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Convergence of Vortex Methods for Euler's Equations

By Ole Hald and Vincenza Mauceri Del Prête

Abstract.   A numerical method for approximating the flow of a two dimensional
incompressible, inviscid fluid is examined.   It is proved that for a short time interval
Chorin's vortex method converges superlinearly toward the solution of Euler's equa-
tions, which govern the flow.   The length of the time interval depends upon the
smoothness of the flow and of the particular cutoff.   The theory is supported by
numerical experiments.   These suggest that the vortex method may even be a second
order method.

Introduction.  In this paper we will prove the convergence of Chorin's vortex
method for the flow of a two dimensional, inviscid fluid.  The flow is governed by
Euler's equations, which can be reduced to a scalar equation, the vorticity equation.
In the classical point vortex method, studied by Rosenhead [10] and Westwater [13],
it is assumed that the vorticity is concentrated at a number of points. This corresponds
to approximating the vorticity by a sum of delta-functions.  A point vortex is then
moved by the velocity field induced by the other point vortices.  However, the
velocity field becomes unbounded near a point vortex, and this leads to a spurious
interaction of neighboring vortices.  This effect is not present in the original calcula-
tions by Rosenhead and Westwater, possibly because of the small number of vortices
used or the limited accuracy of their calculations, see [3].  Recent experiments by
Takami [12] and Moore [9], using a large number of vortices, indicate that the
classical point vortex method is unreliable.  To improve the vortex method Chorin
[2] smoothes out the velocity field in a circle with center at the point vortex and
radius 5.  This can be interpreted as approximating the vorticity by a sum of functions
with small support, thus replacing the point vortices with blobs of vorticity.

There is considerable difference of opinion as to the optimal smoothing.
Shestakov [11] follows Chorin [2] and takes 27rS equal to the average distance ß
between the vortices along the boundary on which the vortices are created.  Depend-
ing upon the time step in the numerical solution of the associated ordinary differential
equations, 5 will be much larger than the average distance between the vortices in the
direction normal to the boundary.  On the other hand, Milinazzo and Saffman [8]
believe that the cutoff 6 should be as small as possible and take ô equal to |3/50.
Finally, Chorin and Bernard [3] have observed that the results of the computations
are quite insensitive to the exact details of the smoothing.  Our analysis indicates that
the optimal cutoff depends upon the smoothness of the flow under consideration, and
that for smooth flows Ô should be of order f32/3.  This implies that the cutoff 6 tends
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792 OLE HALD AND VINCENZA MAUCERI DEL PRETE

to zero more slowly than the average distance ß between the vortices.  With 5 = ß '
the rate of convergence is roughly speaking ß4^3, and this has been confirmed by
numerical tests.  However, our choice of 5 is not optimal because numerical experi-
ments with different kinds of smoothing show that the convergence of the vortex
method can actually be of the second order.

The convergence of Chorin's method has already been considered by Dushane
[4].  However, his proof is incorrect, and the obvious modifications do not eliminate
the problem.  Our proof follows the general outline of Dushane but introduces two
new ideas.   First, we do not assume that the cutoff 5 and the average distance ß
between the vortices are of the same order.  Secondly, we do not compare the position
of the point vortices to the streamlines of the flow, but rather to the center of mass
(the centroid) of small blobs which move with the fluid.  These changes lead to an
improved estimate for the truncation error and this salvages the proof.

In one respect our result is less than satisfying.  It can be shown that the solu-
tion of the Euler equations for a two dimensional flow exists for all time (see
Wolibner [14], McGrath [7] and Kato [6]).  However, we have only been able to
prove the convergence of Chorin's method for a small time interval.  The length of
this interval depends on the Holder continuity of the vorticity and on the details of
the smoothing.  Otherwise, our proof is quite economical.  For example, we do not
require more smoothness of the flow than that which is provided by the mathematical
theory.

1.  The Basic Equations.   In this section we will present the vortex method and
discuss different choices of smoothing.

The vorticity equations for a two dimensional incompressible, inviscid flow is

(1.1) £t + (u-V)£ = 0,

where u = (u, v) is the velocity field, % = curl u is the vorticity, and t is the time.
Since the flow is incompressible, the divergence of u is equal to zero, and we may
express u and v in terms of the stream function i// as follows

(1.2) A**-|,

(1.3) u = \¡iy,      v = -\px.

We will assume that % has compact support and that u vanishes at infinity.  The
solution of Eq. (1.2) is then determined up to an additive constant and is given by
the convolution \jj = G * £ where G = - 1 /(27r) log r with r2 =x2 +y2-
It follows from Kelvin's theorem that the integral of the vorticity in a material blob
is constant as the blob moves with the fluid (see [1, p. 274]).  It is, therefore,
natural to partition the support of £ into nonoverlapping blobs B- and to assign the
vorticity in each blob to a single point z,.  This corresponds to approximating the
vorticity by
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VORTEX METHODS FOR EULER'S EQUATIONS 793

X ~   £ K¡8(z - Z¡),
i

where k- = /B .£ and z = (*).  The sum converges to £ in the sense of distributions
as the diameter of the blobs tends to zero.  To approximate the stream function, we
smooth the kernel G near the origin, thus obtaining Gs.  The first two of the follow-
ing examples have been used in practice

(1.4) G~Ga«¿[l-f-kg«].

(1.5) G~Ca-i[i(l-^)-lo8ô],

G^6,¿[f(l-¿)-¡(l-¿)-l0g6],

for r < 8, and Gs = G for r > 8 (see [2], [3], [8] and [11] ).  It is straightforward
to extend this list by requiring that the higher derivatives of Gs axe continuous at
r = 8.  We will show that the vortex method converges provided G6 is a smooth
function of r for r < 6 and that the derivative of c75 with respect to r is Lipschitz
continuous.  By combining the approximation of £ with the smoothing of G, we
obtain an approximation of the stream function, namely

(1.7) i/z-IXiz-z,.)«,..
The distribution of vorticity at later times is obtained by letting the point

vortices move with the fluid.  Thus, by combining Eq. (1.3) with the approximation
(1.7) we get

(1.8) xi = Y,dyGs(zi-zj)i<j>
i*i

n 9) yt = - £ dxG6 (z¡ - z^Kj,
K " ' i*i

where z. = ( ') is the position of the 7th point vortex.  Note that the sums are taken'        yi
over / different from i.  In Chorin's method G6 is given by (1.4) and the system of
ordinary differential equations may have a unique solution only for a short time
because two point vortices may collide.  However, if drG6 is Lipschitz continuous and
vanishes at the origin as in (1.5) or (1.6), then the solution exists for all time.

The above presentation of the vortex method is mathematically oriented.  How-
ever, the original derivation and justification of the vortex method is based on
physical arguments (see [2]).   Let f6 be defined by AG6 = - f6, where the derivatives
are taken in the sense of distributions.  Then f6 has compact support and will approxi-
mate the delta function.   For (1.4) to (1.6) we see that f6 is equal to 1/(2777-5), 1/(ttÔ2)
and 3(1 - rl8)/(ir82) for r < 8 and zero otherwise.  Thus, Gg can be interpreted as the
stream function corresponding to a small circular blob with the vorticity f6   and
(1.7) is, therefore, the stream function corresponding to the vorticity distribution
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£6 = Liste-*/)"/•
7

This interpretation is due to Chorin [2].  It can be shown that if Gs is given by (1.6),
then £5 is continuous and converges uniformly to £, provided the diameter of the
blobs B¡ tends to zero faster than 6.  This implies an ever increasing overlap of the
circular blobs.

2. Properties of the Flow.  In this section we will show that the distance
between two points of the flow can be bounded from above and below in terms of
the initial distance of the points.  The flow is then partitioned in nonoverlapping
blobs which move with the fluid.  We will estimate the distance between the centroid
(the center of mass) of a blob and the path of the material element which coincides
with the centroid initially.  Finally, we will prove that the centroids do not collide
for a finite time, provided the partition is sufficiently fine.

Throughout this paper we will assume that the vorticity £ is differentiable with
respect to t and that £ and the partial derivatives of u are uniformly Holder continuous
with exponent a, i.e. £ and the components of Vu satisfy

(2.1) \jfcl)-l$z2)\<H\z1-z2\a

for all zx and z2 in R2.  Hexe H and a do not depend on t for 0 < t < T.   For the
related problem of a two dimensional flow in a bounded, possibly multi-connected
domain with smooth boundary, Kato has shown that our assumptions are satisfied
[6]. We begin with an estimate of the expansion and the contraction of the flow.

Lemma 1 (Dushane).   Let zx(t) and z2(t) be the path of two material points
of the flow.   Then for 0 < t < T,

Cxl \zx(0) - z2(0) | < \zx(t) - z2(t) I < Cx\zx(0) - z2(0)|,

where \z\ = \Jx2 + y2.   The constant Cx is independent of zx and z2 but depends
on T and the flow under consideration.

Proof.   Let z = (*) be a point in R2.  The path of a material element is obtained
by solving the ordinary differential equation z = u(z, t), with initial conditions z(0) =
z0.   By using the fundamental theorem of calculus we see that

(2.2) ¿! - ¿2 = u(zj) - u(z2) = A(zx - z2),

where A = /QVu(z2 + 8(zx - z2))dô.  Since £ is Holder continuous and has compact
support, we can estimate the.2-norm of A by m = max|Vu|.  The maximum is taken
over z in R2 and t in [0, T].  Let F = \zx - z2\2.  It follows from Eq. (2.2) that
|F| < 2mF.  By integrating this differential inequality we obtain

e-2mtF(0) < F(t) < e2mtF(0).

The proof is completed by talcing Cx = em T.

We consider now the support of the vorticity at time 7 = 0.  We partition the
support in a finite number of nonoverlapping squares B¡ and let ß be the length of the

License or copyright restrictions may apply to redistribution; see https://www.ams.org/journal-terms-of-use



VORTEX METHODS FOR EULER'S EQUATIONS 795

sides. For t > 0 the squares move with the fluid and change their shape, but since the
flow is incompressible the area of the blobs BAt) remains constant. By using Lemma 1
we make the following

Observation.   Let C2 = \/2Cx.  The diameter of BAt) is less than C2ß for 0 <
t<T.

A rough description of the position of the blob 5, at time t is provided by its
center of mass, the centroid.   It is defined by

Zj = ß~2 f      zdxdy,
B¡(t)

where z = (*).  Note that ß2 is the area of BAt). Observe also that z- depends upon
t because the centroid follows the blob as the blob moves with the fluid.  To find z,
we introduce the mapping 4>r  Here $>, maps the position of a material point at time
t = 0 to the position of the point at time t, i.e. <ï>f:  z(0) —► z(t). Since the path of
a material element is given by z = u(z), it follows from Lemma 1 and the incompres-
sibility of the flow that 3>f is a one-to-one, measure preserving transformation of R2
onto itself, and its Jacobian is equal to one.  We can now use the change of variables
formula to compute z, and get

z, = j3"2   f      u(z)dxdy.
Bj(t)

Thus, the centroid moves with the average velocity of the blob.  It is, therefore,
natural to compare the path of the centroid to the path of the material element which
coincides with the centroid initially.

Lemma 2. Let zAt) be the path of the centroid ofB¡(t) and let z(t) be the
path of the material element for which z(0) = zAO).  Then

l+ct\zff)-z(t)\<CA&

for 0 < t < T.   The constant C4 is independent of B¡ and ß but depends on T and the
flow.

Remark.   The centroid is always in the convex hull of BAt), but by combining
Lemmas 1 and 2, we see that it is actually an interior point of the blob for ß sufficient-
ly small.

Proof.   Let B- = BAt).  It follows from Taylor's formula with remainder that

z, = ß~2 fß |u(Z/) + J» [Vu(zy + d(z' - zjj) - Vu(zy)] dB ■ (z' - z;.)| dz\

where dz = dx'dy and we have used that ¡B/ - z, vanishes.  It is this property
which makes the centroid such a powerful tool.  To estimate the last term in the above
equation, we remember that Vu is Holder continuous.  Since \z - zA is less than the
diameter of B for all z in /?-, we find by using Observation 1 that

(2.3) \zf - u(zj)I < 2#(diam t^.)1 +a < C3ßl +t\
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796 OLE HALD AND VINCENZA MAUCERI DEL PRETE

where C3 = 2HC\+a. We consider now the difference z¡- z. Since the path of the
material element satisfies z = u(z), we conclude by using the inequality (2.3) and the
fundamental theorem of calculus that

zj-z=u(zj)-xi(z) + C3ß1+ae

= A(zrz) + C3ß1+ae,
where e is a vector with norm less than one.   Let F = \z- -z\.  This function is dif-
ferentiable from the right (see Hartmann [5, p. 26]).  Since the 2-norm of A is less
than m = max | Vu |, we obtain the estimate F < mF + C3ßl +a.  By integrating this
differential inequality we find

jnT _ x
F<C3ß1 + <*-L = Qf31+a3 777 4

This completes the proof.
In the convergence proof for the vortex method, we estimate the distance

between the point vortices and the centroids of the blobs.  Thus we presume the
existence of a solution of Eqs. (1.8) and (1.9).  To prove that the point vortices do
not collide for a finite time which is independent of ß we need

Corollary  1. Let z¡(t) and z\\t) be the centroids of BAt) and B¡(t). If
\zi(0)-zj(0)\>ß,then

\zi(t)-zj(t)\>c2ß

for 0 < t < T, provided ß is sufficiently small.   The constant c2 is positive and
depends on T and the flow.

Proof.   Let z^ and z^ be the paths of the material elements which coincide
with zi and z- initially.  By using the triangle inequality and Lemmas 1 and 2, we get

I z,. -zA> |z<° - z0) I - I z, - z(0 \-\zj- *0>|

>(CXX ~2C4ßa)ß.

To complete the proof we let ß be less than (4CxC4)~a and take c2 = (2Cx)~l.

3.   Consistency and Stability.   For linear differential equations it is well known
that consistency plus stability implies convergence for all time. For the vortex method, we
prove that consistency plus weak instability implies convergence for a short time.  In
this section we will first consider the truncation error and then the stability of the
vortex method.

Let u be the velocity field at time t.  It follows from Eq. (1.3) that u = K * £
where K = iJ/x) G.   Similarly, we define K6 as Cdyx)G5 and set K6(0) = 0.  We will
assume that K6 is continuous for z different from zero and that there exists a constant
C0 such that

(3.1) \dxbc'Ksiz)\<

CJ8\z\p + q for0<|z|<6,

[C0/|z|1+p + <?      for |z I > 5,
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for all p + q < 2.   For the cutoffs presented in (1.4) to (1.6), the constant C0 is
equal to 1/tt, 1/7T and 2/77, respectively.  Note that C0 cannot be less than l/7r since
Ks = K for \z\ > 8.  To estimate the truncation error for the vortex method, we need
the following result:

Lemma 3. Let z- be the centroids of the blobs B¡ at time t and let D be the
maximum of the diameter of the support of £ for 0 < t < T.  If% and Ks satisfy the
inequalities (2.1) and (3.1), then there exists a constant Cs such that

"00- ZMz-z,.)/^. <C5|log/3|f3(1 + <*>/<1+Q/2>
7

for 0 < t < T and ß sufficiently small.   The distance from z to supp £ should be less
than D, and 8 equal to ßWO + a/a).

Remark.   The factor — log/3 can be omitted for smooth cutoffs such as (1.5)
and (1.6).  By combining Lemma 3 with the inequality (2.3), we see that our estimate
of the truncation error r depends on the smoothness of the flow.  If the vorticity £
is differentiable, then r ~ ß4^3 |logj3|.  This is an improvement of the estimate due to
Dushane.  In his paper [4] Dushane takes S = 0(ß) and obtains r ~ j3|log|3|.  Also,
the optimal cutoff depends upon the vorticity.  If £ is smooth, then 8 = ß2' .  For
highly irregular flows 8 will be close to J3.  We choose S = ß1K1+al2\ but since the
theory below is an asymptotic theory, we could also have used 8 = 100|31^1+Oi'2^.
This would only change the constant C$.  Actually the vortex method will converge
faster than linearly whenever S = ßp, where 1/(1 + a) < p < 1.

Proof.   Since the 5's cover the supp £, we find

u(z) = Z K6 (z - z¡) f  £(z') dz' +Z f    [K6 (z - z') - Kfi (z - z,)] £(z') dz'
i JBj i     Bj

+ f [K(z -z')-K6(z- z')] [£(z') - £(z)] dz',
J\z-z |<8

where dz' = dx'dy .  Note that the integral of K - K5 over \z - z'\ < 8 is zero.  Since
£ is Holder continuous, we can estimate the last tern of Eq. (3.2) by H(l + ixC0)8l+a.
To estimate the second term, we cover the supp £ by N annuli, with center at z and
radii rk_x and rk where rk = kC2ß and k = 1, 2, ... ,N.   Here N = 1 + [2D/7-J,
where [a] is the greatest integer less than or equal to a.  Let Ik be those centroids z-
for which rk_x < \z -zA < rk.  Then the second term of Eq. (3.2) is

(3.3) S = X    Z     f   [K6(z-z')-Ks(z- zj)\£(z') dz'.
k=l   z}=lk   JBj

Note that S is a vector with two components.  Since Ks may not be continuous at the
origin and the derivatives of K6 will be discontinuous at the circle of radius 5, we
divide the disk \z - z'\ <rN in four nonoverlapping regions.  Let 77 = 1 + [8/rx].
Region I consists of the first three annuli, and region II consists of the union of the
fourth to the 77 - 2th annulus. Region III is the ring with radii rn_2 and rn + x, and
region IV is the union of the remaining annuli up to the TVth.  Similarly, we split the
sum S into four parts, Sx to 5IV.
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798 OLE HALD AND VINCENZA MAUCERI DEL PRETE

Bjp + q = 2'

X (x' —.

We observe now that a blob cannot intersect more than two annuli at any time
because its diameter is less than the distance between the circles.   Since the area of
each blob is constant, we conclude that the total area of the blobs with centroids in
a given annulus cannot be larger than three times the area of that annulus.

To estimate S, we choose ß such that r4 < Ô.  This implies that n> 5.  Since
the blobs with centroids in region I cannot cover more than the first four annuli, we
conclude by using the estimate (3.1) that

\Sl\<32trC0C2M^-,

where M is larger than max|£| for 0 < t < T.  In region II, K5 is a smooth function.
Thus it follows from Taylor's formula with remainder that

Sn = £    Z   IW* - ZP Í V ~ z/>ß(z') - K*/» dz'
fc=4 *{*k L JBi

+ fB   Z J\ (i - d)dx dyKs(z - z, + e(z' - z,))de

x-xjf(y'-y]n(z')dzr\,

where we have used that fBjz' - z- = 0.  According to the Observation following
Lemma 1, the diameter of B- is less than or equal to rx.  Since £ is Holder continuous
and the 2-norm of VK6 is less than \/2C0/5, we see that

n-2       yJÏCç.
\Sn I < Z4 m-l)ri ri ■ H'ï ■ M2k - l)r\

To estimate the sums we use 77 < 1 + 8/rx and get after a straightforward, but lengthy
calculation,

\SU\ < 107rC0C21+a///31+- + 6itC0C2mÇ • log^V

In region III we observe that K6 may not be differentiable, but it follows from the
bound (3.1) that K6 is Lipschitz continuous with Lipschitz  constant \¡2C0l(8rn_3).
We can, therefore, estimate Sin by

n + i y/2C0
l*ml<   Z    Z  iôT^7"ri 'M'^

k=n-l   Zj<=Ik ay?1      J,rl

<50rr C0C2mÇ,

where \B¡ \ is the area of B¡.  To estimate SIV we use the same approach as for Su
and obtain
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|5IV | < 9«C0C\+aHßl+alog(j) + 9irC0C2 -M^.

We have now shown that the last two terms of (3.2) can be estimated in terms
of the maximum of 51+Q, ß2¡8 and ß1 +a.  Since ß < 8 we find the optimal choice of
5 by letting 81+a ~ ß2¡8 and this leads to 5 = 01/(1 +a/2).   To complete the proof
we add the estimates for Sx to SIV to H(l + nC0)8l+a, use that log(2Ô//3) <
2/3 | log ß | and log(3£>/5) < 2 Hog (31 for ß sufficiently small and let

Cs =207tC0C^(// + 5jW).

Lemma 4.  Let z- be the centroids of the blobs B- at time t and let c2 be the
constant in Corollary 1. 2/max,|z~- - z-\ < c2|3/4, then

max Z lK«(?i - z,) - Mz, - Z/)l l*/l < cH°g M max % ~ zj ''     j*i '
for 0 < t < T and ß sufficiently small.   The constant C depends on T and the flow
under consideration.

Remark.  This stability result is a discrete analogue of a basic lemma in the
mathematical theory for Euler's equations (see Wolibner [14], McGrath [7] and
Kato [6]).  The factor |log j3| occurs also in the mathematical theory where it is
replaced by 1 - log(max|z^ - zA).  If this factor were not present, we could easily
prove the convergence of the vortex method for all time.  As it is, we get convergence
for a short time only.

Proof.  We will use the ideas and the notations from the preceding proof with
minor modifications.  Let z¡ be fixed and let Ik be the set of z- in the kth annulus.
Since K, = /B.£ we conclude that \kA <M\BA, where M > |£|„ for all 0 < t < T
and |2?.| is the area of 2?-.  It is, therefore, sufficient to estimate

S= Z    Z   IKßß-^-Vzf-zpilAI.
fc=i zt=ik

We partition the sum S into four sums, Sx to 5IV according to regions I to IV.  Let
E = max-lz". - zA.  In the lemma we have assumed that E < c2(3/4.  Since c2 < Vi,
this certainly implies that 22? < rx where r, = C2ß.  Thus, by using the triangle
inequality and Corollary 1 we find that

(3.4) c2p72 < |z,. -Z/ + 6 \zt -zr (7f - zj)] I < |z,. - zf\ + r,
for 7 ¥= /' and 0 < 0 < 1.  This shows that all the points on the line segment between
7{ - zj and zi - z■ axe different from zero and lie in the first four annuli for z- in
region I.  To estimate 5, we let w- = zt - z¡ -(z,- z) and by using the fundamental
theorem of calculus we get

3 ri^i1 < Z   Z  I  IvK6(z, - *i + dwj)\de Kl m.
k=l zf=Ik J o

By combining the estimates (3.1) and (3.4), we see that
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|5iK       Z -^%2ElBil<n&7rCocl¡E'
zjelxui2ui3    0C2PI¿ °

where we have used c2l = \J2C2.  The estimates of SIX to Slv axe derived in much
the same manner.  If z- is in Ik with k >3, then the lower bound in (3.4) can be
replaced by rk_2 and the upper bound can be replaced by rk+x.  Since 77 < 1 +
8/rx, we conclude that

«-2     y/2C0
\su I < Z    §(fc _ 2)r    2EM2k * 1)r? < 30nCoE■

If z- is in region III, then VK6 may have a discontinuity on the line connecting
z¿ - z:- and z¡ - z-.  However, since all points on this Une segment lie outside the disk
with center at z, and radius rn_3, we see that K6 is Lipschitz continuous with
Lipschitz constant y/2C0l(8rn_3).  Thus,

\Sm I < 64ttC0C2 IE.

Finally, by using the fundamental theorem of calculus once more, we can estimate

N \f2Cf. „ /5n\
I^ivK    Z      -r-22T • 3tt(2A: - l)r2   < 24;rC0log(^k

fc=7+2   ik-2)2r\ V5/

To complete the proof we sum the estimates for 5, to Slv, multiply the result by
M and use that (3/5 is less than one.  Since C2>s/2 and log(3D/S) < 21 log ß\ for ß
sufficiently small, we may choose the constant C as

(3.5) C = 1907rCoC23M

4.   Convergence Results.   In this section we will establish the convergence of
the vortex method on three different levels.  The basic result is that the path of the
point vortices computed by (1.8) and (1.9) converges toward the path of the centroid
of the material elements.  This implies the convergence of the induced velocity field
and also the convergence of the vorticity distribution.

Theorem 1. Let z¡ be the centroid of Bj and let z- be the solution of Eqs.

(1.8), (1.9).  There exist two constants, C6 and T0, such that

maX/|z~. -Z/|<c6j3(1+a>/(1 + a/2>-Ci

for 0 < t < T0 and ß sufficiently small.   The constant C is given by Eq. (3.5).
Remark.   It follows from Lemma 2 that the centroids z in the theorem can be

replaced by the paths of the material elements with the same initial positions as the
Zj.  Thus the paths of the point vortices will approximate the streamlines if the flow
is stationary.

Proof. By combining Eqs. (1.8), (1.9) with Lemma 3 and the inequality (2.3),
we see that
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(?i - */) = Z 1*6 <?, - ?/) - M*. - zj)] K, -d[C3ß1 + a + C5 |log ß\p] ,

where |01 < 1 and 7 = (1 + a)/(l + a/2).   Let 2? = max|£ - zA.  Since z~- - z- is
differentiable with respect to t, it can be shown that E(t) has a right derivative, which
we denote by Ê (see [5, p. 26]).   Assume now that E < c2f3/4.  We can then apply
Lemma 4 and get

É < C\log ß\E + (C3 + C5)|log|3|r31\

By integrating this differential inequality and using the estimates for C, C0, C3, and
C5, we obtain after some simplification

E(t)<(C3+C5)\logß\pre cnogßll

<- — (5 +—V-Cf

This estimate is only valid as long as E < c2ß/4.  In the proof of Corollary 1, we took
c2 = (V2C2)_1.   Our requirement can, therefore, be rephrased as

This inequality will certainly be satisfied for all t in the interval [0, T0] provided that
T0 is strictly less than T and a(2 + a)_1C_1 and that (3 is sufficiently small.  The
proof is now completed by taking C6 = (5 + 2//iW)/(8C2).

Let z~j be the position of the point vortices computed by (1.8), (1.9).  To
approximate the velocity field u for the flow we will use

(4.1) ïï(z) = ZK6(z -z>,..
7

This choice is natural, but it should be observed that u may not be continuous as
K5 may have a discontinuity at the origin. Nevertheless, we will now show that u
converges uniformly to u as (3 tends to zero.

Theorem 2.  There exists a constant C7 such that

max  fu(z) - u(z)| < C7 |logß|ß(1+0,)/<1+a/2>-Ci
z=R2

forO<t<T0ifß is sufficiently small and 8 = j31/(1 +a/2).
Remark.   Dushane [4] obtains the estimate \u - u\ < const ß2~c~e, which

is better than ours, but his proof is incorrect.
Proof.   Let the distance from z to supp £ be less than D.  It follows from Eq.

(4.1) and Lemma 3 that

(4.2) u - u = Z DM* - *j) - K8 (^ - */)] «/ -ec5\iogß\ß\
j

where y = (1 + a)/(l + a/2) and |0| < 1.  To estimate the sum, we will use Lemma
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4.  However, the bound for Sx is no longer valid, because z - z- may be arbitrarily
small.  Since \z - 7À and \z - zA are less than 5 for all points z- in region I, we can
use the bound (3.1) to estimate the first part of the sum in (4.2) and get

Z;<EIXUI2VI3     \° ° /

<32irCnC2M^r 8'0^2'

By combining this result with Lemma 4, we conclude from Eq. (4.2) and Theorem 1
that

\u - u | < 32irCaC2Mßy + C\loeß\ max \z, - zA + Cs |log ß\ßy
(4.3) /       '      '

< (32ttC0C2M + CC6 + C5)\log ß \f~Ct

for ß sufficiently small.  This completes the first part of the proof.  In the second
part we let the distance from z to supp £ be larger than D.  We must, therefore,
reconsider the derivation of Lemma 3.  Since £(z') vanishes for all z in the disk
\z - z'\ < 6, we see that the third term in Eq. (3.2) is zero.  Let 4rx <D.  To estimate
the right-hand side of Eq. (3.3) we use Taylor's formula with remainder (as in Su)
and get

_ r \/2~cn ,      c„ "!
m<Z   -—rx ./&ÇIAI+I-2-2r?-M-|2?,|

I   l(D-rx)2 '      2(D-2rxf       ' 'J

<6irC0Cl2+aHß1+a + ISttCqC^^2.

The sum is taken over those ; for which Jß.|£| is larger than zero.  Thus the right-hand
side of this inequality replaces the estimate of the truncation error in Lemma 3.  Since
\z - Zj + eijj - zj)\ is larger than D - 2rx for all 101 < 1, we infer from Eq. (4.2) by
using the fundamental theorem of calculus and the bound (3.1) that

Ik-kKE -—AZ-zA-M' \ba + isi
/     iD~2rx)2      '      ' '

<  ri37rC0C6M + 6ttC0C2H + 18ttC0C2 ̂ Jß7"0'.

We observe now that our last estimate is smaller than the right-hand side of the
inequality (4.3) for (3 sufficiently small, and this completes the proof.

Finally, we consider the convergence of the computed vorticity

(4.4) H^ = Z?s(z_^)K/
7

to £(z).  In general it is not possible to show that £ converges uniformly to £, because
f6 may become unbounded at the origin, as in the case of the approximation (1.4).
However, even though the position z- of the point vortices are computed by using the
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cutoff (1.4), we may interpolate the results by using a vorticity which corresponds to
a different cutoff.  In the proof below we choose the one corresponding to the
approximation (1.5).

Theorem 3. Let f6(z) = 1/ttÔ2 for \z\ < 8 and 0 otherwise, and let% be
given by Eq. (4.4).  777eve exists a constant C9 such that

l?(z)-£(z)l<C9f3(a/2)/(1 + a/2>

for 0 < t < T0 provided ß is sufficiently small and 8 = 01/(1 +a/2).
Remark. This result can be substantially improved, if it is assumed that £ and

f6 are twice differentiable, but we shall not do so.
Proof. Let z- be the centroids of the 2?- We begin by decomposing £(z) in a

manner similar to Eq. (3.2)

m = Z hi* - z/)¿ &W + Z ¡B [f6(z - z') - f5(z - zA]%(z')dz'
(4.5) ' ' •       '

+ /|,-,M<a Ub-WM-MW-
Since £ is Holder continuous, we can estimate the last term by H8a.  To estimate the
second term, which we denote by S, we cover the supp £ by a sequence of annuli, as
in the proof of Lemma 3.  If z - z, and z - z are less than 8 for all z in 2?-, then the
integral over 2?. in the second sum of Eq. (4.5) is zero.  The same conclusion holds if
z - z- and z - z are greater than 5 for all z in 2?-.  We can, therefore, estimate the
sum S by

" + 1 F   1 1 A R
¡51 ,      t^        ^   I    *   -i—i— I m • \r i <: onr m £;l<     Z       Z   \-n + ^\M-\B,\<2HC1M

k=n-l   z£J.   L7T5"        7TÖ   J s

Let C8 = H + 20C2M.   Since 8a < f3/S, we conclude from Eq. (4.5) that £(z) can be
approximated uniformly and the error can be estimated by

kOO -Etsiz- ZJ)KÀ < Ciffi*™«1 +«'2\

Even if the vorticity £ is a smooth function, the error will be of order (31'3, and the
approximation is therefore quite crude.  We can now compare £ with £ and have

(4.6) £~ - £ = Z M* - */) - f«<z - */)]"/ + ÖC&ß(«'2^l+°l2\
i

It follows from Theorem 1 that 17- - zA < rx for all z •.  To complete the proof we
estimate the sum in (4.6) by using the same argument as for S and we take C9 = 2C8.

5.  Numerical Experiments.  To support the theory presented in the previous
sections we have carried out a large number of numerical experiments.  The preliminary
calculations were done on the CDC-6400 at the University of California, Berkeley,
while the results presented here were obtained on the CDC-7600 at Lawrence Berkeley
Laboratory. As initial vorticity we choose £(z) = 1 - \z\ for |z|< 1 and zero otherwise.
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The solution of Euler's equations can be found explicitly and satisfies the smoothness
assumptions used in this paper.  To discretize the problem we covered |z| < 1 by a
uniform mesh with meshlength ß.  In the experiments presented below ß lies in the
interval [0.1, 0.5].  The mesh was placed such that z = 0 became the center of gravity
(the centroid) of one of the small squares.  To find the strength k;- of the point vortex
in the square 2?. we calculated the double integral ¡B\dxdy numerically by using the
trapezoidal rule with meshlength 0/10. To reduce the costs of the calculations we have
excluded those vortices for which «■ < 1/30/33.  The bulk of our experiments were
done with the cutoff (1.4).   Finally, the ordinary differential equations (1.8), (1.9)
were solved by using the classical fourth order Runge-Kutta method.

We have used several ways of measuring the error.  Since the solution of the
Euler's equations is stationary and rotational invariant, we can compare the positions
of the point vortices at time t with the positions of the material points which follow
the streamlines.  Thus we compute

(5.1) j3v Z (computed z- - exact zj)2 .
7

The sum is taken over all / for which k. > 03/3O, and it is an estimate of the error in
L2 over the support of £.  Another way of estimating the error is to compare the
position of the point vortices with the centers of gravity (the centroids) of the blobs
2?- at time t.  Although the stream-function $f can be given explicitly, we have not
been able to find a convenient expression in closed form for the center of gravity.
Consequently we have estimated  ß~2 ¡B,t^z dx dy by evaluating the double integral
|3_2/B/0)d>f(z')6fz'.  Note that 2?(0) is a square.  This calculation was done by using
the rectangle rule with meshlength j3/20.   Thus, we have also computed

s/z \2(5.2) ß\J ¿_, (computed z- - centroid 2?)
7

According to Lemma 2, there should only be a small difference between the expres-
sions (5.1) and (5.2); but we have found that the two error estimates behave quite
differently.   Finally, we have studied the pointwise convergence of the vortex method.

It follows from the proof of Theorem 1 that with the above choices of initial
vorticity and of the cutoff, the vortex method will converge for 0 < t < 0.00062
provided ß is sufficiently small.  This is less than impressive, and we have investigated
the algorithm for 0 < t < 6.  In this time the vortices at \z\ = 1 travel one radian,
while those near z = 0 travel three radians.  We begin with the cutoff S = ß2!3 since
our theory gives preference to this choice.  It follows from Table 1 that the error in
the vortex method increases linearly in time.  There is no hint of any exponential loss
of accuracy as t increases.

The time-step in the Runge-Kutta method is Ar = 1.  By comparing the numeri-
cal solution of (1.8), (1.9) with Ai = 1 with the solution for Ar = lA and %, we
estimate that the error due to the numerical solution of the differential equations is
less than one percent of the error due to the discretization.   Finally, Table 1 reveals
that the difference between the positions of the point vortices and the centroids is
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Table 1. Linear growth of the error

Cutoff(l.4),8=ß213, |3=1/10,A7= 1

(5.1): Comp. - exact

(5.2): Comp. — centroid

7 = 2 t = 4

0.0163
0.0147

0.0328

0.0296

r = 6

0.0494

0.0446

Table 2. Rate of convergence = log2  -\   „,-

Cutoff (1.4), 5 =(32/3, t=l,t = 6

Comp. — exact

Comp. — centroid

0=1/2        0=1/3      ß = 1/4     ß = 1/5

1.23
1.06

1.32
1.21

1.39
1.30

1.40
1.33

smaller than the difference between the point vortices and the material points on the
streamlines.  We have found that in general this holds even pointwise, but it may fail
if the calculations are extended over long time intervals.  The reason is that the blobs
get quite distorted and the center of gravity for a blob may lie far from the blob.
For a fixed time this last phenomenon disappears as ß tends to zero.

To estimate the rate of convergence for the vortex method, we have used
Richardson's extrapolation with the meshlengths ß and (3/2.  If we ignore the exponen-
tial loss of accuracy, which we believe is a technical artifact, then we find from
Theorem 1 that the rate of convergence should be 1.33.  This is borne out in the
experiments presented in Table 2.

In all our experiments with the cutoff (1.4), we have found that the rate of
convergence measured in the norm (5.1) is larger than the rate of convergence
measured in the norm (5.2), even though the values of (5.2) are consistently smaller
than the values of (5.1).  We have not been able to explain this phenomenon.  The
estimate in Table 2 of the rate of convergence is calculated at t = 6, but we have
observed that the rate of convergence is decaying by roughly 0.01 per unit time in-
terval.  This also remains inexplicable.  It seems to be independent of the smoothness
of the initial vorticity, of the meshlength j3, and of the timestep Ar.  On the other
hand, for some cutoffs, see e.g., (5.7), the rate of convergence may increase as time
progresses.

One may argue that the superlinear convergence of the vortex method is due to
a lucky cancellation caused by the rotational symmetry of the initial vorticity.  To
counter this objection we have replaced the cone £ = 1 - |z | by a pyramid with center
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at z = 0 and height one.  The vertices of the pyramid are placed at x = ±1 and
y = ± 1.   The solution of the Euler equations with this initial vorticity seems to be
unknown.  To estimate the rate of convergence we have used Richardson's extrapola-
tion with three meshlengths ß, 2/30 and 1/20.  If the computed solution, i.e. z-, is
equal to the exact solution plus 04'3 e(x, y, t) plus higher order terms, then

(5.3)

2comp: 0 - comp: ^0

||comp:fi-compel (fí)"'3 -(ffl)4/3
2.25.

We choose the norm in (5.3) to be the discrete l2 norm of the differences between
the vortices which have the same initial positions.  With 0 = lA and t = 0, the three
meshes overlap at all points (x, y) for which x, y = 0, ± Vx, ± 1.  In our numerical
experiment we found that the first quotient in (5.3) is equal to 2.26, 2.17 and 2.22
for t = 2, 4, and 6, respectively.  These results indicate that the rate of convergence,
which we have observed with the initial vorticity £ = 1 - \z |, may be trusted.

We will now present some calculations with initial vorticity £ = 1 —\z\, which
indicate that the rate of convergence of the vortex method may be of the second
order.  This has come as a great surprise to us.  In the proof of Lemma 3, the optimal
choice of S was determined by letting Ô2 ~ 02/<5.  Here we assume that the solution
£ is at least Lipschitz continuous.  Thus, if 5 = 0P, then we expect that the rate of
convergence should be 2p for 1/2 < p < 2/3 and 2 - p for 2/3 < p < 1.  However,
there is no indication in Figure 1 of the last branch.  This leads us to conjecture that
the factor 02/S in our estimates is due to an imperfect technique, and should really
be replaced by 02.

It follows from Table 3 that the numerical error for the vortex method is
smallest for p = 1.  Thus, in practice there is no reason to take 5 = ßP with p < 1.
However, if 6 =0, then our technique cannot be used to prove the convergence of the
vortex method even for a short time interval.

Table 3. Errors in the vortex method

Cutoff (1.4), S = 0P, Ai = 1, t = 6

p = 1/6    1/3        1/2 2/3        5/6 1

Comp. - exact, 0 = 1/4

Comp. — exact, 0 = 1/8

0.486     0.347     0.242     0.176     0.126     0.0946
0.391     0.220     0.121     0.0673   0.0396   0.0256

We will now give a heuristic explanation of the results in Figure 1 and Table 3.
Assume that our conjecture is valid.  Then the last term in Eq. (3.2) is the dominating
term in the truncation error.  It is easy to show that if the solution £ is three times
differentiable, then the last term in Eq. (3.2) is equal to

(5.4) Cb2{X )+0(Ô%
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o  =  Computed - Centroid
•   * Computed - Exact

0 05 I
P

Figure 1. Rate of convergence for 0 < p < 1 with 8 = ßp
Cutoff (1.4), 0 = 1/4 and 1/8, At = 1 and t = 6

where the constant C depends on the particular cutoff.  Thus, if the vortex
method is actually stable, and not weakly unstable as in Lemma 4, then the error
should be expected to be of order 02p.  This explains the results in Figure 1.  Note,
however, that the solution £ is not three times differentiable at z = 0 and \z\ = 1.
The decay of the errors in Table 3 can be well described by const • 0ap, where a =
1.43 for 0 = 1/4 and a = 1.60 for 0 = 1/8.  Although neither of these results are
consistent with (5.3), they do explain why the observed rate of convergence in
Figure 1 is very close to 2p.  The constant C in the expression (5.4) is equal to 1/12,
1/8, and 3/40 for the cutoffs (1.4) to (1.6), respectively.  Thus we expect that the
cutoff (1.4) which has been used by Chorin [2] and Shestakov [11] should be supe-
rior to the cutoff (1-5), which has been used by Milinazzo and Saffman [8], while
the cutoff (1.6) should be the best of the three.  This is clearly borne out in Table'4.

Table 4. Errors for different cutoffs

Initial vorticity £ = 1 - \z\, 8 = 02/3, Ar = 1, t = 6

Cutoff:

Comp. - exact, 0 = 1/4

Comp. - exact, 0 = 1/8

(1.4) (1.5) (1.6)

0.176

0.0673

0.237

0.0936

0.153

0.0609
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The quotients between the errors are very close to those predicted by the expression
(5.3). Finally, we mention that for the next cutoff in the sequence, the constant C
is equal to 1/20; and this cutoff must, therefore, be expected to be even better.

It is natural to ask whether it is possible to construct a cutoff such that the
constant C in (5.4) is zero.  It is easy to show that if the cutoff corresponds to a
blob of vorticity which is everywhere nonnegative, then C must be positive.  However,
the constant C vanishes for the following two cutoffs:

We note that the kernels Ks, which correspond to the two cutoffs, satisfy the
inequality (3.1).  The performance of (5.6) and (5.7) are comparable and the errors
for the two cutoffs are in general considerably smaller than the errors for the cutoffs
(1.4), (1.6).  The new cutoffs also have theoretical advantages.   If the solution £ is
three times differentiable, then we conclude from (5.4) that the optimal choice of
S is obtained by letting S4 be of the same order as 02/5.  Thus, if ô = 00-4, then the
expected rate of convergence should be 016.  We have tested the cutoff (5.7) and
report faithfully the results in Table 5.

Table 5. Rate of convergence

Cutoff (1.5), 5 = 0P,0 = 1/4 and 1/8, Ar = 1, t = 6

Comp. — exact

Comp. — centroid

p = 1/6     1/3       1/2      2/3       5/6 1

0.79        1.52    2.05     2.53      1.81       1.59
0.48        1.29    2.02    2.59      1.62       1.38

The initial vorticity was chosen as a rotated cubic spline with center at z = 0,
height one, and with knots at \z \ = lA and \z \ = 1. To reduce the cost of the
calculation we have excluded those vortices for which k. < 1/1Ö05.   For ô = 0P and
p < Vi the rate of convergence seems to be 04p while the rate of convergence for % <
p < 1 remains mysterious.  We would have expected second order accuracy in this
interval.   Finally, we have observed that for Vi < p < 1 the rate of convergence may
change by as much as 0.1 per unit time interval.
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