is easy to verify that a and ã satisfy condition (a) of Theorem 3.1. Moreover,
the subdivision schemes associated with a and ã converge in the L2-norm. Let
φ̃ = (φ̃1, φ̃2)T be the solution of the refinement equation with mask ã such that̂̃
φ1(0) = 1 and ̂̃

φ2(0) = 0. By Theorem 4.1 we find that the optimal accuracy of
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φ̃ is 2. The smoothness order of φ̃ can be computed by using Theorem 4.2 and
the result is ν2(φ̃) ≈ 1.5510. It follows that

ν∞(φ̃) ≥ ν2(φ̃)− 0.5 > 1.05.

So φ̃ is a vector of C1 functions.
Finally, let us construct wavelets and dual wavelets associated with φ and

φ̃. We choose c and c̃ as follows:

c(−3) =
[

43/512 57/128
43/512 57/128

]
, c(−2) =

[
−7/32 −99/128
−7/32 −99/128

]
,

c(−1) =
[

981/512 1505/128
407/512 703/128

]
, c(0) =

[
−57/16 0

0 743/64

]
,

c(1) =
[

981/512 −1505/128
−407/512 703/128

]
, c(2) =

[
−7/32 99/128
7/32 −99/128

]
,

c(3) =
[

43/512 −57/128
−43/512 57/128

]
,

and

c̃(−2) =
[
−1/64 0
−1/64 0

]
, c̃(−1) =

[
1/8 1/32
1/8 1/32

]
,

c̃(0) =
[
−7/32 0

0 1/8

]
, c̃(1) =

[
1/8 −1/32
−1/8 1/32

]
,

c̃(2) =
[
−1/64 0
1/64 0

]
.

If ψ = (ψ1, ψ2)T and ψ̃ = (ψ̃1, ψ̃2)T are given by (4.4), then ψ1, ψ2 and ψ̃1, ψ̃2

are biorthogonal double wavelets. Note that both ψ and ψ̃ are supported on
[−2, 2]. All φ1, φ̃1, ψ1, ψ̃1 are symmetric about the origin, and all φ2, φ̃2, ψ2, ψ̃2

are anti-symmetric about the origin.
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