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CONVERGENCE PROPERTIES
OF PRECONDITIONED HERMITIAN

AND SKEW-HERMITIAN SPLITTING METHODS
FOR NON-HERMITIAN POSITIVE SEMIDEFINITE MATRICES

ZHONG-ZHI BAI, GENE H. GOLUB, AND CHI-KWONG LI

Abstract. For the non-Hermitian and positive semidefinite systems of lin-

ear equations, we derive necessary and sufficient conditions for guarantee-
ing the unconditional convergence of the preconditioned Hermitian and skew-
Hermitian splitting iteration methods. We then apply these results to block
tridiagonal linear systems in order to obtain convergence conditions for the cor-
responding block variants of the preconditioned Hermitian and skew-Hermitian
splitting iteration methods.

1. Introduction

We consider the iterative solution of a large sparse non-Hermitian system of
linear equations

Ax = b, A ∈ Cn×n nonsingular, A �= A∗, and x, b ∈ Cn,(1.1)

where A∗ denotes the conjugate transpose of the complex matrix A.
Based on the Hermitian and skew-Hermitian (HS) splitting

A = H(A) + S(A), with H(A) =
1
2
(A + A∗) and S(A) =

1
2
(A − A∗),

Bai, Golub and Ng recently established a class of Hermitian and skew-Hermitian
splitting (HSS) iteration methods in [3] for solving the non-Hermitian system of
linear equations (1.1).

When the coefficient matrix A ∈ Cn×n is positive definite, i.e., its Hermitian
part H(A) ∈ Cn×n is Hermitian positive definite, they proved in [3] that the HSS
iteration converges unconditionally to the exact solution of the system of linear
equations (1.1), with the bound on the rate of convergence about the same as that
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of the conjugate gradient method when applied to the Hermitian matrix H(A).
Moreover, the upper bound of the contraction factor is dependent on the spectrum of
the Hermitian part H(A), but is independent of the spectrum of the skew-Hermitian
part S(A) as well as the eigenvalues of the matrices H(A), S(A), and A. Numerical
experiments have shown that the HSS iteration method is very efficient and robust
for solving non-Hermitian positive definite linear systems; see [3].

When the coefficient matrix A ∈ Cn×n has the two-by-two block structure

A =
(

B E
−E∗ C

)
,(1.2)

with B ∈ Cp×p being positive definite (i.e., H(B) is Hermitian positive definite),
C ∈ Cq×q being Hermitian positive semidefinite, and E ∈ Cp×q being of full column
rank, Benzi, and Golub further proved in [11] that the HSS iteration method for
the corresponding saddle-point problem

Ax ≡
(

B E
−E∗ C

) (
y
z

)
=

(
f
g

)
≡ b(1.3)

also converges unconditionally to its exact solution. Note that the matrix A is now
only positive semidefinite with some special structure, namely, its Hermitian part

H(A) =
(

H(B) 0
0 C

)
∈ Cn×n

is such that H(B) is positive definite and C is Hermitian positive semidefinite.
In this paper, we give a necessary and sufficient condition for an arbitrary non-

Hermitian positive semidefinite linear system so that the preconditioned Hermitian
and skew-Hermitian splitting (PHSS) iteration method will lead to an uncondi-
tionally convergent iteration sequence. This result is further specialized to linear
systems of a block tridiagonal form to obtain unconditional convergence conditions
for the corresponding block PHSS (BPHSS) iteration method.

2. The preconditioned HSS method

Instead of applying the HSS iteration technique directly to the system of linear
equations (1.1), we may apply it to the systematically preconditioned linear system

Âx̂ = b̂, with Â = R−∗AR−1, x̂ = Rx, and b̂ = R−∗b,(2.1)

where R ∈ Cn×n is a prescribed nonsingular matrix and R−∗ = (R−1)∗ = (R∗)−1.
Let P = R∗R. Then P ∈ Cn×n is a Hermitian positive definite matrix. This leads
to the preconditioned Hermitian and skew-Hermitian splitting (PHSS) iteration
method as follows. See also [2, 3, 4] and [11, 12].

The PHSS iteration method. Let P ∈ Cn×n be a prescribed Hermitian positive
definite matrix. Given an initial guess x(0) ∈ Cn, compute x(k) for k = 0, 1, 2, . . .
using the following iteration scheme until {x(k)} satisfies the stopping criterion:{

(αP + H(A))x(k+ 1
2 ) = (αP − S(A))x(k) + b,

(αP + S(A))x(k+1) = (αP −H(A))x(k+ 1
2 ) + b,

where α is a given positive constant.

Clearly, when P = I, the identity matrix, the PHSS iteration method reduces to
the HSS iteration method studied in Bai, Golub, and Ng in [3]. When P �= I, we can
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suitably choose P and α such that the induced PHSS iteration method possesses
fast convergence and high computing efficiency. In addition, the Hermitian positive
definite matrix P and the positive constant α should be judiciously selected so that
the two subsystems of linear equations with the coefficient matrices αP +H(A) and
αP + S(A) can be solved economically and rapidly.

In matrix-vector form, the above PHSS iteration method can be rewritten as

(2.2) x(k+1) = L(α, P )x(k) + G(α, P )b, k = 0, 1, 2, . . . ,

where

L(α, P ) = (αP + S(A))−1(αP −H(A))(αP + H(A))−1(αP − S(A))

and
G(α, P ) = 2α(αP + S(A))−1(αP + H(A))−1.

Here, L(α, P ) is the iteration matrix of the PHSS iteration method. In fact, (2.2)
may also result from the splitting

A = M(α, P ) −N (α, P )

of the coefficient matrix A, with{
M(α, P ) = 1

2α (αP + H(A))(αP + S(A)),
N (α, P ) = 1

2α (αP −H(A))(αP − S(A)).

Therefore, the PHSS iteration method can naturally induce a preconditioner
M(α, P ) to the matrix A. This preconditioner is called as the PHSS precondi-
tioner. See [2, 4, 11, 12].

When A ∈ Cn×n is a positive definite matrix, duplicating the proofs of Theo-
rem 2.2 and Corollary 2.3 in [3] allows one to establish the following convergence
theorem for the PHSS iteration method. In the sequel, sp(X) represents the spec-
trum of the square matrix X.

Theorem 2.1. Let A ∈ Cn×n be a positive definite matrix, let H(A) = 1
2 (A + A∗)

and S(A) = 1
2 (A − A∗) be its Hermitian and skew-Hermitian parts, respectively,

and let α be a positive constant. Let P ∈ Cn×n be a Hermitian positive definite
matrix. Then the spectral radius ρ(L(α, P )) of the iteration matrix L(α, P ) of the
PHSS iteration is bounded by

σ(α, P ) = max
λj∈sp(P−1H(A))

|α − λj |
|α + λj |

.

Consequently, we have

ρ(L(α, P )) ≤ σ(α, P ) < 1, ∀α > 0,

i.e., the PHSS iteration unconditionally converges to the exact solution of the system
of linear equations (1.1).

Moreover, if γmin and γmax are the lower and the upper bounds of the eigenvalues
of the matrix P−1H(A), respectively, then

α̃ := arg min
α

{
max

γmin≤λ≤γmax

∣∣∣∣α − λ

α + λ

∣∣∣∣
}

=
√

γminγmax

and

σ(α̃, P ) =
√

γmax −√
γmin√

γmax +
√

γmin
=

√
κ(P−1H(A)) − 1√
κ(P−1H(A)) + 1

,

where κ(P−1H(A)) is the spectral condition number of the matrix P−1H(A).
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From Theorem 2.1 we see that the Hermitian positive definite matrix P ∈ Cn×n

should be chosen such that it is at least a good approximate to the matrix H(A).
In this situation, κ(P−1H(A)) may be reasonably small so that the PHSS iteration
method may achieve fast convergence. On the other hand, since we often have to
solve the two half-iterates x(k+ 1

2 ) and x(k+1) inexactly by some iteration schemes,
P and α should be chosen such that both matrices αP +H(A) and αP + S(A) are
well conditioned and economically invertible. Hence, in a practical computation, it
is a crucial but difficult problem to determine a good preconditioner P and choose
an optimal iteration parameter α. For some discussions on this aspect, we refer the
readers to [2, 4, 11, 12].

3. Convergence theorems

In this section, we study the convergence properties of the PHSS iteration method
when the coefficient matrix A ∈ Cn×n is positive semidefinite. To this end, we
call an eigenvalue λ of a matrix W ∈ Cn×n a reducing eigenvalue if Wx = λx
and W ∗x = λ∗x. Equivalently, W is unitarily similar to [λ] ⊕ W0, where W0 ∈
C(n−1)×(n−1).

The following theorem describes the convergence property of the PHSS iteration
method when the coefficient matrix A ∈ Cn×n is positive semidefinite.

Theorem 3.1. Let A ∈ Cn×n be a positive semidefinite matrix, let H(A) = 1
2 (A+

A∗) and S(A) = 1
2 (A−A∗) be its Hermitian and skew-Hermitian parts, respectively,

and let α be a positive constant. Let P ∈ Cn×n be a Hermitian positive definite
matrix. Then the spectral radius ρ(L(α, P )) of the iteration matrix L(α, P ) of the
PHSS iteration is bounded by 1, i.e.,

ρ(L(α, P )) ≤ 1, ∀α > 0.

The inequality becomes an equality if and only if the matrix Â := R−∗AR−1 has a
(reducing) eigenvalue of the form iξ with ξ ∈ R and i the imaginary unit, i.e., the
null space of H(Â) contains an eigenvector of S(Â). Here, P = R∗R and R ∈ Cn×n

is a prescribed nonsingular matrix.

Proof. Evidently, we only need to consider the case when P = I, as otherwise, we
can turn to the preconditioned linear system (2.1) instead. Denote by

L(α) := L(α, I) = (αI + S(A))−1(αI −H(A))(αI + H(A))−1(αI − S(A)),

which is similar to the matrix

L(α) := (αI + H(A))−1(αI −H(A))(αI + S(A))−1(αI − S(A)).

Therefore, we only need to investigate the property of the eigenvalues of L(α).
Suppose that H(A) has eigenvalues

µ1 ≥ · · · ≥ µr > 0 = µr+1 = · · · = µn = 0.

Then (αI + H(A))−1(αI −H(A)) is Hermitian and has eigenvalues

νj = (α − µj)/(α + µj), j = 1, 2, . . . , n,

so that

(3.1) −1 < ν1 ≤ · · · ≤ νr < 1 = νr+1 = · · · = νn.
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Hence L(α) has singular values

|νj | ≤ 1, j = 1, 2, . . . , n.

Consequently,
ρ(L(α)) ≤ ‖L(α)‖ = 1, ∀α > 0.

Suppose that A has an eigenvalue of the form iξ with ξ ∈ R corresponding to a
unit eigenvector v. We show that iξ is in fact a reducing eigenvalue of A. To see
this, let V be a unitary matrix such that V ∗AV is in lower triangular form with iξ
in the (1, 1) entry, and w as the first column. Then

H(V ∗AV ) = V ∗H(A)V

is positive semidefinite with 0 in the (1, 1) entry and 1
2w as the first column. It

follows that w = 0 and U∗AU = [iξ] ⊕ A0 for some A0 ∈ C(n−1)×(n−1), i.e., iξ is a
reducing eigenvalue of A. Now,

(αI + H(A))−1(αI −H(A))(αI + S(A))−1(αI − S(A))v = λv

with λ = (α − iξ)/(α + iξ) such that |λ| = 1.
Conversely, if L(α) has an eigenvalue λ of modulus 1, then λ is an eigenvalue of

the matrix

(αI + S(A))−1(αI − S(A))(αI + H(A))−1(αI −H(A)).

Thus, there is a unit vector v ∈ Cn such that

(αI + S(A))−1(αI − S(A))(αI + H(A))−1(αI −H(A))v = λv.

Since |λ| = 1 and (αI + S(A))−1(αI − S(A)) is unitary, we see that

‖(αI + H(A))−1(αI −H(A))v‖ = ‖v‖.
Suppose that {x1, x2, . . . , xn} is an orthonormal basis for Cn consisting of eigen-
vectors of H(A) such that H(A)xj = µjxj for j = 1, 2, . . . , n. Let v =

∑n
j=1 θjxj

with θj ∈ C. Then

1 =
n∑

j=1

|θj |2 = ‖v‖2 = ‖(αI + H(A))−1(αI −H(A))v‖2 =
n∑

j=1

|θj |2ν2
j .

By (3.1), we know that θj = 0 for j = 1, 2, . . . , r. It follows that v =
∑n

j=r+1 θjxj

and

H(A)v =
n∑

j=r+1

θjH(A)xj =
n∑

j=r+1

θjµjxj = 0.

Furthermore,

λv = (αI + S(A))−1(αI − S(A))(αI + H(A))−1(αI −H(A))v
= (αI + S(A))−1(αI − S(A))v.

Thus, v is an eigenvector of (αI+S(A))−1(αI−S(A)), and hence v is an eigenvector
of S(A) such that S(A)v = iξv with ξ ∈ R satisfying λ = (α − iξ)/(α + iξ). As a
result, Av = iξv and A∗v = −iξv. So, iξ is a reducing eigenvalue of A. �

Corollary 3.2. Suppose that A ∈ Cn×n satisfies the hypothesis of Theorem 3.1. If
ρ(L(α, P )) < 1, then A is nonsingular.
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The contra-positive of the above corollary asserts that if a matrix A satisfying
the hypothesis of Theorem 3.1 is singular, then ρ(L(α, P )) = 1. Note also that such
an A is singular if and only if 0 is a reducing eigenvalue. This happens if and only
if H(A) and S(A) have a common null vector.

Note that in general, a matrix may have an eigenvalue of the form iξ which is
not a reducing eigenvalue. However, this cannot happen for matrices A such that
H(A) is positive semidefinite.

For matrices A such that H(A) is positive semidefinite, we need to determine
whether it has no (reducing) eigenvalue of the form iξ with ξ ∈ R. The next
proposition gives some information along this direction.

Proposition 3.3. Suppose that A ∈ Cn×n satisfies the hypothesis of Theorem 3.1.
Then the following statements are equivalent:

(a) A does not have a (reducing) eigenvalue of the form iξ with ξ ∈ R.
(b) The null space of H(A) does not contain an eigenvector of S(A).
(c) If v is an eigenvector of S(A), then v∗H(A)v > 0.
(d) Let V be unitary such that V ∗H(A)V = H1 ⊕ 0� where H1 is nonsingular,

and let

V ∗S(A)V =
(

S1 E
−E∗ S2

)
.

Then the null space of E does not contain an eigenvector of S2.

Proof. The equivalence of (a), (b), and (c) are straightforward. Now we consider
(d). Suppose that V is unitary such that V ∗H(A)V = H1 ⊕ 0�, where H1 is
nonsingular, and

V ∗S(A)V =
(

S1 E
−E∗ S2

)
.

Then a vector in the null space of H(A) must be of the form

V

(
0
x

)
, with x ∈ C�.

Furthermore, it is an eigenvector of S(A) corresponding to the eigenvalue iξ with
ξ ∈ R if and only if Ex = 0 and S2x = iξx. Thus, (a) and (d) are equivalent. �

From Theorem 3.1 and Proposition 3.3, one can easily deduce the convergence
results on the HSS iteration method for positive definite matrices in [3] and on
the PHSS iteration methods for special positive semidefinite saddle-point matrices
(1.2) in [2, 4, 11]. In the former case, it is clear that no eigenvalue has the form iξ
with ξ ∈ R. In the lattter case, under the assumption that E has full column rank,
condition (d) in Proposition 3.3 cannot hold.

The following example shows that even if A is in two-by-two block form with

H(A) =
(

H1 0
0 H2

)
and S(A) =

(
S1 E
−E∗ S2

)
,

the relation between the null spaces of the matrices H1, H2, E, and E∗ may not be
too useful in determining whether ρ(L(α, P )) < 1; see [11].

Example 3.4. Suppose that A ∈ Cn×n is such that

H(A) =
(

H0 0
0 H0

)
with H0 =

(
1 1
1 1

)
.
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(a) If

S(A) =
(

0 E
−E∗ 0

)
with E =

(
1 0
0 1

)
,

then A has eigenvalues ±i. So, ρ(L(α, I)) = 1. However, it holds that
null(H0) ∩ null(E) = {0}.

(b) If

S(A) =
(

0 E
−E∗ 0

)
with E =

(
1 0
0 0

)
,

then A has no eigenvalue of the form iξ with ξ ∈ R. So, ρ(L(α, I)) < 1.
However, it holds that null(H0) ∩ null(E) = {0}.

(c) If

S(A) =
(

S0 0
0 S0

)
with S0 =

(
0 1
−1 0

)
,

then A has no eigenvalue of the form iξ with ξ ∈ R. So, ρ(L(α, I)) < 1.
However, it holds that null(H0) ∩ null(E) = {0}.

(d) If

S(A) =
(

S0 E
−E∗ S0

)
with S0 =

(
0 1
−1 0

)
so that ‖E‖ is small, then A has eigenvalues close to 1. Thus, ρ(L(α, I)) =
1. However, we can choose E such that either null(H0) ∩ null(E) = {0} or
null(H0) ∩ null(E) �= {0} holds.

If H(A) or S(A) is in diagonal block form

B1 ⊕ B2 ⊕ · · · ⊕ B�, with Bj ∈ Cnj×nj (j = 1, 2, . . . , 
),

then one can consider

P = α1In1 ⊕ α2In2 ⊕ · · · ⊕ α�In�
, with αj > 0 (j = 1, 2, . . . , 
).

As long as Â := P−1/2AP−1/2 does not have an eigenvalue of the form iξ with
ξ ∈ R, then the iteration matrix L(α, P ) of the PHSS iteration method has spectral
radius less than one, i.e., the PHSS iteration scheme converges. In particular, when

 = 1, this conclusion recovers the convergence theorem established in [11].

We remark that one may relax the condition that H(A) = 1
2 (A + A∗) is positive

semidefinite. In fact, if there exists a θ ∈ [0, 2π) such that

H(eiθA) =
1
2
(eiθA + e−iθA∗)

is positive semidefinite, then one can apply Theorem 3.1 to eiθA. This latter con-
dition is equivalent to the requirement that the numerical range of A, defined by

W(A) := {v∗Av : v ∈ Cn, v∗v = 1},

lie on a closed half plane defined by a line passing through the origin. In particular,
if θ = π

2 is such that H(eiθA) is positive semidefinite, then the PHSS iteration
method that results from interchanging the Hermitian matrix H(A) and the skew-
Hermitian matrix S(A) may still converge. Note that in this PHSS iteration method
the right-hand side vector b is replaced by ib, correspondingly.
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4. Applications

We consider the non-Hermitian system of linear equations (1.1) whose coefficient
matrix A ∈ Cn×n is in the block tridiagonal form, i.e.,
(4.1)

Ax ≡

⎛
⎜⎜⎜⎜⎜⎝

A1 E1

−E∗
1 A2 E2

. . . . . . . . .
−E∗

�−2 A�−1 E�−1

−E∗
�−1 C

⎞
⎟⎟⎟⎟⎟⎠

⎛
⎜⎜⎜⎜⎜⎝

x1

x2

...
x�−1

x�

⎞
⎟⎟⎟⎟⎟⎠ =

⎛
⎜⎜⎜⎜⎜⎝

b1

b2

...
b�−1

b�

⎞
⎟⎟⎟⎟⎟⎠ ≡ b,

where Aj ∈ Cnj×nj (j = 1, 2, . . . , 
−1) are non-Hermitian matrices, Ej ∈ Cnj×nj+1

(j = 1, 2, . . . , 
 − 1), C ∈ Cn�×n� is a Hermitian matrix, xj , bj ∈ Cnj , and nj (j =
1, 2, . . . , 
) are positive integers satisfying n1 ≥ n2 ≥ · · · ≥ n� and

∑�
j=1 nj = n.

The block tridiagonal systems of linear equations may arise from many appli-
cations, e.g., the remaining (linearized) Euler-Lagrange equations [28, 29] and a
coupled DEM-FEM formulation combined with Lagrange multipliers in the impe-
rious porous material with an incompressible pore fluid [23].

In particular, when 
 = 2, the system of linear equations (4.1) reduces to the
generalized saddle-point problem (1.3). As is known, saddle-point problems corre-
spond to the Kuhn-Tucker conditions for linearly constrained quadratic program-
ming problems, which typically result from mixed or hybrid finite element ap-
proximations of second-order elliptic problems, elasticity problems, or the Stokes
equations (see, e.g., Brezzi and Fortin [13]) and from Lagrange multiplier meth-
ods (see, e.g., Fortin and Glowinski [17]). A number of structured preconditioners
[15, 16, 25, 11, 10] and iterative methods [14, 22, 4, 2, 9] have been studied in the
literature for these problems. See also [27, 21, 20, 26, 19, 18, 6, 8] and the references
therein.

In this section we consider the block tridiagonal systems of linear equations
satisfying all of the following assumptions:

• A1 is positive definite, i.e., H(A1) is Hermitian positive definite;
• Aj (j = 2, 3, . . . , 
−1) are positive semidefinite, i.e., H(Aj) (j = 2, 3, . . . , 
−

1) are Hermitian positive semidefinite;
• Ej (j = 1, 2, . . . , 
 − 2) have full column rank;
• C is Hermitian positive semidefinite;
• null(C) ∩ null(E�−1) = {0}.

As shown below, these assumptions guarantee existence and uniqueness of the so-
lution.

Proposition 4.1. Let A ∈ Cn×n be the coefficient matrix of the system of linear
equations (4.1). Assume that A1 is positive definite, Aj (j = 2, 3, . . . , 
 − 1) are
positive semidefinite, Ej (j = 1, 2, . . . , 
−2) have full column rank, C is Hermitian
positive semidefinite, and null(C) ∩ null(E�−1) = {0}. Then A is nonsingular.

Proof. Let x = (x∗
1, x

∗
2, . . . , x

∗
� )

∗ ∈ Cn be such that Ax = 0, where xj ∈ Cnj for
j = 1, 2, . . . , 
. Then⎧⎨

⎩
A1x1 + E1x2 = 0,
−E∗

j−1xj−1 + Ajxj + Ejxj+1 = 0, j = 2, 3, . . . , 
 − 1,
−E∗

�−1x�−1 + C�x� = 0.
(4.2)
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Because Ax = 0 implies both x∗Ax = 0 and x∗A∗x = 0, we know that x∗H(A)x =
0. As H(Aj) (j = 1, 2, . . . , 
 − 1) and C are Hermitian positive semidefinite, H(A)
is Hermitian positive semidefinite, too. Hence, x ∈ null(H(A)), or equivalently,

Cx� = 0 and H(Aj)xj = 0 for j = 1, 2, . . . , 
 − 1.

The system of linear equations (4.2) then reduces to the following:⎧⎨
⎩

S(A1)x1 + E1x2 = 0,
−E∗

j−1xj−1 + S(Aj)xj + Ejxj+1 = 0, j = 2, 3, . . . , 
 − 1,
−E∗

�−1x�−1 = 0.
(4.3)

Since H(A1) is Hermitian positive definite, we see that x1 = 0. Based on (4.3)
and the assumption that Ej has full column rank for j = 1, 2, . . . , 
 − 2, we can
successively obtain xj = 0 for j = 1, 2, . . . , 
 − 1. Thereby, (4.3) can be further
reduced to

E�−1x� = 0.

Since Cx� = 0, we conclude that x� ∈ null(C) ∩ null(E�−1), which is {0} by our
assumption. Hence, x� = 0. Therefore, the only solution for Ax = 0 is the trivial
solution, and A is nonsingular. �

For the PHSS iteration method described in Section 2, if we first specifically take
the Hermitian positive definite matrix P ∈ Cn×n to be of block diagonal form, i.e.,

P = Diag
(α1

α
P1,

α2

α
P2, . . . ,

α�

α
P�

)
with

αj > 0 and Pj ∈ Cnj×nj Hermitian positive definite, j = 1, 2, . . . , 
,

and then directly apply it to the block tridiagonal system of linear equations (4.1),
the following iteration scheme, called the block preconditioned Hermitian and skew-
Hermitian splitting (BPHSS) iteration method, can be obtained immediately.

The BPHSS iteration method. Let Pj ∈ Cnj×nj (j = 1, 2, . . . , 
) be prescribed
Hermitian positive definite matrices and let αj (j = 1, 2, . . . , 
) be given positive
constants. Given an initial guess

x(0) =
(
x

(0)∗

1 , x
(0)∗

2 , . . . , x
(0)∗

�

)∗
∈ Cn with x

(0)
j ∈ Cnj×nj ,

compute

x(k) =
(
x

(k)∗

1 , x
(k)∗

2 , . . . , x
(k)∗

�

)∗
∈ Cn with x

(k)
j ∈ Cnj×nj

for k = 0, 1, 2, . . . using the following iteration scheme until {x(k)} satisfies the
stopping criterion:

• Solve x
(k+ 1

2 )
j (j = 1, 2, . . . , 
) successively from the subsystems of linear

equations

(αjPj + H(Aj))x
(k+ 1

2 )
j = (αjPj − S(Aj))x

(k)
j + E∗

j−1x
(k)
j−1 − Ej+1x

(k)
j+1 + bj ,

j = 1, 2, . . . , 
.

License or copyright restrictions may apply to redistribution; see https://www.ams.org/journal-terms-of-use



296 Z.-Z. BAI, G. H. GOLUB, AND C.-K. LI

• Solve x
(k+1)
j (j = 1, 2, . . . , 
) from the system of linear equations

(αjPj + S(Aj))x
(k+1)
j − E∗

j−1x
(k+1)
j−1 + Ej+1x

(k+1)
j+1 = (αjPj −H(Aj))x

(k+ 1
2 )

j + bj ,

j = 1, 2, . . . , 
.

Here, we have stipulated that x
(k)
0 = x

(k+1)
0 = 0 and x

(k)
�+1 = x

(k+1)
�+1 = 0.

Note that in the BPHSS iteration method, for each fixed iteration index k, the
block vectors x

(k+ 1
2 )

j (j = 1, 2, . . . , 
) can be computed independently and, hence,
the vector x(k+ 1

2 ) can be easily obtained on a multiprocessor system. Compara-
tively, the block vectors x

(k+1)
j (j = 1, 2, . . . , 
) are more dependent, which may

cause difficulty in solving the second-half iterate x(k+1) in parallel. However, there
are efficient direct and iterative methods for solving this special class of block tridi-
agonal systems of linear equations; see [24, 21, 5, 1, 7]. Therefore, the BPHSS
iteration method can be easily and effectively implemented in parallel on a multi-
processor system.

In addition, in actual computing it may be beneficial in solving the second-half
iterate x(k+1) if we first execute block reordering for the system of linear equa-
tions (4.1), although this does not change the subsystem of linear equations defining
the first-half iterate x(k+ 1

2 ).
The following theorem describes the convergence property of the BPHSS itera-

tion method.

Theorem 4.2. Let all the conditions of Proposition 4.1 be satisfied. Then the
BPHSS iteration scheme is unconditionally convergent; that is, the spectral radius
of its iteration matrix L(α1, α2, . . . , α�; P ) satisfies

ρ(L(α1, α2, . . . , α�; P )) < 1, for all α1, α2, . . . , α� > 0.

Proof. Without loss of generality, we only need to consider the case that P = I;
otherwise, we can turn to the preconditioned linear system (2.1) instead.

To prove the unconditional convergence of the BPHSS iteration method, ac-
cording to Theorem 3.1 we only need to show that the null space of H(A) does
not contain an eigenvector of S(A). In fact, if there exists a nonzero vector
x = (x∗

1, x
∗
2, . . . , x

∗
� )

∗ ∈ Cn, with xj ∈ Cnj (j = 1, 2, . . . , 
), such that H(A)x = 0
and S(A)x = iξx hold for some ξ ∈ R, i.e.,

Cx� = 0, H(Aj)xj = 0 for j = 1, 2, . . . , 
 − 1,

and

(4.4)

⎧⎨
⎩

S(A1)x1 + E1x2 = iξx1,
−E∗

j−1xj−1 + S(Aj)xj + Ejxj+1 = iξxj for j = 2, 3, . . . , 
 − 1,
−E∗

�−1x�−1 = iξx�,

then from the Hermitian positive definiteness of the matrix H(A1) we know that
x1 = 0. It then follows from the full-rank assumption of the matrices Ej (j =
1, 2, . . . , 
− 2) that xj = 0 (j = 1, 2, . . . , 
− 1). Thus, (4.4) can be further reduced
to

E�−1x� = 0 and iξx� = 0.

Evidently, whether ξ = 0 or not, we can obtain x� = 0 due to the assumption
null(C) ∩ null(E�−1) = {0}. Therefore, x = 0, a contradiction. �
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By suitable reordering or redecomposition, the block tridiagonal system of linear
equations (4.1) can be reformulated as one with a two-by-two block coefficient
matrix, or in the form of saddle-point problems. But now the (1, 1)-block of the
newly obtained two-by-two block matrix is not positive definite, even though its
(2, 2)-block is Hermitian positive semidefinite and the overlapping set between the
null spaces of its (1, 2)-block and (2, 2)-block is {0}. Therefore, Theorem 3.1 in
[11] cannot guarantee the convergence of the BPHSS iteration sequence. However
Theorem 4.2 shows that the BPHSS iteration method is convergent unconditionally
to the exact solution of the block tridiagonal system of linear equations (4.1).
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