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ABSTRACT: Suppose P is an arbitrary discrete distribution on a countable alphabet � .
Given an i.i.d. sample �X1� � � � �Xn� drawn from P , we consider the problem of estimat-
ing the entropy H�P� or some other functional F = F�P� of the unknown distribution P .
We show that, for additive functionals satisfying mild conditions (including the cases of the
mean, the entropy, and mutual information), the plug-in estimates of F are universally con-
sistent. We also prove that, without further assumptions, no rate-of-convergence results can
be obtained for any sequence of estimators. In the case of entropy estimation, under a vari-
ety of different assumptions, we get rate-of-convergence results for the plug-in estimate and
for a nonparametric estimator based on match-lengths. The behavior of the variance and the
expected error of the plug-in estimate is shown to be in sharp contrast to the finite-alphabet
case. A number of other important examples of functionals are also treated in some detail.
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1. INTRODUCTION

Suppose X is a discrete random variable with an unknown distribution P =
�p�i�� i ∈ �� on the countable alphabet � , and let F = F�P� be an extended-real-
valued functional on the space of probability distributions on � (we allow F�P� to
be infinite for some P).
Given n independent and identically distributed (i.i.d.) observations �X1� � � � �Xn�

drawn from the same distribution as X, it is often important to be able to estimate
F accurately, that is, to have an estimate Fn = Fn�X1� � � � �Xn� of F such that the
difference �Fn − F � is small.
The first question we ask is whether universal estimates exist, that is, whether

it is possible to come up with a sequence �Fn� of estimators for F , such that the
difference �Fn − F � converges to zero for all possible distributions P . The second
and main question we consider is whether (and under what conditions) it is possible
to obtain universal convergence rates for a specific class of estimators.
We show that the natural plug-in estimates are universally consistent for a wide

class of additive functionals [recall that the plug-in estimate for a functional F =
F�P� is given by Fn = F�pn�, where pn is the empirical distribution induced on �
by the samples (X1� � � � �Xn)]. On the other hand, we prove that for a general class
of functionals F , there is no method that guarantees a certain rate of convergence
for all distributions P with F�P� < ∞, that is, the convergence of the error of any
sequence of estimators can be arbitrarily slow.
Two important special cases that partly motivated this study are when F is the

entropy, and when F is the mutual information. The case of the entropy is partic-
ularly interesting, especially in view of the recent attention to the problem of uni-
versal compression of memoryless sources with large or infinite alphabets; see [27,
25, p. 2061] and the references therein.

Entropy. For a random variable X with distribution P = �p�i�� i ∈ ��, the entropy
of X is defined by:

F = H
�=−∑

i∈�
p�i� log2 p�i� = E�− log2 p�X���

(Throughout this article, we write log for the natural logarithm and log2 for the
logarithm taken to base 2.)

Mutual information. For two random variables �V�W � with joint distribution
�p�i� j�� i� j ∈ �� and marginal distributions �pV �i�� and �pW �j��, the mutual
information between V and W is defined by:

F = I
�= ∑

�i� j�∈�2

p�i� j� log2
p�i� j�

pV �i�pW �j� �

See [9] for an extensive information-theoretic introduction to these and many
other entropy-related quantities.
The rest of the article is organized as follows. In the next section we give a

set of mild conditions under which the plug-in estimates are universally consistent,
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and we present specific examples of functionals (including the entropy and the
mutual information) satisfying these conditions. Section 3 shows that, for a wide
class of functionals, there is no universal convergence rate for any sequence of
estimators. This is illustrated through a number of examples. There are no universal
convergence-rates for entropy estimation, for estimating mutual information, or for
Rényi entropies of order a ∈ �0� 1�. However, this is not always the case. We also
show that there do exist functionals F for which it is possible to obtain universal
convergence rates (see the example of power-sums in Section 2).
In Sections 4 and 5, we focus on the problem of entropy estimation, a problem

which turns out to lead to some somewhat unexpected results. Since no universal
convergence rates exist, we consider restricted classes of distributions within which
rates of convergence can actually be obtained. First we recall that, in the case
when � is a finite alphabet, the plug-in entropy-estimates Ĥn converge to the true
entropy H at a rate of ≈ σ/

√
n, where σ2 is the variance σ2 = Var�− log2 p�X��.

This suggests that, as long as

σ2 = Var�− log2 p�X�� <∞� (1)

the same convergence rate might also hold in the infinite-alphabet case. As we show
in Corollary 5, this is not at all the case. Under restrictions on the tails of the distri-
butions considered, detailed results about the convergence of the plug-in estimates
are given in Theorem 7. In fact, we show that there are “many” distributions with
σ2 < ∞, for which the plug-in estimates converge no faster than �log n�−2−ε; see
Corollary 5. (Similar results are proved for the case of mutual information.)
In Section 5, we consider a sequence of entropy estimators based on match-

lengths. These estimators are motivated by the Lempel–Ziv family of data com-
pression algorithms, and they are nonparametric in flavor (in that they do not form
an estimate of the source distribution and are consistent for arbitrary stationary
and ergodic processes). For these estimators, we provide positive convergence-rate
results under assumptions weaker than those used for the plug-in estimates in the
previous section. Specifically, for distributions satisfying the variance condition (1)
above (or some variant of this condition), we show that the match-length esti-
mators converge at a rate of order �log n�−1/2� Although rather slow, this rate is
obtained under the milder condition (1), under which we were unable to provide
upper bounds for the convergence of the plug-in estimates.
Finally, in the appendix we collect the statements and proofs of several technical

lemmas.

2. CONSISTENCY OF THE PLUG-IN ESTIMATES

Here we prove a general consistency result for plug-in estimates. Let X be a dis-
crete random variable with distribution �p�i�� i ∈ �� on � . We consider a class of
functionals that we call additive functionals, given by the general form

F
�= g

(∑
i∈�
f �i� p�i��

)
�
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Here, f and g are arbitrary real-valued functions with the only restriction that f is
always nonnegative. The plug-in estimate for F is defined by

F̂n
�= g

(∑
i∈�
f �i� pn�i��

)
�

where

pn�i� = 1
n

n∑
j=1
I�Xj=i�

is the empirical distribution induced by the samples �X1� � � � �Xn� on � . In other
words, F̂n = F�pn�.
For each i ∈ � , let fi denote the function f �i� ·�: �0� 1� → �.

Theorem 1. Assume that for some positive constants p and K, for each i ∈ � , and
all integers 0 ≤ j < n, fi satisfies∣∣∣∣fi( j + 1

n

)
− fi

(
j

n

)∣∣∣∣ ≤ K

np
�

If, in addition, g is Lipschitz �q�K0� (where q, K0 > 0), that is,

�g�x� − g�y�� ≤ K0�x− y�q� x� y ∈ ��

then for every ε > 0,

P
{�F̂n − E�Fn�� > ε

} ≤ 2e−K1n
2pq−1ε2 (2)

and

Var�F̂n� ≤ 1
2K1n

2pq−1 � (3)

where K1 = 2/�K2
0�2K�2q�. Moreover, if pq > 1/2, then

lim
n→∞�F̂n − E�F̂n�� = 0 almost surely (a.s.) and lim

n→∞Var�F̂n� = 0�

For the proof of Theorem 1, we will need the following two propositions as well as
a number of simple lemmas stated and proved in the appendix. The first proposition
is a version of Azuma’s inequality; see, e.g., [20, 16], or [24].

Proposition 1. Let X1� � � � �Xn be independent random variables on � , and assume
that F̂ : �n → � satisfies

sup
x1�����xn� x

′
j∈�

�F̂�x1� � � � � xn� − F̂�x1� � � � � xj−1� x′j� xj+1� � � � � xn�� ≤ cj� 1 ≤ j ≤ n�

Then for any ε > 0,

P�F̂�X1� � � � �Xn� − E�F̂�X1� � � � �Xn�� ≥ ε� ≤ exp
(
−2ε2/

n∑
j=1
c2j

)
�

The following proposition is given by Devroye in [13].
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Proposition 2. If the conditions of Proposition 1 hold, then

Var�F̂�X1� � � � �Xn�� ≤ 1
4

n∑
j=1
c2j �

Proof of Theorem 1. Proposition 1 implies (2). To see this, note that by changing
the value of one sample point Xj , there can be two values i′ and i′′ such that pn�i′�
increases by 1/n and pn�i′′� decreases by the same amount. Then by the properties
of fi, the value of

∑
i fi�pn�i�� cannot change by more than 2K/np, hence, by the

properties of the function g, the value of F̂n cannot change by more than

K0�2K�q
npq

�

Similarly, Proposition 2 implies (3).
For pq > 1/2, Eq. (2) and the Borel–Cantelli Lemma imply limn→∞�F̂n −

E�F̂n�� = 0 a.s., and (3) implies the other statement.

Theorem 2. Suppose f and g satisfy the conditions of Theorem 1, with pq > 1/2.
If g is concave and monotone increasing, and all the functions fi are continuous and
they satisfy

lim sup
n→∞

∑
i

E�fi�pn�i��� ≤
∑
i

fi�p�i��� (4)

then �F̂n� is strongly universally consistent, that is,

lim
n→∞ F̂n = F a.s.

If F <∞, then it is also consistent in L2, that is,

lim
n→∞E��F̂n − F�2� = 0�

Note that if all the fi are concave, then (4) is satisfied (by Jensen’s inequality).

Proof. By Lemma 6 of the appendix and Theorem 1,

lim
n→∞ F̂n = lim

n→∞�F̂n − E�F̂n�� + lim
n→∞E�F̂n� = F a.s.

To get the L2 consistency for F <∞, observe that

E��F̂n − F�2� = Var�F̂n� + �F − E�F̂n��2 → 0 �n→ ∞�� �5�

Examples. If the support of X is finite, then Lemma 7 of the Appendix implies
strong and L2 consistency for all of the functionals below. More generally, when �
is countably infinite:

Expectation. (Here � ⊂ �.) Taking f �i� p�i�� = ip�i� and g�x� = x, Lemma 7 of
the Appendix (or Theorem 2) implies the strong law of large numbers for bounded,
discrete random variables. [But note that we already used the strong law for the
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empirical distribution in the proofs.] Similarly, the moments of X are additive func-
tionals, and thus, for example, the variance is the sum of two additive functionals.

Entropy. The plug-in estimate of the entropy H is

Ĥn = −∑
i∈�
pn�i� log2 pn�i��

Corollary 1. The plug-in estimate of H is strongly universally consistent, that is,

lim
n→∞ Ĥn = H a�s�

For H <∞, it is also consistent in L2, that is,

lim
n→∞E��Ĥn −H�2� = 0�

Proof. Clearly H is an additive functional with f �i� p�i�� = −p�i� log2 p�i� and
g�x� = x. The conditions of Theorems 1 and 2 are satisfied with q = 1, K0 = 1,
with any 1/2 < p < 1 and K = 1/�e�1− p� log 2�.

Remark. Using methods similar to the ones used to prove Theorem 1, the following
additional properties of Ĥn can also be shown to hold:

(i) Since Ĥn is the entropy of a distribution concentrating on at most n different
points (namely, pn), it is 0 ≤ Ĥn ≤ log2 n, for all n.

(ii) For all n, E�Ĥn� ≤ H.
(iii) For every n and ε > 0,

P��Ĥn − E�Ĥn�� > ε� ≤ 2 exp�−nε2/2 log22 n��

because for all integers 0 ≤ j < n,∣∣∣∣ j + 1
n

log2
j + 1
n

− j

n
log2

j

n

∣∣∣∣ ≤ log2 n
n

�

(iv) For all n, Var�Ĥn� ≤ �log22 n�/n�

Mutual information. Let

pn�i� j� = 1
n

n∑
k=1

I�Vk=i�Wk=j�

denote the empirical distribution induced on �2 by the i.i.d. samples �Vk�Wk�� k =
1 � � � � n, and let �pV�n�i�� and �pW�n�j�� be the corresponding marginals. Using the
identity (see, e.g., [9])

I = H�V � +H�W � −H�V�W ��
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the results for entropy estimation imply the universal consistency of the plug-in
estimate

În = ∑
�i� j�∈�2

pn�i� j� log2
pn�i� j�

pV�n�i�pW�n�j�
�

Corollary 2. If H�V�W � is finite, then the plug-in estimate of I is strongly universally
consistent and consistent in L2, that is,

lim
n→∞ În = I a.s. and lim

n→∞E��În − I�2� = 0�

However, note that it is possible to have H�V�W � = ∞ while I <∞. Also note that
the almost sure consistency of Ĥn and În is valid even for general stationary and
ergodic processes.

Sum of i-dependent powers. Let � = �2� 3� 4� � � �� and define

F =
∞∑
i=2
pi/�i+1��i��

Clearly F is an additive functional, with f �i� p�i�� = pi/�i+1��i� and g�x� = x. It is
easy to check that the conditions of Theorems 1 and 2 are satisfied with q = 1,
K0 = 1, p = 2/3, and K = 1. Therefore, F̂n is strongly universally consistent and
consistent in L2.

Power sums. For any a > 0,

F �a� �=∑
i∈�
pa�i�

is an additive functional with f �i� p�i�� = pa�i� and g�x� = x. Note that (with the
convention that 00 = 0), F �0� is simply the size of the support of the distribution
�p�i��. In this case, it is trivial to check the strong and Lp universal consistency of
�F̂ �0�

n �. For a > 0, we consider two cases separately.

Case 1. 0 < a ≤ 1. Note that F̂ �a�
n ∈ �1� n1−a�. The conditions of Theorem 1 are

satisfied with q = 1, K0 = 1, p = a, and K = 1, and also those of Theorem 2, if
pq = a > 1/2. Therefore, for a > 1/2, F̂ �a�

n is universally consistent almost surely
and in L2. For a ≤ 1/2, we get that �F̂ �a�

n � is asymptotically unbiased, but for the
variance we only get that it is of order O�n1−2a�. [For a = 0, it is easy to check that
Var�F̂ �0�

n � → 0.]
If we change our strategy and bound the fluctuations of F̂ �a�

n on the average
(instead of the worst-case) when changing only one sample, then it is possible to use
an Efron–Stein type inequality of Steele [23] in place of Proposition 2, leading to the
bound Var�F̂ �a�

n � = o�n1−2a�. This implies L2 consistency for a = 1/2. However, it is
possible to get much more. The strong and L2 consistency of F̂ �a�

n for any 0 < a ≤ 1
can be obtained by replacing Azuma’s inequality by the following concentration
inequality due to Boucheron, Lugosi, and Massart [7]:

Proposition 3. Let �X1� � � � �Xn� be independent random variables on � . For some
F̂ : �n → �0�∞�, assume that there exists a function G: �n−1 → � such that, for
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any x1� � � � � xn ∈ � :

(1) 0 ≤ F̂�x1� � � � � xn� −G�x1� � � � � xj−1� xj+1� � � � � xn� ≤ 1� 1 ≤ j ≤ n;
(2)

∑n
j=1�F̂�x1� � � � � xn� −G�x1� � � � � xj−1� xj+1� � � � � xn�� ≤ F̂�x1� � � � � xn�.

Then for any ε > 0,

P��F̂�X1� � � � �Xn� − E�F̂�X1� � � � �Xn��� ≥ ε� ≤ 2 exp�−ε2/�2E�F̂� + 2ε/3���

The proof of the following Corollary is in the Appendix.

Corollary 3. For 0 ≤ a ≤ 1 and any ε > 0,

P��F̂ �a�
n − E�F̂ �a�

n �� ≥ ε� ≤ 2 exp�−naε2/�2E�F̂ �a�
n � + 2ε/3��� (6)

Since E�F̂ �a�
n � → F �a�, this inequality and the Borel–Cantelli Lemma imply

limn→∞ F̂
�a�
n = F �a� a.s. It is now a straightforward calculation to deduce from (6)

that

Var�F̂ �a�
n � = O�n−a��

also proving the L2 consistency for any 0 < a ≤ 1.

Case 2. a > 1. Note that F̂ �a�
n ∈ �n1−a� 1�, and that fi is convex for each i. For

simplicity, assume that a is integer. The following is proved in the appendix:

Lemma 1. For positive integer a,∑
i

E�pan�i�� ≤ O�1/n� +∑
i

pa�i�� (7)

and thus F̂ �a�
n satisfies (4).

Hence the conditions of Theorems 1 and 2 are satisfied with q = 1, K0 = 1,
p = 1, and K = a, proving the strong universal consistency and L2 consistency of
F̂

�a�
n . Moreover, we see from (7) and the convexity of fi that

�E�F̂ �a�
n � − F �a��2 = O�1/n2��

and by (3), Var�F̂ �a�
n � = O�1/n�, hence using (5) we get that

E��F̂ �a�
n − F �a��2� = O�1/n�� (8)

Rényi entropies. The Rényi entropy of order 0 < a < 1 is

F �a� = log2�
∑
i∈� pa�i��

1− a �
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which is an additive functional with f �i� p�i�� = pa�i� and g�x� = log2 x/�1− a� on
�1�∞�. Notice that F̂ �a�

n ∈ �0� log2 n� and that
∑
i p

a�i� ≥ 1. Also we have F �a� → H

and F̂ �a�
n → Ĥn as a→ 1.

The conditions of Theorem 1 are satisfied with q = 1, K0 = 1/�1− a� log 2, p = a,
and K = 1, and also those of Theorem 2, if pq = a > 1/2. Therefore, for a > 1/2,
we get the strong universal consistency and L2 consistency of F̂ �a�

n . Moreover, using
the same arguments as above (based on the Lipschitz property of g), it is not hard
to obtain corresponding results for all 0 < a < 1.

Error functionals in classification. In classification, the plug-in estimate of the
Bayes error probability and the plug-in estimate of the asymptotical error probabil-
ity of the k-nearest neighbor rule, can both be shown to be universally consistent,
along the same lines as the proof of Theorem 2; cf. [1, 16].

In the case of power sums F �a� with a > 1, we saw that the plug-in estimate was
not only universally consistent, but it also had a universal rate of convergence in
L2 (see Eq. (8)). It is therefore natural to ask whether the same is true for other
additive functionals. In the following section we show that, in general, it is not.

3. SLOW RATE OF CONVERGENCE

Here we show that for a large class of additive functionals, there is no universal
convergence rate, not only for the plug-in estimates but for any sequence of esti-
mators (see Corollary 4). Similar global slow-rate-of-convergence results have been
obtained for pattern recognition [8, 10, 16], for regression function estimation and
density estimation [6, 11, 14], and for several other functionals [2, 3]. In general,
we anticipate that universal convergence rates do not exist when the class of distri-
butions considered is sufficiently rich. For example, the absence of universal rates
may stem from dependence of the data, or from the absence of restrictions on the
tails of the distribution generating the data.
Most of the results here (as well as the results in the literature mentioned above)

are based on the use of a “well-separating” subclass of distributions, that is, a col-
lection of distributions which are “close” to one another, but over which the values
of the functional of interest are significantly different. (See also [12, 15].) In terms
of proof technique, usually such results are obtained by using as our well-separating
class a “rectangular” class of distributions, parametrized by infinite binary sequences
u = �u0� u1� u2� � � ��; the term “rectangular” refers to the fact that the collection
of all such sequences u can be thought of as an infinite-dimensional rectangle or
“cube.” Then the parameter u is chosen randomly, and the worst-case error in this
subclass is bounded below by the average error according to this random param-
eter. More precisely, the proof is based on the fact that for two distributions that
lie on a common “edge” of this rectangle, the values of the functional of interest
are significantly different, while the data typically (i.e., with high probability) con-
tain little or no information regarding which of the two distributions is the true one.
This idea is reflected in the assumptions (and the proof) of Theorem 3.
Let F be a given functional (not necessarily additive), let � be a class of distribu-

tions on � , and write � for the set of nonnegative integers �0� 1� 2� � � ��. As before,
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X denotes a random variable with distribution P = �p�i�� i ∈ ��, and we write
Dn = �X1� � � � �Xn� for a vector of n i.i.d. random variables with distribution P . The
next theorem establishes a general lower bound for the rate of convergence of an
arbitrary sequence of estimators �Fn�.

Theorem 3. Let d0 = 0 and �di� i ≥ 1� be a sequence of positive real numbers.
Assume that for any discrete weight vector �q0� q1� � � �� with

∑∞
i=0 qi = 1 and 0 < qi ≤

2−i�i ≥ 1�, there is a subclass of distributions �µu: u ∈ �0� 1�� � ⊆ � parameterized
by binary sequences u = �u0� u1� u2� � � ��� having the following properties:

1. There are disjoint subsets B0� B1� B2� � � � of � such that µu�Bi� = qi for all u and
all i.

2. The restriction of µu to Bi is chosen from two possibilities according to the value
of ui.

3. Let F�u� = F�µu�. If u and u′ are two binary sequences coinciding in all but the
kth position, then

�F�u� − F�u′�� ≥ dk�

Moreover assume that F�u� is finite for all u.

Then, for any sequence of estimators �Fn� and any sequence �an� of positive numbers
converging to zero, there is a distribution P in � with �F � <∞, for which

P��Fn − F � > an� >
1
2
− ε infinitely often, for any ε > 0�

Now applying Theorem 3 to the sequence �√an� instead of �an�, we get that for
any �Fn�, there is a distribution in � with �F � <∞ such that for any K > 0

lim sup
n→∞

P��Fn − F � > Kan� ≥ 1
2
�

This observation immediately gives us the following general slow-rate result for the
expected estimation error:

Corollary 4. Under the conditions of Theorem 3, for any sequence �Fn� of estimators
and for any sequence �an� of positive numbers converging to zero, there is a distribution
P in � with �F � <∞, for which

lim sup
n→∞

E��Fn − F ��
an

= ∞�

Remark. The phrase “infinitely often” cannot be dropped from Theorem 3, and
similarly the lim sup in Corollary 4 cannot be replaced by lim inf. Indeed, there exist
deterministic sequences �fn� with �fn − F � ≤ 2/

√
n infinitely often, simultaneously

for every F . Just consider the dyadic sequence

�f ′
n� =

{
1
20
�
1
21
�
2
21
�
3
21
�
4
21
�
1
22
�
2
22
� � � � �

16
22
�
1
23
�
2
23
� � � � �

64
23
� � � �

}
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and let f2n−1 = f ′
n and f2n = −f ′

n. Now for every F , for every i large enough, there is
an element of the sequence in the first 2�1+ 4+ · · · + 4i� < 4 · 4i elements, whose
distance from F is at most 2−i. We thus obtain a very good estimator along an
(unknown) subsequence for every F . (This construction can also be generalized to
certain finite dimensional spaces; see [6] for details.)

When the samples Dn = �X1� � � � �Xn� are generated from the distribution µu,
we write Dn�u� for Dn to indicate how the samples depend on u, and write µ�n�

u for
the (product) distribution of Dn. The following lemma is the main ingredient in the
proof of Theorem 3; its proof is in the appendix.

Lemma 2. Consider a class �µu: u ∈ �0� 1�� � of distributions parameterized by
binary sequences u = �u0� u1� u2� � � ��, and assume that there exist subsets An�k ⊂ �n

such that, if u and u′ are two binary sequences coinciding in all but the kth position,
then for every string xn1

�= �x1� � � � � xn� ∈ An�k

µ
�n�
u �xn1� = µ

�n�
u′ �xn1� (9)

and

�F�u� − F�u′�� ≥ dk� (10)

Then, for any sequence �Fn� of estimators, for any sequence �an� of positive numbers
converging to zero, and for any subsequence �nk�k∈� of �1� 2� � � ��,

sup
u

lim sup
n→∞

P��Fn�Dn�u�� − F�u�� > an� ≥ 1
2
lim sup
k→∞

�I�dk>2ank� infu µ
�nk�
u �Ank�k

���

Proof of Theorem 3. To get some intuition, first observe that if none of the samples
Xj ∈ Bk, then the estimator has no information about uk, which gives a contribution
to the error of at least dk. For a sample size n large enough, this is greater than an.
On the other hand, the probability of this event can be very large, if the measure
of Bk is chosen to be small enough. This argument can be made precise as follows:
Given a vector �qi�, we will apply Lemma 2 to the sets An�k = �xn1: xj �∈

Bk� for all 1 ≤ j ≤ n�. Now we have

µ
�n�
u �An�k� = �1− qk�n

independently of u, and if u and u′ differ only in the kth bit and xn1 ∈ An�k, then

µ
�n�
u �xn1� = µ

�n�
u′ �xn1��

Hence, by Lemma 2, for any sequence �Fn� of estimators, for any sequence �an�
of positive numbers converging to zero, and for any subsequence �nk�,

sup
u

lim sup
n→∞

P��Fn�Dn�u�� − F�u�� > an� ≥ 1
2
lim sup
k→∞

�I�dk>2ank��1− qk�nk��
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Choosing �nk� such that dk > 2ank (k ≥ 1), and choosing the distribution vec-
tor �qk� such that qk = o�1/nk� as k → ∞ (e.g., taking qk = min�ank/nk� 2−k�
and q0 = 1 −∑∞

k=1 qk), makes the right-hand side above equal to 1/2. So for any
sequence �an�, there is �qk� and u such that, for any ε > 0

P��Fn�Dn�u�� − F�u�� > an� >
1
2
− ε infinitely often�

Next we apply Corollary 4 to the cases of the entropy, mutual information, power
sums, and Rényi entropies, to obtain the following slow-rate results. For simplicity,
in the rest of this section we assume � = � = �0� 1� 2� � � ��.

Theorem 4 (Entropy). For any sequence �Hn� of estimators for the entropy, and for
any sequence �an� of positive numbers converging to zero, there is a distribution P on
� with H = H�P� <∞ and

lim sup
n→∞

E��Hn −H��
an

= ∞�

Proof. Take dk = 2−k (k ≥ 1). Given �q0� q1� � � �� with 0 < qi ≤ 2−i�i ≥ 1�, we
pick a sequence �l′0 = 1� l′1� l

′
2� � � �� of positive integers (to be specified later), and

we partition � into consecutive blocks Bi of cardinalities l
′
i. We define µu�Bi� = qi

for all u and i, and given a binary vector u, we define µu on Bi as follows: If ui = 1,
then X is drawn uniformly over the l′i integers in that block, while if ui = 0, then
X takes the value of the first point in the block. Take µu to be the distribution of
X and let li = log2 l

′
i. For this µu, it is easy to verify that

H = H�u� =
∞∑
i=1
uiqi log2 l

′
i −

∞∑
i=0
qi log2 qi =

∞∑
i=1
uiqili −

∞∑
i=0
qi log2 qi�

If u and u′ differ only in the kth bit, then

H�u� −H�u′� =
∞∑
i=1

�ui − u′
i�qili = �uk − u′

k�qklk�

and thus, �H�u� −H�u′�� = qklk. For k ≥ 1, the inequality 2−k ≤ qklk ≤ 2−k + qk is
satisfied if, for example, l′k = �21/�qk2k��, and thus H�u� ≤ 4+∑∞

i=2 i2
−i. The result

follows from Corollary 4.

Theorem 5 (Mutual Information). For any sequence �In� of mutual information
estimators, and for any sequence �an� of positive numbers converging to zero, there
are random variables �V�W � with values in � × � such that I = I�V �W � <∞ and

lim sup
n→∞

E��In − I��
an

= ∞�

Proof. This is similar to the proof of Theorem 4, using the following construction.
Partition � into consecutive blocks B′

i of cardinalities l
′
i. Let Bi = B′

i × B′
i, take
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µu�Bi� = qi, and for a binary vector u define the distribution µu of �V�W � on Bi
as follows: If ui = 1, then V is drawn uniformly over the l′i integers in that block
and W = V , while if ui = 0, then V and W are drawn uniformly and independently
over the l′i integers in that block. The rest of the proof follows along the same lines
as above.

Theorem 6 (Power sums). Let 0 < a < 1. For any sequence �F �a�
n � of estimators and

any sequence �an� of positive numbers converging to zero, there is a distribution P on
� such that F �a� = F �a��P� <∞ and

lim sup
n→∞

E��F �a�
n − F �a���
an

= ∞�

Proof. Take dk = 2−k (k ≥ 1). Given �q0� q1� � � �� with 0 < qi ≤ 2−i�i ≥ 1�, we
pick a sequence �l′0 = 1� l′1� l

′
2� � � �� of positive integers (to be specified later) and

partition � into consecutive blocks Bi of cardinalities l
′
i. We define µu�Bi� = qi for

all u and i, and given a binary vector u, we define µu on Bi as follows: If ui = 1,
then X is drawn uniformly over the l′i integers in that block, while if ui = 0, then
X takes the value of the first point in the block. Take µu to be the distribution of
X and let li = �l′i�1−a − 1. For this distribution it is easy to verify that

F �a� = F �a��u� =
∞∑
i=1
uiq

a
i ��l′i�1−a − 1� +

∞∑
i=0
qai =

∞∑
i=1
uiq

a
i li +

∞∑
i=0
qai �

If u and u′ differ only in the kth bit, then

F �a��u� − F �a��u′� =
∞∑
i=1

�ui − u′
i�qai li = �uk − u′

k�qaklk�

and thus, �F �a��u� − F �a��u′�� = qaklk. For k ≥ 1, the inequality 2−k ≤ qaklk ≤ 2−k +
qak is satisfied if, for example, l′k = ��q−ak 2−k + 1�1/�1−a��, and thus F �a��u� ≤ 2 +
2
∑∞
i=1 2

−ia. The result follows from Corollary 4.

Remark. In the special case a = 1, we have F̂ �1�
n ≡ F �1� ≡ 1, hence F̂ �1�

n − F �1� ≡ 0.
In the case a = 0 and F �0� <∞, F �0� − F̂ �0�

n = #�i: p�i� > 0� � ∃ j Xj = i�, so

E��F̂ �0�
n − F �0��� = ∑

i�p�i�>0
�1− p�i��n = O�e−αn��

where α = mini�p�i�>0 log�1/�1− p�i��� > 0.

Rényi entropies. The slow-rate-of-convergence results for the power sums imply
analogous slow-rate-of-convergence results for the Rényi entropies in the case
0 < a < 1. As above, in the special case a = 0 and F �0� < ∞, we get a universal
rate of convergence for F̂ �0�

n , of order O�e−αn�.
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Remark. Theorem 3 can also be applied to obtain corresponding slow-rate-of-
convergence results on the estimation of the expectation (cf. [2]). A more general
version of Lemma 2 can be applied to obtain analogous slow-rate-of-convergence
results for the Bayes error probability and the asymptotic error probability of the
k-nearest neighbor rule in classification [1, 3, 16], and for the optimal error in
regression function estimation.

4. ENTROPY ESTIMATION: THE PLUG-IN ESTIMATES

In Section 2, we saw that, for a = 2� 3� � � � � the functionals F �a� = ∑
i∈� pa�i� can

be consistently estimated, and that the L2-error of the plug-in estimate is of order
O�1/n�. However, for a wide class of other functionals, including the entropy, we
showed that the universal convergence rates cannot be obtained for any sequence of
estimators. Therefore, for positive rate-of-convergence results, additional conditions
need to be placed on the class of distributions we consider.
In this and the following section we concentrate on the entropy, although some

results are given for the case of mutual information. (Note also that there are sharp
rate-of-convergence results for the expectation – see [4, 21, Theorem 2.6.20, 2].)

4.1. Heuristics

Finite Alphabets. In the finite-alphabet case, a relatively straightforward calculation
shows that the plug-in estimate Ĥn is asymptotically Normal,

√
n�Ĥn −H� → N�0� σ2� in distribution�

where σ2 = Var�− log2 p�X��; see, e.g., [5]. In particular, for σ2 > 0,

E��Ĥn −H�� = ,

(
1√
n

)
and E��Ĥn −H�2� = ,

(
1
n

)
�

This suggests that we should perhaps expect corresponding results in the infinite-
alphabet case as long as σ2 < ∞, or at least when some of the higher moments
H�r� �= E��− log2 p�X��r� are finite (for some r > 2). Somewhat surprisingly,
Theorem 7 shows that this is not at all the case.

Slow Rates. Next, we give a heuristic argument based on the proof of our slow-
rate result (Theorem 4), indicating what type of conditions we might need to con-
sider for positive rate-of-convergence results. In the proof of Theorem 4, instead
of taking dk = 2−k, we could have used any positive sequence of dks with d0 = 0
and

∑
k dk <∞ (moreover, �dk� may depend on the sequence �an�), and taken

lk = �dk/qk� (assuring dk ≤ qklk ≤ dk + qk). This would allow us to choose nk
in the proof of Theorem 3 satisfying only

∑
k ank < ∞, and then, for example, let

dk = 3ank , qk = o�1/nk�.

Now examine the moment parameter

H�r� = E��− log2 p�X��r� = ∑
i

p�i� logr2�1/p�i��� �r ≥ 1�
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where H�1� is of course just the entropy. For a distribution corresponding to u in
the above construction, and some r ≥ 1,

∑
k

qkukl
r
k≤H�r��u�=∑

k

qk�−log2qk+uklk�r≤2r−1
(∑

k

qk log
r
2
1
qk

+∑
k

qkukl
r
k

)
�

Thus, by a rough calculation, for r > 1, H�r� is finite here for all u if and only if∑
k

qkl
r
k = ∑

k

�qklk�r/qr−1k � ∑
k

arnkn
r−1
k /o�1� +∑

k

o�1�/nk <∞�

The above series can be made finite by the choice of �nk� if and only if
lim infn→∞ arnn

r−1 = 0, that is, if an �= .�n−�r−1�/r�. This suggests that maybe
the rate �n−�r−1�/r� can be achieved if we restrict ourselves to the case H�r� < ∞,
at least for 1 < r ≤ 2.
In the next subsection, we give rate-of-convergence results for the plug-in esti-

mate of the entropy, under assumptions on the tail of the distribution of X. In the
following subsection, we give upper and lower bounds for the convergence of a non-
parametric estimator based on match-lengths, under assumptions on the finiteness
of H�r�. As we will see, neither the plug-in nor the match-length estimators achieve
the O�n−�r−1�/r�-rate suggested above.

4.2. Tail conditions

Here we prove a sharp rate-of-convergence result for the plug-in estimates of the
entropy, assuming appropriate tail conditions. Instead of the finiteness of the rth
moment of �− logp�X��, we restrict our attention to (the smaller class of) distri-
butions with tail probabilities decreasing approximately like (const)i−q� for some
q > 1. In this subsection, without loss of generality we take i ∈ � = � always
to be a nonnegative integer. The following theorem shows that, under appropri-
ate tail conditions, the L1 error of the plug-in estimate for the entropy is exactly
,�n−�q−1�/q� for q < 2.

Theorem 7. Assume that for some q > 1 there exist positive constants c1, c2 > 0 such
that c1/iq ≤ p�i� ≤ c2/iq, i = 1� 2� � � � . Then, for the plug-in estimate, if q ∈ �1� 2� we
have:

.
(
n−�q−1�/q) = E��Ĥn −H�� ≤ �E��Ĥn −H�2��1/2 = O

(
n−�q−1�/q)�

The same result holds for q ≥ 2, with the last upper bound above replaced by

�E��Ĥn −H�2��1/2 = O�n−1/2 log n��

The following corollary is an easy consequence of Theorem 7. In particular,
part (b) follows along the same lines as the proof of Theorem 7, leading to Eq. (11).

Corollary 5. (a) The plug-in estimates can tend to H at an arbitrarily slow alge-
braic rate O�n−ε� even when H�r� <∞, for all r ≥ 1.
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(b) Assume that for some q > 2, there exist positive constants c1, c2 > 0 such that
�c1/i logq i� ≤ p�i� ≤ �c2/i logq i�, i = 1� 2� � � �. Then,

H − E�Ĥn� = .�1/ logq−1 n��

so the convergence to H is even slower, despite the fact that H�q−1−ε� is finite.

Proof of Theorem 7. By (5) and properties (ii) and (iv) from Section 2, it suffices
to prove that

H − E�Ĥn� = ,
(
n−

q−1
q

)
�

First we show that

H − E�Ĥn� ≤
∞∑
i=1
p�i� log2

(
1+ 1− p�i�

np�i�
)
�

Observe that if npn is a Binomial�n� p� random variable and �n − 1�pn−1 is a
Binomial�n− 1� p� random variable, then

E�−pn log2 pn� = −
n∑
k=0

k

n
log2

k

n

(
n

k

)
pk�1− p�n−k

= −p
n∑
k=1

log2
k

n

(
n− 1
k− 1

)
pk−1�1− p�n−1−�k−1�

= −p
n−1∑
k=0

log2
k+ 1
n

(
n− 1
k

)
pk�1− p�n−1−k

= −pE
{
log2

( �n− 1�pn−1 + 1
n

)}
≥ −p log2

( �n− 1�p+ 1
n

)
�

where in the last step we applied Jensen’s inequality for the concave function log2 x.
Applying this for every pn�i� and summing over i ≥ 1 gives

E�Ĥn� ≥ −
∞∑
i=1
p�i� log2

( �n− 1�p�i� + 1
n

)
�

and thus

H − E�Ĥn� ≤
∞∑
i=1
p�i� log2

(
1+ 1− p�i�

np�i�
)

≤
∞∑
i=1
p�i� log2

(
1+ 1

np�i�
)
�

Splitting this sum into two terms

∞∑
i=1
p�i� log2

(
1+ 1

np�i�
)

≤ ∑
i: np�i�≤1

p�i� log2
2

np�i� + ∑
i: np�i�>1

1
n
�
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Now, taking the bounds on p�i�, p�i� > 1/n implies i < �c2n�1/q, and p�i� ≤ 1/n
implies i ≥ �c1n�1/q. So for the second term∑

i: np�i�>1

1
n

≤ ��c2n�1/q 
n

≤ c1/q2 n−�q−1�/q�

For n large enough, the first term∑
i: np�i�≤1

p�i� log2
2

np�i� ≤ ∑
i≥�c1n�1/q

c2
iq

log2
2iq

nc1
≤ O

(
1
n

)
+
∫ ∞

�c1n�1/q
c2
xq

log2
exq

nc1
dx

= O

(
1
n

)
+ c2
n1−1/qq

∫ ∞

c1

1
u2−1/q

log2
eu

c1
du = O

(
n−

q−1
q

)
�

which gives the upper bound.
For the lower bound, recall that property (ii) in Section 2 was obtained from the

fact that

E�pn�i� log2 pn�i�� ≥ p�i� log2 p�i� for all i (Jensen’s inequality)�

Thus

H − E�Ĥn� =
∞∑
i=1

�E�pn�i� log2 pn�i�� − p�i� log2 p�i��

≥ ∑
i: np�i�≤1/2

�E�pn�i� log2 pn�i�� − p�i� log2 p�i��

= 1
n

∑
i: np�i�≤1/2

�E�npn�i� log2 npn�i�� − np�i� log2 np�i��

≥ − ∑
i: np�i�≤1/2

p�i� log2 np�i� ≥ ∑
i: np�i�≤1/2

p�i�� (11)

because npn�i� log2 npn�i� is always nonnegative. By the given bounds,

H − E�Ĥn� ≥ ∑
i≥�2c2n�1/q

c1i
−q ≥ c1

∫ ∞

��2c2n�1/q�
1
xq
dx

= c1
q− 1

1
��2c2n�1/q�q−1

= .�n−�q−1�/q��

which concludes the proof.

In the case of mutual information, using the identity I = H�V � + H�W � −
H�V�W �, the results for entropy estimation imply that the same upper bound of
order n−�q−1�/q for q < 2 holds for the error of �În�:

Corollary 6. Assume that the tail condition of Theorem 7 holds for the distributions
of V and W , and also for their joint distribution. Then, for the plug-in estimate,

E��În − I�� ≤ �E��În − I�2��1/2 =
{
O�n−�q−1�/q� if q < 2,
O�n−1/2 log n� if q ≥ 2.
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5. ENTROPY ESTIMATION: MATCH-LENGTHS

In this subsection we provide convergence rates for a different entropy estimator,
based on match-lengths. This approach is inspired by the Lempel–Ziv family of data-
compression algorithms [28, 29], and has been very successful in nonparametric
entropy estimation from processes with memory (see [17, 19] and the references
therein). Here we use the simplest form of a match-length entropy estimator, to
demonstrate that it is possible to obtain convergence rates under the weaker (and,
in view of the above heuristic, also somewhat more natural) assumption that H�r� =
E��− log2 p�X��r� is finite for some r ≥ 2.
Given a sample xn1 = �x1� x2� � � � � xn� of the i.i.d. random variables �X1�X2� � � � �

Xn�, we write xji = �xi� xi+1� � � � � xj� for 1 ≤ i ≤ j ≤ n. For any n ≥ 1, we define
the match-length Ln as the length L of the shortest initial prefix xL1 that does not
match anywhere else in xn1

Ln = min�1 ≤ L ≤ n: xL1 �= x
j+L
j+1 for all 1 ≤ j ≤ n− L��

with the convention that the minimum of the empty set equals n. Alternatively, Ln
can be thought of as the length of the longest matching prefix, plus one.
For example, if xn1 = abbbcbabbaac (with n = 12), then Ln = 4 since abb appears

twice in xn1 but abbb appears only once. Also, if xn1 is a constant sequence of the
form aaa · · · a, then Ln = n by convention.
Based on the match-lengths Ln, for each n ≥ 1, we define the following entropy

estimators:

H̃n = log2 n
Ln

�

Below we will prove the following results about the H̃n:

Theorem 8. (a) Consistency. If H <∞, then

lim
n→∞ H̃n = H a.s.

(b) Convergence rate in probability. If H�2� = E��− log2 p�X��2� < ∞, then, as
n→ ∞, √

log2 n�H̃n −H� → N�0�Hσ2� in distribution,

where σ2 = Var�− log2 p�X��. In particular,

H̃n = H +OP
(

1√
log n

)
�

(c) L1 and L2 lower bounds. If σ2 �= 0 and H�2� <∞, then

E��H̃n −H�� = .

(
1√
log n

)
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and

E��H̃n −H�2� = .

(
1

log n

)
�

Recall that for a sequence of random variables �Yn� and a sequence of non-
negative real numbers �an�, we say Yn = OP�an� if and only if the sequence of
distributions of the random variables �Yn/an� is tight.
Note that, although the discussion here is restricted entirely to the case of i.i.d.

random variables, the estimator H̃n is consistent for arbitrary stationary and ergodic
processes; cf. [26, 18].
Our next result says that under the stronger assumption that H�4� <∞, the above

lower bound on the L2 error of H̃n is tight.

Theorem 9. If H�4� = E��− log2 p�X��4� <∞� then

E��H̃n −H�2� = O

(
1

log n

)
�

Following [26], to analyze the asymptotics of Ln, we introduce the recurrence
times Rm, where, for m ≥ 1, Rm denotes the time of the first recurrence of the
initial m-block xm1 in the realization x1� x2� � � �:

Rm = inf�k > m: xm1 = xkk−m+1��
Observe that Rm and Ln are related via the following duality relationship:

Rm ≤ n iff Ln ≥ m+ 1� (12)

The proof of Theorem 8 follows along the lines of the corresponding match-length
results in [18], but since here the alphabet � is infinite, most of the combinatorial
arguments need to be modified.
Before turning to the proofs, note that the case H = 0 is trivial: When H = 0,

the random variable X takes on only one value and, by the definition of Ln, H̃n =
�log2 n�/n for all n. In this case, the results in Theorems 8 and 9 all hold trivially.
Therefore, from now on we assume, without loss of generality, that H �= 0. The
following lemma will be used repeatedly in the proofs of Theorems 8 and 9; its
proof is in the appendix.

Lemma 3. (i) There is a finite constant C such that, for all n ≥ 1, any string xn1
of nonzero probability pn�xn1�, and any ε > 0,

P�log2�Rnpn�xn1�� ≥ ε
√
n�xn1� ≤ C2−ε

√
n�

(ii) For all n ≥ 1, any string xn1 of nonzero probability p
n�xn1�, and any ε > 0,

P�log2�2npn�xn1�� ≤ log2�Rnpn�xn1�� ≤ −ε√n�xn1� ≤ 2−ε
√
n�

(iii) There are finite constants α�β > 0 such that, for all n ≥ 1,

P�log2�Rnpn�Xn
1 �� < log2�2npn�Xn

1 ��� = P�n+ 1 ≤ Rn ≤ 2n− 1� ≤ α2−βn�
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Proof of Theorem 8. Since the sequence �2−ε
√
m� is summable over m for any

ε > 0, Lemma 3 together with the Borel–Cantelli Lemma implies that

1√
m

log2�Rmpm�Xm
1 �� → 0 a.s. as m→ ∞� (13)

In particular, by an application of the strong law of large numbers,

lim
m→∞

1
m

log2 Rm = lim
m→∞− 1

m
log2 p

m�Xm
1 � = lim

m→∞
1
m

m∑
i=1

�− log2 p�Xi�� = H a.s.

This, together with the duality relationship (12), implies that

Ln
log2 n

→ 1
H

a.s. (14)

and this proves part (a). Similarly, (13) can be rewritten as

1√
m

�log2 Rm −mH� − 1√
m

�− log2 p
m�Xm

1 � −mH� → 0 a.s.

But the second term, by the central limit theorem, is asymptotically Normal with
mean zero and variance σ2 = Var�− log2 p�X��, therefore

1√
m

�log2 Rm −mH� → N�0� σ2� in distribution, as m→ ∞�

This, together with the duality relationship (12), implies that

1√
log2 n

[
Ln −

log2 n
H

]
→ N�0�H−3σ2� in distribution�

and combining this with (14) easily shows that√
log2 n�H̃n −H� → N�0�Hσ2� in distribution. (15)

The convergence rate in probability follows immediately.
For part (c) note that, for K > 0, by (15),

P
{√

log2 n�H̃n −H� > K
}
→ 2 − 25

(
K

σ
√
H

)
where 5�x� denotes the standard Gaussian distribution function. Therefore,

E
{√

log2 n�H̃n −H�
}

≥ KP
{√

log2 n�H̃n −H� > K
}

→ 2K
[
1−5

(
K

σ
√
H

)]
> 0�
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i.e., E��H̃n −H�� = .�1/√log n�� This also implies that

E��H̃n −H�2� ≥ �E��H̃n −H���2 = .�1/ log n�
and completes the proof.

Proof of Theorem 9. It suffices to show that for the random variables

Zn =
√
log2 n

[
H̃n −H

] = √
log2 n

[
log2 n
Ln

−H
]

the sequence E�Z2
n� is bounded in n. Write ρ4 for the (centralized) fourth moment

ρ4 = E��− log2 p�X� −H�4��
We expand

E�Z2
n� =

∫ ∞

0
P�Z2

n ≥ x�dx

≤ 2 +
∫ log2 n�log2 n−H�2

2
P

{
Ln ≤ log2 n

H +
√

x
log2 n

}
dx

+
∫ log2 n�H−�log2 n�/n�2

2
P

{
Ln ≥ log2 n

H −
√

x
log2 n

}
dx� (16)

and treat the two integrals above separately.
For the first term, let

m = m�n� x� �=
⌊

log2 n

H +
√

x
log2 n

⌋

and note that by the duality relationship (12), the probability P�Ln ≤ m� is equal
to

P�Rm>n�=
∑

xm1 ∈�m

pm�xm1 �P
{

1√
m
log2�pm�xm1 �Rm�>

1√
m
log2�pm�xm1 �n�

∣∣∣∣xm1
}

≤ ∑
xm1 �pm�xm1 �>γn

pm�xm1 �P
{

1√
m
log2�pm�xm1 �Rm�>

1√
m
log2�pm�xm1 �n�

∣∣∣∣xm1
}

+ ∑
xm1 �pm�xm1 �≤γn

pm�xm1 ��

where γn = �log2 n�3/n. By Lemma 3 (i), this is bounded above by∑
xm1 �pm�xm1 �>γn

C/n + P�pm�Xm
1 � ≤ γn� ≤ C

n
��xm1 : pm�xm1 � > γn��

+P�− log2 p
m�Xm

1 � −mH ≥ log2 n

− 3 log2 log2 n−mH��
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Using Markov’s inequality and the fact that there cannot be more than 1/γn strings
with probability greater than γn, this is bounded above by

C

n

1
γn

+ mρ4 + 3m�m− 1�σ4

�log2 n− 3 log2 log2 n−mH�4

≤ C

�log2 n�3
+ C ′m2

�log2 n− 3 log2 log2 n−mH�4

≤ C

�log2 n�3
+ C ′ m2/�log2 n�4(

1− H

H+
√
x/ log2 n

− 3 log2 log2 n
log2 n

)4

≤ C

�log2 n�3
+ C ′

(
1

H+
√
x/ log2 n

)2(
1

log2 n

)2

[
1
2

(
1− H

H+
√
x/ log2 n

)]4
where the last inequality follows from the definition of m, and the observation that,
for all n ≥ some N0 (independent of x),

3
log2 log2 n
log2 n

≤ 1
2

(
1− H

H +√
x/ log2 n

)
�

for all x ≥ 2. Simplifying the above expression, we have shown that

P�Ln ≤ m� ≤ C

�log2 n�3
+ C ′′

x2

(
H +

√
x

log2 n

)2

�

Therefore, for n ≥ N0, the first integral term in (16) is bounded above by∫ �log2 n�3

2

C dx

�log2 n�3
+ C ′′

∫ �log2 n�3

2

1
x2

(
H +

√
x

log2 n

)2

dx

and simply evaluating these two integrals shows that they are bounded in n, and
hence ∫ log2 n�log2 n−H�2

2
P�Ln ≤ m�dx = O�1�� (17)

For the second integral term in (16), write

M =M�n� x� �=
⌈

log2 n

H −
√

x
log2 n

⌉
and let N = M − 1. By the duality relationship (12), the probability P�Ln ≥ M� is
equal to

P�RN ≤ n� = P�M ≤ RN ≤ 2M − 3� + P�2M − 2 ≤ RN ≤ n�
≤ α2−βN + ∑

xN1 ∈�N

pN�xN1 �P{ log2�2NpN�xN1 ��

≤ log2�RNpN�xN1 �� ≤ log2�npN�xN1 ��∣∣xN1 }
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where the inequality follows from Lemma 3 (iii). Letting δn = �n log2 n�−1 and using
Lemma 3 (ii), we obtain that

P�Ln ≥M� ≤ α2−βN + ∑
xN1 �pN �xN1 �>δn

pN�xN1 � + ∑
xN1 �pN �xN1 �≤δn

n�pN�xN1 ��2

≤ α′2−βM + P�pN�XN
1 � > δn� + ∑

xN1 �pN �xN1 �≤δn
pN�xN1 �nδn

≤ α′2−βM + P
{
pN�XN

1 � > δn
}+ 1

log2 n
� (18)

Now we claim (to be verified below) that for n ≥ some N1, uniformly in x ≥ 2, we
have

P�pN�XN
1 � > δn� ≤ C

(
log2 n
Mx

)2

(19)

(with C denoting an absolute constant, not the same as in the derivation of the
previous part). From (18) and (19) we then get that, for n large enough,∫ log2 n�H−�log2 n�/n�2

2
P�Ln ≥M�dx

≤
∫ H2 log2 n

2
α′2−βM�n�x� dx+ C

∫ H2 log2 n

2

(
log2 n
M

)2 1
x2
dx+H2

≤ H2α′�log2 n�2−βM�n�0� + C
∫ H2 log2 n

2

1
x2

(
H −

√
x

log2 n

)2

dx+H2

≤ H2α′ log2 n
nβ/H

+O�1� +H2

where the last inequality is easily verified by evaluating the above integral explicitly.
Therefore, ∫ log2 n�H−�log2 n�/n�2

2
P�Ln ≥M�dx = O�1��

and combining this with (17) and (16) implies that E�Z2
n� = O�1� and completes

the proof of the theorem.
Finally, it remains to establish the claim (19). Using Markov’s inequality and the

fourth moment assumption as before,

P�pN�XN
1 �>δn�=P�log2pN�XN

1 �+NH> log2δn+NH�

≤ Nρ4+3N�N−1�σ4

�log2n+ log2 log2n−NH�4 ≤
CM2

�log2n+ log2 log2n−MH+H�4

≤C
(
log2n
Mx

)2[ 1
M

(
log2n
x

)1/2

��log2 log2n+H�

− �MH− log2n��
]−4



186 ANTOS AND KONTOYIANNIS

so it suffices to show that the term �· · ·�−4 above is uniformly bounded over x ≥ 2. By
the definition ofM ,M�n� x� ≥M�n� 2�, and it is easy to see that for n large enough
MH − log2 n ≥ �√2/H�√log2 n� Therefore, for all n ≥ some N1 (independent of x),

log2 log2 n+H ≤ 1

H
√
2

√
log2 n ≤ 1

2
�MH − log2 n��

Noting that for n large enough (uniformly in x ≥ 2)

M ≤ 2 log2 n

H −√
x/log2 n

and substituting the last two bounds in the expression �· · ·�−4 above, we get

�· · ·�−4 ≤
[

2M
√
x√

log2 n�MH − log2 n�

]4

≤ 256

[ log2 n

H−
√
x/log2 n

√
x√

log2 n
(
H

log2 n

H−
√
x/log2 n

− log2 n
)]4 = 256�

as required.
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APPENDIX

In the notation of Section 2, we state and prove the four lemmas that were used in
the proofs of Theorems 1 and 2.

Lemma 4. Assume that g is concave and monotone increasing, and that (4) is satis-
fied. Then

lim sup
N→∞

E�F̂n� ≤ F�

Remark. Note that the assumption f ≥ 0 can be replaced by the condition that∑
i !min�fi� 0�!∞ < ∞, and that in this case, the above lemma as well as the fol-

lowing two lemmas still hold. Similarly, if the assumption that f ≥ 0 is replaced
by the condition that

∑
i !max�fi� 0�!∞ < ∞, then the lemmas remain valid after

interchanging the terms ‘convex’ and ‘concave,’ the terms ≤ and ≥, and the terms
‘lim inf’ and ‘lim sup.’
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Lemma 5. Assume that all the fi are continuous, and that g is a monotone increasing
and continuous. Then

lim inf
n→∞ F̂n ≥ F a.s. and lim inf

n→∞ E�F̂n� ≥ F�

Lemma 6. (a) If g is concave and monotone increasing, and all the fi are contin-
uous and they satisfy (4), then �F̂n� is asymptotically unbiased, that is,

lim
n→∞E�F̂n� = F�

(b) If g is linear and both f and −f satisfy (4), that is, lim∑
i E�fi�pn�i��� =∑

i fi�p�i��, then �F̂n� is asymptotically unbiased. Moreover, if g and all the fi
are linear, then F̂n is unbiased, that is, E�F̂n� = F .

Lemma 7. (Here f is not necessarily nonnegative.) Assume that g and all the fi are
continuous, and that L = ∑

i !fi!∞ <∞. Then �F̂n� is strongly universally consistent,
and also Lp consistent for any p > 0, that is,

lim
n→∞ F̂n = F a.s. and lim

n→∞E��F̂n − F �p� = 0�

In particular, these hold if g and all the fi are continuous, and the support of X is
finite.

Proof of Lemma 4. Note that if g is concave on �, then it is also continuous. Using
Jensen’s inequality, the concavity, continuity, and monotonicity of g, and (4), we get

lim sup
n→∞

E�F̂n� ≤ lim sup
n→∞

g

(∑
i

E�fi�pn�i���
)

≤ g
(
lim
n→∞ sup

∑
i

E�fi�pn�i���
)

≤ g
(∑

i

fi�p�i��
)

= F�

Note that the proof essentially remains the same if instead of f ≥ 0 we assume
f ≤ 0. Therefore, if g is convex and monotone increasing, and −f satisfies (4), then
lim infn→∞ E�F̂n� ≥ F .
Proof of Lemma 5. Noting that, by the strong law of large numbers, for each
i� limn→∞ pn�i� = p�i� a.s., continuity and Fatou’s Lemma imply

lim inf
n→∞

∑
i

fi�pn�i�� ≥ ∑
i

lim inf
n→∞ fi�pn�i�� = ∑

i

fi�p�i�� a.s.

Since g is monotone increasing and continuous on �0�∞�

liminf
n→∞ F̂n= liminf

n→∞ g

(∑
i

fi�pn�i��
)
≥g

(
liminf
n→∞

∑
i

fi�pn�i��
)

≥g
(∑

i

fi�p�i��
)
=F a.s.
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Finally, by the monotonicity of g, F̂n ≥ g�0� for all n, hence by Fatou’s Lemma,

lim inf
n→∞ E�F̂n� ≥ E�lim inf

n→∞ F̂n� ≥ F�

Proof of Lemma 6. Obvious from Lemma 4 and 5.

Proof of Lemma 7. Noting that for each i, limn→∞ pn�i� = p�i� a.s., continuity and
the dominated convergence theorem (using L <∞) imply

lim
n→∞

∑
i

fi�pn�i�� = ∑
i

lim
n→∞ fi�pn�i�� = ∑

i

fi�p�i�� a.s.

Since g is continuous

lim
n→∞F̂n= lim

n→∞g
(∑

i

fi�pn�i��
)
=g

(
lim
n→∞

∑
i

fi�pn�i��
)
=g

(∑
i

fi�p�i��
)
=F a.s.

Observing that �F � and the functions �F̂n� are all bounded (all taking values in
the bounded set g��−L�L��), the consistency in Lp follows from the dominated
convergence theorem.
The continuity of all the fi and the finiteness of the support imply L <∞.

Next, we give the proofs of four results that were stated and used earlier without
a proof.

Proof of Corollary 3. Observe that naF̂ �a�
n = ∑

i�npn�i��a satisfies Proposition 3
with

G�a��x1� � � � � xn−1� = ∑
i

( n−1∑
j=1
I�xj=i�

)a
�

because

0 < naF̂ �a�
n �x1� � � � � xn� −G�a��x1� � � � � xj−1� xj+1� � � � � xn�

= ∑
i

(
�npn�i��a − �npn�i� − I�xj=i��a

)
= �npn�xj��a − �npn�xj� − 1�a

= �npn�xj��a
(
1−

(
1− 1

npn�xj�
)a)

≤ �npn�xj��a
(
1−

(
1− 1

npn�xj�
))

= �npn�xj��a−1 ≤ 1�

and so

n∑
j=1

(
naF̂

�a�
n �x1� � � � � xn� −G�a��x1� � � � � xj−1� xj+1� � � � � xn�

)
≤

n∑
j=1

�npn�xj��a−1 = ∑
i

�npn�i��a = naF̂
�a�
n �
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This implies that, for any ε > 0,

P
{
�F̂ �a�
n − E�F̂ �a�

n �� ≥ ε
}
= P

{
�naF̂ �a�

n − naE�F̂ �a�
n �� ≥ naε

}
≤ 2e−n

aε2/�2E�F̂ �a�
n �+2ε/3��

Proof of Lemma 1. It is well known (see, e.g., [22, p. 137]) that the ath moment
of a binomial random variable can be expressed as

E�Bina�n�p�� =
a−1∑
k=1

σ
�k�
a

n!
�n− k�!p

k + n!
�n− a�!p

a ≤
a−1∑
k=1

σ
�k�
a nkpk + napa

where the σ �k�
a are Stirling numbers of the second kind. This implies that

∑
i

E�pan�i�� = ∑
i

E�Bina�n�p�i��/na� ≤
a−1∑
k=1

∑
i

pk�i�σ �k�
a nk−a +∑

i

pa�i�

= O�1/n� +∑
i

pa�i��

Proof of Lemma 2. We use randomization such that u is replaced by a sequence
U = �U0�U1�U2� � � �� of i.i.d. Bernoulli(1/2) random variables, independent of the
samples �X1� � � � �Xn�. Let Uk

+ and Uk
− denote the sequence U with the difference

that Uk
+ forces the kth bit to be 1 and Uk

− forces the kth bit to be 0. Introduce the
notation

rn�u� = P��Fn�Dn�u�� − F�u�� > an��

Now for n� k ∈ �

E�rn�U�� = E�P��Fn�Dn�U�� − F�U�� > an�U��
= P��Fn�Dn�U�� − F�U�� > an�
≥ E�P��Fn�Dn�U�� − F�U�� > an�Dn�U��I�Dn�U�∈An�k���

Conditioning on Dn�U� in An�k,

P��Fn�Dn�U�� − F�U�� > an�Dn�U��
= P��Fn�Dn�U�� − F�Uk

−�� > an�Uk = 0�Dn�U��
+P��Fn�Dn�U�� − F�Uk

+�� > an�Uk = 1�Dn�U��
= P��Fn�Dn�U�� − F�Uk

−�� > an�Dn�U��P�Uk = 0�Dn�U��
+P��Fn�Dn�U�� − F�Uk

+�� > an�Dn�U��P�Uk = 1�Dn�U���

because (9) implies that P�Uk = 1�Uk
−�Dn�U�� = 1/2 for every possible Uk

− and
Dn�U� ∈ An�k, and thus Uk

− and Uk (or similarly Uk
+ and Uk) are conditionally
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independent given Dn�U� ∈ An�k. Moreover, P�Uk = 1�Dn�U�� = 1/2 for Dn�U� ∈
An�k, so

P��Fn�Dn�U�� − F�Uk
−�� > an�Dn�U��P�Uk = 0�Dn�U��

+P��Fn�Dn�U�� − F�Uk
+�� > an�Dn�U��P�Uk = 1�Dn�U��

= 1
2
P��Fn�Dn�U�� − F�Uk

−�� > an�Dn�U��

+1
2
P��Fn�Dn�U�� − F�Uk

+�� > an�Dn�U��

≥ 1
2
P��Fn�Dn�U�� − F�Uk

−�� + �Fn�Dn�U�� − F�Uk
+�� > 2an�Dn�U��

≥ 1
2
P��F�Uk

−� − F�Uk
+�� > 2an�Dn�U��

≥ I�dk>2an�
2

(using (10)).

Therefore, taking the expectation of this chain of inequalities on An�k, we have for
any n� k ∈ �

E�rn�U�� ≥ I�dk>2an�
2

P�Dn�U� ∈ An�k� ≥ I�dk>2an�
2

inf
u
µ

�n�
u �An�k��

and in particular, for k ∈ � and n = nk

E�rnk�U�� ≥
I�dk>2ank�

2
inf
u
µ

�nk�
u �Ank�k

��

Since rn�U� ≤ 1, by Fatou’s Lemma

sup
u

lim sup
n→∞

rn�u� ≥ E
{
lim sup
n→∞

rn�U�
}

≥ lim sup
n→∞

E�rn�U��

≥ lim sup
k→∞

E�rnk�U��

≥ 1
2
lim sup
k→∞

(
I�dk>2ank� infu µ

�nk�
u �Ank�k

�
)
�

Proof of Lemma 3. (i) Let µ = supi p�i� < 1. By Markov’s inequality,

P
{
log2�Rnpn�xn1�� ≥ ε

√
n�xn1

}
≤ E�Rn�xn1�pn�xn1�2−ε

√
n�

and by Kac’s Lemma (see, e.g., [26]) this is exactly equal to

�n+ 1/pn�xn1��pn�xn1�2−ε
√
n ≤ �1+ nµn�2−ε

√
n ≤ C2−ε

√
n

where C = 1+ supn�nµn� <∞�
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(ii) Write Kn = 2−ε
√
n/pn�xn1�. By a simple union bound,

P
{
log2�2npn�xn1�� ≤ log2�Rnpn�xn1�� ≤ −ε√n�xn1

}
= P

{
2n ≤ Rn ≤ Kn�xn1

}
≤

�Kn ∑
j=2n

P
{
X
j
j−n+1 = Xn

1 �Xn
1 = xn1

}
≤ �Kn pn�xn1�
≤ 2−ε

√
n�

(iii) By an application of the union bound as above, P�n+ 1 ≤ Rn ≤ 2n− 1� is
bounded above by

n−1∑
j=1

P
{
X
j+n
j+1 =Xn

1

}
=

�n/3 ∑
j=1

P
{
X
j+n
j+1 =Xn

1

}
+

n−1∑
j=�n/3 +1

P
{
X
j+n
j+1 =Xn

1

}

=
�n/3 ∑
j=1

∑
x
j
1

pj�xj1�P
{
X
j+n
j+1 =Xn

1 �Xj
1=xj1

}
+

n−1∑
j=�n/3 +1

× ∑
xnn−j+1

pj�xnn−j+1�P
{
X
j+n
j+1 =Xn

1 �Xn
n−j+1=xnn−j+1

}

≤
�n/3 ∑
j=1

EXj
1

{
�pj�Xj

1���n/j −1
}
+

n−1∑
j=�n/3 +1

EXn
n−j+1

{
pj�Xn

n−j+1�
}
�

With µ as in (i), we can bound both pj�Xj
1� and pj�Xn

n−j+1� by µj so that the above
expression is at most

�n/3 ∑
j=1

µn−2j +
n−1∑

j=�n/3 +1
µj�

Summing these two geometric series we get an upper bound of the order of

�const�µn/3 = α2−βn�

for appropriately chosen constants α�β > 0.
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