
Convergence Proof for a Monte Carlo Method
for Combinatorial Optimization Problems

Stefka Fidanova

IPP – BAS, Acad. G. Bonchev str. bl.25A, 1113 Sofia, Bulgaria
stefka@parallel.bas.bg

Abstract. In this paper we prove the convergence of a Monte Carlo
(MC) method for Combinatorial Optimization Problems (COPs). The
Ant Colony Optimization (ACO) is a MC method, created to solve effi-
ciently COPs. The Ant Colony Optimization (ACO) algorithms are being
applied successfully to diverse heavily problems. To show that ACO al-
gorithms could be good alternatives to existing algorithms for hard com-
binatorial optimization problems, recent research in this area has mainly
focused on the development of algorithmic variants which achieve better
performance than previous one. In this paper we present ACO algorithm
with Additional Reinforcement (ACO-AR) of the pheromone to the un-
used movements. ACO-AR algorithm differs from ACO algorithms in
several important aspects. In this paper we prove the convergence of
ACO-AR algorithm.

1 Introduction

Some time it is more important to find quickly good although not necessarily
optimal solution. In this situation, the heuristic methods are with big efficient.
For some difficult Combinatorial Optimization Problems (COPs) one or more
months is needed to find an optimal solution on powerful computer and only
some minutes to find solution by heuristic methods, which is very close to optimal
one. Typical examples of practical COPs are the machine-scheduling problem,
the net-partitioning problem, the traveling salesman problem, the assignment
problem, etc.. Monte Carlo methods have been implemented to efficiently provide
flexible and computerized procedures for solving many COPs.

ACO [1,2,3] is a MC method, created to solve COPs. It is a meta-heuristic
procedure for quickly and efficiently obtaining high quality solutions to complex
optimization problems [9]. ACO algorithm can be interpreted as parallel replica-
ted Monte Carlo systems [11]. MC systems [10] are general stochastic simulation
systems, that is, techniques performing repeated sampling experiments on the
model of the system under consideration by making use of a stochastic compo-
nent in the state sampling and/or transition rules. Experimental results are used
to update some statistical knowledge about the problem, as well as the estimate
of the variables the researcher is interested in. In turn, this knowledge can be
also iteratively used to reduce the variance in the estimation of the described va-
riables, directing the simulation process toward the most interesting state space

M. Bubak et al. (Eds.): ICCS 2004, LNCS 3039, pp. 523–530, 2004.
c© Springer-Verlag Berlin Heidelberg 2004



524 S. Fidanova

regions. Analogously, in ACO algorithms the ants sample the problem’s solution
space by repeatedly applying a stochastic decision policy until a feasible solu-
tion of the considered problem is built. The sampling is realized concurrently by
a collection of differently instantiated replicas of the same ant type. Each ant
“experiment” allows to adaptively modify the local statistical knowledge on the
problem structure. The recursive retransmission of such knowledge determines a
reduction in the variance of the whole search process the so far most interesting
explored transitions probabilistically bias future search, preventing ants to waste
resources in not promising regions of the search.

In this paper, the basic ACO algorithm has been modified and a convergence
proof is presented. The ACO algorithms were inspired by the observation of
real ant colonies [1,2,4]. Ants are social insects, they live in colonies and whose
behavior is directed more to the survival of the colony as a whole than to that of
a single individual component of the colony. An interesting behavior is how ants
can find the shortest paths between food sources and their nest. While walking
from a food source to the nest and vice-versa, ants deposit on the ground a
substance called pheromone. Ants can smell pheromone and then they tend to
choose, in probability, paths marked by strong pheromone concentrations. The
pheromone trail allows the ants to find their way back to the food source (or to
the nest).

Fig. 1. Behavior of real ants at the beginning of the search and after some minutes
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Figure 1 shows how ants can exploit pheromone to find a shortest path bet-
ween two points. In this, figure ants arrive at a decision point in which they
have to decide to turn on the left or on the right. The ants turning on the left
first achieve the food sours. When they return back there is a pheromone only
in a left side and they choose it and double the pheromone. Thus, after a short
transition period the difference in the amount of pheromone on the two paths
is sufficiently large and the new ants will prefer in probability to choose the left
path, since at the decision point they receive a greater amount of pheromone on
the left path. Very soon all ants will be using the shorter path.

The above behavior of real ants has inspired ACO algorithm. ACO algorithm,
which is a population-based approach, has been successfully applied to many NP-
hard problems [3,7,8]. One of its main ideas is the indirect communication among
the individuals of ant colony. This mechanism is based on an analogy with trails
of pheromone which real ants use for communication. The pheromone trails are
a kind of distributed numerical information which is modified by the ants to
reflect their experience accumulated while solving a particular problem.

The main purpose of this paper is to use additional reinforcement of the
pheromone to the unused movements and thus to effectively avoid stagnation of
the search and to prove the convergence of ACO-AR to the global optimum. The
remainder of this paper is structured as follows. Section 2 describes the developed
ACO-AR algorithm, while section 3 investigates its convergence. Section 4 shows
parameter settings. The paper ends with conclusions and some remarks.

2 The ACO Algorithm

The ACO algorithms make use of simple agents called ants which iteratively
construct candidate solutions to a COPs. The ants’ solution construction is gui-
ded by pheromone trail and problem dependent heuristic information. The ACO
algorithms can be applied to any COP by defining solution components which
the ants use to iteratively construct candidate solutions and on which they may
deposit a pheromone. An individual ant constructs a candidate solution by star-
ting with a random partial solution and then iteratively adding new components
to their partial solution until a complete candidate solution is generated. We will
call each point at which an ant has to decide which solution component to add to
its current partial solution a choice point. After the solution is completed, ants
give feedback on their solutions by depositing pheromone on the components of
their solutions. Typically, solution components which are part of the best solu-
tion, or are used by many ants, will receive a higher amount of pheromone and
hence will be more attractive by the ants in following iterations. To avoid the
search getting stuck before the pheromone trails get reinforced pheromone trails
are decreased.

In general, all ACO algorithms adopt specific algorithmic scheme as follows.
After the initialization of the pheromone trails and control parameters, a main
loop is repeated until the stopping criteria are met. The stopping criteria can be
a certain number of iterations or a given CPU-time limit. In the main loop, the
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ants construct feasible solutions, then the pheromone trails are updated. More
precisely, partial solutions are seen as follow: each ant moves from a state i to
another state j of the partial solution. At each step, ant k computes a set of
feasible expansions to its current state and moves to one of these expansions,
according to a probability distribution specified as follows. For ant k, the pro-
bability pk

ij of moving from state i to a state j depends on the combination of
two values:

pk
ij =






τijηij∑
l∈allowedk

τilηil
if j ∈ allowedk

0 otherwise

(1)

where:

– ηij is the attractiveness of the move as computed by some heuristic informa-
tion indicating the a prior desirability of that move;

– τij is the pheromone trail level of the move, indicating how profitable it has
been in the past to make that particular move ( it represents therefore a
posterior indication of the desirability of that move).

– allowedk is the set of remaining feasible states.

Thus, the higher the value of the pheromone and the heuristic information, the
more profitable it is to include state j in the partial solution. In the beginning,
the initial pheromone level is set to τ0, which is a small positive constant. While
building a solution, ants change the pheromone level of the elements of the
solutions by applying the following updating rule:

τij ← ρτij + ∆τij (2)

where in the rule 0 < ρ < 1 models evaporation and ∆τij is different for diffe-
rent ACO algorithms. In ant system [1], the first ant algorithm, all ants change
the pheromone level depending to the quality of their solution. In ant colony
system [2] extra pheromone is put on the elements of the best solution. In ACO
algorithms with elitist ants [3] only small number of ants update the pheromone
and so on.

Stagnation situation may occur when we perform the ACO algorithm. This
can be happened when the pheromone trail is significantly higher for one choice
than for all others. This means that one of the choices has a much higher phero-
mone level than the others and an ant will prefer this solution component over
all alternatives. In this situation, ants construct the same solution over and over
again and the exploration of the search space stops. The stagnation situation
should be avoided by influencing the probabilities for choosing the next solution
component which depend directly on the pheromone trails.

The aim of the paper is to develop the functionality of the ACO algorithms by
adding some diversification such as additional reinforcement of the pheromone.
This diversification guides the search to areas in the search space which have not
been yet explored and forces ants to search for better solutions. We will call the
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modified ACO algorithm with additional reinforcement [5,6]. If some movements
are not used in the current iteration, additional pheromone reinforcement will
be used as follows.

τij ← ατij + qτmax α =
{

1 if unused movements are evaporated
ρ otherwise (3)

where q ≥ 0, τmax is the maximal value of the pheromone. Using ACO-AR
algorithm the unused movements have the following features:

– they have great amount of the pheromone then the movements belonging to
poor solutions.

– they have less amount of the pheromone then the movements belonging to
the best solution

Thus the ants will be forced to choose new direction of search space without
repeating the bad experience.

3 Convergence of the ACO-AR Algorithm

This section describes the convergence of the ACO-AR algorithm to the global
optimum. We will use the Theorem 1 from [12], which proves that if the amount
of the pheromone has a finite upper bound τmax and a positive lower bound τmin,
then the ACO algorithm converges to the optimal solution. From the Proposition
1 (see [12]),the upper bound of the pheromone level is g(s∗)/(1−ρ), where g(s∗)
is the maximum possible amount of a pheromone added after any iteration.

In some of ACO algorithms a pheromone is added on all used movements and
in others ACO algorithms only on used movements which belong to the best so-
lutions. The other possible movements are evaporated or stay unchanged. Thus,
the lower bound of the pheromone level of some of them can be 0. After additio-
nal reinforcement of the unused movements a lower bound of their pheromone
is greater then qτmax. The ACO algorithm for which a pheromone is added on
used movements the lower bound of the pheromone value on used movements is
greater or equal to τ0. Thus after additional reinforcement of unused movements
and by Theorem 1 from [12] the algorithm will converge to the optimal solution.

Let us consider an ACO algorithm with some elitist ants. In this case only a
small number of ants update the pheromone belonging to their solutions. Thus,
the big part of pheromone is only evaporated and its value decreases after every
iteration. Assuming in the first iteration, the movement from a state i to a state
j is unused and the movement from a state i to a state k is used and does not
belong to the best solution. The probability to choose the state j and the state
k are respectively:

pij = τ0ηij/
∑

l

τilηil (4)



528 S. Fidanova

and

pik = τ0ηik/
∑

l

τilηil (5)

If the movement from i to k is used it means that ηij < ηik. After additional
reinforcement, the pheromone level of the movement from i to j will increase
and the pheromone level of the movement from i to k will decrease. Thus, after
a transition period t0i the probability to choose the movement from i to j will
be greater than the probability to choose the movement from i to k. Also the
movement from i to k will become unused and will receive additional reinfor-
cement. Therefore, ρt0τ0 > 0 is a lower bound of the pheromone value, where
t0 = max t0i.

Independently of used ACO algorithm, after additional reinforcement of un-
used movements the lower bound of the pheromone is greater than 0 and the
Theorem 1 can be used. Thus, the convergence of ACO-AR algorithm to optimal
solution have been proved.

We will estimate the length of the transition period t0i. Let ηj = mins(ηis)
and ηk = maxs(ηis). At first iteration the pheromone level for all movements
from arbitrary state i to any other state is equal to τ0 and therefore the ants
choose the state with greater heuristic. After number of iterations t0i the phero-
mone of movements from the state i to a state with less heuristic information
(i.e. unused movement) is:

ρt0iτ0 + qτmax(1− ρt0i)/(1− ρ). (6)

While the pheromone of the movement from the state i to a state with greater
heuristic information (i.e. used movement) is ρt0iτ0. From the above discussion
it can be seen the used movements become unused if they have less probability
as follows:

ρt0iτ0ηk < ρt0iτ0ηj + qτmaxηj(1− ρtoi)/(1− ρ) (7)

The value of t0i can be calculated from upper inequality.

4 Parameter Value for q

In this section we discus the value of the parameter q. Our aim is the diversifica-
tion and exploration of the search space while keeping the best found solution.
Let the movement from a state i to a state k belong to the best solution and
the movement from a state i to a state j is unused. The aim is the pheromone
level (τij) of unused movements to be less than the pheromone level (τik) of the
movements that belong to the best solution (i.e. τij ≤ τik). The values of τij and
τik are as follows:

τij = ρk1+k2τ0 +
1− ρk2

1− ρ
ρk1g1 +

1− ρk1

1− ρ
g(s∗) (8)
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τik = ρk1+k2τ0 +
1− ρk1+k2

1− ρ
g(s∗) (9)

where:

– k1 is the number of iterations for which the movement from i to j belongs
to poor solutions;

– k2 is the number of iterations for which the movement from i to j is unused;
– g1 is the maximal added pheromone to a movement that belong to poor

solution;

From equations (8) and (9) and 0 < g1 < g(s∗) follows that q ≤ ρ. Evapora-
tion parameter ρ depends of the problem.

5 Conclusion

Recent research has strongly focused on improving the performance of ACO
algorithms. In this paper we have presented the ACO-AR algorithm to exploit
the search space, which have not been exploited yet, and to avoid premature
stagnation of the algorithm. We have shown that ACO-AR algorithm converges
to the optimal solution when the algorithm run for a sufficiently large number of
iterations. The main idea introduced by ACO-AR, the additional reinforcement
of the unused movements, can be apply in a variety ACO algorithms. Our future
work will be to apply ACO-AR to other NP-hard COPs and to investigate the
search space exploration.
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