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Abstract. If x and y are two free semicircular random variables in a non-commuta-
tive probability space (A, E) and have variance one, we call the law of 1√

2
(xy+ yx)

the tetilla law (and we denote it by T ), because of the similarity between the form
of its density and the shape of the tetilla cheese from Galicia. In this paper, we
prove that a unit-variance sequence {Fn} of multiple Wigner integrals converges in
distribution to T if and only if E[F 4

n ] → E[T 4] and E[F 6
n ] → E[T 6]. This result

should be compared with limit theorems of the same flavor, recently obtained by
Kemp et al. (2012) and Nourdin and Peccati (2011).

1. Introduction

In a seminal paper of 2005, Nualart and Peccati discovered the following fact,
called the Fourth Moment Theorem in the sequel: for a sequence of normalized
multiple Wiener-Itô integrals to converge to the standard Gaussian law, it is (nec-
essary and) sufficient that its fourth moment tends to 3. This somewhat suprising
result has been the starting point of a new line of research, and has quickly led
to several applications, extensions and improvements in various areas and direc-
tions, including: Berry-Esseen type’s inequalities (see Nourdin and Peccati, 2009b)
with sometimes optimal bounds (see Nourdin and Peccati, 2009a and Biermé et al.,
2011), further developments in the multivariate case (see Nourdin et al., 2010b
and Airault et al., 2010), second order Poincaré inequalities (see Nourdin et al.,
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2009), new expression for the density of functionals of Gaussian field (see Nourdin
and Viens, 2009), or universality results for homogeneous sums (see Nourdin et al.,
2010a), to cite but a few. We refer the reader to the forthcoming monograph by
Nourdin and Peccati (2012) for an overview of the most important developments;
see also a webpage maintained by Nourdin (2010) for a constantly updated web
resource, with links to all available papers on the subject.

In this paper, we are more specifically concerned with the possible extensions of
the Fourth Moment Theorem in the context of free probability. This theory, popu-
larized by Voiculescu (1991) in the early 1990’s, admits the so-called free Brownian
motion as a central object. Free Brownian motion may be seen as an infinite-
dimensional symmetric matrix-valued Brownian motion and, exactly as classical
Brownian motion allows to express limits arising from random walks (Donsker’s
theorem), the former enables to describe many limits involving traces of random
matrices whose size tends to infinity. It is actually defined in a very similar fashion
to its classical counterpart, the only notable difference being that its increments
are freely independent and are distributed according to the Wigner’s semicircular
law (see Definition 2.3 for the details).

By mimicking the classical construction of multiple Wiener-Itô integrals (see e.g.
the book by Nualart (2006), which is the classical reference on this subject), one can
now define the so-calledWigner multiple integral, as was done by Biane and Speicher
(1998) and whose construction is recalled in Section 2.4. (The terminology ‘Wigner
integral’ was invented in a humorous nod to the fact that Wigner’s semicircular
law plays the central role here, and the similarity between the names Wigner and
Wiener.) As such, this gives a precise meaning to the following object, called the
qth Wigner multiple integral with kernel f :

I(S)
q (f) =

∫

R
q

+

f(t1, . . . , tq)dSt1 . . . dStq , (1.1)

when q > 1 is an integer, f ∈ L2(Rq
+) is a deterministic function, and S = (St)t>0

is a free Brownian motion.
If one considers a classical Brownian motion B = (Bt)t>0 instead of S in (1.1),

one gets the Wiener-Itô multiple integral I
(B)
q (f) with kernel f . In this case, it is

well-known that we can restrict ourselves to symmetric kernels f (that is, satisfying
f(t1, . . . , tq) = f(tσ(1), . . . , tσ(q)) for almost all t1, . . . , tq ∈ R+ and all permutation
σ ∈ Sq) without loss of generality, and that the following multiplication formula is
in order: if f ∈ L2(Rp

+) and g ∈ L2(Rq
+) are both symmetric, then

I(B)
p (f)I(B)

q (g) =

p∧q
∑

r=0

r!

(

p

r

)(

q

r

)

I
(B)
p+q−2r(f

r
⌢g),

where f
r
⌢g ∈ L2(Rp+q−2r

+ ) is the rth contraction of f and g, given by

f
r
⌢g(t1, . . . , tp+q−2r) (1.2)

=

∫

R
p+q−2r

+

f(t1, . . . , tp−r, x1, . . . , xr)

g(xr, . . . , x1, tp−r+1, . . . , tp+q−2r)dx1 . . . dxr, t1, . . . , tp+q−2r ∈ R+.
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In the definition (1.2), there is of course no incidence to permute the variables inside
f or inside g, thanks to the symmetry assumption. In contrast, one must warn the
reader that the same may have dramatic consequences in the free context: indeed,
because the increments of S do not commute, permuting the variables inside f

generally changes the value of I
(S)
p (f). A bit surprisingly however, it turns out that

the multiplication of two multiple Wigner integrals takes a simpler form compared
to the classical case. Precisely, if f ∈ L2(Rp

+) and g ∈ L2(Rq
+), then

I(S)
p (f)I(S)

q (g) =

p∧q
∑

r=0

I
(S)
p+q−2r(f

r
⌢g).

To understand more deeply the similarities and differences between the multipli-
cation formulae in the free and in the classical settings, we refer the reader to the
paper by Donati-Martin (2003), where such a product formula is more generally
derived for the q-Brownian motion, which is nothing but an interpolation between
the classical Brownian motion (q = 1) and the free Brownian motion (q = 0).

Let us now go back to the heart of this paper. Very recently, Kemp et al. (2012)
extended the Fourth Moment Theorem to the free setting: this time, for a sequence
of normalized Wigner multiple integrals to converge to the semicircular law, it is
(necessary and) sufficient that the fourth moment tends to 2, which is of course the
value of the fourth moment of the semicircular law. Shortly afterwards, Nourdin
and Peccati (2011) considered the problem of determining, still in term of a finite
number of moments, the convergence of a sequence of multiple Wigner integrals to
the free Poisson distribution (also called the Marchenko-Pastur distribution). In
this case, what happens to be necessary and sufficient is not only the convergence of
the fourth moment, but also the convergence of the third moment as well. (Actually,
only the convergence of a linear combination of these two moments turns out to be
needed.)

In the present paper, our goal is to go one step further with respect to the two
previously quoted papers by Kemp et al. (2012) and Nourdin and Peccati (2011),
by studying yet another distribution for which a similar phenomenom occurs. More
precisely, as a target limit we consider the random variable 1√

2
(xy + yx), where x

and y are two free, centered, semicircular random variables with unit variance. We
decided to call its law the tetilla law, because of the troubling similarity between
the shape of its density and the form of the tetilla cheese from Galicia, see the
forthcoming Section 2.5 for further details together with some pictures. After our
paper was submitted, it was brought to our notice that the tetilla law already
appeared in Nica and Speicher (1998) (see Example 1.5(2) therein), under the
more conventional name “symmetric Poisson”.

Here is now the precise question we aim to solve in the present paper: is it
possible, by means of a finite number of their moments only, to characterize the
convergence to the tetilla law of a given unit-variance sequence of multiple Wigner
integrals? If so, how many moments are then needed? (and what are they?)

As we will see, the answer to our first question is positive; furthermore, it turns
out that, unlike the known related papers by Kemp et al. (2012) and Nourdin
and Peccati (2011) in the literature, the novelty is that we must here have the
convergence of both the fourth and the sixth moments to get the desired conclusion.
More specifically, we shall prove the following result in the present paper.
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Theorem 1.1. Let T be a random variable distributed according to the tetilla
law, and fix an integer q > 2. Let Fn = Iq(fn) be a sequence of Wigner multiple
integrals, where each fn is an element of L2(Rq

+) such that ‖fn‖L2(Rq

+
) = 1 and

fn(t1, . . . , tq) = fn(tq, . . . , t1) for almost all t1, . . . , tq ∈ R+. Then, the following
three assertions are equivalent as n → ∞:

(i) E[F 6
n ] → E[T 6] and E[F 4

n ] → E[T 4];
(ii) For all r, r′ = 1, . . . , q − 1 such that r′ + 2r 6 2q and r + r′ 6= q, it holds

true that

(fn
r
⌢fn)

r′
⌢fn → 0 (1.3)

and

− 1

2
fn +

q−1
∑

r=1

(fn
r
⌢fn)

q−r
⌢fn → 0; (1.4)

(iii) Fn → T in distribution.

At first glance, one could legitimately think that, in order to show our Theorem
1.1, the only thing to do is somehow to merely extend the existing techniques
introduced in Kemp et al. (2012), Nourdin (2011) or Nourdin and Peccati (2011).
This is actually not the case. Although the overall philosophy of the proof remains
similar (more precisely, we shall follow the strategy introduced in Nourdin, 2011),
here we need to rely on new identities about iterated contractions (such as the string
of contractions appearing in (ii)) to be able to conclude, and we consider that the
discovery of these crucial identities represents one of the main achievement of our
study.

To finish this introduction, we offer the following result as a corollary of Theorem
1.1. We believe that it has its own interest because, for the time being, very few is
known about the laws which are admissible for a multiple Wigner integrals with a
given order.

Corollary 1.2. Let q > 3 be an integer, and let f be an element of L2(Rq
+) such

that ‖f‖L2(Rq

+
) = 1 and f(t1, . . . , tq) = f(tq, . . . , t1) for almost all t1, . . . , tq ∈ R+.

Then, Iq(f) cannot be distributed according to the tetilla law.

The rest of the paper is organised as follows. Section 2 contains some useful
preliminaries and, among other things, introduce the reader to the tetilla law.
Then, the proof of Theorem 1.1 is done in Section 3. Finally, Section 4 corresponds
to an appendix, where the proofs of two technical results have been postponed.

2. Preliminaries

2.1. The free probability setting. Our main reference for this section is the mono-
graph by Nica and Speicher (2006), to which the reader is referred for any unex-
plained notion or result.

For the rest of the paper, we consider as given a so-called (tracial)W ∗-probability
space (A , E), where: A is a von Neumann algebra of operators (with involution
x 7→ x∗), and E is a unital linear functional on A with the properties of being weakly
continuous, positive (that is, E(xx∗) > 0 for every x ∈ A ), faithful (that is, such
that the relation E(xx∗) = 0 implies x = 0), and tracial (that is, E(xy) = E(yx),
for every x, y ∈ A ).
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As usual in free probability, we refer to the self-adjoint elements of A as random
variables. Given a random variable x we write µx to indicate the law (or distribu-
tion) of x, which is defined as the unique Borel probability measure on R such that
E(xm) =

∫

R
tmdµx(t) for every integer m > 0 (see e.g. Nica and Speicher (2006,

Proposition 3.13)).
We say that the unital subalgebras A1, ...,An of A are freely independent when-

ever the following property holds: let x1, ..., xm be a finite collection of elements
chosen among the Ai’s in such a way that (for j = 1, ...,m− 1) xj and xj+1 do not
come from the same Ai and E(xj) = 0 for j = 1, ...,m; then E(x1 . . . xm) = 0. Ran-
dom variables are said to be freely independent if they generate freely independent
unital subalgebras of A .

2.2. Free cumulants, R-transform and Cauchy transform. Given an integer m > 1,
we write [m] = {1, ...,m}. A partition of [m] is a collection of non-empty and
disjoint subsets of [m], called blocks, such that their union is equal to [m].

A partition π of [m] is said to be non-crossing if one cannot find integers
p1, q1, p2, q2 such that: (a) 1 6 p1 < q1 < p2 < q2 6 m, (b) p1, p2 are in the
same block of π, (c) q1, q2 are in the same block of π, and (d) the pi’s are not in
the same block of π as the qi’s. The collection of the non-crossing partitions of [m]
is denoted by NC(m), m > 1.

Given a random variable x, we denote by {κm(x) : m > 1} the sequence of its
free cumulants: according to Nica and Speicher (2006, p. 175), they are defined
through the recursive relation

E(xm) =
∑

π={b1,...,bj}∈NC(m)

j
∏

i=1

κ|bi|(x), (2.1)

where |bi| indicates the cardinality of the block bi of the non-crossing partition
π. The sequence {κm(x) : m > 1} completely determines the moments of x (and
vice-versa), and the power series

Rx(z) =

∞
∑

m=1

κm(x)zm,

is called the R-transform of (the distribution of) x. Its main properties is that
it linearizes free convolution, just as the classical cumulant transform linearizes
classical convolution: that is, if x and y are free random variables, then Rx+y =
Rx +Ry (as a formal series).

To recover the distribution µx from the free cumulants of the random variable
x, it is common to use its Cauchy transform Gx. It is defined by

Gx(z) =

∫

R

dµx(t)

z − t
, z ∈ C+ = {z ∈ C : Imz > 0},

and takes its values in C− = {z ∈ C : Imz < 0}. The Cauchy transform can be
found from the R-transform as the inverse function of z 7→ 1

z

(

1 + Rx(z)
)

, that is,
it verifies

Gx

[

1

z

(

1 +Rx(z)
)

]

= z.
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On the other hand, Stieltjes inversion theorem states that

dµx(t) = − 1

π
lim
ε→0

Im
[

Gx(t+ iε)
]

dt, t ∈ R, (2.2)

where the limit is to be understood in the weak topology on the space of probability
measures on R.

2.3. Semicircular law. The following family of distributions is fundamental in free
probability. It plays the same role as the Gaussian laws in a classical probability
space.

Definition 2.1. The centered semicircular distribution of parameter t > 0, denoted
by S(0, t), is the probability distribution which is absolutely continuous with respect
to the Lebesgue measure, and whose density is given by

pt(u) =
1

2πt

√

4t− u2 1(−2
√
t,2

√
t)(u).

One can readily check that
∫ 2

√
t

−2
√
t u

2mpt(u)du = Cmtm, where Cm is the mth

Catalan number (so that e.g. the second moment of S(0, t) is t). One can deduce
from the previous relation and (2.1) (e.g. by recursion) that the free cumulants
of a random variable x with law S(0, t) are all zero, except for κ2(x) = E[x2] = t
(equivalently, the R-transform of x is given by Rx(z) = tz2). Note also that S(0, t)
is compactly supported, and therefore is uniquely determined by their moments (by
the Weierstrass theorem).

On the other hand, it is a classical fact (see e.g. Nica and Speicher (2006,
Proposition 12.13)) that the free cumulants of x2, whenever x ∼ S(0, t), are given
by

κm(x2) = tm, m > 1. (2.3)

2.4. Free Brownian motion and Wigner chaoses. Our main reference for the content
of this section is the paper by Biane and Speicher (1998).

Definition 2.2. (i) For 1 6 p 6 ∞, we write Lp(A , E) to indicate the Lp

space obtained as the completion of A with respect to the norm ‖a‖p =

E(|a|p)1/p, where |a| =
√
a∗a, and ‖ · ‖∞ stands for the operator norm.

(ii) For every integer q > 2, the space L2(Rq
+) is the collection of all real-valued

functions on R
q
+ that are square-integrable with respect to the Lebesgue

measure. We use the short-hand notation 〈·, ·〉q to indicate the inner
product in L2(Rq

+). Also, given f ∈ L2(Rq
+), we write f∗(t1, t2, ..., tq) =

f(tq, ..., t2, t1), and we call f∗ the adjoint of f . We say that an element of
L2(Rq

+) is mirror symmetric whenever f = f∗ as a function.
(iii) Given f ∈ L2(Rq

+) and g ∈ L2(Rp
+) for every r = 1, ...,min(q, p),; we define

the rth contraction of f and g as the element of L2(Rp+q−2r
+ ) given by (1.2).

One also writes

f
0
⌢g(t1, ..., tp+q) = f ⊗ g(t1, ..., tp+q) = f(t1, ..., tq)g(tq+1, ..., tp+q).

In the following, we shall use the notations f
0
⌢g and f ⊗g interchangeably.

Observe that, if p = q, then f
p
⌢g = 〈f, g∗〉L2(Rq

+
).

Let us now define what a free Brownian motion is.
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Definition 2.3. A free Brownian motion S on (A , E) consists of: (i) a filtration
{At : t > 0} of von Neumann sub-algebras of A (in particular, Au ⊂ At, for
0 6 u < t), (ii) a collection S = (St)t>0 of self-adjoint operators such that:

– St ∈ At for every t;
– for every t, St has a semicircular distribution S(0, t);
– for every 0 6 u < t, the increment St −Su is freely independent of Au, and
has a semicircular distribution S(0, t− u).

For every integer q > 1, the collection of all random variables of the type

I
(S)
q (f) = Iq(f), f ∈ L2(Rq

+), is called the qth Wigner chaos associated with S,
and is defined according to Biane and Speicher (1998, Section 5.3), namely:

– first define Iq(f) = (Sb1 − Sa1
) . . . (Sbq − Saq

), for every function f having
the form

f(t1, ..., tq) = 1(a1,b1)(t1)× . . .× 1(aq,bq)(tq), (2.4)

where the intervals (ai, bi), i = 1, ..., q, are pairwise disjoint;
– extend linearly the definition of Iq(f) to simple functions vanishing on
diagonals, that is, to functions f that are finite linear combinations of
indicators of the type (2.4);

– exploit the isometric relation

〈Iq(f1), Iq(f2)〉L2(A ,E) = E [Iq(f1)
∗Iq(f2)] = E [Iq(f

∗
1 )Iq(f2)] = 〈f1, f2〉L2(Rq

+
),

(2.5)
where f1, f2 are simple functions vanishing on diagonals, and use a density
argument to define Iq(f) for a general f ∈ L2(Rq

+).

Observe that relation (2.5) continues to hold for every pair f1, f2 ∈ L2(Rq
+).

Moreover, the above sketched construction implies that Iq(f) is self-adjoint if and
only if f is mirror symmetric. We recall the following fundamental multiplication
formula, proved in Biane and Speicher (1998). For every f ∈ L2(Rp

+) and g ∈
L2(Rq

+), where p, q > 1,

Ip(f)Iq(g) =

p∧q
∑

r=0

Ip+q−2r(f
r
⌢g). (2.6)

By applying (2.6) iteratively and by taking into account that a nth Wigner
integral (n > 1) is centered by construction, we immediately get the following
formula, that relates explicitly the moments of a multiple Wigner integral to its
kernel.

Corollary 2.4. For every function f ∈ L2(Rq
+) and every integer l > 2, one has

E
[

Iq(f)
l
]

=
∑

(r1,...,rl−1)∈Aq,l

((. . . (f
r1⌢ f)

r2⌢ f)
r3⌢) . . .

rl−1

⌢ f, (2.7)

where Aq,l stands for the set of elements (r1, . . . , rl−1) ∈ {0, . . . , q}l−1 which satis-
fies the two conditions:

2r1+. . .+2rk−1+rk 6 kp for every k ∈ {2, . . . , l−1}, and 2r1+. . .+2rl−1 = lp.
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2.5. Tetilla law. We are now in a position to define the so-called tetilla law, which
lies at the very heart of this paper. See also Nica and Speicher (1998, Example
1.5(2)) for other properties.

Definition 2.5. Let x, y be two free semicircular random variables with variance
one. The law of the random variable 1√

2
(xy + yx) is denoted T , and is called the

tetilla law.

Lemma 2.6. Let x, y be two free semicircular random variables with variance one.
Then the random variable w = 1√

2

(

x2 − y2
)

is distributed according to the tetilla

law. As a consequence, the free cumulants of the tetilla law are given by

κm(w) =

{

21−m/2 if m is even
0 if m is odd

.

Equivalently, the R-transform of w is given by Rw(z) = 2z2/(2− z2).

Proof : It is immediately checked that the two random vectors (x, y) and
(

x+y√
2
,x−y√

2

)

share the same law. (Indeed, they are both jointly semicircular with the same
covariance matrix, see Nica and Speicher (2006, Corollary 8.20).) Consequently,
the two random variables xy + yx and x2 − y2 have the same law as well, thus
showing that w is distributed according to the tetilla law. Thanks to this new
representation and the linearization property of the R-transform with respect to
free convolution, it is now easy to calculate the free cumulants of T . For any
m > 1, we have

κm(w) = 2−m/2κm(x2 − y2) = 2−m/2
(

κm(x2) + (−1)mκm(y2)
)

= 2−m/2(1 + (−1)m)κm(x2),

and the desired conclusion now follows from (2.3). �

Proposition 2.7. The tetilla law T admits a compactly supported density h with
respect to the Lebesgue measure, given by

h(t) =
1

2
√
3πt

[

3

√

1 + 36t2 + 3
√

6t2 + 132t4 − 24t6− (2.8)

3

√

1 + 36t2 − 3
√

6t2 + 132t4 − 24t6
]

,

for t ∈
[

−
√

11+5
√
5

2 ,

√
11+5

√
5

2

]

, h(t) = 0 otherwise.

It is formula (2.8) that motivated us to call the law of T the tetilla law. The
reader should indeed have a look at the two following pictures, where the similarity
between the graph of h and the shape of the tetilla cheese seemed evident to us.
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Proof of Proposition 2.7. Let w have the tetilla law. According to Section 2.2 and
using the expression of the R-transform given in Lemma 2.6, the Cauchy transform
y = Gw(z) (z ∈ C+) of w at point z verifies zy3 + y2 − 2zy + 2 = 0. The ex-
plicit solutions y1, y2, y3 of the latter equation can be obtained thanks to Cardan’s
formulae: for every z ∈ C+, one has

y1(z) = −(u(z) + v(z))− 1

3z
, y2(z) = −(ju(z) + jv(z))− 1

3z
,

y3(z) = −(ju(z) + jv(z))− 1

3z
,

where j = e2iπ/3, and where we successively set

u(z) =

(

q(z) +
√

∆(z)

2

)1/3

, v(z) =

(

q(z)−
√

∆(z)

2

)1/3

,

q(z) =
2

27z3
(1 + 18z2), ∆(z) = q(z)2 +

4

27
p(z)3, p(z) = −(1 +

1

3z2
).

Now, in order to identify Gw with one of these solutions, let us observe that both
Im y1(i) and Im y3(i) are strictly positive reals (this is only straightforward compu-
tation). Since Gw is known to take its values in C−, we can assert that Gw = y2
on C+. The density (2.8) is then easily derived from the Stieltjes inversion formula
(2.2). �

2.6. Moments. Once endowed with its free cumulants, we can go back to Formula
(2.1) in order to compute the moments of the tetilla law.

Proposition 2.8. The moments of the tetilla law are given by the following for-
mulae: for every n > 1,

m2n+1(T ) = 0 , m2n(T ) =
1

2nn

n
∑

k=1

2k
(

2n

k − 1

)(

n

k

)

. (2.9)
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Proof : The fact that the odd moments are all equal to zero is a direct consequence
of the symmetry of the density h, see (2.8). Recall next that κ2k+1(T ) = 0 and
κ2k(T ) = 2−k+1. As a consequence,

m2n(T ) =

2n
∑

k=1

∑

(b1,...,bk)∈NC(2n)

k
∏

i=1

κ|bi|(T ) =

n
∑

k=1

∑

(b1,...,bk)∈NC(2n)
|b1|,...,|bk| all even

k
∏

i=1

2−
|bi|

2
+1

=
n
∑

k=1

∑

(b1,...,bk)∈NC(2n)
|b1|,...,|bk| all even

2k2−
|b1|+...+|bk|

2

=
1

2n

n
∑

k=1

2k Card{(b1, . . . , bk) ∈ NC(2n) : |b1|, . . . , |bk| all even}.

It turns out that the latter cardinal has been explicitly computed in Edelman (1980,
Lemma 4.1):

Card{(b1, . . . , bk) ∈ NC(2n) : |b1|, . . . , |bk| all even} =

(

2n

k − 1

)(

n

k

)

,

which gives the result. �

2.7. An induction formula for the moments of the tetilla law. Now, with the help
of Formula (2.7), we are going to exhibit a specific algorithm that governs the
sequence of the moments (mk(T )). The purpose here does not lie in getting a way
to compute these moments explicitly (one can use Formula (2.9) to do so). In fact,
the algorithm will be used as a guideline through the proof of our Theorem 1.1.

Notation. For integers p, q, l > 2, let Aq,p,l be the set of elements rl−1 =
{r1, . . . , rl−1} ∈ {0, . . . , q}l−1 which satisfy the following two conditions:

(a) 2r1 + . . .+ 2rk−1 + rk 6 (k − 1)q + p for any k ∈ {1, . . . , l − 1};
(b) 2r1 + . . .+ 2rl−1 = (l − 1)q + p.

Otherwise stated, Aq,p,l stands for the set of elements rl−1 = {r1, . . . , rl−1} ∈
{0, . . . , q}l−1 for which the (l − 1)-th iterated contraction starting from some g ∈
L2(Rp

+) and continuing with some f ∈ L2(Rq
+), that is,

Cf,rl−1
(g) := (. . . ((g

r1⌢ f)
r2⌢ f)

r3⌢ . . .)
rl−1

⌢ f, (2.10)

is well-defined (condition (a)) and reduces to a real number (condition (b)). In
particular, with the notation of Corollary 2.4, one has Aq,l = Aq,q,l.

With every rl−1 ∈ Aq,p,l, one associates a walk M on {0, . . . , l − 1} as follows:

M0 = p, Mk = kq + p− 2r1 − . . .− 2rk, k = 1, . . . , l − 1.

When dealing with functions f ∈ L2(Rq
+) and g ∈ L2(Rp

+) as before, Mk corre-

sponds to the number of arguments of the function (. . . ((g
r1⌢ f)

r2⌢ f)
r3⌢) . . .

rk⌢ f .
Then, the above conditions (a) and (b) can be translated into the following con-
straints on the walk M :

(i) M0 = p, Ml−1 = 0 and Mk > 0 for all k = 0, . . . , l− 1;

(ii) Mk+1 −Mk ∈ {−q,−q + 2, . . . , q − 2, q};
(iii) if Mk 6 q, then Mk+1 > q −Mk.
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Inversely, it is easily seen that, when a walk M on {0, . . . , l − 1} satisfying
(i)− (iii) is given, one can recover a (unique) element rl−1 ∈ Aq,p,l by setting

rk =
1

2
(q −Mk +Mk−1) , k = 1, . . . , l − 1. (2.11)

This bijection gives us a handy graphical representation for the elements of Aq,p,l

(see Figure 1). Also, by a slight abuse of notation, Aq,p,l will also refer in the sequel
to the set of walks on {0, . . . , l− 1} subject to the constraints (i)− (iii).

2

4

6

8

10

0 1 2 3 4 5 6 7 8 9

3

2

0

1

4

4 0

2

4

Figure 2.1. A walk in A4,4,10. The number associated to each
[Mk,Mk+1] corresponds to the contraction order rk+1. Observe in
particular that every walk M in A4,4,10 is contained in the area
delimited by the dotted line. Besides, M8 is forced to be 4. More
generally, Ml−2 is necessarily equal to q.

Keeping the above notation in mind, we go back to the consideration of the
moments of the tetilla law. In the rest of this section, we fix f ∈ L2(R2

+) as being
equal to

f =
1√
2

(

1[0,1] ⊗ 1[1,2] + 1[1,2] ⊗ 1[0,1]
)

.

Remember that the odd moments are all equal to zero. So, from now on, we fix
an even integer l = 2m > 4. According to Corollary 2.4 and recalling the notation
(2.10), the l-th moment of I2(f) is given by

Sf,l(f) := E
[

I2(f)
l
]

=
∑

rl−1∈A2,2,l

Cf,rl−1
(f), l > 2.
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More generally, we associate with every even integer p > 2 and every function
g ∈ L2(Rp

+) the quantity

Sf,l(g) :=
∑

rl−1∈A2,p,l

Cf,rl−1
(g).

The set A2,p,l (with p an even integer) is easy to visualize thanks to our walk
representation. Indeed, the conditions (i)-(iii) reduce here to: (i)′ M0 = p and
Ml−1 = 0; (ii)′ Mk+1 −Mk ∈ {−2, 0, 2}; (iii)′ if Mk = 0, then Mk+1 = 2, that is,
the walk bounces back to 2 each time it reaches 0.

With this representation in mind and because ‖f‖2 = 1, it is readily checked that

Sf,2m(f) = Sf,2m−1(1) + Sf,2m−1(f
1
⌢ f) + Sf,2m−1(f ⊗ f)

= Sf,2m−2(f) + Sf,2m−1(f
1
⌢ f) + Sf,2m−1(f ⊗ f). (2.12)

Now, observe the two relations (f
1
⌢ f)

1
⌢ f = 1

2f and
〈

f
1
⌢ f, f

〉

= 0, which give

rise to the formula

Sf,2m−1(f
1
⌢ f) =

1

2
Sf,2m−2(f) + Sf,2m−2((f

1
⌢ f)⊗ f). (2.13)

As a result, it remains to compute Sf,2m−1(f ⊗ f) and Sf,2m−2((f
1
⌢ f)⊗ f). To

this end, let us introduce, for every integer k > 2, the subset A+
2,p,k ⊂ A2,p,k of

strictly positive walks (up to the time k − 1), and set

S+
f,k(g) :=

∑

rk−1∈A+

2,p,k

Cf,rl−1
(g).

In the latter formula, A+
2,p,k is of course understood as a subset of {0, 1, 2}k−1 via

the equivalence given by (2.11). Owing to the constraints (i)′-(ii)′, it is easily seen
that, for every r2m−2 ∈ A2,4,2m−1, there exists a smallest integer k ∈ {2, . . . , 2m−3}
such that the iterated contraction Cf,r2m−2

(f ⊗ f) can be (uniquely) splitted into

Cf,r2m−2
(f ⊗ f) = Cf,r′

k−1
(f)Cf,r′′

2m−1−k
(f)

for some r′k−1 ∈ A+
2,2,k and r′′2m−1−k ∈ A2,2,2m−k (see Figure 2 for an illustration).

Together with the identity
〈

f
1
⌢ f, f

〉

= 0, this observation leads to the formula

Sf,2m−1(f ⊗ f) =

m−1
∑

k=1

S+
f,2k(f)Sf,2m−2k(f). (2.14)

By a similar argument we get

Sf,2m−2((f
1
⌢ f)⊗ f) =

m−2
∑

k=1

S+
f,2k(f)Sf,2m−2k−1(f

1
⌢ f). (2.15)

Going back to (2.12), the three formulae (2.13), (2.14) and (2.15) provide us
with an iterative algorithm for the computation of Sf,2m(f). The only unknown
quantities are the sums S+

f,2k(f) for k ∈ {1, . . . ,m}. However, it turns out that the
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2

4

6

8

10

0 1 2 3 4 5 6 7 8

f ⊗ f

Figure 2.2. Splitting up Cf,r8(f ⊗ f). The blue part of the walk
gives birth to Cf,r′

5
(f) with r′5 ∈ A+

2,2,6, while the red part corre-

sponds to Cf,r′′
3
(f) with r′′3 ∈ A2,2,4.

above reasoning can also be applied to S+
f,2k(f) (instead of Sf,2k(f)) to give the

self-contained iterative procedure:
{

S+
f,2m(f) = S+

f,2m−1(f
1
⌢ f) +

∑m−1
k=1 S+

f,2k(f)S
+
f,2m−2k(f),

S+
f,2m−1(f

1
⌢ f) = 1

2S
+
f,2m−2(f) +

∑m−2
k=1 S+

f,2k(f)S
+
f,2m−2k−1(f

1
⌢ f).

Finally, we have proved the following result:

Proposition 2.9. The even moments E
[

T 2m
]

= Sf,2m(f) of the tetilla law are
governed by the iterative algorithm:
{

Sf,2m(f)=Sf,2m−2(f) + Sf,2m−1(f
1
⌢ f) +

∑m−1
k=1 S+

f,2k(f)Sf,2m−2k(f),

Sf,2m−1(f
1
⌢ f)= 1

2Sf,2m−2(f) +
∑m−2

k=1 S+
f,2k(f)Sf,2m−2k−1(f

1
⌢ f),

with initial conditions

Sf,2(f) = 1, Sf,3(f
1
⌢ f) =

1

2
, S+

f,2(f) = 1 and S+
f,3(f

1
⌢ f) =

1

2
.

3. Proof of the main results

For the sake of conciseness, we introduce the notation hn ≈ gn (for sequences
of functions hn, gn ∈ L2(Rp

+), p > 0) to indicate that hn − gn → 0 as n tends to
infinity.

3.1. Sketch of the proof. Before going into the technical details of the proof of
Theorem 1.1, let us try to give an intuitive idea of the main lines of our reasoning.
To this end, let us first go back to the semicircular case, that is, to the Fourth
Moment Theorem for Wigner integrals, which was first established in Kemp et al.
(2012) and then re-examined in Nourdin (2011). Specifically, let (fn) ⊂ L2(Rq

+) be

a sequence of mirror-symmetric normalized functions; in this case, if E
[

Iq(fn)
4
]

→
2 = E

[

I1(1[0,1])
2
]

as n tends to infinity, then Iq(fn) converges in distribution to
I1(1[0,1]), that is, to the semicircular law. In the two afore-mentionned references,
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it appears clearly that the arguments leading to this convergence criterion can be
organized around two successive steps:

Step 1. We observe that the convergence of the fourth moment towards 2 forces
the asymptotic behaviour of the (non-trivial) contractions of fn. Indeed, from the
general formula

E
[

Iq(fn)
4
]

= 2 +

q−1
∑

r=1

‖fn r
⌢ fn‖22q−2r, (3.1)

one immediately deduces that fn
r
⌢ fn ≈ 0 for r ∈ {1, . . . , q − 1}.

Step 2. Now the limit of fn
r
⌢ fn is known, one can make use of the formula (2.7)

to compute the limit of E
[

Iq(fn)
l
]

for every l. The semicircularity of the limit is
then a consequence of the following elementary splitting:

E
[

Iq(fn)
l
]

=
∑

rl−1∈Aq,l

rl−1∈{0,q}l

((. . . (f
r1⌢ f)

r2⌢ f) . . .
rl−1

⌢ f

+
∑

rl−1∈Aq,l

rl−1 /∈{0,q}l

((. . . (f
r1⌢ f)

r2⌢ f) . . .
rl−1

⌢ f. (3.2)

Indeed, thanks to Step 1 and Cauchy-Schwarz, it is easy to see that the second sum
of (3.2) tends to 0, as each string of contractions therein involves at least one single

contraction of the type fn
r
⌢ fn with r ∈ {1, . . . , q − 1}. To conclude the proof, it

remains to notice that, since ‖fn‖q = 1, one has
∑

rl−1∈Aq,l

rl−1∈{0,q}l

((. . . (f
r1⌢ f)

r2⌢ f) . . .
rl−1

⌢ f

=
∑

rl−1∈A2,l

((. . . (1[0,1]
r1⌢ 1[0,1])

r2⌢ 1[0,1]) . . .
rl−1

⌢ 1[0,1] = E
[

I1(1[0,1])
l
]

.

In Nourdin and Peccati (2011), this two-step procedure has been adapted to the
case where the limit is free Poisson distributed, represented e.g. by the integral
I2(1[0,1] ⊗ 1[0,1]). In this situation, as a substitute to (3.1), we may use the more
sophisticated starting relation

E
[

(

Iq(fn)
2 − Iq(fn)

)2
]

= 2+ ‖fn
q/2
⌢ fn − fn‖2q +

∑

r∈{1,...q−1}\{ q

2
}
‖fn r

⌢ fn‖22q−2r,

(3.3)
and then notice that, whenever both the third and four moments converge, then

E
[

(

Iq(fn)
2 − Iq(fn)

)2
]

→ E
[

(

I2(1[0,1] ⊗ 1[0,1])
2 − I2(1[0,1] ⊗ 1[0,1])

)2
]

= 2,

(3.4)

so that, combining (3.3) with (3.4), one deduces fn
r
⌢ fn ≈ 0 for r ∈ {1, . . . q −

1}\{ q
2}, as well as fn

q/2
⌢ fn ≈ fn (the situation where q is an odd integer can be

excluded using elementary arguments).



Convergence of Wigner integrals to the tetilla law 115

In these two cases (semicircular and Poisson), the following general idea emerges
from the proof: by assuming the convergence of the (four) first moments, one
can show that the contractions of fn (asymptotically) mimick the behaviour of
the contractions of the reference kernel. Thus, in the Poisson case, the relation

fn
q/2
⌢ fn ≈ fn must be seen as the (asymptotic) equivalent of the property

(1[0,1] ⊗ 1[0,1])
1
⌢ (1[0,1] ⊗ 1[0,1]) = 1[0,1] ⊗ 1[0,1]

characterizing the target kernel.

This general idea is at the core of our reasoning as well, even if the situation
turns out to be more intricate in our context. As we have seen in Subsection 2.7,
the characteristic property of f = 1√

2
(1[0,1] ⊗ 1[1,2] + 1[1,2] ⊗ 1[0,1]) (that is, the

property that allows us to compute the moments of the tetilla law) consists in the
two relations

(f
1
⌢ f)

1
⌢ f =

1

2
f , (f

1
⌢ f)

2
⌢ f = 0,

which involve this time double contractions. Thus, the above two-step procedure
must be remodelled so as to put the double contractions of fn as the central objects
of the proof, and this is precisely where the sixth moment comes into the picture
(see the general formula (3.5)). In brief, we will adapt the previous machinery in
the following way:

Step 1’. We look for a relation similar to (3.1) or (3.3), that permits to compare the
asymptotic behaviour of the double contractions of fn with the double contractions
of f , when assuming the convergence of the fourth and sixth moments. This is the
aim of Subsection 3.2 (the expected formula corresponds to (3.6)), and it leads to
the proof of the implication (i) ⇒ (ii) of Theorem 1.1.

Step 2’. In Subsection 3.3, we go back to the formula (2.7) so as to exhibit the
moments of the tetilla law in the limit. The strategy is here different from the
semicircular (or Poisson) case, since it cannot be reduced to a tricky splitting such
as (3.2). Instead, we show that the sequence of moments (E

[

Iq(fn)
l
]

)l>1 is asymp-
totically (with respect to n) governed by the algorithm described in Proposition 2.9,
from which it becomes clear that the limit is distributed according to the tetilla
law.

3.2. Proof of Theorem 1.1, (i) =⇒ (ii). For the sake of clarity, we divide the proof
into two (similar) parts according to the parity of q.

Let us first assume that q > 2 is an even integer, and let (fn) be a sequence of
mirror-symmetric functions of L2(Rq

+) verifying ‖fn‖2q = 1 for all n. In the sequel,

for k ∈ {0, . . . , 3q
2 }, we write B2k to indicate the set of those integers r ∈ {0, . . . , q}

such that

0 6
3q

2
− k − r 6 q ∧ (2q − 2r)

that is, the set of integers r for which the double contraction (fn
r
⌢ fn)

3q

2
−k−r
⌢ fn

is well-defined (as an element of L2(R2k
+ )). Observe that B2k merely reduces to

{0, . . . , 3q
2 − k} when k >

q
2 .

The implication (i) ⇒ (ii) of Theorem 1.1 can be reformulated as follows:
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Proposition 3.1. Assume E[Iq(fn)
6] → 8.25 and E[Iq(fn)

4] → 2.5 as n → ∞.
Then, as n → ∞,

(a) (fn
r
⌢ fn)

3q

2
−k−r
⌢ fn → 0, k ∈

{

0, . . . , q
2 − 1

}

∪
{

q
2 + 1, . . . , 3q2 − 1

}

, r ∈
B2k\{0, 3q2 − k};

(b) − 1
2fn +

∑q−1
r=1(fn

r
⌢ fn)

q−r
⌢ fn → 0.

The proof of Proposition 3.1 mainly relies on the following technical lemma,
whose proof is postponed to the appendix.

Lemma 3.2. We have

3q

2
−1
∑

k= q

2
+1

∥

∥

∥

∥

∥

∑

r∈B2k

(fn
r
⌢ fn)

3q

2
−k−r
⌢ fn

∥

∥

∥

∥

∥

2

2k

=

3q

2
−1
∑

k= q

2
+1

∑

r∈B2k

∥

∥

∥

∥

(fn
r
⌢ fn)

3q

2
−k−r
⌢ fn

∥

∥

∥

∥

2

2k

+ 2

q

2
−1
∑

k=0

∥

∥

∥

∥

∥

∑

r∈B2k

(fn
r
⌢ fn)

3q

2
−k−r
⌢ fn

∥

∥

∥

∥

∥

2

2k

.

Using the multiplication formula twice leads to

Iq(fn)
3 =

q
∑

r=0

(2q−2r)∧q
∑

s=0

I3q−2r−2s((fn
r
⌢ fn)

s
⌢ fn),

or equivalently, after setting k = 3q − 2r − 2s,

Iq(fn)
3 =

3q
2
∑

k=0

I2k

(

∑

r∈B2k

(fn
r
⌢ fn)

3q

2
−k−r
⌢ fn

)

.

We deduce, using moreover that ‖fn‖2q = fn
q
⌢ fn = 1, that

Iq(fn)
3 − 5

2
Iq(fn)

=

q

2
−1
∑

k=0

I2k

(

∑

r∈B2k

(fn
r
⌢ fn)

3q

2
−k−r
⌢ fn

)

+ Iq

(

−1

2
fn +

q−1
∑

r=1

(fn
r
⌢ fn)

q−r
⌢ fn

)

+

3q

2
−1
∑

k= q

2
+1

I2k

(

∑

r∈B2k

(fn
r
⌢ fn)

3q

2
−k−r
⌢ fn

)

+ I3q(fn ⊗ fn ⊗ fn).

Hence

E
[

(Iq(fn)
3 − 5

2
Iq(fn))

2
]

=

q

2
−1
∑

k=0

∥

∥

∥

∥

∥

∑

r∈B2k

(fn
r
⌢ fn)

3q

2
−k−r
⌢ fn

∥

∥

∥

∥

∥

2

2k

+

∥

∥

∥

∥

∥

−1

2
fn +

q−1
∑

r=1

(fn
r
⌢ fn)

q−r
⌢ fn

∥

∥

∥

∥

∥

2

q

+

3q

2
−1
∑

k= q
2
+1

∥

∥

∥

∥

∥

∑

r∈B2k

(fn
r
⌢ fn)

3q

2
−k−r
⌢ fn

∥

∥

∥

∥

∥

2

2k

+ 1, (3.5)
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implying in turn, thanks to Lemma 3.2,

E
[

(Iq(fn)
3 − 5

2
Iq(fn))

2
]

− 1− 2

q−1
∑

r=1

‖fn r
⌢ fn‖22q−2r

= 3

q
2
−1
∑

k=0

∥

∥

∥

∥

∥

∑

r∈B2k

(fn
r
⌢ fn)

3q

2
−k−r
⌢ fn

∥

∥

∥

∥

∥

2

2k

+

∥

∥

∥

∥

∥

−1

2
fn +

q−1
∑

r=1

(fn
r
⌢ fn)

q−r
⌢ fn

∥

∥

∥

∥

∥

2

q

+





3q

2
−1
∑

k= q

2
+1

∑

r∈B2k

∥

∥

∥

∥

(fn
r
⌢ fn)

3q

2
−k−r
⌢ fn

∥

∥

∥

∥

2

2k

− 2

q−1
∑

r=1

‖fn r
⌢ fn‖22q−2r





= 3

q

2
−1
∑

k=0

∥

∥

∥

∥

∥

∑

r∈B2k

(fn
r
⌢ fn)

3q

2
−k−r
⌢ fn

∥

∥

∥

∥

∥

2

2k

+

∥

∥

∥

∥

∥

−1

2
fn +

q−1
∑

r=1

(fn
r
⌢ fn)

q−r
⌢ fn

∥

∥

∥

∥

∥

2

q

+

3q

2
−1
∑

k= q
2
+1

∑

r∈B2k

r 6=
3q
2

−k

r 6=0

∥

∥

∥

∥

(fn
r
⌢ fn)

3q
2
−k−r
⌢ fn

∥

∥

∥

∥

2

2k

. (3.6)

On the other hand, the multiplication formula, together with ‖fn‖2q = fn
q
⌢

fn = 1, yields

Iq(fn)
2 = I2q(fn ⊗ fn) + 1 +

q−1
∑

r=1

I2q−2r(fn
r
⌢ fn),

so that

E[Iq(fn)
4] = 2 +

q−1
∑

r=1

‖fn r
⌢ fn‖22q−2r.

This latter fact, combined with E[Iq(fn)
6] → 8.25 and E[Iq(fn)

4] → 2.5 as n → ∞,
leads to

E

[

(

Iq(fn)
3 − 5

2
Iq(fn)

)2
]

− 1− 2

q−1
∑

r=1

‖fn r
⌢ fn‖22q−2r → 0 as n → ∞. (3.7)

By comparing (3.7) with (3.6), we get, as n → ∞, that

(fn
r
⌢ fn)

3q

2
−k−r
⌢ fn → 0, k ∈

{

q

2
+ 1, . . . ,

3q

2
− 1

}

, r ∈ B2k\{0,
3q

2
− k} (3.8)

and that

− 1

2
fn +

q−1
∑

r=1

(fn
r
⌢ fn)

q−r
⌢ fn → 0. (3.9)
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Now, for k ∈ {0, . . . , q
2 − 1} and r ∈ B2k, we have, thanks to the third point of

Proposition 4.1 (see the appendix),

∥

∥

∥

∥

(fn
r
⌢ fn)

3q

2
−k−r
⌢ fn

∥

∥

∥

∥

2

2k

=

〈

(fn
q−r
⌢ fn)

r+k− q

2⌢ fn, (fn
q

2
+k−r
⌢ fn)

r
⌢ fn

〉

2q−2k

6 ‖fn‖3q
∥

∥

∥

∥

(fn
q
2
+k−r
⌢ fn)

r
⌢ fn

∥

∥

∥

∥

2q−2k

=

∥

∥

∥

∥

(fn
q

2
+k−r
⌢ fn)

r
⌢ fn

∥

∥

∥

∥

2q−2k

=

∥

∥

∥

∥

(fn
s
⌢ fn)

3q

2
−l−s
⌢ fn

∥

∥

∥

∥

2l

,

(3.10)

with l = q − k ∈
{

q
2 + 1, . . . , q

}

and s = 3q
2 − l − r ∈ B2l. Hence, (3.8) with (3.10)

imply together that

(fn
r
⌢ fn)

3q

2
−k−r
⌢ fn → 0, k ∈

{

0, . . . ,
q

2
− 1
}

, r ∈ B2k, (3.11)

and conclude the proof of Proposition 3.1, see indeed (3.8), (3.9) and (3.11). �

The proof when q > 3 is odd is similar. In this situation, we set p := q − 1 and,
for k ∈ {0, . . . , 3p

2 }, we denote by B2k+1 the set of those integers r ∈ {0, . . . q} for

which the double contraction (fn
r
⌢ fn)

3p

2
+1−k−r
⌢ fn is well-defined (as an element

of L2(R2k+1
+ )). The desired conclusion can then be reformulated in the following

way:

Proposition 3.3. Assume E[Iq(fn)
6] → 8.25 and E[Iq(fn)

4] → 2.5 as n → ∞.
Then, as n → ∞,

(a) (fn
r
⌢ fn)

3p

2
+1−k−r
⌢ fn → 0, k ∈

{

0, . . . , 3p
2

}

\{ p
2}, r ∈ B2k+1\{0, 3p2 +

1− k};
(b) − 1

2fn +
∑q−1

r=1(fn
r
⌢ fn)

q−r
⌢ fn → 0.

With the same arguments as in the proof of Lemma 3.2, we get the following
analogous identity as a starting point towards the proof of Proposition 3.3:

Lemma 3.4. We have

3p

2
∑

k= p

2
+1

∥

∥

∥

∥

∥

∥

∑

r∈B2k+1

(fn
r
⌢ fn)

3p

2
+1−k−r
⌢ fn

∥

∥

∥

∥

∥

∥

2

=

3p

2
∑

k= p

2
+1

∑

r∈B2k+1

∥

∥

∥

∥

(fn
r
⌢ fn)

3p

2
+1−k−r
⌢ fn

∥

∥

∥

∥

2

+2

p
2
−1
∑

k=0

∥

∥

∥

∥

∥

∥

∑

r∈B2k+1

(fn
r
⌢ fn)

3p

2
+1−k−r
⌢ fn

∥

∥

∥

∥

∥

∥

2

.
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Since we have

E
[

(Iq(fn)
3 − 5

2
Iq(fn))

2
]

=

p

2
−1
∑

k=0

∥

∥

∥

∥

∥

∥

∑

r∈B2k+1

(fn
r
⌢ fn)

3p

2
+1−k−r
⌢ fn

∥

∥

∥

∥

∥

∥

2

+

∥

∥

∥

∥

∥

−1

2
fn +

q−1
∑

r=1

(fn
r
⌢ fn)

q−r
⌢ fn

∥

∥

∥

∥

∥

2

+

3p

2
∑

k= p
2
+1

∥

∥

∥

∥

∥

∑

r∈B2k

(fn
r
⌢ fn)

3p

2
+1−k−r
⌢ fn

∥

∥

∥

∥

∥

2

+ 1,

the conclusion is now easily derived by means of the same arguments as in the even
case.

3.3. Proof of Theorem 1.1, (ii) =⇒ (iii). The proof of (ii) ⇒ (iii) will make use,
among other things, of the following readily-checked identity:

Lemma 3.5. Let q > 2 be an integer and f ∈ L2(Rq
+). If r ∈ {1, . . . , q − 1} and

r′ ∈ {1, . . . , q} are such that r′ + 2r > 2q then, for every integer p > 1 and every
function g ∈ L2(Rp

+),

((g ⊗ f)
r
⌢ f)

r′
⌢ f = g

r′+2r−2q
⌢ ((f

r
⌢ f)

2q−2r
⌢ f).

In particular, for any sequence (fn) in L2(Rq
+) satisfying Condition (1.3) of The-

orem 1.1, one has ((g ⊗ fn)
r
⌢ fn)

r′
⌢ fn ≈ 0 (remember that the notation ≈ has

been introduced at the beginning of the section).

Remark 3.6. The previous result should be understood as follows: if the double

contraction (r, r′) of g⊗fn interacts with the arguments of g, that is, if ((g⊗fn)
r
⌢

fn)
r′
⌢ fn 6= g ⊗ ((fn

r
⌢ fn)

r′
⌢ fn), then it tends to 0 (see also Figure 3).

fn

0 2 4 6

Figure 3.3. (q = 4) According to Lemma 3.5, the sum of (the
iterated contractions represented by) those walks which run on a
red line tends to 0.
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Now, fix an integer q > 2 and consider a sequence (fn) in L2(Rq
+) such that both

‖fn‖q = 1 and conditions (1.3) and (1.4) of Theorem 1.1 are satisfied. To prove
that Iq(fn) converges to the tetilla law, we need to establish that the sequence
(E
[

Iq(fn)
l
]

)l>2 = (Sfn,l(fn))l>2 of its moments is asymptotically (with respect
to n) governed by the algorithm of Proposition 2.9. (We recall that the general
notation Sf,l(g) has been introduced in Subsection 2.7.)

Let us first consider the even moments, and fix l = 2m > 2. Since ‖fn‖q = 1,
we have, as in (2.12),

Sfn,2m(fn) = Sfn,2m−1(1) +

q−1
∑

r=1

Sfn,2m−1(fn
r
⌢ fn) + Sfn,2m−1(fn ⊗ fn)

= Sfn,2m−2(fn) +

q−1
∑

r=1

Sfn,2m−1(fn
r
⌢ fn) + Sfn,2m−1(fn ⊗ fn).

Then, due to the conditions (1.3) and (1.4) of Theorem 1.1, we successively deduce

q−1
∑

r=1

Sfn,2m−1(fn
r
⌢ fn)

≈
q−1
∑

r=1

Sfn,2m−2((fn
r
⌢ fn)

q−r
⌢ fn) +

q−1
∑

r=1

Sfn,2m−2((fn
r
⌢ fn)⊗ fn)

≈ 1

2
Sfn,2m−2(fn) +

q−1
∑

r=1

Sfn,2m−2((fn
r
⌢ fn)⊗ fn). (3.12)

We are thus left with the computation, for all r ∈ {1, . . . , q − 1}, of the sums

Sfn,2m−1(fn ⊗ fn) and Sfn,2m−2((fn
r
⌢ fn)⊗ fn). To this end, notice that, thanks

to the result of Lemma 3.5 (see also Remark 3.6), the splitting argument used in
Subsection 2.7 (see Figure 2) can be applied in this situation as well, as the three
figures 3, 4 and 5 illustrate it. Note in particular that the splitting no longer applies
to each walk individually, but to a union of well-chosen walks (that is, a sum of well-

chosen iterated contractions) that puts forward the pattern
∑q−1

r=1(fn
r
⌢ fn)

q−r
⌢ fn,

instead of (f
1
⌢ f)

1
⌢ f as in the two variables case.

With this representation in mind, we (asymptotically) recover the formula

Sfn,2m−1(fn ⊗ fn) ≈
m−1
∑

k=1

S+
fn,2k

(fn)Sfn,2m−2k(fn), (3.13)

as well as

Sfn,2m−2((fn
r
⌢ fn)⊗ fn) ≈

m−2
∑

k=1

S+
fn,2k

(fn)Sfn,2m−2k−1(fn
r
⌢ fn), (3.14)
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fn ⊗ fn

fn

1 3 5 7 9 11 13

Figure 3.4. (q = 4) A splitting (at time 8) in A4,8,13. Observe in
particular how the blue, green and red (joint) walks meet together

at time 7 so as to retrieve the pattern (fn
1
⌢ fn)

3
⌢ fn + (fn

2
⌢

fn)
2
⌢ fn + (fn

3
⌢ fn)

1
⌢ fn that begins at time 1.

for every r = 1, . . . , q − 1. (We recall that the notation S+
f,l(g) has been defined in

Subsection 2.7.) Consequently, by setting

Nfn,l :=

q−1
∑

r=1

Sfn,l(fn
r
⌢ fn),

we get the asymptotic algorithm
{

Sfn,2m(fn) ≈ Sfn,2m−2(fn) +Nfn,2m−1 +
∑m−1

k=1 S+
fn,2k

(fn)Sfn,2m−2k(fn),

Nfn,2m−1 ≈ 1
2Sfn,2m−2(fn) +

∑m−2
k=1 S+

fn,2k
(fn)Nf,2m−2k−1.

Then, as in Subsection 2.7, it is not hard to see that the above arguments apply to
S+
fn,2k

(fn) as well, thus giving
{

S+
fn,2m

(fn) ≈ N+
fn,2m−1 +

∑m−1
k=1 S+

fn,2k
(fn)S

+
fn,2m−2k(fn),

N+
fn,2m−1 ≈ 1

2S
+
fn,2m−2(fn) +

∑m−2
k=1 S+

fn,2k
(fn)N

+
f,2m−2k−1,

where we have naturally set N+
fn,l

:=
∑q−1

r=1 S
+
fn,l

(fn
r
⌢ fn). Together with the

initial conditions Sfn,2(fn) = S+
fn,2

(fn) = ‖fn‖2q = 1 and Nfn,3 = N+
fn,3

≈ 1
2 , we

finally recognize the iterative procedure that governs the moments of the tetilla law
(see Proposition 2.9), which concludes the proof.

As far as the odd moments are concerned, we can follow the same lines of rea-
soning as above, and derive an analogous iterative formula. However, due to the
assumption (1.3) of Theorem 1.1, the initial condition Sfn,3(fn) of the resulting
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fn
3
⌢ fn

fn
2
⌢ fn

fn
1
⌢ fn

1 3 5 7 9 11 13

Figure 3.5. (q = 4) Three splittings (at time 6) in A4,2,15 (blue),
A4,4,15 (green) and A4,6,15 (red), that merge in the second part.

algorithm tends to 0, implying in turn that all the odd moments of Iq(fn) asymp-
totically vanish, as expected.

3.4. Proof of Corollary 1.2. Assume that F = Iq(f), where f is a mirror symmetric
element of L2(Rq

+) such that ‖f‖2q = 1. To achieve a contradiction, we suppose

that (f
1
⌢ f)

1
⌢ f is zero almost everywhere (which would be the case if F had

the tetilla law, according to Theorem 1.1). That is, for almost all a, b ∈ R+ and

rq−2, sq−2, tq−2 ∈ R
q−2
+ , we have

∫

R2
+

f(a, rq−2, u)f(u, sq−2, v)f(v, tq−2, b)dudv = 0. (3.15)

Now, consider an orthonormal basis (en)n∈N of L2(R+) and, for every
il = (i1, . . . , il) ∈ Nl (l ∈ N), set eil = ei1 ⊗ . . . ⊗ eil . Let us also introduce,
for every iq−2 ∈ Nq−2, the function

giq−2
(a, b) =

∫

R
q−2

+

f(a,xq−2, b)eiq−2
(xq−2)dxq−2; a, b ∈ R+.

Using (3.15), we immediately deduce that (giq−2

1
⌢ giq−2

)
1
⌢ giq−2

= 0 almost

everywhere. Hence ‖giq−2

1
⌢ giq−2

‖22 = 〈(giq−2

1
⌢ giq−2

)
1
⌢ giq−2

, giq−2
〉2 = 0 so

that, for every j ∈ N,

‖giq−2

1
⌢ ej‖21 = 〈giq−2

1
⌢ giq−2

, ej ⊗ ej〉2 = 0.
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As a consequence, for all j, k ∈ N,
∫

R2
+

giq−2
(a, b)ej(a)ek(b) dadb = 0. Otherwise

stated, one has, for every iq ∈ N
q,
∫

R
q

+

f(xq)eiq (xq)dxq = 0. This proves that f = 0

a.e. and contradicts the normalization ‖f‖q = 1.

4. Appendix: Proof of Lemma 3.2

During the proof of Theorem 1.1, we made use of Lemma 3.2, as well as the
following Proposition 4.1. This appendix is devoted to their respective proofs.

Proposition 4.1. Let q > 2 be an integer, and let f ∈ L2(Rq
+).

(1) If r, s, r′, s′ are four positive integers satisfying r + s = r′ + s′ 6 q, r < r′

and r′ + s > q, then

〈(f r
⌢ f)

s
⌢ f, (f

r′
⌢ f)

s′
⌢ f〉3q−2r−2s =

〈(f s
⌢ f)

2q−2s−r
⌢ f, (f

q−r′

⌢ f)
q−s′

⌢ f〉2r+2s−q.

(2) If r, s, r′, s′ are four positive integers satisfying r + s = r′ + s′ 6 q, r < r′

and r′ + s 6 q, then

〈(f r
⌢ f)

s
⌢ f, (f

r′
⌢ f)

s′
⌢ f〉3q−2r−2s =

〈(f s
⌢ f)

q−s′

⌢ f, (f
q−r′

⌢ f)
2r′−r
⌢ f〉q+2r−2r′ .

(3) If r and s are two positive integers satisfying r 6 q, s 6 q ∧ (2q − 2r) and
r + s > q, then

‖(f r
⌢ f)

s
⌢ f‖23q−2r−2s =

〈(f q−r
⌢ f)

q−s
⌢ f, (f

2q−2r−s
⌢ f)

r
⌢ f〉2r+2s−q.

Remark 4.2. The main interest of (1) is to pass from inner products involving
functions of 3q − 2r − 2s > q variables into inner products involving functions of
2r+2s− q 6 q variables only. (A similar remark obviously holds for (2) and (3) as
well.) This nice property of double contractions is to play a major role in the proof
of Lemma 3.2.

Proof. During all the proof, we use the following short-hand notation. For any
integer α > 1, we denote by xα the element of Rα

+ defined as xα = (x1, . . . , xα),
whereas x∗

α stands for its mirror counterpart, that is, x∗
α = (xα, . . . , x1). By exten-

sion, we allow α to be zero; in this case, the implicit convention is to remove xα,
as well as x∗

α, in each expression containing them. Also, we write dxα to indicate
dx1 . . . dxα.
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1. Assume that r, s, r′, s′ are such that r+ s = r′ + s′ 6 q, r < r′ and r′ + s > q.
Using among others the Fubini theorem, we then have

〈(f r
⌢ f)

s
⌢ f, (f

r′
⌢ f)

s′
⌢ f〉3q−2r−2s

=

∫

R
3q

+

f(aq−r′ ,bq−r′−s′ , cr′+s−q,xr)f(x
∗
r ,dq−r−s,ys)f(y

∗
s , eq−s)

×f(e∗q−s,d
∗
q−r−s, c

∗
r′+s−q, z

∗
s′)f(zs′ ,b

∗
q−r′−s′ , tr′)f(t

∗
r′ , a

∗
q−r′)

×dxrdysdzs′dtr′daq−r′dbq−r′−s′dcr′+s−qddq−r−sdeq−s

=

∫

R
3q

+

f(x∗
r ,dq−r−s,ys)f(y

∗
s , eq−s)f(e

∗
q−s,d

∗
q−r−s, c

∗
r′+s−q, z

∗
s′)

×f(zs′ ,b
∗
q−r′−s′ , tr′)f(t

∗
r′ , a

∗
q−r′)f(aq−r′ ,bq−r′−s′ , cr′+s−q,xr)

×dxrdysdzs′dtr′daq−r′dbq−r′−s′dcr′+s−qddq−r−sdeq−s

= 〈(f s
⌢ f)

2q−2s−r
⌢ f, (f

q−r′

⌢ f)
q−s′

⌢ f〉2r+2s−q.

2. Assume now that r, s, r′, s′ are such that r + s = r′ + s′ 6 q, r < r′ and
r′ + s 6 q. Similarly, we have

〈(f r
⌢ f)

s
⌢ f, (f

r′
⌢ f)

s′
⌢ f〉3q−2r−2s

=

∫

R
3q

+

f(aq−r′ ,br′−r,xr)f(x
∗
r , cq−s−r′ ,ds−s′ ,ys)f(y

∗
s , eq−s)

×f(e∗q−s,d
∗
s−s′ , z

∗
s′)f(zs′ , c

∗
q−s−r′ ,b

∗
r′−r, tr′)f(t

∗
r′ , a

∗
q−r′)

×dxrdysdzs′dtr′daq−r′dbr′−rdcq−s−r′dds−s′deq−s

=

∫

R
3q

+

f(x∗
r , cq−s−r′ ,ds−s′ ,ys)f(y

∗
s , eq−s)f(e

∗
q−s,d

∗
s−s′ , z

∗
s′)

×f(zs′ , c
∗
q−s−r′ ,b

∗
r′−r, tr′)f(t

∗
r′ , a

∗
q−r′)f(aq−r′ ,br′−r,xr)

×dxrdysdzs′dtr′daq−r′dbr′−rdcq−s−r′dds−s′deq−s

= 〈(f s
⌢ f)

q−s′

⌢ f, (f
q−r′

⌢ f)
2r′−r
⌢ f〉q+2r−2r′ .

3. Finally, assume that r, s are such that r 6 q, s 6 q ∧ (2q − 2r) and r+ s > q.
We have this time

‖(f r
⌢ f)

s
⌢ f‖23q−2r−2s

=

∫

R
3q

+

f(a2q−2r−s,br+s−q,xr)f(x
∗
r ,yq−r)f(y

∗
q−r,b

∗
r+s−q, cq−s)

×f(c∗q−s,d
∗
r+s−q, z

∗
q−r)f(zq−r , tr)f(t

∗
r ,dr+s−q, a

∗
2q−2r−s)

×dxrdyq−rdzq−rdtrda2q−2r−sdbr+s−qdcq−sddr+s−q

=

∫

R
3q

+

f(x∗
r ,yq−r)f(y

∗
q−r ,b

∗
r+s−q, cq−s)f(c

∗
q−s,d

∗
r+s−q, z

∗
q−r)

×f(zq−r, tr)f(t
∗
r ,dr+s−q, a

∗
2q−2r−s)f(a2q−2r−s,br+s−q,xr)

×dxrdyq−rdzq−rdtrda2q−2r−sdbr+s−qdcq−sddr+s−q

= 〈(f q−r
⌢ f)

q−s
⌢ f, (f

2q−2r−s
⌢ f)

r
⌢ f〉2r+2s−q.

�
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We can now give the proof of Lemma 3.2. We obviously have

3q

2
−1
∑

k= q

2
+1

∥

∥

∥

∥

∥

∑

r∈B2k

(fn
r
⌢ fn)

3q

2
−k−r
⌢ fn

∥

∥

∥

∥

∥

2

2k

=

3q

2
−1
∑

k= q

2
+1

∑

r∈B2k

∥

∥

∥

∥

(fn
r
⌢ fn)

3q

2
−k−r
⌢ fn

∥

∥

∥

∥

2

2k

+2

3q

2
−1
∑

k= q

2
+1

∑

r<r′∈B2k

〈(fn r
⌢ fn)

3q

2
−k−r
⌢ fn, (fn

r′
⌢ fn)

3q

2
−k−r′

⌢ fn〉2k,

so we are left to show that

2

3q

2
−1
∑

k= q

2
+1

∑

r<r′∈B2k

〈(fn r
⌢ fn)

3q

2
−k−r
⌢ fn, (fn

r′
⌢ fn)

3q

2
−k−r′

⌢ fn〉2k

= 2

q

2
−1
∑

k=0

∥

∥

∥

∥

∥

∑

r∈B2k

(fn
r
⌢ fn)

3q

2
−k−r
⌢ fn

∥

∥

∥

∥

∥

2

2k

. (4.1)

To achieve this goal, let us decompose the left-hand side of (4.1) as follows:

2

3q
2
−1
∑

k= q

2
+1

∑

r<r′∈B2k

(. . .) = 2

q
2
∑

l=1

3q
2
−l
∑

k= q

2
+l

∑

r∈B2k s.t.

r+l∈B2k

1{r′=r+l}(. . .) + 2

q
2
∑

l=1

∑

r′>r+l∈Bq+2l

(. . .)

= (1) + (2).

(The second sum in (1) finishes at 3q
2 − l instead of 3q

2 − 1, because r′ = r+ l with

r, r′ ∈ B2k implies k 6
3q
2 − l.) Using Proposition 4.1 (point 2), we have

(1) = 2

q

2
∑

l=1

3q

2
−l
∑

k= q
2
+l

∑

r∈B2k s.t.

r+l∈B2k

〈(fn r
⌢ fn)

3q

2
−k−r
⌢ fn, (fn

r+l
⌢ fn)

3q

2
−k−r−l
⌢ fn〉2k

= 2

q

2
∑

l=1

3q

2
−l
∑

k= q

2
+l

∑

r∈B2k s.t.

r+l∈B2k

〈(fn
3q

2
−k−r
⌢ fn)

k+r+l− q

2⌢ fn, (fn
q−r−l
⌢ fn)

r+2l
⌢ fn〉q−2l

= 2

q

2
∑

l=1

∑

s6s′∈Bq−2l

〈(fn s
⌢ fn)

q+l−s
⌢ fn, (fn

s′
⌢ fn)

q+l−s′

⌢ fn〉q−2l

=

q

2
∑

l=1







∑

s∈Bq−2l

∥

∥

∥(fn
s
⌢ fn)

q+l−s
⌢ fn

∥

∥

∥

2

q−2l
+

∥

∥

∥

∥

∥

∥

∑

s∈Bq−2l

(fn
s
⌢ fn)

q+l−s
⌢ fn

∥

∥

∥

∥

∥

∥

2

q−2l







=

q

2
−1
∑

k=0





∑

r∈B2k

∥

∥

∥

∥

(fn
r
⌢ fn)

3q

2
−k−r
⌢ fn

∥

∥

∥

∥

2

2k

+

∥

∥

∥

∥

∥

∑

r∈B2k

(fn
r
⌢ fn)

3q

2
−k−r
⌢ fn

∥

∥

∥

∥

∥

2

2k



 .
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On the other hand, Proposition 4.1 (point 1) leads to

(2) = 2

q

2
∑

l=1

∑

r,r′∈Bq+2l

r′>r+l

〈(fn r
⌢ fn)

q−l−r
⌢ fn, (fn

r′
⌢ fn)

q−l−r′

⌢ fn〉q+2l

= 2

q

2
∑

l=1

∑

r,r′∈Bq+2l

r′>r+l

〈(fn q−l−r
⌢ fn)

2l+r
⌢ fn, (fn

q−r′

⌢ fn)
l+r′
⌢ fn〉q−2l

= 2

q

2
∑

l=1

∑

s<s′∈Bq−2l

〈(fn s
⌢ fn)

q+l−s
⌢ fn, (fn

s′
⌢ fn)

q+l−s′

⌢ fn〉q−2l

= 2

q

2
−1
∑

k=0

∑

r<r′∈B2k

〈(fn r
⌢ fn)

3q

2
−k−r
⌢ fn, (fn

r′
⌢ fn)

3q

2
−k−r′

⌢ fn〉q−2l.

Finally,

(1) + (2) = 2

q

2
−1
∑

k=0

∥

∥

∥

∥

∥

∑

r∈B2k

(fn
r
⌢ fn)

3q

2
−k−r
⌢ fn

∥

∥

∥

∥

∥

2

2k

,

and the proof of Lemma 3.2 is concluded. �
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