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Convergence Properties of Some 

Nonlinear Sequence Transformations 


By Avram Sidi 

Abstract. The nonlinear transformations t o  accelerate the  convergence o f  se-

quences due  t o  Levin are considered and bounds o n  the  errors are derived. Conver-

gence theorems for  oscillatory and some monotone sequences are proved. 

1. Introduction. Recently, Levin (1973) has developed some very powerful non- 
linear transformations to  accelerate the convergence of sequences (or series). These 

transformations have had remarkable success when applied to  certain problems. For ex- 

ample, Levin (1973) has applied them to various infinite series, Longman (1973) has 
used them to  generate rational approximations for Laplace transform inversion, and 
Blakemore, Evans, and Hyslop (1976) have used them in the computation of certain in- 
finite integrals which come up in certain physical problems. So far, however, the con- 
vergence properties of these transformations have not been analyzed. The purpose of 
this paper is to partially fill this gap. 

In the next section we review the derivation of the transformations of Levin. In 
Section 3 we give error bounds for two different limiting processes and state some suf- 
ficient conditions for convergence. The results of Section 3 are based on Sidi (1977, 
Chapter 5). In Section 4 the application of Levin's transformations to oscillatory and 
monotone sequences is considered. It turns out that for oscillatory sequences the suf- 
ficient conditions in the theorems of Section 3 are automatically satisfied, hence there 
is always convergence. For monotone sequences, however, in general, we do not know 

whether the sufficient conditions above are satisfied, and experience suggests that they 
are not. For some monotone sequences though we are able to give a convergence theo- 

rem. In Section 5 further convergence properties for some parameters which appear in 

the derivation of Levin's transformations are analyzed. In Section 6 a special case of a 
theorem due to Levin and Sidi (1975) is proved which shows under what conditions one 
could expect Levin's transformations to  give convergent results. 

2. Review of Levin's Transformations. Let A , ,  A 2 ,  . . . be an infinite convergent 

sequence whose limit we denote by A .  Tk,n,the approximation to A ,  and the constants 

yi,i = 0, .. . , k - 1, are defined as the solution to  the k + 1 linear equations 

provided that no R, is zero. 
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These equations have a simple solution for Tk,,, which is given by 

The expression in (2.2) can be put in a more compact form by using forward differ- 

ences. If we define Aa, = a,+, - a, and Asa, = A(As-'a,), s = 2,  3 ,  . . . , then we 

have 

Making use of (2.3) in (2.2),we can express Tk, ,  as 

The t ,  u ,  and v transformations are defined by letting R ,  = a,, R ,  = ra,, and R ,  = 

arar+l/(ar+l -a,) ,  respectively, where al = A l ,  a, = AArP1,r 2 2. The t and u 
transformations were designed specifically for alternating and monotone series, respec- 
tively. 

3. Error Bounds and Some Convergence Theorems. As is well known, in order 

for a certain convergence acceleration method to  work well on a given sequence, the se- 
quence in hand has to have certain properties which suit the specific convergence ac- 

celeration method. If the sequence does not have those properties, then we should not 

expect the method to work well. What then are the properties that the sequence A,, 
r = 1 ,  2, . . . , of Section 2, should have in order for Tk, ,  to  be a good approximation 

to the limit A? Another even more important question is: Given that the sequence A,, 

r = 1 ,  2, . . . , has those favorable properties, how good an approximation is T,,,? A 

answer to both of these questions will be given below. 

LEMMA. Let T,,, be the approximation to the limit A of the sequence A,, r = 

1 ,  2, . . . , as given in (2.4). Then 

ProoJ: Subtracting A from both sides of (2.4) we obtain 

Using now the fact that Ak is a linear operator in the numerator of the expression on 
the right-hand side of (3.2), the result follows. 

We are now going to consider two kinds of limiting processes: 
1. k is held fixed and n -+ m, (Process I ) ,  
2. n is held fixed and k m, (Process 11).-+ 
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Process I .  
THEOREM3.1. Let the sequence A , ,  r = 1 ,  2 ,  . . . , have the limit A ,  and let the 

A ,  be of the form 

where f ( x ) ,  considered as a function of the continuous variable x ,  is continuous for all 
x 2 n ,  including x = rn, and as x --t rn, has a Poincark-type asymptotic expansion in in- 

verse powers of x ,  given by 
co 


(3.4) f ( x )  - b i / x i ,  as x -+ rn, Po # 0.
i=O 

Define wk(x )  by 

i= 0 

Then Tk,n  satisfies 

where Awk(x)  = wk(x + 1) - wk(x) .  
Remark. The case Po = 0 will be dealt with in Section 6. There we shall see 

that Po # 0 is not a serious limitation. 
Proof: Substituting (3.3) in (3.1), we obtain 

Ak [nk-' f (n ) ]  
Tk,n - A  = 

Ak(nk-'IR,) 

Now, using the fact that A ~ ( ~ ( x ) )  of degree at  = 0 whenever p(x)  is a polynomial in x 
most k - 1 and Ap(x )  = p(x + I )  - p ( x ) ,  we have 

Subtracting the left-hand side of (3.8),with x replaced by n ,  from the numerator of 
the right-hand side of (3.7), and using (3.5), the result follows. 

COROLLARY1. Define the by 

Then, T k S n  satisfies the inequality 

Proof: Making use of (2.3) in (3.6) and using (3.9), (3.6) can be written as 
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Now since A ,  -+ A and f ( x )  is nonzero at x = w, then R ,  -+ 0 as r -+ m. Hence, 
-
R,  = sup,>, IR,J exists and is finite. Similarly, Wk, ,  = sup,,, \w,(s)l also exists and 

is finite. The result in (3.10) now follows by taking the absolute value of both sides 

and using the inequality 

Piqi < max lpilI i  1i =  1 l<i<k 

COROLLARY2. Tk,,satisfies the inequality 

where qk ,= ~ ( n - ' )  as n -+ w; and i f  

sup ( aF3n) < m, 
n j = o  

then, as n -+ w, 

(3.15) T,,, = A + o(nPk).  

ProoJ: Since R ,  -+ 0 as r -+ w, % -+ 0 as n -+ m, hence R, = o(1).  Simi-

larly, using (3.4) in (3.5),we have that 

hence wk(x)  = o ( x - ~ ) ;therefore, Wk,,  = 0 ( n P k )as n -+ w. Defining now qk,, = 

R,W,,, , the results in (3.1 3 )  and (3.1 5 )  follow easily. 

Process 11. 
THEOREM3.2. Let the sequence A , ,  r = 1 ,  2 ,  . . . , be as in Theorem 3.1. Using 

the transformation t; = nlx ,  map the infinite interval n < x < to the finite interval 

0 < t; < 1 .  Define F(t;) - f i x )  and let 

be the best polynomial approximation of degree k - 1 to F(t;)on the interval [ O ,  1 1  ; 
define also f,(x) -- Fk(t;). Further, let 

and define Z,(g) - z,(x). Then 

where Azk (x )  = zk (x  + 1) - zk(x) .  



319 CONVERGENCE OF NONLINEAR SEQUENCE TRANSFORMATIONS 

Proof: Since f (x) is continuous for all x 2 n, including x = w, F(t;) is contin- 

uous on [0, I ]  ; therefore, best polynomial approximations of all orders to F(t;) exist on 
[0, l ]  ; in particular, Fk(t;) exists there. Now 

therefore, xk-'fk(x) being a polynomial of degree k - 1 in x ,  we have, as in the proof 

of Theorem 3.1, 

Subtracting now the left-hand side of (3.21), with x replaced by n, from the numerator 
of the right-hand side of (3.7) again, and using (3.18), the result follows. 

COROLLARY1. Tk,n satisfies the inequality 

(3.22) I , -11 (5 a:.nlj sup in, sup I,(,,. 
j =O s3n s>n 

The proof of this corollary is similar to that of Corollary 1 of Theorem 3.1 and 

will be omitted. 

COROLLARY2. If f(x), in addition to being continuous, is also infinitely differ- 

entiable for x > n, including x = w, then Tk,n satisfies the inequality 

where ek -+ 0 as k -+ W, more rapidly than any negative power of k ; and if 

sup ( 5 a:.n) < -, 
k j = O  

then as k -+ w, 

for any h > 0, as k -+ w. 

Proof: Since f (x) is infinitely differentiable for x 2 n including x = w, F(t;) is 
infinitely differentiable for 0 < t; < 1. As is known from the theory of best polynom- 

ial approximations, Ck = maxoGcG IZk(t;)I, as k =, tends to zero more rapidly than -+ 

any negative power of k. Now 

-

Setting ek = K c k ,  where R, = sup,>n lRsl as in Corollary 1 to Theorem 3.1 (3.23) 


follows from (3.22). Now, using (3.24) in (3.23), (3.25) follows easily. 

4. Some Special Cases. In Corollary 2 to Theorem 3.1 and also in Corollary 2 

to Theorem 3.2 the conditions (3.14) and (3.24) are sufficient for convergence. When 

Process I and Process I1 are viewed as summability methods, by the Silverman-Toeplitz 

theorem (see Powell and Shah (1972, pp. 23-27)), these conditions are necessary (but 

not sufficient) for both processes to be regular summability methods. It is clear that 
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these conditions can be weakened by assuming that XF=o grows less rapidly than 
l/qk,, as n +00 and than 1/ek as k += 00. However, in certain cases convergence does 
take place in spite of ZF=o laFn l growing faster than l /qk, ,  and l /ek .  An example of 
this will be given below. Although it is not easy to see how ZF=o laFnl behaves as 
n += 00 or k * 00 for general R,, in one instance at least, the convergence of Tk,, to 
A can be proved easily, and this is done below. 

THEOREM4.1. Suppose that the sequence A,, r = 1, 2, . . . , is as described in 
Theorem 3.1 and in addition 

(4.1) Rr=(- l ) ' lR, l ,  r = 1 , 2  , . . . .  

Then Tk,n = A + ~ ( n - ~ )as n -+ m. I . in addition, f(x) is infinitely differentiable 

for x 2 n including x = 00, then T,,, = A + o(kPh), for any X > 0, as k --t 00. 

Pro08 Using (4.1) in (3.9), we see that 

Therefore, 

(4.3) 

Hence, the result follows from Corollary 2 of Theorem 3.1 and Corollary 2 of Theorem 
3.2. 

It has been shown by Levin (1973) that for an oscillatory convergent sequence A, = 

Xyzl (-1)'-'ai with ai > 0, a,  > a2 > . , and limn,, an  = 0, the t- and u-transfor- 

mations, both in Process I and in Process 11, satisfy all the conditions of the Silverman- 
Toeplitz theorem (see Powell and Shah (1972, pp. 23-27)) and, hence, are regular. 
Therefore, Tk,n +A. Now for the t-transformation, which has been designed specifi- 
cally for oscillatory sequences, R, = (-1)'-'a,. Hence, we see from Theorem 4.1 that 
the condition a,  > a2 > is not necessary for convergence. 

Another instance in whch the convergence of Tk,, to A as n -00 (Process I) 
can be shown is that of some monotone sequences. This we give in the following theo- 
rem. 

THEOREM4.2. Suppose the sequence A,, r = 1, 2, . . . , is as described in Theo- 
rem 3.1. If;in addition, R, are all of the same sign as r -+ 00, and 

where the right-hand side of (4.4) is a PoincarL-type asymptotic expansion, then T,,, 
*A such that 

Remark. a > 0 is necessary for R, -0 as r -m. 


Proofi In Eq. (3.6) of Theorem 3.1, nk-'wk(n) and nk-'/R,, by (4.4), have 
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PoincarC-type asymptotic expansions in inverse powers of n. In fact, nk-'wk(n) = 

~ ( n - ' )and nk-'/R, = O(nk-If'-') as n -+ w. Therefore, nk[nk- 'wk(n)]  = ~ ( n - ~ - ' )  
and nk(nk-'IR,) = ~ ( n - '  as n --+w. The result now follows from (3.6). 

In spite of the result in (4.5), Corollary 2 of Theorem 3.1 does not apply to this 
case as is shown below. 

THEOREM4.3. When the sequence A,, r = 1 ,  2, . . . , is as in Theorem 4.2 Pro- 
cess I is not a regular summability method. 

Proof It is enough to show that z;=, laFnl is not bounded as n -+ w. Now 

From the proof of Theorem 4.2 we have nk(nk-'IR,) = ~ ( n - " ~ )as n -+ w. Since 
(n -F k ) k - ' / ~ ~ n + k ~  we can see that the right-hand side of the inequality = ~ ( n ~ - ' + ~ ) ,  
in (4.6) is O(nk)as n -+ w. Therefore, zFzo laFnl -+ as n -+ m and the result 
follows. 

For the monotone sequences as given in Theorem 4.2, we have not been able to 
obtain results for Process I1 comparable to the ones presented for Process I. However, 
for one case it is quite easy to prove the following: 

THEOREM4.4. If R ,  = r-', r = 1 ,  2 ,  . . . , then Process I1 is not a regular sum- 
nubility method. 

Proof: Again, all we need to show is that z;=~ laFnl is not bounded as k -+ W. 

Now 

The right-hand side of the inequality in (4.7), by using Stirling's formula, k!  -
kke-*J% as k -+ w, is O(ek)as k --t w. Therefore, Z;=, a ? "  -+ w as k --t w, 

and the result follows. 

5. Further Results. Until now we have been concerned solely with the approxi-
mation Tk,,. Now we want to investigate the y's in Eqs. (2.1). First of all, they can 

be computed easily without having to solve Eqs. (2.1) as is shown below. As a matter 
of convenience, we shall write T for Tk, ,. 

THEOREM5.1. The y's in Eqs. (2.1) can be computed recursively by using the 
formulas 

Remark. If we set i = -1  in (5.1),we obtain T ,  as can be seen from (2.4). 
Proof: Let us multiply each of the equations in (2.1) by r k + i / ~ r ,r = n ,  n + 1 ,  

. . . , n + k. Now let us operate on the first equation (r = n)  
Ir- 1 
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with the operator Ak. Using the fact that Akp(x)= 0 when p(x) is a polynomial of 

degree k - 1 or less, we obtain (5.1). Now assuming that T has been computed (using 
(2.4)),we set i = 0 in (5.1), and using Akxk = k!, we obtain 

Setting i = 1 next in (5.1) and using the values of T and yo, we compute yl from the 

formula 

1 k k f l(5.4) yl = - { A  [n (A, - T)/R,] - Y o ~ k ( n k + l ) ) ,
k! 

Now set i = 2 and so forth up to i = k - 1. 
It turns out the y's too have certain interesting convergence properties as numeri- 

cal experiments show. It has been observed numerically that, both for Process I and 
Process 11, yj --t pi,  j = 0 ,  1 ,  .. . , whenever f ( x ) is as in Theorem 3.1. Unfortunately, 
it seems to be difficult to obtain meaningful results for arbitrary sequences. However, 
for the monotone sequences described in Theorem 4.2, and for Process I, it is possible 
to state an interesting convergence theorem for the yj. 

THEOREM5.2. If the sequence A,, r = 1 ,  2 ,  . . . , is as described in Theorem 4.2, 
with the same notation, then 

(5.5) yi - pi -k+" ) asn - - t * , i=O,  1 , . . . ,  k - 1 .= ~ ( n  

Proofi We shall prove (5.5) by induction on i. Let us first put Eq. (5.1) in a 
more manageable form. Using Eq. (3.3), we can write (5.1) as 

From (4.4) n k f  ' /R ,  = O(nk+'+'), therefore Ak(nk f'/R,) = O(ni f '). Using this 
with (4.5) we then have 

(5.7) (A  - T ) A ~ ( ~ ~ += ~ ( n - ~ " )as n'IR , ) += m. 

By (3.4) we have 

j=O ' 

Therefore 

Combining (5.7) and (5.8), Eq.  (5.6) becomes 

(5.9) 	 C
i 

(y i - f l i )Ak(nkf i - i )  = 0 ( n P k f i )  a s n  -+m, i = 0 ,  1 ,  . . .  , k - 1 .  
j=O 

Now let us set i = 0 in (5.9). We obtain 

(5.10) 	 k! (yo  -- 0,) = O(n-k )  as n -+ w, 
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so (5.5) is true for i = 0. Next let us assume that (5 .5)  is true for i = 0, 1 ,  .. . , m - 1 ,  

m < k. Then for i = m (5.9) gives 

Using now the induction hypotllesis that y j  - P j  = 0 < j < m - 1, togeth- ~ ( n - ~ ' ~ ) ,  
er with ~ ~ ( n ~ + ~ - j= 0(nmPi)as n -+ w, (5.1 1 )  becomes) 

(5.12) ym - Pm = O(n -k+m ) as n -+ w, 

and this proves the theorem. 

Remark. As can be seen from (5.5), the convergence of yi to Pi is strongest for 
i = 0 (yo - Po = O ( C k ) ) ,and becomes weaker gradually as i increases, and is weakest 
for i = k - 1 ( y kP l  - P k P l  = O(nP1)).This phenomenon has indeed been observed 
numerically. 

6 .  Concluding Remarks. So far we have proved some convergence theorems for 
the nonlinear sequence transformations of Levin. These theorems are based mainly on 
the assumption that the sequence {A,},", satisfies (3.3) together with (3.4). Until now 
however, nothing has been said about when these conditions are satisfied. This point 
will be clarified by the following theorem which is a special case of a more general theo. 

rem proved by Levin and Sidi (1975). 

THEOREM6.1. Let the sequence Ak  = a,, k 1 ,  2, . . . , be such that the ~ , k = ~  = 

terms a, satisfy a linear first order homogeneous difference equation of the form 

(6.1) a,=p(r)&,, r = l , 2  , . . . ,  
where p(x),  considered as a function of the continuous variable x, as x -+ =, has a 
Poincare-type asymptotic expansion in inverse powers of  x, of the form 

for i an integer < 1. Let lim,,, A,  = A ,  A finite. Assume 

(6.3) lim p(r)a, = 0 
and r +  m 

where j7 = lirn,,, p(x)/x. Then A -A,-,, as R oo, has an asymptotic expansion -+ 

of  the form 

Remark. For monotonic sequences, it turns out usually that i = 1 .  This is ex- 
actly what is given in the u-transformation of Levin, which is designed for monotonic 
sequences. For oscillatory sequences on the other hand it turns out usually that i < 0. 
The t-transformation of Levin, which is good for oscillatory sequences, has i = 0. 
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Since the proof of Theorem 6.1 is by construction, it provides us with a 
method for finding the asymptotic expansion in (6.5), we give it below. 

Proof of  7'heorem 6.1. Using (6.1) in A -A R - l ,  we can write 

Making use of the formula for "summation by parts" 

and the condition (6.3), Eq. (6.6) becomes 

Now, from (6.2) and the fact that i < 1 and the definition of p, we have 

Therefore, 

Substituting (6.10) into (6.8), defining a ,  = fT + 1 and using (6.4) with I = - 1 (hence 
a ,  # 0) ,  we can write 

where 

Since d l ( R )  a p(R - 1) and p(R)  = O ( R i )as R w, d l ( R )  = O(Ri ) too. Similarly,-+ 

since cl(r)  = as r += w, we have bl ( r )  = ~ ( r - ~ )  w; hence, the series ~ ( r - ~ )  	 as r -+ 
m

ZrzR bl(r)ar converges to zero faster than 2rzR a,  as R -+=. 
We now apply all the steps that led to (6.11) and (6.12) to C;=R bl(r)ar.  Mak-

ing use of (6.1) again, we can write 

where q(r) b l (r)p(r) .  Using summation by parts, again we have 
m 	 m 

(6.14)  	 bl(r)ar = -q(R - l )aR - arAq(r - 1). 
r=R r=R 

Since 	 -
P1 

(6.15) q ( r ) = b l ( r ) p ( r ) - b l ( r ) ( p r + p o + - - + . . . )  a i r + = = ,r 
we have 

where 

(6.17 )  
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Substituting (6.16) into (6.14), defining a2 = 1 + 62  and using (6.4) with 1 = 1 
(hence a2 # 0) ,  we can write 

m 

where 

Since q ( R )  a b l ( R ) p ( R )and b l ( R )= o ( R - ~ )and p(R)  = o(R') as R -+ =, we have 
d 2 ( R )= o ( R ' - ~ )  as R -+ w. Similarly, b2(r)= as r -+ w .  Therefore, the ~ ( r - ~ )  
series CFZR b2(r)arconverges to zero faster than CF=R bl(r)ar as R -+ w. Continuing 
in this manner, we can define the functions dk(R) and bk(r),k = 3,  4 ,  5,  . . . , such tha 

where d k ( R )= o ( R ' - ~ )  as R and bk(r)= ~ ( r - ~ - ' )  Adding the equz as r -+=. 
tions (6.1 l ) ,  (6.18) and (6.20) with k = 3,  4 ,  . . . , n ,  we obtain 

-+ 

Since dk(R)  = o ( R ' - ~ ) as R -+ w, it is clear that in the asymptotic expansion 

the coefficients P o ,  . . . , Pk are fixed for k < n. Also, since bn(r)= ~ ( r - ~ - ' )  =and a, 

o(1)  as r -+ =, we have 

Therefore, C G R  a, has a true Poincard-type asymptotic expansion as given in (6.5), 

thus proving the theorem. 

We note here that in all the numerical examples given in Levin (1973) the se- 

quences satisfy all the conditions given in Theorem 6.1. 
Finally, the condition Po f 0 in (3.4), Theorem 3.1, is not too restrictive and has 

been imposed mainly to simplify the notation and results. The results of Section 3 re-
main essentially the same if Po  = 0 and so do their proofs. In general, if Pm (m > O), 
is the first nonzero coefficient in (3.4), then A ,  - + A  as r -+ implies R r / P  -+ 0 as 
r -+ =. Theorem 3.1 stays the same. Inequality (3.10) in Corollary 1 has to be re- 
placed by 

Consequently, in Corollary 2, Q ~ , ~  if k > m, and Eq. (3.15) has to be re. = ~ ( n - ~ ' ~ )  
placed by 

The changes in Theorem 3.2 are more complicated. Equation (3.19) now reads 



AVRAM SIDI 

where Tl(n/ ( )= f ( n / ( )  - Tl(n/() ,f l(n/{) is the best polynomial approximation (in {) of 
degree I - 1 to f ( n / ( ) on [0, 11 and f ( x )  = xmf (x).  Inequality (3.22) in Corollary 1 
now reads 

The results of Corollary 2, however, stay the same. Similar changes have to be made in 
Sections 4 and 5,  but we shall omit them. 
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