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Abstract

In this paper, we consider convergence properties of the Levenberg-Marquardt method for solving

nonlinear equations. It is well-known that the nonsingularity of Jacobian at a solution guarantees

that the Levenberg-Marquardt method has a quadratic rate of convergence. Recently, Yamashita

and Fukushima showed that the Levenberg-Marquardt method has a quadratic rate of convergence

under the assumption of local error bound, which is milder than the nonsingularity of Jacobian.

In this paper, we show that the inexact Levenberg-Marquardt method (ILMM), which does not

require computing exact search directions, has a superlinear rate of convergence under the same

assumption of local error bound. Moreover, we propose the ILMM with Armijo’s stepsize rule that

has global convergence under mild conditions.
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1 Introduction

In this paper, we consider solving the system of nonlinear equations

F (x) = 0, (1.1)

where F : �n → �m is a continuously differentiable function. To solve (1.1) is one of the most

fundamental themes in engineering, economics and so on.

When m = n, we can use Newton’s method to solve (1.1). As a search direction at a current

point xk, Newton’s method uses a solution dk of the system of linear equations

F ′ (xk) d = −F
(
xk

)
, (1.2)

where F ′ (xk) is the Jacobian of F at xk. Newton’s method has a rapid convergence property, and

hence it is used extensively in many applications. But, to obtain a solution efficiently by Newton’s

method, an initial point has to be sufficiently close to a solution x∗ and the Jacobian of F at the

solution x∗ has to be nonsingular. Besides these drawbacks, (1.2) may have no solution.

On the other hand, even if m �= n or there is no solution of (1.2), the system of linear equations

F ′ (xk)T F ′ (xk) d = −F ′ (xk)T F
(
xk

)
(1.3)

always has a solution d̄k. The Gauss-Newton method uses the solution d̄k as a search direction.

However, like Newton’s method, the Gauss-Newton method requires an initial point to be suf-

ficiently close to a solution in order to ensure convergence to a solution. Note that we can use

Moore-Penrose’s generalized inverse [9] to compute a solution of (1.3) when F ′(xk) is singular.

However, Moore-Penrose’s generalized inverse is somewhat intractable theoretically and numeri-

cally.

The Levenberg-Marquardt method (LMM) [1, 5, 8] is a modified Gauss-Newton method that

is designed to overcome the above mentioned drawbacks of the Gauss-Newton method. The LMM

uses a solution of the system of linear equations(
F ′ (xk)T F ′ (xk) + µkI

)
d = −F ′ (xk)T F

(
xk

)
(1.4)

as a search direction d̂k, where µk is a positive parameter and I is the identity matrix. Since

F ′ (xk)T F ′ (xk) + µkI is always positive definite, (1.4) has a unique solution. Moreover, d̂k is a

descent direction of φ at xk, where φ : �n → � is a merit function defined by

φ(x) =
1
2
‖F (x)‖2. (1.5)

In fact, if ∇φ
(
xk

) �= 0, we obtain

∇φ
(
xk

)T
d̂k = −

(
F ′ (xk)T F

(
xk

))T (
F ′ (xk)T F ′ (xk) + µkI

)−1 (
F ′ (xk)T F

(
xk

))
< 0.

Therefore, the LMM with Armijo’s stepsize rule enjoys global convergence to a stationary point of

φ. Especially, when m = n and F ′(x∗) is nonsingular at a stationary point x∗, x∗ is a solution of

(1.1) because

0 = ∇φ (x∗) = F ′ (x∗)T F (x∗) .
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Recently, Yamashita and Fukushima [20] showed that the LMM has a quadratic rate of con-

vergence under the assumption that ‖F (x)‖ provides a local error bound for (1.1), instead of the

nonsingularity of F ′(x) at a solution. Recall that ‖F (x)‖ is said to provide a local error bound on

a neighborhood N of a solution of (1.1) if there exist positive constants b such that

b dist(x,X∗) ≤ ‖F (x)‖ ∀x ∈ N, (1.6)

where X∗ is the solution set of (1.1). Concrete examples of local error bounds can be found in

[13]. When m = n and F ′(x∗) is nonsingular at a solution x∗, x∗ is a locally unique solution of

(1.1) and ‖F (x)‖ provides a local error bound for (1.1) in a neighborhood of x∗ [4]. Moreover,

‖F (x)‖ may provide a local error bound even if F ′(x) is singular at a solution. For example, let

us consider the mapping F : �2 → �2 defined by

F (x1, x2) =
(
ex1−x2 − 1, (x1 − x2) (x1 − x2 − 2)

)T
.

The solution set of (1.1) is given by X∗ =
{
x ∈ �2 | x1 − x2 = 0

}
, and hence dist (x,X∗) =√

2
2 |x1 − x2|. It is easy to see that

F ′(x1, x2) =

(
ex1−x2 −ex1−x2

2 (x1 − x2 − 1) −2 (x1 − x2 − 1)

)
,

and hence F ′(x1, x2) is singular at any solution. Moreover, we obtain

‖F (x)‖ =
√

(ex1−x2 − 1)2 + (x1 − x2)2 (x1 − x2 − 2)2

≥ |x1 − x2| |x1 − x2 − 2| .

Consequently, when N is chosen as N =
{
x ∈ �2

∣∣∣ |x1 − x2| ≤ 2 −
√

2
2

}
, the condition (1.6) holds

for any b ∈ (0, 1). Therefore, the condition that ‖F (x)‖ provides a local error bound in a neigh-

borhood of x∗ is milder than the condition that F ′(x∗) is nonsingular.

In the LMM considered in [20], it is assumed that (1.4) is solved exactly at every iteration. For

large-scale problems, however, it is expensive to solve (1.4) exactly, and hence it is often effective

to use inexact methods that find an approximate solution satisfying some appropriate conditions.

Therefore, in this paper, we consider the inexact Levenberg-Marquardt method (ILMM) that uses

an approximate solution dk of (1.4). Let the vector rk be defined by

rk :=
(
F ′ (xk)T F ′ (xk) + µkI

)
dk + F ′ (xk)T F

(
xk

)
. (1.7)

The vector rk is a residual vector associated with an approximate solution dk. Facchinei and

Kanzow [5] showed that the ILMM converges superlinearly under the assumption that
∥∥rk∥∥ is

sufficiently small and F ′ (xk)T F ′ (xk) is uniformly nonsingular.

In this paper, using techniques similar to [20], we show that the distance between the solution

set and a sequence generated by the ILMM converges to 0 superlinearly under the assumption that

‖F (x)‖ provides a local error bound in a neighborhood of a solution. Moreover, we propose the

ILMM with Armijo’s stepsize rule and show that the proposed algorithm enjoys global convergence.
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This paper is organized as follows: In Section 2, we establish local convergence of the ILMM

with unit step size under the local error bound assumption. In Section 3, we propose the ILMM

with Armijo’s stepsize rule and show that the algorithm has global convergence. In Section 4,

we report numerical results. In Section 5, we make some concluding remarks and discuss future

research topics.

2 Local Convergence

In this section, we discuss local convergence properties of the ILMM. Yamashita and Fukushima

[20] consider a minimization problem equivalent to (1.4) and analyze local convergence of the LMM

by using the properties of the minimization problem. In this paper, we use similar techniques to

analyze the rate of convergence of the ILMM.

For each k, we define θk : �n → � by

θk(d) =
∥∥F ′ (xk) d + F

(
xk

)∥∥2
+ µk‖d‖2, (2.1)

and consider the minimization problem

min
d∈�n

θk(d). (2.2)

Since the first order optimality condition for (2.2) is given by (1.4) and θk is a strictly convex

quadratic function, (1.4) is in fact equivalent to (2.2).

First, we make the following assumption on F , under which we will show a superlinear rate of

convergence of the ILMM.

Assumption 2.1

(i) There exists a solution x∗ of (1.1).

(ii) There exist constants b1 ∈ (0, 1) and c1 ∈ (0,∞) such that

‖F ′(y)(x− y) − (F (x) − F (y))‖ ≤ c1 ‖x− y‖2 ∀x, y ∈ B(x∗, b1),

where B (x∗, b1) := {x ∈ �n | ‖x− x∗‖ ≤ b1}.
(iii) ‖F (x)‖ provides an error bound for (1.1) on B (x∗, b1), i.e., there exists a constant c2 > 0 such

that

c2 dist (x,X∗) ≤ ‖F (x)‖ ∀x ∈ B (x∗, b1) ,

where X∗ is the solution set of (1.1).

In this paper, Assumption 2.1 (iii) plays the most important role instead of the nonsingu-

larity of Jacobian. Note that Assumption 2.1 (ii) is satisfied if F ′ is Lipschitzian [12, Theorem

3.2.12]. Moreover, since F is continuously differentiable, ‖F ′(y)‖ is bounded on B(x∗, b1) and F

is Lipschitzian on B(x∗, b1), i.e., there exists a constant L > 0 such that

‖F (x) − F (y)‖ ≤ L‖x− y‖ ∀x, y ∈ B (x∗, b1) . (2.3)
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In what follows, x̄k denotes an arbitrary vector such that

∥∥x̄k − xk
∥∥ = dist

(
xk, X∗) and x̄k ∈ X∗.

Note that such x̄k always exists even though the set X∗ need not be convex.

The following assumption is concerned with the choice of the parameters µk used in the ILMM.

Assumption 2.2 For each k, the parameter µk is chosen to satisfy

µk =
∥∥F (xk)

∥∥δ , (2.4)

where δ is a constant such that 0 < δ ≤ 2.

Throughout this section, we suppose that the ILMM generates a sequence {xk} by

xk+1 := xk + dk, (2.5)

where dk is an approximate solution of (1.4).

Now we show the next lemma.

Lemma 2.1 Suppose that Assumptions 2.1 and 2.2 hold. If xk ∈ B
(
x∗, b12

)
, then

∥∥dk∥∥ ≤ c3 dist
(
xk, X∗) +

∥∥rk∥∥
µk

, (2.6)

∥∥F ′ (xk) dk + F
(
xk

)∥∥ ≤ c4 dist
(
xk, X∗)1+ δ

2 +
∥∥F ′ (xk)∥∥

∥∥rk∥∥
µk

, (2.7)

where rk is the residual vector given by (1.7), c3 =
√

c21
cδ
2

(
b1
2

)2−δ
+ 1 and c4 =

√
c21

(
b1
2

)2−δ
+ Lδ.

Proof: Let d̂k be the exact solution of (1.4). Because (1.4) is equivalent to (2.2), we have

θk(d̂k) ≤ θk
(
x̄k − xk

)
. (2.8)

Moreover, since xk ∈ B
(
x∗, b12

)
, we have

∥∥x̄k − x∗∥∥ ≤ ∥∥x̄k − xk
∥∥ +

∥∥x∗ − xk
∥∥ ≤ ∥∥x∗ − xk

∥∥ +
∥∥x∗ − xk

∥∥ ≤ b1,

and hence x̄k ∈ B(x∗, b1). It then follows from Assumptions 2.1 and 2.2 together with the condition

(2.3) that

µk =
∥∥F (

xk
)∥∥δ ≥ cδ2

∥∥x̄k − xk
∥∥δ , (2.9)

µk =
∥∥F (

xk
)∥∥δ =

∥∥F (x̄k) − F
(
xk

)∥∥δ ≤ Lδ
∥∥x̄k − xk

∥∥δ . (2.10)

By the definition (2.1) of θk, we have

‖d̂k‖2 ≤ 1
µk

θk(d̂k)

≤ 1
µk

θk
(
x̄k − xk

)
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=
1
µk

(∥∥F ′ (xk) (
x̄k − xk

)
+ F

(
xk

)∥∥2
+ µk

∥∥x̄k − xk
∥∥2

)
≤ 1

µk

(
c21

∥∥x̄k − xk
∥∥4

+ µk
∥∥x̄k − xk

∥∥2
)

=

(
c21

∥∥x̄k − xk
∥∥2

µk
+ 1

) ∥∥x̄k − xk
∥∥2

≤
(
c21
cδ2

∥∥x̄k − xk
∥∥2−δ

+ 1
) ∥∥x̄k − xk

∥∥2

≤
{
c21
cδ2

(
b1
2

)2−δ
+ 1

}∥∥x̄k − xk
∥∥2

,

where the second inequality follows from (2.8), the third inequality follows from Assumption 2.1

(ii), the fourth inequality follows from (2.9), and the last inequality follows from the fact that∥∥x̄k − xk
∥∥ ≤ ∥∥x∗ − xk

∥∥ ≤ b1
2
. (2.11)

So we obtain

‖d̂k‖ ≤
√

c21
cδ2

(
b1
2

)2−δ
+ 1

∥∥x̄k − xk
∥∥ . (2.12)

Moreover, from (1.7), we have

dk = d̂k +
(
F ′ (xk)T F ′ (xk) + µkI

)−1

rk.

It then follows that ∥∥dk∥∥ ≤ ‖d̂k‖ +
∥∥∥∥(

F ′ (xk)T F ′ (xk) + µkI
)−1

∥∥∥∥ ∥∥rk∥∥
≤ ‖d̂k‖ +

∥∥rk∥∥
µk

. (2.13)

Consequently, we obtain (2.6) with c3 =
√

c21
cδ
2

(
b1
2

)2−δ
+ 1 from (2.12) and (2.13).

Next we show (2.7). The left-hand side of (2.7) can be estimated as

∥∥F ′ (xk) dk + F
(
xk

)∥∥ =
∥∥∥∥F ′ (xk) (

d̂k +
(
F ′ (xk)T F ′ (xk) + µkI

)−1

rk
)

+ F
(
xk

)∥∥∥∥
≤

∥∥∥F ′ (xk) d̂k + F
(
xk

)∥∥∥ +
∥∥F ′ (xk)∥∥ ∥∥∥∥(

F ′ (xk)T F ′ (xk) + µkI
)−1

∥∥∥∥∥∥rk∥∥
≤

∥∥∥F ′ (xk) d̂k + F
(
xk

)∥∥∥ +
∥∥F ′ (xk)∥∥

∥∥rk∥∥
µk

. (2.14)

It then follows from (2.1), (2.8), Assumption 2.1 (ii), (2.10), and (2.11) that

‖F ′ (xk) d̂k + F
(
xk

) ‖2 ≤ θk(d̂k) ≤ θk
(
x̄k − xk

)
≤ c21

∥∥x̄k − xk
∥∥4

+ µk
∥∥x̄k − xk

∥∥2

≤ c21

(
b1
2

)2−δ ∥∥x̄k − xk
∥∥2+δ

+ Lδ
∥∥x̄k − xk

∥∥2+δ

=

{
c21

(
b1
2

)2−δ
+ Lδ

}∥∥x̄k − xk
∥∥2+δ

.
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Therefore, the first term of (2.14) can be estimated as

∥∥∥F ′ (xk) d̂k + F
(
xk

)∥∥∥ ≤
√
c21

(
b1
2

)2−δ
+ Lδ

∥∥x̄k − xk
∥∥1+ δ

2 ,

which yields the desired inequality (2.7). ✷

Now we give a condition on
∥∥rk∥∥ for superlinear convergence of the ILMM.

Assumption 2.3 The residual vector rk given by (1.7) satisfies∥∥rk∥∥
µk

= o
(
dist

(
xk, X∗)) ,

where o(·) means limt→0
o(t)
t = 0.

We have the next lemma from Assumption 2.3 directly.

Lemma 2.2 Suppose that Assumption 2.3 holds. Then there exists a constant b2 > 0 such that

dist
(
xk, X∗) ≤ b2 =⇒

∥∥rk∥∥
µk

≤ dist
(
xk, X∗) .

By using Lemma 2.1, we show a key lemma of our analysis.

Lemma 2.3 Suppose that Assumptions 2.1, 2.2 and 2.3 hold. If xk ∈ B
(
x∗, b12

)
, then

dist
(
xk+1, X∗) = o

(
dist

(
xk, X∗)) .

In particular, there exists a constant b3 > 0 such that

dist
(
xk, X∗) ≤ b3 =⇒ dist

(
xk+1, X∗) ≤ 1

2
dist

(
xk, X∗) .

Proof: It follows from Lemma 2.1, Assumption 2.3 and the boundedness of ‖F ′ (x)‖ on B
(
x∗, b12

)
that

∥∥dk∥∥ ≤ c3 dist
(
xk, X∗) + o

(
dist

(
xk, X∗)) , (2.15)∥∥F ′ (xk) dk + F

(
xk

)∥∥ ≤ c4 dist
(
xk, X∗)1+ δ

2 +
∥∥F ′ (xk)∥∥ · o (

dist
(
xk, X∗)) (2.16)

= o
(
dist

(
xk, X∗)) .

Then we obtain

dist
(
xk+1, X∗) =

∥∥x̄k+1 − xk+1
∥∥

≤ 1
c2

∥∥F (xk + dk)
∥∥

≤ 1
c2

∥∥F ′ (xk) dk + F
(
xk

)∥∥ +
c1
c2

∥∥dk∥∥2

≤ o
(
dist

(
xk, X∗)) +

c1
c2

{
c3 dist

(
xk, X∗) + o

(
dist

(
xk, X∗))}2

= o
(
dist

(
xk, X∗)) ,
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where the first inequality follows from Assumption 2.1 (iii) and (2.5), the second inequality follows

from Assumption 2.1 (ii), and the last inequality follows from (2.15) and (2.16). This completes

the proof. ✷

Lemma 2.3 shows that
{

dist
(
xk, X∗)} is convergent to 0 superlinearly if xk ∈ B

(
x∗, b12

)
for

all k. Now we give a sufficient condition for xk ∈ B
(
x∗, b12

)
for all k.

Lemma 2.4 Suppose that Assumptions 2.1, 2.2 and 2.3 hold. Let b̄ := min
{
b1
2 , b2, b3

}
and e :=

b̄
3+2c3

. If x0 ∈ B (x∗, e), then xk ∈ B
(
x∗, b̄

) ⊆ B
(
x∗, b12

)
for all k.

Proof: We prove the lemma by induction.

First we consider the case k = 0. Since e < b̄ ≤ b1
2 , we have x0 ∈ B

(
x∗, b12

)
. It then follows

from Lemma 2.1 that

∥∥x1 − x∗∥∥ =
∥∥x0 + d0 − x∗∥∥ ≤ ∥∥x∗ − x0

∥∥ +
∥∥d0

∥∥
≤ ∥∥x∗ − x0

∥∥ + c3 dist
(
x0, X∗) +

‖r0‖
µ0

.

Since

dist
(
x0, X∗) ≤ ∥∥x∗ − x0

∥∥ ≤ e ≤ b2,

we have from Lemma 2.2

∥∥x1 − x∗∥∥ ≤ ∥∥x∗ − x0
∥∥ + c3 dist

(
x0, X∗) + dist

(
x0, X∗)

≤ ∥∥x∗ − x0
∥∥ + c3

∥∥x∗ − x0
∥∥ +

∥∥x∗ − x0
∥∥

≤ (2 + c3) e ≤ 2 + c3
3 + 2c3

b̄ ≤ b̄.

Next we consider the case k ≥ 1. Suppose that xl ∈ B
(
x∗, b̄

)
, l = 1, . . . , k. Since e < b̄, we

have x0 ∈ B
(
x∗, b̄

)
. It follows from dist

(
xl, X∗) ≤ ∥∥x∗ − xl

∥∥ ≤ b̄ ≤ b3 and Lemma 2.3 that

dist
(
xl, X∗) ≤ 1

2
dist

(
xl−1, X∗) ≤ · · · ≤

(
1
2

)l
dist

(
x0, X∗) ≤

(
1
2

)l ∥∥x∗ − x0
∥∥

≤
(

1
2

)l
e 0 ≤ ∀l ≤ k.

Since xl ∈ B
(
x∗, b12

) ∩B (x∗, b2) , l = 0, . . . , k, Lemmas 2.1 and 2.2 yield

∥∥dl∥∥ ≤ (c3 + 1) dist
(
xl, X∗) ≤ (c3 + 1)

(
1
2

)l
e. (2.17)

Consequently, we obtain

∥∥xk+1 − x∗∥∥ ≤ ‖x0 − x∗‖ +
k∑
l=0

∥∥dl∥∥
≤ {1 + 2 (c3 + 1)} e = b̄.

This completes the proof. ✷

From these lemmas, we can show the next theorem, which is the main result in the paper.
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Theorem 2.1 Suppose that Assumptions 2.1, 2.2 and 2.3 hold. Let e and b̄ be the constants given

in Lemma 2.4, and {xk} be a sequence generated by the ILMM with x0 ∈ B (x∗, e) and (2.5). Then,{
dist

(
xk, X∗)} converges to 0 superlinearly. Moreover,

{
xk

}
converges to a solution x̂ ∈ B

(
x∗, b̄

)
.

Proof: We obtain the first half of the theorem from Lemmas 2.3 and 2.4 directly. So, we only

show that
{
xk

}
converges to x̂ ∈ B

(
x∗, b̄

)
. For this purpose, we only have to show that

{
xk

}
is a

convergent sequence because
{
xk

} ⊂ B
(
x∗, b̄

)
and

{
dist

(
xk, X∗)} converges to 0.

Note that we have ∥∥dl∥∥ ≤ (c3 + 1)
(

1
2

)l
e ∀l ≥ 0

from (2.17) in the proof of Lemma 2.4. Therefore, for all integers p > q ≥ 0, we obtain

‖xp − xq‖ ≤
p−1∑
l=q

∥∥dl∥∥ ≤ (c3 + 1) e
p−1∑
l=q

(
1
2

)l
≤ (c3 + 1) e

∞∑
l=q

(
1
2

)l

≤ (c3 + 1) e
(

1
2

)q−1

.

This means that
{
xk

}
is a Cauchy sequence, and hence it converges. ✷

Note that Theorem 2.1 does not say that a sequence
{
xk

}
generated by the ILMM converges

to x̂ superlinearly. Moreover, this theorem does not show the quadratic convergence, though the

exact LMM converges quadratically under the same conditions and rk = 0 for all k [20]. However,

we can show that the ILMM has a quadratic rate of convergence if we assume a more restrictive

condition than Assumption 2.3.

Theorem 2.2 Suppose that Assumptions 2.1 and 2.2 hold. Suppose also that δ = 2 and∥∥rk∥∥
µk

= O
(

dist
(
xk, X∗)2

)
(2.18)

holds, where O(·) means limt→0
O(t)
t < ∞. Let e and b̄ be the constants defined in Lemma 2.4 and

{xk} be a sequence generated by the ILMM with x0 ∈ B (x∗, e) and (2.5). Then,
{

dist
(
xk, X∗)}

is convergent to 0 quadratically. Moreover,
{
xk

}
converges to a solution x̂ ∈ B

(
x∗, b̄

)
.

Proof: From (2.18), we immediately obtain

dist
(
xk+1, X∗) = O

(
dist

(
xk, X∗)2

)
,

using proof techniques similar to Lemma 2.3. Then, in a way similar to Theorem 2.1, we can show

this theorem. ✷

3 Global Convergence

In the previous section, we considered the rate of convergence of the ILMM with unit stepsize.

In this section, we propose the ILMM with Armijo’s stepsize rule and show that it has global

convergence.

We propose the following algorithm, which uses the merit function φ defined by (1.5).
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Algorithm 3.1

Step 0: Choose parameters α ∈ (0, 1), β ∈ (0, 1), γ ∈ (0, 1), ρ ∈ (0, 1), δ ∈ (0, 2], p > 0, and an

initial point x0 ∈ �n. Set µ0 = ‖F (x0)‖δ and k := 0.

Step 1: If xk satisfies a stopping criterion, then stop.

Step 2: Find an approximate solution dk of the system of linear equations(
F ′ (xk)T F ′ (xk) + µkI

)
d = −F ′ (xk)T F

(
xk

)
. (3.1)

If the condition

∥∥F (
xk + dk

)∥∥ ≤ γ
∥∥F (

xk
)∥∥ (3.2)

is satisfied, then set xk+1 := xk + dk and go to Step 4.

Step 3: If

∇φ
(
xk

)T
dk ≤ −ρ

∥∥dk∥∥p (3.3)

is not satisfied, set dk = −∇φ
(
xk

)
. Find the smallest nonnegative integer m such that

φ
(
xk + βmdk

) − φ
(
xk

) ≤ αβm∇φ
(
xk

)T
dk,

and set xk+1 := xk + βmdk.

Step 4: Set µk+1 =
∥∥F (xk+1)

∥∥δ and k := k + 1. Go to Step 1. ✷

In Step 3 of Algorithm 3.1, we must check whether a search direction dk satisfies (3.3) or not.

This is because dk is not an exact solution of (3.1) in general and hence dk may not be a good

descent direction of the merit function φ. If dk is not a good search direction, we reset dk to be

the steepest descent direction of φ. Consequently, dk is always a sufficient descent direction of the

merit function, and hence the line search in Step 3 is well-defined.

Now, we can prove the following global convergence theorem for Algorithm 3.1 by using tech-

niques similar to [5].

Theorem 3.1 Let {xk} be a sequence generated by Algorithm 3.1. If the residual vector rk given

by (1.7) satisfies the condition

∥∥rk∥∥ ≤ min
{
η

∥∥∥F ′ (xk)T F
(
xk

)∥∥∥ , νk ∥∥∥F ′ (xk)T F
(
xk

)∥∥∥δ} , (3.4)

where η ∈ (0, 1) and νk = o
(
dist

(
xk, X∗)), then any accumulation point of

{
xk

}
is a stationary

point of φ. Moreover, if an accumulation point x∗ of
{
xk

}
is a solution of (1.1) that satisfies

Assumption 2.1, then
{

dist
(
xk, X∗)} converges to 0 superlinearly.

9



Proof: First we show that any accumulation point of
{
xk

}
is a stationary point of φ. Let

K1 :=
{
k

∣∣ ∥∥F (
xk + dk

)∥∥ ≤ γ
∥∥F (

xk
)∥∥}

. If K1 is an infinite set, then we have
∥∥F (

xk
)∥∥ → 0

as k → ∞ because
{∥∥F (

xk
)∥∥}

is a monotonically decreasing sequence. This shows that any

accumulation point of {xk} is a stationary point of φ. If K1 is finite, then, without loss of generality,

we can assume that
∥∥F (

xk + dk
)∥∥ > γ

∥∥F (
xk

)∥∥ for all k. We will show that
{
dk

}
is gradient

related to
{
xk

}
, i.e., for any subsequence

{
xk

}
k∈K which converges to a nonstationary point of φ,{

dk
}
k∈K satisfies

lim sup
k→∞, k∈K

∥∥dk∥∥ < ∞, (3.5)

lim inf
k→∞, k∈K

∇φ
(
xk

)T
dk < 0. (3.6)

Then we can conclude that any accumulation point of
{
xk

}
is a stationary point of the merit

function φ [1, Proposition 1.2.1]. Let
{
xk

}
k∈K be a subsequence which converges to a nonstationary

point of φ, and let K2 :=
{
k ∈ K

∣∣ dk = −∇φ
(
xk

)}
. If K2 is an infinite set,

{
dk

}
is obviously

gradient related, and hence
{
xk

}
must converge to a stationary point of the merit function φ. If

K2 is a finite set, then we may assume, without loss of generality, that dk are approximate solutions

of (1.4) with residuals rk satisfying (1.7) for all k.

First we show that (3.5) holds. To this end, we consider two cases for the sequence {µk}: (i)

lim infk→∞,k∈K µk = 0 and (ii) lim infk→∞,k∈K µk > 0.

Case (i): In this case, without loss of generality, we assume that µk → 0 (k ∈ K). Then, we have∥∥F (xk)
∥∥ → 0 (k ∈ K). Since

{∥∥F ′ (xk)∥∥}
is bounded on any convergent subsequence

{
xk

}
k∈K ,

we obtain that ∇φ
(
xk

)
= F ′ (xk)T F

(
xk

) → 0 (k ∈ K). This contradicts the assumption that{
xk

}
k∈K converges to a nonstationary point. Therefore this case does not occur.

Case (ii): In this case, there exists a constant ξ such that µk ≥ ξ > 0 for all k. Since{∥∥∥F ′ (xk)T F
(
xk

)∥∥∥}
is bounded on any convergent subsequence

{
xk

}
k∈K , it follows from (1.7)

and (3.4) that

∥∥dk∥∥ ≤
∥∥∥∥(

F ′ (xk)T F ′ (xk) + µkI
)−1

∥∥∥∥ (∥∥∥F ′ (xk)T F
(
xk

)∥∥∥ +
∥∥rk∥∥)

≤ 1 + η

ξ

∥∥∥F ′ (xk)T F
(
xk

)∥∥∥ < ∞.

Therefore (3.5) holds.

Next, we show that (3.6) holds. Suppose to the contrary that (3.6) does not hold, i.e.,

lim inf
k→∞,k∈K

∇φ(xk)T dk = 0.

It then follows from (3.3) that there exists an infinite set K3 ⊂ K such that

lim
k→∞, k∈K3

dk = 0.

On the other hand, we have from (1.7)

∥∥∇φ
(
xk

) − rk
∥∥ =

∥∥∥F ′ (xk)T F
(
xk

) − rk
∥∥∥
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≤
∥∥∥(

F ′ (xk)T F ′ (xk) + µkI
)
dk

∥∥∥
≤

∥∥∥F ′ (xk)T F ′ (xk) + µkI
∥∥∥∥∥dk∥∥ .

Since lim supk→∞,k∈K3

∥∥∥F ′ (xk)T F ′ (xk) + µkI
∥∥∥ < ∞ and limk→∞, k∈K3 d

k = 0, we have

lim
k→∞, k∈K3

∥∥∇φ
(
xk

) − rk
∥∥ = 0. (3.7)

Moreover, from (3.4), we have
∥∥rk∥∥ ≤ η

∥∥∥F ′ (xk)T F
(
xk

)∥∥∥ = η
∥∥∇φ

(
xk

)∥∥. Then we can deduce

from (3.7) that

lim
k→∞, k∈K3

∥∥∇φ
(
xk

)∥∥ = lim
k→∞, k∈K3

∥∥rk∥∥ = 0.

This contradicts the assumption that the limit point of
{
xk

}
k∈K is not a stationary point. There-

fore, we have (3.6), and hence {dk} is gradient related to {xk}. Consequently we conclude that

any accumulation point of
{
rk

}
is a stationary point of the merit function φ.

Now, we proceed to showing the latter half of the theorem. From Theorem 2.1, it is sufficient

to show that Assumption 2.3 is satisfied and that xk+1 = xk + dk with dk being determined from

(3.1) for all k large enough. Since
∥∥rk∥∥ satisfies (3.4), we have for any convergent subsequence{

xk
}
k∈K

∥∥rk∥∥
µk

≤
νk

∥∥∥F ′ (xk)T F
(
xk

)∥∥∥δ
‖F (xk)‖δ

≤ νk
∥∥F ′ (xk)∥∥δ = o

(
dist

(
xk, X∗)) ,

where the last equality follows from the boundedness of
{∥∥F ′ (xk)∥∥}

and the definition of {νk}.

This means that Assumption 2.3 holds. Let x∗ be an accumulation point of
{
xk

}
, and

{
xk

}
k∈K

be a subsequence such that limk∈K xk = x∗. Then there exists k̄ ∈ K such that

∥∥xk − x∗∥∥ ≤ e, ∀k ≥ k̄, k ∈ K,

where e is given in Lemma 2.4. Moreover, by choosing larger k̄ if necessary, we can show from

Lemma 2.3 that a sequence
{
yl

}
generated by the ILMM with y0 = xk̄ and unit step size satisfies

∥∥ȳl+1 − yl+1
∥∥ ≤ c2γ

L

∥∥ȳl − yl
∥∥ ∀l, (3.8)

where ȳl denotes one of the nearest solutions from yl, that is, ȳl ∈ X∗ and
∥∥ȳl − yl

∥∥ = dist
(
yl, X∗).

(Note that there may be more than one nearest solutions to yl, since the solution set X∗ need not

be convex.) It then follows that

∥∥F (yl+1)
∥∥ =

∥∥F (
ȳl+1

) − F
(
yl+1

)∥∥
≤ L

∥∥ȳl+1 − yl+1
∥∥

≤ c2γ
∥∥ȳl − yl

∥∥
≤ γ

∥∥F (
yl

)∥∥ ,
11



where the first inequality follows from (2.3), the second inequality follows from (3.8), and the last

inequality follows from Assumption 2.1 (iii). Hence, (3.2) is satisfied for k ≥ k̄, and we obtain

xk+1 = xk + dk for k ≥ k̄, where dk is determined from (3.1). This completes the proof. ✷

Remark 3.1 As an updating rule of νk which satisfies the assumption in Theorem 3.1, we may

employ the rule

νk =
∥∥F (

xk
)∥∥τ ,

where τ is a constant such that τ > 1. In this case, it follows from (2.3) that

νk =
∥∥F (

xk
)∥∥τ =

∥∥F (
x̄k

) − F
(
xk

)∥∥τ
≤ Lτ

∥∥x̄k − xk
∥∥τ = o

(
dist

(
xk, X∗))

when k is sufficiently large.

In Theorem 3.1, we have established the superlinear convergence of Algorithm 3.1 by using

Theorem 2.1. Using Theorem 2.2, we can also give conditions for a quadratic convergence of

Algorithm 3.1.

Theorem 3.2 Let
{
xk

}
be a sequence generated by Algorithm 3.1 with δ = 2. If the residual

vector rk given by (1.7) satisfies

∥∥rk∥∥ ≤ min
{
η

∥∥∥F ′ (xk)T F
(
xk

)∥∥∥ , νk ∥∥∥F ′ (xk)T F
(
xk

)∥∥∥δ} , (3.9)

where η ∈ (0, 1) and νk = O
(

dist
(
xk, X∗)2

)
, then any accumulation point of

{
xk

}
is a stationary

point of φ. Moreover, if an accumulation point x∗ of
{
xk

}
is a solution of (1.1) that satisfies

Assumption 2.1, then
{

dist
(
xk, X∗)} converges to 0 quadratically.

Proof: It is easy to verify that the assumptions of Theorem 3.1 hold, so any accumulation point

of
{
xk

}
is a stationary point of φ by Theorem 3.1. Moreover, since

∥∥rk∥∥ satisfies (3.9), we have

∥∥rk∥∥
µk

≤
νk

∥∥∥F ′ (xk)T F
(
xk

)∥∥∥δ
‖F (xk)‖δ

≤ νk
∥∥F ′ (xk)∥∥δ = O

(
dist

(
xk, X∗)2

)
,

and hence (2.18) is satisfied. Then, in a way similar to Theorem 3.1, we can show the quadratic

convergence of
{

dist
(
xk, X∗)}. ✷

4 Numerical Results

In this section, we discuss implementation issues of Algorithm 3.1 proposed in Section 3 and report

some numerical results.

In implementing Algorithm 3.1, the most expensive task is to compute the search direction dk

by solving (3.1). Since the coefficient matrix F ′ (xk)T F ′ (xk) + µkI of the linear equation (3.1) is

always positive definite, we could find the exact solution of (3.1) by means of Cholesky factorization.

12



However, our algorithm does not require the exact solution of (3.1), that is, the search direction

dk has only to satisfy the approximate condition (3.4). In our numerical experiments, we employ

the conjugate gradient method (CGM) [1, 11] to find dk satisfying the approximate condition (3.4)

from the following two reasons. First, the CGM can find an approximate solution of (3.1) with

any accuracy. So, when the approximate condition (3.4) is mild, the CGM may find dk in a small

number of iterations. Second, the CGM is suitable for large-scale problems. At each iteration of

the CGM for (3.1), we need to calculate

−
(
F ′ (xk)T F ′ (xk) + µkI

)
d̄j−1 − F ′ (xk)T F

(
xk

)
, (4.1)

where d̄j−1 is the search direction used in the previous iteration. This is done by calculating

v̄j = F ′ (xk) d̄j−1 first, and then F ′ (xk)T v̄j+µkd̄
j−1. Thus, the calculation of (4.1) is inexpensive

if F ′ (xk) is sparse.

Now, we state some practical modifications of Algorithm 3.1. If an iterative point xk is far from

the solution set, the value of parameter µk determined by the rule (2.4) may become exceedingly

large. In this case, a search direction dk obtained from (3.1) is close to the steepest descent

direction for the function φ, and hence it is likely that the algorithm converges slowly. To prevent

this difficulty, we modify the updating rule for µk as

µk = min
{∥∥F (

xk
)∥∥δ , ζ} , (4.2)

where ζ > 0 is an appropriate constant. We can expect that, even if
∥∥F (xk)

∥∥ is large, the rule

(4.2) enables us to find a good approximation to the Gauss-Newton direction. Next we consider the

criterion for approximate solution of the linear equation (3.1). If an iterative point is far from the

solution set, then the approximate condition (3.4) for rk need not be tight, and hence a computed

search direction may also approximate the steepest descent direction, because we use the CGM to

solve (3.1). In view of this fact, we modify the approximate condition (3.4) as

∥∥rk∥∥ ≤ min
{
η

∥∥∥F ′ (xk)T F
(
xk

)∥∥∥ , νk ∥∥∥F ′ (xk)T F
(
xk

)∥∥∥δ , κ√n

}
, (4.3)

where κ > 0 is an appropriate constant. This condition ensures that, even if an iterative point

xk is far from the solution set,
∥∥rk∥∥ is smaller than κ

√
n, and hence, especially in the early stage

of the iterations, we can expect that a search direction becomes a good approximation to the

Gauss-Newton direction.

We have experimented on the following problems with n = 100, 1000 and 10000.

Problem 1 : F : �n → �n, Fi(x) =
√
i (xi − i), i = 1, . . . , n

Problem 2 : F : �n → �n
2 , Fi(x) =

√
i (xi + xn

2 +i − i), i = 1, . . . , n2
Problem 3 : F : �n → �n, Fi(x) = x2

i − i, i = 1, . . . , n

Problem 4 : F : �n → �n
2 , Fi(x) = (xi + xn

2 +i)2 − i, i = 1, . . . , n2

Clearly these problems have a solution. Moreover, ‖F (x)‖ provides a local error bound in a

neighborhood of the solution set. Note that F ′ (xk)T F ′ (xk) is singular for Problems 2 and 4.
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Table 1: Results for Problems 1, 2, 3 and 4
Problem n i.p. # iter. # iter. (CGM) time(sec.)

∥∥F
(
xk

)∥∥
Problem 1 100 x0,1 3 154 3e-02 9.0e-02, 4.1e-04, 3.3e-08

x0,2 4 238 4e-02 2.0e-03, 4.1e-07, 7.6e-14

x0,3 4 238 4e-02 2.0e-03, 3.8e-07, 4.3e-14

x0,4 4 239 5e-02 1.9e-03, 3.9e-07, 4.7e-14

1000 x0,1 4 780 1.8e+00 4.3e-03, 1.1e-06, 7.8e-13

x0,2 4 784 1.8e+00 4.3e-03, 1.4e-06, 1.6e-12

x0,3 4 780 1.7e+00 4.4e-03, 1.1e-06, 4.4e-13

x0,4 4 763 1.7e+00 4.1e-03, 1.3e-06, 1.2e-12

10000 x0,1 4 2389 8.1e+01 9.2e-03, 5.4e-06, 2.7e-11

x0,2 4 2376 8.1e+01 1.3e-02, 1.0e-05, 1.0e-10

x0,3 4 2346 8.0e+01 9.5e-03, 5.5e-06, 2.8e-11

x0,4 4 2350 8.0e+01 1.3e-02, 1.0e-05, 1.0e-10

Problem 2 100 x0,1 3 107 1e-02 9.5e-02, 4.8e-04, 1.8e-08

x0,2 4 160 2e-02 1.7e-03, 1.5e-07, 4.0e-15

x0,3 4 159 3e-02 1.7e-03, 1.4e-07, 3.2e-15

x0,4 4 160 3e-02 1.7e-03, 1.4e-07, 3.4e-15

1000 x0,1 3 345 7.2e-01 1.2e+00, 3.1e-03, 3.2e-07

x0,2 4 584 1.1e+00 3.2e-03, 3.9e-07, 5.6e-14

x0,3 4 580 1.1e+00 3.3e-03, 3.3e-07, 2.1e-14

x0,4 4 584 1.2e+00 3.2e-03, 3.7e-07, 3.8e-14

10000 x0,1 4 1798 5.1e+01 6.6e-03, 1.4e-06, 9.2e-13

x0,2 4 1794 5.0e+01 8.1e-03, 2.6e-06, 3.3e-12

x0,3 4 1770 5.0e+01 6.7e-03, 1.5e-06, 1.0e-12

x0,4 4 1735 5.0e+01 8.1e-03, 2.6e-06, 3.3e-12

Problem 3 100 x0,1 9 239 5e-02 2.5e-02, 1.5e-04, 1.1e-08

x0,2 10 243 5e-02 2.5e-02, 1.5e-04, 1.1e-08

x0,3 9 235 5e-02 2.5e-02, 1.5e-04, 1.1e-08

x0,4 10 239 6e-02 2.5e-02, 1.5e-04, 1.1e-08

1000 x0,1 13 1033 3.2e+00 1.1e-03, 6.0e-07, 1.8e-12

x0,2 14 1038 3.3e+00 1.1e-03, 6.0e-07, 1.8e-12

x0,3 13 1017 3.1e+00 1.1e-03, 5.9e-07, 1.8e-12

x0,4 14 1010 3.3e+00 1.1e-03, 5.9e-07, 1.8e-12

10000 x0,1 16 2822 2.2e+02 5.9e-03, 9.8e-06, 8.3e-11

x0,2 17 2827 2.3e+02 5.9e-03, 9.8e-06, 8.3e-11

x0,3 16 2771 2.2e+02 5.8e-03, 9.6e-06, 8.2e-11

x0,4 17 2775 2.3e+02 5.8e-03, 9.6e-06, 8.2e-11

Problem 4 100 x0,1 10 173 3e-02 2.5e-02, 1.5e-04, 8.0e-09

x0,2 11 176 4e-02 2.5e-02, 1.5e-04, 8.0e-09

x0,3 10 169 3e-02 2.5e-02, 1.5e-04, 8.0e-09

x0,4 11 172 4e-02 2.5e-02, 1.5e-04, 8.0e-09

1000 x0,1 14 753 2.1e+00 1.1e-03, 4.5e-07, 7.4e-13

x0,2 15 757 2.1e+00 1.1e-03, 4.5e-07, 7.4e-13

x0,3 14 744 2.0e+00 1.1e-03, 4.5e-07, 7.3e-13

x0,4 15 747 2.1e+00 1.1e-03, 4.5e-07, 7.3e-13

10000 x0,1 17 2058 1.3e+02 5.8e-03, 8.9e-06, 3.9e-11

x0,2 18 2062 1.4e+02 5.8e-03, 8.9e-06, 3.9e-11

x0,3 17 2032 1.3e+02 5.8e-03, 8.8e-06, 3.8e-11

x0,4 18 2036 1.4e+02 5.8e-03, 8.8e-06, 3.8e-11
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Table 2: Results for various values of ζ and κ
Problem 1 2 3 4 Problem 1 2 3 4

ζ = 10−9 2 2 12 13 κ = 10−9 3 3 13 14

ζ = 10−8 2 2 12 13 κ = 10−8 3 3 13 14

ζ = 10−7 2 2 12 13 κ = 10−7 3 3 13 14

ζ = 10−6 2 2 12 13 κ = 10−6 3 3 13 14

ζ = 10−5 3 3 12 13 κ = 10−5 3 3 13 14

ζ = 10−4 3 3 13 14 κ = 10−4 4 3 13 14

ζ = 10−3 4 3 13 14 κ = 10−3 4 3 13 14

ζ = 10−2 4 4 13 14 κ = 10−2 4 4 13 14

ζ = 10−1 7 6 13 14 κ = 10−1 6 5 13 14

ζ = 100 14 11 13 14 κ = 100 12 11 18 18

ζ = 101 58 36 14 14 κ = 101 17 19 23 23

ζ = 102 272 175 16 15 κ = 102 23 24 27 28

ζ = 103 780 612 20 18 κ = 103 29 30 31 31

ζ =∞ 1769 1809 71 41 κ =∞ 37 39 32 32

Table 3: Results for Problems 1 and 2 with n = 100000
# iter. # iter. (CGM) time(sec.)

∥∥F
(
xk

)∥∥
Problem 1 4 7125 5.8e+03 5.6e-02, 6.3e-05, 3.2e-09

Problem 2 4 5334 3.5e+03 2.9e-02, 1.5e-05, 9.5e-11

For each problem, we set an initial point as x0,1 =
{
n
2 , . . . ,

n
2

}T
, x0,2 = {n, . . . , n}T , x0,3 ={−n

2 , . . . ,−n
2

}T
x0,4 = {−n, . . . ,−n}T . Moreover, we update νk in the approximate condition

(3.4) as described in Remark 3.1. We set the default values of parameters as α = 0.6, β = 0.7, γ =

0.8, δ = 1.0, η = 0.8, ρ = 0.5, τ = 2.0, p = 2.0, ζ = 0.001 and κ = 0.001, which may be altered if

necessary. We use the stopping criterion
∥∥F (

xk
)∥∥ < 10−8

√
n for each experiment. The algorithm

was coded in C and run on a Sun Ultra 60 workstation.

Table 1 shows the computational results for each problem, with the following items: The

dimension of the problem (n), the initial point (i.p.), the number of iterations of Algorithm 3.1 (#

iter.), the cumulative number of iterations of the CGM (# iter. (CGM)), the CPU time in second

(time(sec.)), and the values of
∥∥F (

xk
)∥∥ at last three iterations of Algorithm 3.1 (

∥∥F (
xk

)∥∥). Note

that, from Assumption 2.1 (iii), we have
∥∥F (

xk
)∥∥ = O

(
dist

(
xk, X∗)). For each problem, the

algorithm always stopped successfully, and the generated sequence converged to the solution set

superlinearly.

Table 2 consists of two tables; one shows the number of iterations for various values of ζ in the

new updating rule (4.2) for µk, while the other shows the number of iterations for various values

of κ in the new approximate condition (4.3). In these experiments, we set n = 1000 and x0 = x0,1.

In Table 2, ζ = ∞ and κ = ∞ mean that we use the updating rule (2.4) and the approximate

condition (3.4), respectively. From Table 2, we see that when ζ and κ are small, the algorithm

solved all problems successfully and the number of iterations is small. On the other hand, when

ζ and κ are large or these parameters are not used (ζ = ∞/κ = ∞), the number of iterations

becomes large. This observation indicates that the performance of the algorithm can be improved
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by choosing appropriate values for ζ and κ in (4.2) and (4.3), respectively.

Finally, we show Table 3, which contains results for Problems 1 and 2 with n = 100000 and

x0 = x0,1. Thus we may conclude that the algorithm can deal with large-scale problems efficiently.

5 Concluding Remarks

In this paper, we have discussed the convergence properties of the ILMM under a local error bound

condition on F . Using an approach similar to [20], we have showed that the ILMM converges to the

solution set superlinearly under appropriate conditions on the approximate solution of the system of

linear equations solved at each iteration. For large scale problems, this property is very useful. On

the other hand, it was shown in [20] that the LMM converges quadratically under the assumption

that µk =
∥∥F (

xk
)∥∥2. In that case, if µk is very small and F ′ (x∗)T F (x∗) is singular, the system

of linear equations tends to be unstable numerically. Since the ILMM converges superlinearly even

if µk =
∥∥F (

xk
)∥∥δ , 0 < δ ≤ 2, we can expect the numerical robustness of the ILMM when it is

implemented with 0 < δ < 2.
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A Appendix: Quadratic or superlinear algorithm for mono-

tone nonlinear complementarity problem without degen-

eracy conditions

In this appendix, we introduce one of the application using the method which we propose in this

paper.



A superlinearly convergent algorithm for the monotone

nonlinear complementarity problem without nondegeneracy

conditions

Abstract

In this paper, we consider an algorithm for solving the monotone nonlinear complementarity prob-

lem (NCP). Recently, Yamashita and Fukushima proposed a method based on the proximal point

algorithm (PPA) for monotone NCP. The method enjoys the favorable property that a generated

sequence converges to the solution set of NCP superlinearly. However, when a generated sequence

converges to a degenerate solution, the method may need much computational time to solve sub-

problems, and hence the method does not have genuine superlinear convergence. More recently,

Yamashita, Dan and Fukushima presented a technique to identify whether a solution is degen-

erate or not. Using this technique, we construct a differentiable system of nonlinear equations

whose solution is a solution of the original NCP. Moreover, we propose a hybrid algorithm which

is based on the PPA and uses this system. We show that the proposed algorithm has a quadratic

or superlinear rate of convergence even if it converges to a degenerate solution.



A.1 Introduction

The nonlinear complementarity problem (NCP) is to find a vector x̄ ∈ �n such that

NCP(F ) : x̄i ≥ 0, Fi(x̄) ≥ 0, x̄iFi(x̄) = 0, i = 1, . . . , n,

where F is a mapping from �n to �n. When F is affine, NCP(F ) is called the linear complemen-

tarity problem (LCP). NCP can be found in various fields, e.g., operations research, engineering,

finance and so on [7]. Throughout this paper, F is assumed to be continuously differentiable and

monotone.

For a solution x̄ of NCP(F ), let P (x̄) , N (x̄) and C (x̄) be defined by

P (x̄) := {i | x̄i > 0, Fi (x̄) = 0} ,
N (x̄) := {i | x̄i = 0, Fi (x̄) > 0} ,
C (x̄) := {i | x̄i = 0, Fi (x̄) = 0} ,

respectively. Note that each index of a solution x̄ of NCP(F ) belongs to one of these sets. If

C (x̄) �= ∅, we call x̄ a degenerate solution, otherwise we call x̄ a nondegenerate solution. In this

paper, we will focus on these index sets for a particular solution, and develop an algorithm for

solving NCP(F ) by estimating the correct index sets.

Various methods for solving NCP, such as the generalized Newton method (GNM) [4], the

smoothing method [2] and the regularization method [6], have been proposed and shown to have

nice convergence properties. However, those methods generally require the local uniqueness of a

solution for a superlinear rate of convergence. Recently, Yamashita and Fukushima [11] proposed

a method, henceforth called the PPA, based on the proximal point algorithm, and showed that

it has a superlinear rate of convergence without the local uniqueness of a solution. However,

when a sequence {xk} generated by the PPA converges to a degenerate solution, subproblems may

become computationally expensive. This difficulty comes from the fact that we do not know in

advance whether or not {xk} converges to a degenerate solution. More recently, Yamashita, Dan

and Fukushima [12] presented a technique that enables us to identify P ∗ = P (x∗) , N∗ = N (x∗)

and C∗ = C (x∗) when xk enters a certain vicinity of x∗. Once we identify P ∗, N∗ and C∗, we can

find a solution of NCP(F ) by solving the system of nonlinear equations

Gx∗(x) :=




FP∗(x)

xN∗

FC∗(x)

xC∗


 = 0. (A.1.1)

In fact, if a solution x̂ of (A.1.1) is sufficiently near to x∗, then we have x̂P > 0 and FN (x̂) > 0,

and hence x̂ is also a solution of NCP(F ). Moreover, since the mapping Gx∗ : �n → �n+|C∗| is

differentiable, we can use any Newton like method which requires differentiability of the mapping,

and we can expect that such a method has a quadratic or superlinear rate of convergence no matter

whether x∗ is degenerate or nondegenerate.

In this paper, we construct a differentiable system of nonlinear equations (A.1.1) by using the

technique proposed in [12]. Moreover, we propose a hybrid algorithm which generates a sequence
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{xk} by the PPA primarily and also tries to find a solution of the system of nonlinear equations

(A.1.1) by using the inexact Levenberg-Marquardt method (ILMM) proposed in [3], when an

iterative point xk is judged to lie sufficiently close to a solution. We show that the proposed

method has a quadratic or superlinear convergence property if ‖Gx∗(x)‖ provides a local error

bound for (A.1.1), i.e., there exists constants bG > 0 and cG > 0 such that

cGdist (x,X∗
G) ≤ ‖Gx∗(x)‖ ∀x ∈ B (x∗, bG) , (A.1.2)

where X∗
G is the solution set of (A.1.1) and B (x∗, bG) := {x | ‖x− x∗‖ ≤ bG }. More specifically,

we show that either a sequence {xk} generated by the proposed algorithm converges to the so-

lution set of NCP quadratically or ‖Gx∗(xk)‖ converges to 0 superlinearly, without assuming the

nondegeneracy of a solution.

This paper is organized as follows: In Section A.2, we review some mathematical concepts and

results such as error bounds for NCP, the PPA [11] and the ILMM [3]. In Section A.3, we construct

a differentiable system of nonlinear equations whose solution is a solution of NCP(F ). Moreover,

we propose the hybrid algorithm based on (A.1.1) and show its global convergence. In Section A.4,

we make some concluding remarks and discuss future research topics.

A.2 Preliminaries

In this section, we review some concepts and results which are used in the subsequent discussion.

A.2.1 Error bound for NCP

First, we recall some mathematical concepts related to a mapping F .

Definition A.1 The mapping F : �n → �n is called

(i) monotone if

(x− y)T (F (x) − F (y)) ≥ 0 ∀x, y ∈ �n,
(ii) strongly monotone with modulus µ > 0 if

(x− y)T (F (x) − F (y)) ≥ µ‖x− y‖2 ∀x, y ∈ �n.

Next, we consider a system of nonlinear equations which is equivalent to NCP(F ). In order to

reformulate NCP, we may use a function φ : �2 → � that has the following property:

φ(a, b) = 0 ⇐⇒ a ≥ 0, b ≥ 0, ab = 0. (A.2.3)

Such a function φ is called an NCP-function. Using an NCP-function φ, let HF : �n → �n be

defined by

HF (x) =




φ (x1, F1(x))
...

φ (xn, Fn(x))


 .
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From (A.2.3), it is easily seen that NCP(F ) is equivalent to the system of nonlinear equations

HF (x) = 0.

The following two NCP-functions are well-known:

φNR(a, b) = min{a, b},
φFB(a, b) =

√
a2 + b2 − a− b.

The functions φNR and φFB are called the natural residual function and the Fischer-Burmeister

function [8], respectively. The function φFB is equivalent to φNR in the sense that they satisfy the

following inequalities [8]:

(2 −
√

2) |φNR(a, b)| ≤ |φFB(a, b)| ≤ (2 +
√

2) |φNR(a, b)| ∀(a, b)T ∈ �2.

Throughout this paper, we assume that the mapping HF is given by any NCP-function φ satisfying

ν1 |φNR(a, b)| ≤ |φ(a, b)| ≤ ν2 |φNR(a, b)| ∀(a, b)T ∈ �2, (A.2.4)

where ν1 and ν2 are positive constants.

The next theorem states some error bound properties of ‖HF (x)‖ for NCP.

Theorem A.1 [8]

(i) Suppose that F is strongly monotone with modulus µ > 0 and Lipschitz continuous with constant

L > 0. Then ‖HF (x)‖ provides a global error bound for NCP(F ), that is,

‖x− x̂‖ ≤ K1(L + 1)
µ

‖HF (x)‖ ∀x ∈ �n,

where x̂ is the unique solution of NCP(F ) and K1 > 0 is a constant independent of F .

(ii) Suppose that F is affine and there exists a solution of NCP(F ). Then ‖HF (x)‖ provides a local

error bound for NCP(F ), that is, there exist positive constants K2 and K3 such that

‖HF (x)‖ ≤ K2 ⇒ dist(x,X∗) ≤ K3 ‖HF (x)‖ ,

where X∗ denotes the solution set of NCP(F ).

A.2.2 The PPA and identification of the index sets

The PPA presented in [11] is stated as follows:

Algorithm PPA

Step 0: Choose parameters β ∈ (0, 1), c0 ∈ (0, 1) and an initial point x0 ∈ �n. Set k := 0.

Step 1: If xk satisfies a stopping criterion, then stop.
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Step 2: Let F k : �n → �n be given by

F k(x) = F (x) + ck
(
x− xk

)
.

Find an approximate solution xk+1 of NCP(F k) such that∥∥HFk(xk+1)
∥∥ ≤ βk min

{
1,

∥∥xk+1 − xk
∥∥}

. (A.2.5)

Step 3: Choose ck+1 > 0 and set k := k + 1. Go to Step 2. ✷

This algorithm enjoys nice convergence properties. Specifically, the sequence generated by the

PPA converges to a solution of NCP(F ) globally, and the distance between the generated sequence

and the solution set of NCP(F ) converges to 0 superlinearly under mild assumptions. In what

follows, {xk} denotes a sequence generated by Algorithm PPA, and x∗ denotes the limit point of

{xk}. The following convergence theorem has been established in [11].

Theorem A.2 Suppose that F is monotone and Lipschitzian. Suppose also that NCP(F ) has a

solution. Then, {xk} converges to a solution x∗ of NCP(F ) whenever {ck} is bounded. Moreover,

if ‖HF (x)‖ provides a local error bound in a neighborhood of x∗ and ck → 0, then {dist(xk, X∗)}
converges to 0 superlinearly, where X∗ is the solution set of NCP(F ).

The most expensive task in Algorithm PPA is to solve NCP(F k) in Step 2. In [11], it is proposed

that NCP(F k) be solved using Generalized Newton Method (GNM) [4]. Note that F k is strongly

monotone when F is monotone. Then, the GNM can find an approximate solution of subproblem

NCP(F k) rapidly when x∗ is nondegenerate, as stated in the following theorem [11].

Theorem A.3 Suppose that x∗ is a nondegenerate solution of NCP(F ) and ‖HF (x)‖ provides a

local error bound in a neighborhood of x∗. Then, a single iteration of the GNM for NCP(F k) yields

a point xk+1 that satisfies (A.2.5), provided k is sufficiently large.

When x∗ is a degenerate solution, Theorem A.3 no longer guarantees that the GNM can find

a solution of subproblem NCP(F k) in a few iterations, and hence it may take much time to solve

subproblems. To overcome this difficulty, we will use the technique proposed in [12] to identify the

index sets P (x∗) , N (x∗) and C (x∗), which is based on the following idea: Suppose that ‖HF (x)‖
provides a local error bound for NCP(F ) and we let ck = αk for all k in Algorithm PPA, where α

is a constant such that β < α < 1. Let a function sequence {ρk} be defined by

ρk(x) =

√
‖HF (x)‖

αk
,

where the index sets P k, Nk and Ck are defined by

P k :=
{
i | xki > ρk(xk), Fi(xk) ≤ ρk(xk)

}
,

Nk :=
{
i | xki ≤ ρk(xk), Fi(xk) > ρk(xk)

}
,

Ck :=
{
i | xki ≤ ρk(xk), Fi(xk) ≤ ρk(xk)

}
,

(A.2.6)

respectively. Then, we have

P k = P (x∗) , Nk = N (x∗) , Ck = C (x∗) .

for sufficiently large k [12, Theorem 3.4].
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A.2.3 Inexact Levenberg-Marquardt method

The Levenberg-Marquardt method (LMM) [1, 9] is a method for solving the system of nonlinear

equations

G(y) = 0, (A.2.7)

where G : �n → �m is a continuously differentiable mapping. The LMM generates a sequence{
yl

}
by yl+1 := yl + d̂l, where d̂l is a solution of the system of linear equations(∇G(yl)∇G(yl)T + µlI

)
d = −∇G(yl)G(yl). (A.2.8)

Here ∇G(y) ∈ �n×m is the transposed Jacobian of G, µl is a positive parameter and I is the

identity matrix. Since ∇G(yl)∇G(yl)T + µlI is positive definite, (A.2.8) has a unique solution.

However, it is expensive to find an exact solution of (A.2.8) when n is large. In that case, the

inexact Levenberg-Marquardt method (ILMM) [3, 5] is useful. The ILMM uses an approximate

solution dl of (A.2.8) as a search direction, and generates a sequence {yl} by yl+1 := yl + dl.

Recently, Dan, Yamashita and Fukushima [3] showed the following theorem which says that

the ILMM has a quadratic rate of convergence under a local error bound condition, which is milder

than the nonsingularity condition at a solution.

Theorem A.4 Let {yl} be a sequence generated by the ILMM and y∗ be a solution of (A.2.7).

Suppose that the following two conditions hold.

(i) There exist constants b1 ∈ (0, 1) and κ1 ∈ (0,∞) such that

‖G(y) −G(x) −∇G(x)(y − x)‖ ≤ κ1 ‖y − x‖2 ∀x, y ∈ B(y∗, b1),

where B (y∗, b1) := {y | ‖y − y∗‖ ≤ b1}.
(ii) ‖G(y)‖ provides an error bound for (A.2.7) on B (y∗, b1), i.e., there exists a constant κ2 > 0

such that

κ2 dist (y, Y ∗) ≤ ‖G(y)‖ ∀y ∈ B (y∗, b1) ,

where Y ∗ is the solution set of (A.2.7).

Suppose that the parameters µl satisfy

µl =
∥∥G(yl)

∥∥2

and ∥∥rl∥∥
µl

= O
(

dist
(
yl, Y ∗)2

)
,

where rl are residual vectors defined by

rl :=
(∇G(yl)∇G(yl)T + µlI

)
dl + ∇G(yl)G(yl). (A.2.9)

Then there exists a positive constant c such that yl ∈ B
(
y∗, c

∥∥y0 − y∗
∥∥)

for all l, provided an

initial point y0 is sufficiently close to y∗. Moreover, {dist(yl, Y ∗)} converges to 0 quadratically.

The assumption (i) of Theorem A.4 holds when ∇G is locally Lipschitzian [10, Theorem 3.2.12].
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A.3 Proposed algorithm and its convergence properties

In this section, we describe the proposed algorithm and show that it has at least a superlinear rate

of convergence for NCP, without assuming the local uniqueness of a solution.

A.3.1 Differentiable system of nonlinear equations

First, we make the following assumption to guarantee that the PPA has a superlinear convergence

and the technique to identify the index sets works well.

Assumption A.1

(i) ∇F is locally Lipschitzian.

(ii) ‖HF (x)‖ provides a local error bound for NCP(F ), i.e., there exist constants bH > 0 and cH > 0

such that

bHdist (x,X∗) ≤ ‖HF (x)‖ ∀x ∈ {x | ‖HF (x)‖ ≤ cH } ,
where X∗ is the solution set of NCP(F ).

Sufficient conditions under which ‖HF (x)‖ provides a local error bound for NCP(F ) are given

in Theorem A.1.

We consider the mapping Gx∗ : �n → �n+|C∗| defined by (A.1.1). Since xP∗ > 0 and FN∗(x) >

0 in a sufficiently small neighborhood of x∗, a solution x̂ of (A.1.1) also solves NCP(F ) if x̂ is

sufficiently close to x∗. We note that Gx∗(x) is differentiable and the Jacobian ∇Gx∗(x) is locally

Lipschitzian, and hence the assumption (i) of Theorem A.4 holds for Gx∗ . So, the ILMM applied to

the equation (A.1.1) has a quadratic rate of convergence if ‖Gx∗(x)‖ provides a local error bound.

Accordingly, we make the following assumption.

Assumption A.2 ‖Gx∗(x)‖ provides a local error bound for (A.1.1) in a neighborhood of x∗, i.e.,

there exist positive constants bG and cG which satisfy (A.1.2).

Assumption A.2 holds when FP∗ and FC∗ are affine. Though this assumption does not neces-

sarily hold when F is nonlinear, it does not seem very restrictive.

Assumptions A.1 and A.2 are closely related. In fact, as shown in the next lemma, Assumption

A.2 is implied by Assumption A.1 under some normal circumstances.

Lemma A.1 Suppose that Assumption A.1 holds. If there exists a constant r1 > 0 such that

X∗∩B (x∗, r1) = X∗
G∩B (x∗, r1) , where X∗

G is the solution set of (A.1.1), then ‖Gx∗(x)‖ provides

a local error bound for (A.1.1) in a neighborhood of x∗, i.e., there exist constants bG and cG which

satisfy (A.1.2). In particular, if x∗ is a locally unique solution of NCP(F ), then ‖Gx∗(x)‖ provides

a local error bound for (A.1.1) in a neighborhood of x∗.

Proof: Choosing r2 > 0 sufficiently small yields that, for any x ∈ B (x∗, r2),

xi ≥ Fi(x) ∀i ∈ P ∗,

xi ≤ Fi(x) ∀i ∈ N∗.
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It then follows that, for any x ∈ B (x∗, r2),

‖HF (x)‖ =
√ ∑
i∈P∗∪N∗∪C∗

φ2 (xi, Fi(x))

≤ ν2

√ ∑
i∈P∗∪N∗∪C∗

|min{xi, Fi(x)}|2

≤ ν2

√ ∑
i∈P∗

F 2
i (x) +

∑
i∈N∗

x2
i +

∑
i∈C∗

(x2
i + F 2

i (x))

= ν2 ‖Gx∗(x)‖ , (A.3.10)

where ν2 is the positive constant given in (A.2.4). Moreover, by choosing r3 > 0 sufficiently small,

we have

‖Gx∗(x)‖ ≤ cH/ν2 ∀x ∈ B (x∗, r3) . (A.3.11)

Let r := min{r1, r2, r3}. It then follows from (A.3.10) and (A.3.11) that

‖HF (x)‖ ≤ cH ∀x ∈ B (x∗, r) .

Therefore, from Assumption A.1 (ii) and (A.3.10), we get

bHdist (x,X∗) ≤ ‖HF (x)‖ ≤ ν2 ‖Gx∗(x)‖ ∀x ∈ B (x∗, r) . (A.3.12)

Let x ∈ B
(
x∗, r2

)
, and let x̄G and x̄ be one of the nearest points from x in X∗

G and X∗, respectively.

Since x∗ ∈ X∗
G and x∗ ∈ X∗, we have, for any x ∈ B

(
x∗, r2

)
,

‖x̄G − x‖ ≤ ‖x∗ − x‖ ≤ r

2
,

‖x̄− x‖ ≤ ‖x∗ − x‖ ≤ r

2
,

and hence

‖x̄G − x∗‖ ≤ ‖x̄G − x‖ + ‖x∗ − x‖ ≤ r,

‖x̄− x∗‖ ≤ ‖x̄− x‖ + ‖x∗ − x‖ ≤ r.

Therefore we have x̄G ∈ X∗
G∩B (x∗, r) and x̄ ∈ X∗∩B (x∗, r). It then follows from the assumption

X∗∩B (x∗, r) = X∗
G∩B (x∗, r) that dist (x,X∗) = dist (x,X∗

G) for any x ∈ B
(
x∗, r2

)
. Consequently,

by (A.3.12), we have

ν−1
2 bH dist (x,X∗

G) ≤ ‖Gx∗(x)‖ ∀x ∈ B
(
x∗,

r

2

)
,

i.e., ‖Gx∗(x)‖ provides a local error bound for (A.1.1) in a neighborhood of x∗. ✷
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A.3.2 The algorithm

As stated in Section A.2.2, P k = P (x∗) , Nk = N (x∗) and Ck = C (x∗) hold when k is sufficiently

large, and hence, the system of nonlinear equations

Gk(x) :=




FPk(x)

xNk

FCk(x)

xCk


 = 0 (A.3.13)

coincides with the system of nonlinear equations (A.1.1). In this case, a solution x̂ of (A.3.13) is a

solution of NCP(F ) if x̂ is sufficiently close to x∗. Then we naturally come up with the following

method: We generate a sequence {xk} by the PPA primarily, and if an iterative point is judged to

be close to the solution x∗, then we solve (A.3.13) by the ILMM. Based on this idea, we propose

the following hybrid algorithm.

Algorithm Hybrid

Step 0: Choose parameters M1 > 0,M2 > 0, 0 < β < α < 1, 0 < γ < 1, and an initial point x0.

Let the initial index sets be P 0 = N0 = C0 = ∅. Set k := 1.

Step 1: Let ck = αk and obtain xk by applying a single iteration of Algorithm PPA. Determine

the index sets P k, Nk, Ck by (A.2.6).

Step 2: If
∥∥HF

(
xk

)∥∥ ≤ M1, P
k = P k−1, Nk = Nk−1, Ck = Ck−1 and P k ∪ Nk ∪ Ck =

{1, 2, . . . , n}, then go to Step 3. Otherwise, set k := k + 1 and go to Step 1.

Step 3: (ILMM for (A.3.13))

Step 3.0: Set yk,0 := xk, µk,0 =
∥∥Gk(yk,0)

∥∥, and l := 0.

Step 3.1: Find an approximate solution dk,l of the system of linear equations

(∇Gk(yk,l)∇Gk(yk,l)T + µk,lI
)
d = −∇Gk(yk,l)TGk(yk,l). (A.3.14)

Step 3.2: If yk,l satisfies a stopping criterion, then exit. Otherwise, if yk,l does not satisfy

(
yk,l + dk,l

)
Pk > 0, (A.3.15)

FNk(yk,l + dk,l) > 0, (A.3.16)∥∥Gk(yk,l + dk,l)
∥∥ ≤ γl

∥∥Gk(yk,l)
∥∥ (A.3.17)∥∥xk − (

yk,l + dk,l
)∥∥ ≤ M2, (A.3.18)

then set k := k + 1 and go to Step 1.

Step 3.3: Set yk,l+1 := yk,l + dk,l, µk,l+1 =
∥∥Gk(yk,l+1)

∥∥ and l := l + 1. Go to Step 3.1. ✷

In Algorithm Hybrid, we try to identify the three index sets P (x∗) , N (x∗) and C (x∗) in Step

2. The conditions in Step 2 will be satisfied when k is sufficiently large. Note, however, that those
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conditions do not guarantee that the index sets P ∗, N∗ and C∗ are identified correctly. Therefore,

we check conditions (A.3.15) – (A.3.18) in Step 3.2 to ensure that the sequence {yk,l} is converging

to a solution of NCP(F ). The conditions (A.3.15) and (A.3.16) check whether or not Pk, Nk and

Ck are identified correctly. The condition (A.3.17) guarantees that ‖Gk(yk,l)‖ is converging to 0

superlinearly, and the condition (A.3.18) guarantees that {yk,l}l=0,1,2,... is not diverging.

A.3.3 Convergence theorem

Let the residual vector rk,l associated with an approximate solution dk,l of the system of linear

equations (A.3.14) be defined by

rk,l :=
(∇Gk(yk,l)∇Gk(yk,l)T + µk,lI

)
dk,l + ∇Gk(yk,l)Gk(yk,l).

Now we show the following convergence theorem for Algorithm Hybrid.

Theorem A.5 Suppose that Assumptions A.1 and A.2 hold. Suppose also that
{
yk,l

}
l=0,1,2,...

satisfies ∥∥rk,l∥∥
µk,l

= O
(

dist
(
yk,l, X∗

Gk

)2
)
, (A.3.19)

where X∗
Gk is the solution set of (A.3.13). Then, there exists a positive integer k for which either

of the following statements is true:

(a): Any accumulation point of {yk,l}l=0,1,2,... is a solution of NCP(F ), and {‖Gk(yk,l)‖}l=0,1,2,...

converges to 0 superlinearly.

(b): {yk,l}l=0,1,2,... converges to a solution of NCP(F ), and {dist(yk,l, X∗
G)}l=0,1,2,... converges to

0 quadratically.

Proof: First, we consider the case where the inner loop in Step 3 cycles infinitely for some k,

that is, an infinite sequence {yk,l}l=0,1,2,... satisfies (A.3.15) – (A.3.18), even if the index sets

P (x∗), N(x∗) and C(x∗) have yet to be identified correctly. In this case, it follows from (A.3.18)

that {yk,l}l=0,1,2,... has accumulation points, and from (A.3.17), {‖Gk(yk,l)‖} converges to 0 su-

perlinearly. Moreover, from (A.3.15) and (A.3.16), any accumulation point of {yk,l}l=0,1,2,... is a

solution of NCP(F ). Therefore the statement (a) holds.

Next, we show that, even if (a) does not hold, the statement (b) holds eventually. In fact, for

sufficiently large k, ‖HF (xk)‖ becomes sufficiently small by Theorem A.2, and P k = P (x∗) , Nk =

N (x∗) , Ck = C (x∗) hold as shown in [12]. Hence, the system (A.3.13) coincides with the system

(A.1.1) for sufficiently large k. Note that, by Assumptions A.1 and A.2, Gx∗(x) and x∗ satisfy the

assumptions (i) and (ii) in Theorem A.4, where G and y∗ are regarded as Gx∗ and x∗, respectively.

In what follows, we consider a sequence {zk,l}l=0,1,2,... generated by the ILMM for the equation

Gx∗(x) = 0 with an initial point zk,0 := xk for sufficiently large k, and show that zk,l satisfies

the conditions (A.3.15)–(A.3.18) for all l. It follows from Lemma 2.3 of [3] and (A.3.19) that, if

k is sufficiently large and zk,0 = xk is sufficiently close to x∗, then we have ‖zk,l+1 − z̄k,l+1‖ ≤
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c ‖zk,l − z̄k,l‖2 for all l, where c is a positive constant and z̄k,l is one of the nearest points of X∗
G

from zk,l. Then, from Assumption A.2, we have∥∥Gx∗(zk,l+1)
∥∥

‖Gx∗(zk,l)‖2 =

∥∥Gx∗(zk,l+1) −Gx∗(z̄k,l+1)
∥∥

‖Gx∗(zk,l)‖2 ≤ Lx∗

∥∥zk,l+1 − z̄k,l+1
∥∥

cG ‖zk,l − z̄k,l‖2 ≤ cLx∗

cG
l = 0, 1, 2, . . . ,

where Lx∗ is a Lipschitz constant of Gx∗(x). When k is sufficiently large, we have ‖Gx∗(zk,0)‖ ≤
γcG

cLx∗ , and it follows that for each l = 0, 1, 2, . . .

∥∥Gx∗(zk,l+1)
∥∥ ≤ cLx∗

cG

∥∥Gx∗(zk,l)
∥∥2

≤
(
cLx∗

cG

∥∥Gx∗(zk,l−1)
∥∥)2 ∥∥Gx∗(zk,l)

∥∥
...

≤
(
cLx∗

cG

∥∥Gx∗(zk,0)
∥∥)2l ∥∥Gx∗(zk,l)

∥∥
≤ γ2l ∥∥Gx∗(zk,l)

∥∥
≤ γl

∥∥Gx∗(zk,l)
∥∥ .

Therefore, (A.3.17) holds when k is sufficiently large. Let r̂ be the distance between yk,0 and

x∗. When r̂ is sufficiently small, Theorem A.4 says that a generated sequence {zk,l} satisfies

zk,l ∈ B(x∗, c3r̂) for all l, where c3 > 0 is a constant. Moreover, choosing sufficiently large k if

necessary, r̂ can be made arbitrarily small. Then, it follows from x∗P > 0 and FN (x∗) > 0 that

(A.3.15), (A.3.16) and (A.3.18) hold for sufficiently large k. Consequently, (A.3.15) – (A.3.18) are

satisfied for sufficiently large k. Then, from Theorem A.4, {dist(zk,l, X∗
G)}l=0,1,2,... converges to 0

quadratically, i.e., the case (b) holds. This completes the proof. ✷

Some remarks about Algorithm Hybrid are in order.

• The system of nonlinear equations (A.3.13) has only |P k| variables actually, since xNk = 0

and xCk = 0. Hence, (A.3.13) becomes smaller than the original problem.

• The condition ‖HF (xk)‖ ≤ M1 in Step 2 is not needed to establish Theorem A.5. However,

using this condition, we can skip useless calculation which may occur when

P (x∗) �= P k = P k−1, N (x∗) �= Nk = Nk−1, C (x∗) �= Ck = Ck−1, P k∪Nk∪Ck = {1, 2, . . . , n}.

• We may replace the condition in Step 2 by

P k = · · · = P k−j , Nk = · · · = Nk−j , Ck = · · · = Ck−j , P k ∪Nk ∪ Ck = {1, 2, . . . , n},

where j is any positive integer. This modification may also enable us to omit unnecessary

calculation when the index sets are not identified correctly.

• From Theorem A.3, the PPA has a genuine superlinear rate of convergence if x∗ is nondegen-

erate. Consequently, when we judge x∗ to be nondegenerate in Step 2, we may immediately

return to Step 1 instead of proceeding to Step 3.
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A.4 Concluding Remarks

In this paper, we have constructed the system of nonlinear equations which is useful in dealing

with degenerate NCP, and proposed an algorithm based on it. We have shown that the proposed

algorithm has a quadratic or superlinear rate of convergence even if NCP has a degenerate solution.

Finally, we mention some future research topics.

(i) In order to guarantee that Algorithm Hybrid has a quadratic or superlinear rate of conver-

gence, we need Assumption A.2. In Lemma A.1, we give a sufficient condition for Assumption

A.2 to hold, but this condition is imposed on the solution set itself. It is an interesting and

important subject to find a milder and/or simpler sufficient condition for Assumption A.2.

(ii) We have used the technique proposed in [12] to identify P ∗, N∗ and C∗. However, it is

difficult to confirm that P k = P ∗, Nk = N∗ and Ck = C∗ are attained. If we have a criterion

to make sure that the correct identification of the index sets has been accomplished, we may

design an algorithm that avoids the useless calculation in Step 3 of Algorithm Hybrid.
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