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1. INTRODUCTION

This paper is devoted to an examination of convergence properties of a class of Runge-Kutta-
Chebyshev (RK.C) schemes. These schemes have betn designed by van der Houwen and Som-
meijer (1980) for the explicit time integration of stiff systems of ODEs,

U(t)= F(, UQ), 0<t<T, U(D) given, an

which originate from spatial discretization of parabolic partial differential equations (Method of
Lines). For the time being, it is not necessary to define a particular class of parabolic problems
or to specify the space discretization technique. The only restrictions for application of the
RKC schemes are (i) The eigenvalue spectrum of the Jacobian matrix 9F(t, U)/3U should lie in
& narrow strip along the negative axis of the complex plane, and (if) The Jacobian matrix
should ‘not deviate too much from a normal matrix’. These two conditions trivially hold if
8F(1,U)/3U is symmetric and negative definite, properties frequently encountered when discre-
tizing elliptic operators.

The RKC method is a typical example of an explicit, stabilized RK method The method has
been designed such that it possesses an extended real stability interval. Tis yeal stability boun-
dary 8 is in fact proportional to 5%, s being the number of stages, while its main characteristic is
that 5 can be taken arbitrarily large. This is made possible by an intelligent use of Chebyshev
polynomials, thus explaining the name of the method. The possibility of using arbitrarily large
values for s is of practical relevance due to the fact that the effective real stability boundary 8/s
linearly increases with 5. Hence, in applications it is possible and advantageous to choose the
stepsize on the basis of accuracy and to adjust s to meet the demand of (linear) stabiity

Van der Houwen and Sommeijer (1980) have developed a 1-st and 2-nd order RKC scheme.
In this paper we examine both these schemes (the coefficients of our 2-nd order schemes slightly
differ; they have been taken from Sommeijer and Verwer (1980)). While these schemes have
been developed alang the lines of the classical ODE theory, the purpose of the present examina-
tion is to analyse their full convergence properties. Full convergence means convergence of the
fully discrete solution with respect to the solution of the PDE upon simultaneous refinement of
the space-time mesh. For linear PDE problems, whose semi-discretizations take the form

U(t)= MUQ) + g(t), 0<1<T, U(0) given, (12

with M a symmetric, constant coefficient matrix possessing non-positive eigenvalues, we prove
convergence under the sole condition that the necessary time-step restriction To(M)<pB is
satisfied, where o{Mf) is the spectral radius of M. Of interest is that the derived error bounds are
independent of o(M) and valid for arbitrazly large s, the number of stages, thus showing that in
applications the best strategy is to have the size of v determined by the desired accuracy level
and s by the stability demand. It i3 stipulated that this result is quite uncommon for an explicit
method. We owe this to the favourable internal stability property of the RKC method. Internal
stability has to do with the propagation of errors over the stages ‘within one single integration
step.
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The convergence analysis presented in this paper is akin to the analysis of Sanz-Serna, Verwer
and Hundsdorfer (1987) and Hundsdorfer end Verwer (1989) which, in turn, was inspired by
the B-convergence anslysis from the stiff ODE field (see Dekker and Verwer (1984), Ch.7). The
present paper is 8 condensed version of {13].

2. DESCRIPTION OF THE METHOD
For the ODE system (1.1), the RKC formula considered here is of the form [6, 12}

YD = Uy,

Yy = Yo+ jyrFy,

Yy=gY o Y+ (- -y Yo+ BrFoy +¥rFy Q<j<s), @y

Upy1 =Y, n=01,..,
where ¥; = F{t, +¢r,Y;); U, tepresents the approximation to the cxact solution U of (1.1) at
time 7=1, and 7 ty41 Iy is the stepsize. Throughout it is assumed that the increment
parameters ¢; are defined by the integration cocfficients Ep¥ply and ¥y in the following way,

cg =0, ¢y =jiy,

Cj = -t + Pici-2 +i] +‘?j (2<j<s). 2)
Then, if we bring Y; in the standard RK form

=1
Yi=Uy + rjE ag F(ta +om, 1p) (0<j<s),
1=0

where the coefficients ay are expressions in iy, 5, ¥y, it is readily seen that the usual condition

j=1

g=3 a

=0
is satisfied. Hence, (2.1) is an exphicir, s-itage RK method and Y is an intermediate approxima-
tion at the intermediate point ¢ =1, +¢;r. Due to the spexific recursive nature of the method, as
shown in the formuia defining Y7, farmula (2.1) is more convenient to work with than the com-
mon RK formula. The rationale behind the specific form (2.1) is that this form is easily
identified with stable three-term Chebyshev recursions. This will become clear later on. Note
that irrespective the number of stages, the number of required storage arrays is maximal 6.

Let us determine the consistency conditions (in the classical ODE sense) for order 1 and 2.
Suppose U, = U(t,), where U(1),£5»1, is a sufficiently smooth solution of (1.1). By definition of
¢; it then holds that all ¥; satisfy an expansion

Y = Ui + ¢ Ultn) + X, 2UP,) + 062), @3
where, similar as ¢;, X; is determined by the integration coefficients. Substitution of this expres-
sion into (2.1) gives

Xy =X, =0,X;’=;lej_| +VJJYI_2 +}-£/Cj._1 <j<s). 24)
We conclude that the RKC method is consistenr of order 1 if
=1, 2.5

and note that the j-th stage formula is consistent of order 1 at s =1, + ¢r.
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It follows from (2.3) that each stage formula is consistent of order 2 at f=t,+¢, for

2<j<s, if X;=75¢}. In torms of ¢; this gives
Ci = 2}‘&10:, c§ = p303 +2ﬁ302, (2-6)
C}= F-jcj—-] -+ ¥ Li_z + 2;116‘1 ~1 (A<)<ys).
As pointed out in [12], it is possible to satisfy this condition in & satisfactory way for all
2< j&s. We h'crc adopt this condition and hence the 2-nd order scheme derived below has all
its siages consistent of order 2 at the intermediate step points 1 =1,+¢r, except the first one.
The original 2-nd order scheme from (6] is only consistent of order 2 at the main step points.
For future reference, it is stipulated that the Jerivation of the current consistency conditions
follows the lines of the classical numericat ODE theory [3,5], as it is based on expanding F-
torms. This means that it is tacitly assumed here that F satisfies a Lipschitz condition so that
i Fl|= O(r). For stiff problems this is unduly restrictive and particularly 50 for semi-discrete
parabolic equations for which [IFli->co upon grid refinement. In Section 4 we will re-examine
the consistency properties of the RKC scheme. The derivation presented there is inspired by the
B-convergence theory for stiff ODEs, the central theme of which is the derivation of error
bounds which do not depend on the stiffness of the problem (see [2], Ch. 7 and {8,9,10].
Finally, a natural condition is that all (intermediate) siep points lie within the step interval
{insts +1} and increase monotonically with j:
0=cg<e1<Cer< ~ + » <Gy <=1 @n
1t will turn out this condition is satisfied for the iwo selecied schemes.

We proceed with the stability function. Becavse the RKC method is an s-stage, explicit RK
n_:cthod. application to the scalar test equation U(#)==AU(z) leads to the linear, one-step recur-
gion

Uty =PU)U,, z=7M, 2.8
where the stability fanction P,:C — C is a polynomial of degree s. F, itself is slso defined recu-
sively as follows:

Po(z)=1, P(2) = 1+puz, a9

Pi@) = (L~ =) + §2 4+ +Bp2) Py 1 @) + 7 Py a(z)  2Kj<s)

In fact, all polynomials P; are of degree J and satisfy

Yy =P)U, 0=j=<s) .10
Therefore we will also call the intermediate polynomials P; stability functions, but note that
they play no role in the step-by-step stability like P,.

According to (2.3), each stability function P;(z) approximates the exponential &% for z—0 as

Pi() = 1oz + X2 + 0() @1

Hence, cach P; is consistent of order 1 (with the exponential %) and consistent of order 2 if,
in addition, X;== c}/z Substitution of this expansion into (2.9) and equating powers of z then
reveals relations (1.2) and condition (2.6). Hence, if we select the coefficients pj,zlj,'i:.jjj in the
recussion (2.9) such that P is of order 1 or 2 in the sense of (2.11), then the }-st or 2-nd order
conditions associated o expansion (2.3) are automatically satisfied. This is very convenient since
il enables us to concentrate entirely on the choice of the stability functions.
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The choice of the stability functions P; is the central issuc in the development of the RKC
method. This choice underlies two design rules:
D) The coefficients u;,»,#,,%; iu the recursion (2.9) are chosen such that the real stability boun-

B(s) = max{—z:z<0, |P(z)|<1} 212)

of the genuine stability function P; is as large as possible, so as to obtain good stability proper-
ties for parabolic equations. This requirement leads to the Chebyshev polynomial of the first kind

Ty(x)=cos(s arecos x), —I<x=<l,

1o which we owe the quadratic increase of S(s) with s (van der Houwen (1977), p. 89). For
example, within the class of [-st order consistent polynomials, the shifted Chebyshev polyno-
mial

) =Ta+5), —Be)<s<0, @13
yields the largest possible value for B(r), viz., f(s) = 2s*. OO

(ID) The second design rule has to do with the desirability of applying the method with an arbi-
trary number of stages which means that, given s, all coefficients ), »,,f;,¥; must be known in
analytic form. Further, and this is most important, it should be possib{c to let s arbitrarily large
without severe accumulation of errors within one single step (internal stability). The naotion of
internal stability will be discussed in Section 3. Here we mention that both these requirements
are fulfilled by adjusting the three-term recursion (2.9) for P; to the known three-term recursion
of approprintely chosen shifted Chebyshev polynomials, For example, the polynomials
Pyfzy= T(1-z/5) satisly the recursion

PuD)=1, Pi(n)= x+;‘;, Pio)= 2(1+;§—)P,_, ~Pi_g, j@2, @14

and adjusting (2.9) gives
=S, =2, fy=205%, ry=—1, =0 Qsj<s)

Note that [Py(z)|<1 for all j<5 as long as z lies within the real stability interval [—252,0] of
the genuine stability function P;, [

Having cutlined these two design rules, we are now ready to specify the stability functions P,
with the associated coefficient sets for the 1-st and 2-nd order RKC sthemes examined in this
paper. They all fit in the general form

Pi2) =g+ by Tywg +w12), 0<js, @15

where the parameters al,b],wo and w; have been chosen in accordance with the design rules (I)
and (II). Before specifying them, there is one point left that should be mentioned (to save space
we must refer to [5,6] for more details). This point concerns the parameter wy. Consider the
polynomial (2.13) where wq=1. This polynomial alternates between + 1 and -1, Le, |P(z)|=1
at 5 +1 points z &[— 8,0}, It is desirable to introduce some damping in P,, i.e, to let P, alter-
nate between values =~1—e¢ and o=-—1-+¢ for all z €[— 8,0] (with the exception of a small neig-
bourhood of z =0), where ¢ is a small positive gurber. The damping is obtained by choosing
wp = wp(¢), called the damping parameter, slightly larger than 1. By introducing this damping in
the stability function, we achieve that the stability region becomes a long, narrow strip around
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the negative axis of the complex plane, On the other heand, the teal stability boundary slightly
decreases [S). There is practical evidence that with damping the RKC method becomes more
robust for nonlinear problems.

The 1-st order case : RKC1 {6]

Ty{wo)
T'(wo)

ay=0, b;=Tj }(wq), wo=1+ :‘2- wy= 0<j<s). @16

It can be shown that with this choice of parameters

(wo + 1)T5"(wo)
(8) B
A )
A suitable values for ¢ is 0.05. Since T; }(wo)== 1—¢, this yields about 5% damping with only a
very little decrease in A(s), B(s) = 1.90s*. Note that with e=0 we recover the polynomials
(2.14). Adjusting recursion (2.9} to the current choice for P; completely defines the general 1-st
order scheme (2.1):

4
o~ 2—-3:}:2 for ¢—0

- _ W
M= WO,
v} by’ 7 bz’ -

- b - ,
B= Awy '5;“_,—1—, Yy =0 (A=j<s).

Note that each value of s defines a different coefficient set. Also pote that y;+v/=1 and that
the increment parameters

= Lwo) T'wo) _ .
Y7 Tiwe) Tywo) s 2.18)

satisfy condition (2.7). For more details we refer to {5,6).

The 2-nd order case : RKC2 [6,12]

Ty'(we)

T(we) € .
&= 1 =8 T)wg), by= —i——re, Wy = 15, W= = & Rs),
1 yTjwek b (T (wol? e s YT T we) @<j<s)
ag= 1~by, ay= 1=—bywy, bg=b;= by, (2.19)

For this choice of parameters one can prove that

_otDLwe) 2o,
Bls) =< Totwe) (et =112 for 0

A suitable value for ¢ is 2/13. This gives about 5% damping (g, +b,2x1—%¢) with a reduction
in B(s) of about 2%, The current choice of stability polynomials covers roughly 80% of the
optimal real stability interval for 2-nd order consistent polynomials (van der Houwen (1982)).
Adjusting again recursion (2.9), completely defines the gepersl 2-nd order scheme (2.1):

By =bywy,

L/

s ‘—IJ‘L, {2.20)
by

w=2w°
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. b . - .
B=2w L, fm (b T iy Qsj<s).

b
The increment pasameters are
2 ca _ T'wo) Tj"(wg)  j2-1

L SUNPUL S/ 3 o) 1</ < 21
O ey 4 9T T Tty il <) @

and thus satisfy conditions (2.7). For more details, see [5,6].

3. CONVERGENCE ANALYSIS: INTERNAL STABILITY.

The remainder of the paper is devoied to the full convergence analysis of the schemes defined
by the coefficient sets (2.17), (2.20) when applied to the linear problem class (1.2). Hence, it is
supposed that the m Xm constant coefficient matrix M is sy tric and p nonpositive
eigenvalues A(M). This covers many linear parabolic problems with time-independent
coeflicients in the elliptic operator. We stipulafe that the RKC method is very well applicable
to nonlinear parabolic problems, provided the spectrum of the Jacobian F'(x,U) is located in a
long, narrow strip around the negative axis of the complex plane and F(t,U) does not ‘deviate
too much from a normal matrix’. A nonlinear analysis of the RKC method is likely to become
very complicated, if feasible at all. Qur convergence analysis for the linear problem gives also
insight in handling nonlinear problems. .

Throughout, {|-f denotes the common (appropriately weighted) Euclidean porm in R™, or the
associated spectral matrix norm. Recall that, since M is normal, | M1l= o(M), o being the spec.
tral radivs. Further, for any polynomial P(z), the spectrum of the matrix polynomial P (M) is
the set of values P(r)), where rA runs through the spectrum of 734; P(rM) is also normal and -

IPEM) = o(P (1M)) = max PN
By assumption on M,
—ro(M) < TA(M) < max (TA(M)) < 0.

Hence, if we select the stepsize  and the number of stages s such that the stability condition
ro(M)<f is satisfied, then ||P,(rM)} <1 for the genuine stability function P, of the scheme
under consideration.

In the analysis of the RKC scheme (2.1), the notion of internal stability plays an important
role. Internal stability is investigated with the perturbed scheme

5’0 = i])l,
i’l = “Yo +i|1j’0 +;1,
Y =¥+ Y+ Qoo tiyFy - +ipFa 47 Q<) (3D
i’u+1 =¥, n =0>l,-’
where now
Fy=Fita+om 1= M¥) + gty +cm) ) (2
and 7; represents a perturbation introduced at stage J (e.g. round off). Likewise, U, represents a
perturbation of U,.
Let

&=U—U, =Y -Y; (0<j<) 33
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represent the errors introduced by these perturbations. Note that, by definition, dg=e, and
&x+1 = d;. If we subtract the non-perturbed scheme (2.1) from (3.1), we get the error scheme

do = ¢y,

dy=dg + pyrMdy + 7y,

d; = pydyy + vy~ F (L= py—wdo +HirMdy -y +YMdy + 7 Q<j<s)(3.4)
ey +1 =d;, n=0,1,...

Due to the linearity, d; can be written as
dy = PyrMye, + kg QuiM¥, (<o), @9

where Py are the previously introduced stability functions (of. (2.10)) and Qj; are new polyno-
mials of degree j —k. Of importance is that these new polynomisls determine the propagation
of all internal perturbations over the stages within one single integration step. We therefore call
them internal stability functions. In particular, together with the stability function P;, the inter-
nal stability functions 0,1, . . ., Qg occwrTing in the final stage error formula

3
en+1 = PolrMle, + 3 Qu(rM)ry, (3.6)
k=1
determine the error e, .1 of U, 4.1. In order to avoid large contributions Q. (rM)7s, the polyno-
mials Qy(z) should mimic, in some sense, the behaviour of the stability function Py(z) for all
2= 1MM)e[ —ro(M),0]. This is particularly important in applications where both the number
of stages s and the spectral radius ro{) are large.
One can show that [13)
b
Qnl2)= Bf;s,_,‘(wo twz) (ks k<j<s), @mn

where Si(x) is the i-th degree Chebyshev polynomial of the second kind (in literature usually
denoted by U;(x) [1]). The exror scheme (3.6), then reads

+ b .
ta+1= PyrMe, + 3 ts,_mf Fw M), (3.9
k=1

This error scheme gives a complete description of the stability of the RKC schemes under
examination, To proceed with it, we briefly recall a few propertics of the second kind Che-
byshev polymomial [;}. As opposed to Ty(x), Si(x} is oot bounded by =1 for —1<x«1. There
holds Sy(==1)= (Z1Y(f +1) and i +1 is also the maximal value for —1<x=<1. On the greater
part of this interval, S;(x) aiternates between (approximately) +1 and -1. The slope of Sy{x)
near x =1 i also larger than that of Ti(x). There holds §;'(1)=i{i + 1) +2)/3.

The following theorem is proved in [13]:
TueoReM 3.1. Suppose that 7 and s are such that the stability time-step restriction ro(M)<p is
satisfied. Then the following error bound is valid,
- 1 -
lley 41 i<llel + € ﬁ (= —k +DiIF N <lle,ll + 55 +1)C max i dl, 39
k=1

where C iy a constant of moderate size independent of M, and 5. 01
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This result shows that within one full RKC step the accumulation of interpal perturbations,
such as round-off errors, is independent of the spectrum of M as long as ra(M)=f. As far as
rounding errors are concerned, the quadratic increase with the number of stages renders no prob-
lem, For example, if s = 1000, which for & serious application is of course a hypothetical value,
the local pernurbation is at most ~ 10° max [I7l. If the machive precision of the computer is
about 14 digits, 2 common value, this local perturbation still leaves & digits for accuracy which
for PDEs is more than encugh.

Van der Houwen and Sommedjer (1980) also discuss two different stabilized, explicit RK
methods. These two methods possess the same stability function P, as the RKC method, but
show a very strong, spectrum dependent accumulation of internal perturbations (see their
numerical experiment). They also conclude that for the RKC scheme the accumulation of inter-
nal perturbations is negligible and almost independent of s. Their conclusion is not quite correct
since it is based on the assumption that this accumulation is governed by the stability functions
P}, rather than by the internal stability functions Q. See [13] for a numerical illustration.

4. CONVERGENCE ANALYSIS: THE LOCAL DEFECTS

We continue the convergence analysis with the computation of the local defects which arise if
am exact PDE solution is inserted in the Runge-Kutta scheme. Consider the semi-discrete PDE
problem [9, 8, 10]

() = F(up(®)) + an(t), O<t<T, u,0) given, (a1

that is associated to the ODE system (1.1). Hence, (¢) represents an exact PDE solution res-
tricted ta some space grid parametrized by , and e(t) is the local space truncation error that
originates from replacing the original PDE problem by its exact, semi-discrete counterpart (4.1).
The derivation of the local defects applies to any initial-boundary value problem whose semi-
discretization can be put in the gencric form (4.1). In particular, in this section F is allowed to
be nonlinear and merely smoothness assumptions on uy(f) will be made {cf. the B-convergence
theory).

In the prevxous section we have introduced the perturbed scherme (3.1) for examining the
internal propagation of local, arbitrary perturbations ;. If we set in the perturbed schems }f,
equal to uy(t, +¢; 'r), then the 7; represent residual (local) discretization errors, which will be
called the local fect.c. These c{efccts will be denoted by r; in order to distinguish them from
the general 7;. The local defects are thus defined by

up(ty +erm) = up(ty) + S Bty 145 (8) + 11,
y(ty Y= sty F 017 + 2 (8 F g —27) + (L~ — v Jup(ta) + @2
+ ;‘j‘rF(tn +g 17, wy(tn +ej— 1)+ ‘;j"'F(’m“h(tu)) +ry (2 <s).

Let peN and assume upeCP *1{0, 7). From (4.1) and the Taylor series expansion of uy, i, at the
intermediate step point t,+c; 7, it follows that

1=ty tejny + oo+ Pl te ) + P+ 4.3
+ me(tatem) + he(t) (2% <5),
where the coefficients 8,; and remainder term p; are given by
B1y=(c;—cs—1) — #ley-2—¢j-) + A—p—vdej1 —y— 75,
1 1 1
Oy= ;T(Cj’cj—l)q_?”j(cj —2=¢ -1} — 71',“(1 ~R = N—g )~ (4.9)
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‘(71"_1"1')1‘71(‘1#1)”_1 (@=g=p),
= E_:TT)T(CI—CJ—IY T+ 00 - (;:,,117’/(51 AL O
TATTO TGP O = g Pl )

In the remainder term, uf ¥V is evaluated in various points in (¢,,%,+1). The formulas (4.3),
(4.4) also hold for j =1 if we set py = l,co=c - =0 and »; =¥, =0,
The coefficients 8y, 6; can be written in a more convenient form. We have

8y =G pye—1— 2 ¢ a = BV 4.5)
Relations (2.2) then imply that 8,;=0 (1= /<) and thus the contribution of the temporal errors

10 all defects 7, is always 0(r*). Furthermore, by inserting the expression for ¥; that follows
from (2.2) into (4.4), we get

1 - .
8y =3 =y -1 — vt 2) ~ Fyejmr (1) <s) 4.6
For the second order scheme, the conditions (2.6) then imply
. 1 1 1
b= 0 (d<jss), Oy =5ct, b= ~Fmel, bn=—7met. (G}

In the next section these results will be used to prove convergence. Formula (4.3) will be
applied with p=1,2 for the 1-st and 2-nd order schemes, respectively. For the convergence
analysis an upper bound for the remainder terms p; is needed. For the sake of simplicity, such 2
bound has besn derived in [13] for the undamped schemes (e=0). For p =1 (RKCI) there holds

ol < 472 max Jufoll (1<), 438

while for p =2 (RKC2)
_.2 ) :
ol < Cs™% max Pl (<j<s), “9)

where C>0 is a constant independent of s.

Of interest is to observe that the two bounds (4.8) and (4.9) are proportional to s™2. This
means that at each stage the remainder term contained in the defect {4.3) diminishes with s ™2
for increasing s. This is also true for the spatial error part in (4.3), i.c.,

lijentta+cp 1 + Yyl < Cs™2 i (O, (.10

since the coefficients fi;,¥; are bounded by Cs ™2 with C>0 a constant independent of s and j.
We have strong numerical evidence that these results are also valid in case of damping (¢>0).
However, the derivation of the bounds (4.8), (4.9) then becomes rather technical and lengthy,
while no more insight is obtained.

5. CONVERGENCE ANALYSIS; A BOUND FOR THE FULL GLOBAL ERROR

The results of the two previous sections are now combined so as to derive & bound for the full
globa! error. Hence we again consider the linear problem class (1.2) (cf. Section 3) and, for sim-
plicity, restrict ourselves to the undanmped schemes (cf. Section 4). In our analysis, the time step 7
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and the grid distances in space, parametrized by k, are allowed 1o tend to zero simultaneously
and independently of each other. Usually, convergence for explicit methods applied to parabolic
equations requires a stepsize restriction ro(M)< const., o(M)~h 2, due to stability. With the
RKC schemes ra{M) is allowed to become arbitrarily large, stability being achieved by taking s
sufficiently large. This advantage over standard explicit methods is fully justified by our uncondi-
tional convergence analysis where the assumption so(M)<8 is to be interpreted as a condition
on s, rather than as a restriction on 7.

Let e, =uy(1,)— U, be the full global error. For these errors we have (¢f. (3.6) or (3.8)) the
recursion

ert = By(Z)ey + il 0u(@) 11 6.1
k=

where Z=+M and the vectors ry are the local defects due to discretization. Upper bounds for
Hlenll will be derived by elaborating this recursion with the help of our estimates of the focal
defects and our results on internal stability.

In the following, C will denote a positive constant independent of 7, M and s, not necessarily
always with the same value,

The RKCI method {e=0). Consider the method defined by (2.16)-(2.18) with ¢=0. This method
was constructed such that the temporal ODE order is one. With temporal ODE order we mean
the order obtained from an analysis where tbe dimension of the problem, and thus the space
grid, is fixed. We will show that we have also temporal order one for any value of o(M) and s,
hence for any spatial grid refinement, provided ra(M)< 8.

Suppose uy, €C?0,T. From the results of Section 4 (see (4.8), (4.10)) it directly follows that
there is a C>-0 such that

-2 )
il Crs ™ (r {"‘x?:z“ 2@l + rlgzcm lew(Ol) (I<ke<s). (53))

Using Theorem 3.1, we then immediately obtain the following bound for the global errors;

THEOREM 5.1, Assume w, € CH0, T] and ro(M)y<B. Let Uy=uw, (D). Then the global errors of the
undamped RKC1 scheme satisfy

) = .
el = C('rou‘:‘aéfllusz o+ Jmax lag(OW) (=12,..;nr<T)

with a C>0 independent of ,M ands. I

The RKC2 method {(¢=0) Consider the method defined by (2.19)}+(2.21) with €=0. This method
was constructed such that the temporal ODE order is two. The following theorem presents an
error bound which proves that RKC2 has ‘almost’ ordez 2 in time for any value of o(M) and s,
provided vo{M)= B (the proof is somewhat lengthy and therefore omitted; sce [13]).

THEOREM 5.2. Assume uy EC’[O,T] and ro(M)Y<B. Let Ug=uy(0). Then the global errors of
the undamped RKC2 scheme satisfy

eall < C(™3r max (w0l + e [ Nyl + ozl

(for n =1,2,...; nr&T) with a constant C=>>0 independent of M ands. 13
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Theorems §.1 and 5.2 prove convergence of RKCl and RKC2, respectively, irrespective the
size of s or ra(M). The analysis also shows that the nse of many stages within one single step
does not adversely affect the accuracy. The temporal exror is merely determined by r and the
smoothness of u, as a function of r. The spatial error is merely determined by the size of the
local space truncation error, the common situation. Theorem 52 shows that RKC2 is of
‘almost’ temporal order 2 and that with s large order 2 will be observed. Theorem 5.2 does not
reveal the classical order 2 for fixed M (fixed space grid) and 5. However, this property can be
proved with the above analysis (ses [13]). '

6. NUMERICAL EXAMPLE
We consider Fisher's equation

4, = ug + u?(1~u), 0<x,1<1, : ©.1)

with the exact solution u(x,£)= (14 exp(v (x —v))) "}, v=4V2. We use this equation to illus-
trate the convergence behaviour in a non-model situstion (A 2D-example is presented in {13]).
The second derivative is approximated with 2-nd order central differences on 3 nniform grid
with gridsize A The schemes are applied with damping. For RKCl the damping parameter
€=0.05 (see (2.16)) and for RKC2 e=2/13 (see (2.19)). In the experiment we let r=h decrease
and s is chosen to satisfy the stability condition ro=<p{s), while s is taken as small as possible.
We put 0==4k ~2+4 and

s= 1+ entier {(1+70/1.90)%] for RKCI,
s= 1+ eatier [(1+70/0.65)¥] for RKC2. (6.2)

The number 4 in the expression for the spectral radius o serves as & (conservative) upperbound
for the derivative of the inhomogeneous term in (6.1), Note that we select s shightly larger than
necessaxy to satisfy the condition ro<<fi(s).

Table 6.1 lists maximum errors at r=1 for a sequence of r=h values. As expected, RKC1
converges with order | and RKC2 with order 2. We owe the high level of accuracy to the high
degree of smoothness of u,

RKC1 RKC2
(r=m"1 1 s error 5 ecror
5 4 | 63107 [ 6 | 15107
10 s 26107 8 | 251073
20 7 1331074 | 12| s4107¢
40 10| 441075 | 16 | 151076
80 14 ] 21107% {23 | 331077
160 191 .96107¢ | 32 | .77107¢8
320 26 | 48107 | 45 | 191078

TasLs 6.1 Convergence test on Fisher's equation
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