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Abstract

In this paper we study the convergence of an Inertial Forward-Backward algorithm, with a

particular choice of an over-relaxation term. In particular we show that for a sequence of over-

relaxation parameters, that do not satisfy Nesterov’s rule one can still expect some relatively fast

convergence properties for the objective function. In addition we complement this work by studying

the convergence of the algorithm in the case where the proximal operator is inexactly computed

with the presence of some errors and we give sufficient conditions over these errors in order to obtain

some convergence properties for the objective function .

Keywords : Convex optimization, proximal operator, inertial FB algorithm, Nesterov’s rule, rate
of convergence

1 Introduction

Let H be a separable Hilbert space (possibly infinite dimensional). We are interested in the following
minimization problem :

min
x∈H

{
F (x)

}
(M)

where F = f + g : H −→ R̄ = R ∪ {+∞}, with :

H.1 f a convex function in C 1,1(H) with L-Lipschitz gradient

H.2 g a convex, l.s.c. proper function (possibly non-smooth)

H.3 F is coercive
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Under the conditions , it is clear that the minimization problem (M) admits a solution. In what
follows we will consider the conditions as guaranteed and we will note x∗ ∈ H a minimizer of F .

In order to solve the problem (M), several algorithms have been proposed based on the use of the
proximal operator due to the non differentiable part . One of the basics is the Forward-Backward
algorithm (FB), which consists in obtaining the new iterate by evaluating the proximal operator of g
on the previous point, i.e. : For x0 ∈ H and 0 < γ < 2

L
, for all n ≥ 1 we define 1

xn+1 = Proxγg(xn − γ∇f(xn)) (1.1)

The FB turns out to be a descent algorithm with a rate of convergence of the objective function
F (xn) − F (x∗) ≤ C

n
, ∀n ≥ 1 and C > 0 a positive constant. It was also proven that the generated

iterates weakly converge to a minimizer x∗. In the seminal work of Nesterov in [12], it was shown that
considering -not to the previous but- a relaxed version of the two previous iterations, can lead to some
significant fast convergence properties for the trajectories generated. These ideas are further developed
in the semi-differential case (where g is not necessarily differentiable) in [10] and notably in [7]. The
basic scheme of these algorithms is the following :

Given x0 = y0 ∈ H, {an}n∈N a positive sequence, such that an ր 1 and 0 < γ < 2
L

, for all n ≥ 1,
define

xn = Proxγg(yn−1 − γ∇f(yn−1))

yn = xn + an(xn − xn−1)
(1.2)

There is a vast literature concerning the study of this type of inertial FB algorithms ( to name but
a few, we address the reader to [12], [13], [7], [8], [1], [16]).

The basic idea behind the sequence {an}n∈N is that it can be written as an = sn−1
sn+1

, where {tn}n∈N,

is a sequence that verifies Nesterov’s rule, i.e. :

s2n + sn+1 − s2n+1 ≥ 0 ∀n ∈ N (NR)

It has been shown ( see for example [12], [13], [7], [8] ) that if the relation (NR) hold true, then one can
obtain a better convergence rate towards the minimum, i.e. F (xn)− F (x∗) ≤ C

n2 , ∀n ≥ 1 where C > 0
is a positive constant.

A choice of a particular interest for the sequence {an}n∈N, is when an = n
n+b

for all n ≥ 1 ( this

corresponds to sn = n+b−1
b−1 ), where b > 1. With this choice, Nesterov’s rule (NR) is equivalent to

considering b ≥ 3. Nevertheless, in [8] ( see also [1] ) the authors show that by assuming that b > 3, one
can additionally expect the weak convergence of the iterates {xn}n∈N generated by i-FB, to a minimizer
x∗ of F . In addition in [3] the authors show that by taking b > 3 can asymptotically increase the rate
of convergence of F (xn)− F (x∗) to a o

(
n−2

)
.

In this paper we study the case of i-FB algorithm where an = n
n+b

for all n ≥ 1, with b ∈ (0, 3),

which means that the Nesterov’s rule (NR) is not satisfied.2 In particular we deduce some relatively
fast convergence rate for the objective function F (xn) − F (x∗), as also for the local variation of the
iterates ‖xn − xn−1‖. The exact estimate bounds that we find for these quantities, for b ∈ (0, 3), are
the following (see Corollary 3.2) :

F (xn)− F (x∗) ≤ C

(n+ b− 1)
2b
3

and ‖xn − xn−1‖ ≤ C

(n+ b− 1)
b
3

(1.3)

for all n ≥ 1, where C > 0 is a positive constant.
In addition we deduce "almost" the same convergence properties, in the perturbed case, where every

iterate is inexactly calculated by some error parameters, under some control hypotheses over these errors
(see Corollary 4.1 and Remark 1).

This work consists a discrete time counterpart of the continuous one made recently in [5] and it will
provide us a useful guide for our study.

The paper is organized as follows. In section 2, we give the basic definitions and tools necessary for
our analysis. In the third section we study the convergence rates for a special choice of over-relaxation
terms for the i-FB algorithm. Finally in section 4 we present the same type of analysis for the inexact
i-FB algorithm, where every new iterate of the algorithm is inexactly calculated with the presence of
some errors.

1For a definition of the Prox operator, see (2.1) in the next section
2 To this issue, we address the reader to Remark A at the end of this document
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2 Definitions and basic notions

Given a function G : H → R, we define its subdifferential, as the multi-valued operator ∂G : H → 2H,
such that for all x ∈ H :

∂G(x) = {z ∈ H : ∀y ∈ H, G(x) ≤ G(y) + 〈z, x− y〉}

We also recall the definition of the proximal operator which is the basic tool for i-FB algorithm. If
G is a lower semi-continuous, proper and convex function, the proximal operator of G is the operator
ProxGH −→ R, such that :

ProxG(x) = argmin
y∈H

{G(y) +
‖x− y‖2

2
} , ∀x ∈ H (2.1)

Here we must point out that the proximal operator is well-defined, since by the hypothesis made on G,

for every x ∈ H, the strongly convex function y → G(y) + ‖x−y‖2

2 , admits a unique minimizer.
Equivalently the proximal operator can be also seen as the resolvent of the maximal monotone

operator ∂G, i.e. for all x ∈ H and γ a positive parameter we have that :

ProxγG(x) = (Id+ γ∂G)−1(x) (2.2)

For a detailed study concerning the subdifferential and the proximal operator and their properties,
we address the reader to [6].

3 Convergence analysis for i-FB

In this section we present the results concerning the convergence analysis of the i-FB algorithm with a
special choice of the over-relaxation terms.

Firstly we recall the i-FB algorithm as the one considered in [8] :

Algorithm 1 i-FB

Let 0 < γ < 1
L

and b ∈ (0, 3). We consider the sequences {an}n∈N∗ , {xn}n∈N, {yn}n∈N, such that
x0 = y0 ∈ H, and for every n ∈ N

∗ we set :

xn = T (yn−1) (3.1)

yn = xn + an(xn − xn−1) with an =
n

n+ b
(3.2)

where T (x) = Proxγg(x− γ∇f(x)) (3.3)

We also consider the following sequences : {tn}n∈N∗ , {δn}n∈N∗ , {wn}n∈N and {En}n∈N such that :

tn = n+ b− 1 (3.4)

δn = ‖xn − xn−1‖2 (3.5)

wn = F (xn)− F (x∗) (3.6)

In addition for λ > 0 and ξ > 0, we define the sequences {vn}n∈N and {En}n∈N∗ , such that for all
n ≥ 1 :

vn =
1

2
‖λ(xn−1 − x∗) + tn(xn − xn−1)‖2 (3.7)

En = t2nwn +
1

2γ
‖λ(xn−1 − x∗) + tn(xn − xn−1)‖2
︸ ︷︷ ︸

=vn

+
ξ

2γ
‖xn−1 − x∗‖2 (3.8)

The sequence {En}n∈N was used implicitly for the study of i-FB algorithm in numerous articles (see
for example [8], [16] and [1]). Although it was introduced explicitly in [16] and [1], as an energy function
associated to the dynamical system corresponding to i-FB algorithm, which is the following :

ẍ(t) +
b

t
ẋ(t) +∇F (x(t)) = 0 (3.9)
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In these works it has been shown that for higher values of parameter b which are greater than 3, the
sequence {En}n∈N is non-increasing. This leads to some fast convergence properties of the sequence
{wn}n∈N as also to convergence of the generated sequence {xn}n∈N to a minimizer ( see for example [8],
[16] and [1]). As also pointed out, the value of b = 3 ( which corresponds to the Nesterov’s accelerated
algorithm ) seems critical for this non-increasing property of {En}n∈N. More precisely the following
Theorem holds :

Theorem 3.1 (Su and al. [16]). Let 0 < γ ≤ 1
L
, b ≥ 3 and {xn}n∈N the sequence generated by i-FB.

Then for λ = b− 1 and ξ = 0 the sequence {En}n∈N is non-increasing.

Corollary 3.1. Let 0 < γ ≤ 1
L
, b ≥ 3 and {xn}n∈N the sequence generated by i-FB.Then there exists

a constant C > 0 such that for all n ≥ 1, it holds :

wn ≤ C

(n+ b− 1)2
(3.10)

Our study focus on the convergence rates of the objective sequence {wn}n∈N for small values of b.
More precisely we show that for b ∈ (0, 3), one can still obtain some relatively fast convergence rate for
{wn}n∈N despite the fact that the energy-sequence {En}n∈N is not necessarily non-increasing. We now
give the main result of this paper.

Theorem 3.2. Let 0 < γ ≤ 1
L
, b ∈ (0, 3) and {xn}n∈N the sequence generated by i-FB. Then for λ = 2b

3

and ξ = 4b2

9 , there exists a constant C > 0, such that for all n ≥ 1, it holds :

En ≤ C(n+ b− 1)
2(3−b)

3 (3.11)

Corollary 3.2. Under the hypotheses of Theorem 3.2, there exists a constant C > 0 such that for all

n ≥ 1, we have :

F (xn)− F (x∗) ≤ C

(n+ b− 1)
2b
3

and ‖xn − xn−1‖ ≤ C

(n+ b− 1)
b
3

(3.12)

The strategy of the proof is the following. Firstly we study the local variation of the sequence
{En}n∈N ( i.e. the difference En+1 − En ). Using some Lyapunov-type analysis, for some suitable
choices of parameters λ > 0 and ξ > 0, we are able to control the growth of {En}n∈N up to a suitable
order. Once this control-estimate is proven, an application of a discrete version of Gronwall’s lemma (
see Lemma A.1 in Appendix ) will provide the bound for the sequence {En}n∈N as given on Theorem
3.2.

For the proof of Theorem 3.2 we also make use of the following lemma (see Lemma 1, in [8]) :

Lemma 3.1. For any y ∈ H and 0 < γ ≤ 1
L

we have that for every x ∈ H :

2γ(F (x)− F (T (y))) ≥ ‖T (y)− x‖2 − ‖y − x‖2 (3.13)

In order to prove the assertion of Theorem 3.2, we will use the next Lemma which shows the control-
order of the growth of {En}n∈N.

Lemma 3.2. Let 0 < γ ≤ 1
L
, b ∈ (0, 3) and {xn}n∈N the sequence generated by i-FB. Then for all

n ≥ 1, the following recursive formula holds :

En+1 − En ≤
(

a

(n+ b− 1)2
+

c

(n+ b− 1)

)

En (3.14)

where a = (3−b)(3+b)
9 and c = 2(3−b)

3

Due to the technical details of the proof of Lemma 3.2, we will first present a sketch of it in order
to give a better insight.

1. We start by investigating the local variation of the sequence {En}n≥1. By using Lemma 3.1 and
performing some algebraic computations we obtain a relation of the following form :

2γ(En+1 − En) ≤ 2γαn,λ,ξwn + βn,λ,ξδn + γn,λ,ξ〈xn − xn−1, xn−1 − x∗〉 (3.15)

At this point, in order to prove Theorem 3.1 it is sufficient to choose suitable values for λ and
ξ in order to show that γn,λ,ξ = 0 and αn,λ,ξ, βn,λ,ξ ≤ 0 for all n ≥ 1, under the supplementary
hypothesis that b ≥ 3.
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2. Here instead we are interested in the case where b ∈ (0, 3) and αn,λ,ξ, βn,λ,ξ are not necessarily
non-positive for all n ≥ 1. In that point we express En in function of wn and δn and we find a
relation of the form :

2γ(En+1 − En) ≤ 2γ
c

tn
En +Rn,λ,ξ (3.16)

3. Finally by some suitable values for λ and ξ we show that : Rn,λ,ξ ≤ 2γ a
t2n
En

We now pass to a detailed presentation of this proof.

Proof. By applying Lemma (3.1) to y = yn and x =

(

1− λ
tn+1

)

xn+
λ

tn+1
x∗ we obtain ( here λ ∈ (0, 1+b)):

2γ

(

F

(
(
1− λ

tn+1

)
xn+

λ

tn+1
x∗

)

−F (xn+1)

)

≥ ‖xn+1−xn+
λ

tn+1
(xn−x∗)‖2−‖an(xn−xn−1)+

λ

tn+1
(xn−x∗)‖2

(3.17)
By using the convexity of F we obtain :

2γ

[(

1− λ

tn+1

)

F (xn)+
λ

tn+1
F (x∗)−F (xn+1)

]

≥ ‖xn+1−xn+
λ

tn+1
(xn−x∗)‖2−‖an(xn−xn−1)+

λ

tn+1
(xn−x∗)‖2

(3.18)
By adding F (x∗) on both sides ,by definition of wn, we have :

2γ

[(

1− λ

tn+1

)

wn−wn+1

]

≥ ‖xn+1−xn+
λ

tn+1
(xn−x∗)‖2−‖an(xn−xn−1)+

λ

tn+1
(xn−x∗)‖2 (3.19)

By multiplying both sides by t2n+1, we obtain :

2γ

(

(t2n+1 −λtn+1)wn − t2n+1wn+1

)

≥ ‖tn+1(xn+1 −xn)+λ(xn −x∗)‖2 −‖n(xn −xn−1)+λ(xn −x∗)‖2

(3.20)
by adding t2nwn on both sides we obtain :

2γ

(

kn+1wn + t2nwn − t2n+1wn+1

)

≥ ‖tn+1(xn+1 − xn) + λ(xn − x∗)‖2
︸ ︷︷ ︸

=vn+1

−‖n(xn − xn−1) + λ(xn − x∗)‖2

(3.21)
where

kn+1 = t2n+1 − λtn+1 − t2n = (n+ b)2 − λ(n+ b)− (n+ b− 1)2

= n2 + 2bn+ b2 − λn− λb− n2 − 2(b− 1)n− b2 + 2b− 1

= (2− λ)(n+ b)− 1

(3.22)

So that :
2γ(t2n+1wn+1 − t2nwn) ≤ 2γkn+1wn + ‖n(xn − xn−1) + λ(xn − x∗)‖2 − vn+1 (3.23)

Hence by using the last inequality and the identity

‖u− z‖2 − ‖v − z‖2 = ‖u− v‖2 + 2〈u− v, v − z〉 ∀u, v, z ∈ H (PI)
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and the definition of En we have that :

2γ(En+1 − En) = 2γ(tn+1wn+1 − tnwn) + vn+1 − vn + ξ
(
‖xn − x∗‖2 − ‖xn−1 − x∗‖2

)

(3.23) ≤ 2γkn+1wn + ‖n(xn − xn−1) + λ(xn − x∗)‖2 − ‖tn(xn − xn−1) + λ(xn−1 − x∗)‖2

+ ξ
(
‖xn − x∗‖2 − ‖xn−1 − x∗‖2

)

(

(PI)z = λx∗
)

= 2γkn+1wn + (λ+ 1− b)2‖xn − xn−1‖2 + 2(λ+ 1− b)〈xn − xn−1, tn(xn − xn−1) + λ(xn−1 − x∗)〉
(

(PI)z = x∗
)

+ ξ‖xn − xn−1‖2 + 2ξ〈xn − xn−1, xn−1 − x∗〉

= 2γkn+1wn +

(

(λ+ 1− b)2 + ξ + 2(λ+ 1− b)tn

)

‖xn − xn−1‖2

+ 2
(
λ(λ+ 1− b) + ξ

)
〈xn − xn−1, xn−1 − x∗〉

(3.24)
By definition of En we also have

2γEn = 2γt2nwn + (λ2 + ξ)‖xn−1 − x∗‖2 + t2n‖xn − xn−1‖2 + 2λtn〈xn − xn−1, xn−1 − x∗〉 (3.25)

so that

tn‖xn − xn−1‖2 =
2γ

tn
En − 2γtnwn − (λ2 + ξ)

tn
‖xn−1 − x∗‖2 − 2λ〈xn − xn−1, xn−1 − x∗〉 (3.26)

By injecting this last equality into (3.24), we find :

2γ(En+1 − En) ≤ 2γ
(
kn+1 − 2(λ+ 1− b)tn

)
wn +

(
(λ+ 1− b)2 + ξ

)
‖xn − xn−1‖2 −

2(λ+ 1− b)(λ2 + ξ)

tn
‖xn−1 − x∗‖2

+ 2
(
ξ − λ(λ+ 1− b)

)
〈xn − xn−1, xn−1 − x∗〉+ 2γ

2(λ+ 1− b)

tn
En

(3.27)
By choosing ξ = λ(λ+ 1− b), we obtain :

2γ(En+1 − En) ≤ 2γ
(
kn+1 − 2(λ+ 1− b)tn

)
wn + (λ+ 1− b)(2λ+ 1− b)‖xn − xn−1‖2

− 2
λ(λ+ 1− b)(2λ+ 1− b)

tn
‖xn−1 − x∗‖2 + 2γ

2(λ+ 1− b)

tn
En

(3.28)

By definition of kn+1 (3.22), we obtain :

2γ(En+1 − En) ≤ 2γ
(
(2− λ)(n+ b)− 1− 2(λ+ 1− b)tn

)
wn + (λ+ 1− b)(2λ+ 1− b)‖xn − xn−1‖2

− 2
λ(λ+ 1− b)(2λ+ 1− b)

tn
‖xn−1 − x∗‖2 + 2γ

2(λ+ 1− b)

tn
En

= 2γ
(
2b− 3λ

)
(n+ b)wn + 2γ(2(λ− b) + 1)wn + (λ+ 1− b)(2λ+ 1− b)‖xn − xn−1‖2

− 2
λ(λ+ 1− b)(2λ+ 1− b)

tn
‖xn−1 − x∗‖2 + 2γ

2(λ+ 1− b)

tn
En

(3.29)
By choosing λ = 2b

3 , we find :

2γ(En+1 − En) ≤ 2γ
(3− 2b)

3
wn +

(3− b)(3 + b)

9
‖xn − xn−1‖2 − 2

2b(3− b)(3 + b)

27tn
‖xn−1 − x∗‖2

+ 2γ
2(3− b)

3(n+ b− 1)
En

(3.30)

In this point, firstly we express the term ‖xn − xn−1‖2 with the aid of En and wn and then we
regroup the different terms.

From the inequality
‖α‖2 ≤ 2‖α+ β‖2 + 2‖β‖2 , ∀α, β ∈ H

6



and the definition of En, we have ( for α = tn(xn − xn−1) and β = λ(xn−1 − x∗) ) we find :

2γEn ≥ 2γt2nwn +
t2n
2
‖xn − xn−1‖2 + (ξ − λ2)‖xn−1 − x∗‖2

(ξ = λ(λ+ 1− b)) = 2γt2nwn +
t2n
2
‖xn − xn−1‖2 − λ(b− 1)‖xn−1 − x∗‖2

(3.31)

Therefore, we obtain

‖xn − xn−1‖2 ≤ 2γ
2

t2n
En − 4γwn +

2λ(b− 1)

t2n
‖xn−1 − x∗‖2 (3.32)

By injecting the inequality (3.32) into (3.27), we obtain :

2γ(En+1 − En) ≤ 2γ

(
3− 2b

3
− 2

(3− b)(3 + b)

9

)

wn + 2
2b(3− b)(3 + b)

27

(
b− 1

t2n
− 1

tn

)

‖xn−1 − x∗‖2

+ 2γ
2(3− b)(3 + b)

9t2n
En + 2γ

2(3− b)

3(n+ b− 1)
En

(3.33)
Therefore we have :

2γ(En+1 − En) ≤ 2γ
(2b2 − 6b− 9)

9
wn − 2b(3− b)(b+ 3)n

27(n+ b− 1)2
‖xn−1 − x∗‖2

+ 2γ
2(3− b)(b+ 3)

9(n+ b− 1)2
En + 2γ

2(3− b)

3(n+ b− 1)
En

= 2γB1wn +−B2n
‖xn−1 − x∗‖2
(n+ b− 1)2

+
2γa

(n+ b− 1)2
En +

2γc

n+ b− 1
En

(3.34)

where :

B1 =
2b2 − 6b− 9

9
< 0 , ∀b ∈ (0, 3)

B2 =
2b(3− b)(b+ 3)

27
> 0 , ∀b ∈ (0, 3)

a =
2(3− b)(b+ 3)

9
> 0 , ∀b ∈ (0, 3)

c =
2(3− b)

3
> 0 , ∀b ∈ (0, 3)

Hence it follows that for all n ≥ 1 :

En+1 − En ≤ a

(n+ b− 1)2
En +

c

(n+ b− 1)
En (3.35)

which concludes the proof of Lemma 3.2, with a = 2(3−b)(b+3)
9 and c = 2(3−b)

3 .

We are now ready to give the proof of Theorem 3.2, by using the estimation (3.14) of Lemma 3.2
and a discretized version of Gronwall’s Lemma (see Lemma A.1).

Proof of Theorem 3.2.

From Lemma 3.2 for all n ≥ 1, we have :

En+1 − En ≤ a

(n+ b− 1)2
En +

c

(n+ b− 1)
En (3.36)

with a = 2(3−b)(b+3)
9 and c = 2(3−b)

3 .
By summing (3.36) over n, we find that for all n ≥ 1 it holds :

En+1 ≤ E1 +

n∑

i=1

(
a

i
+ c

)
Ei

i
(3.37)
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where for ease of notation we denote as i the quantity i+ b− 1. By applying Lemma A.1, for all n ≥ 1
we find :

En+1 ≤ E1

n∏

i=1

(

1 +
c

i
+

a

i2

)

= E1e

(

∑n
i=1 log

(
1+ c

i
+ a

i2

)
)

(3.38)

The function G(x) = log
(
1 + c

x
+ a

x2

)
is positive and non-increasing in [1,+∞), therefore by

summation-integral comparison test for all n ≥ 1, we have :

n∑

i=1

G(i) ≤ G(1) +

∫ n

2

G(x)dx = log(1 + c+ a) +

∫ n

2

(

log
(
1 +

c

x
+

a

x2

)
)

dx (3.39)

By standard integration techniques, for all n ≥ 1 we find :

∫ n

2

log
(
1 +

c

x
+

a

x2

)
dx = n log

(
1 +

c

n
+

a

n2

)
+

∫ n

2

cx+ 2a

x2 + cx+ a
dx+A

= n log
(
1 +

c

n
+

a

n2

)
+

c

2

∫ n

2

2x+ c

x2 + cx+ a
dx+

(

2a− c2

2

)∫ n

2

1

x2 + cx+ a
dx+A

= n log
(
1 +

c

n
+

a

n2

)
+

c

2
log(n2 + cn+ a) +

1

2

∫ n

2

dx
(

2x+c√
4a−c2

)2
+ 1

+A

=
c

2
log(n2 + cn+ a) + n log

(

1 +
c

n
+

a

n2

)

+

(
√

4a− c2
)

arctan

(
2n+ c√
4a− c2

)

+A

(3.40)
where A > 0 is a renamed constant at each step. Here we stress out that every step is justified, since
4a > c2. As the function arctan is bounded for all n ≥ 1, we obtain :

∫ n

2

(

log
(
1 +

c

x
+

a

x2

)
)

dx ≤ c

2
log(n2 + cn+ a) + n log

(

1 +
c

n
+

a

n2

)

+A (3.41)

where A > 0 is a (renamed) constant which can be chosen positive. By injecting this last inequality
into (3.39), for all n ≥ 1, we have

n∑

i=1

G(i) ≤ log(1 + c+ a) +
c

2
log(n2 + cn+ a) + n log

(

1 +
c

n
+

a

n2

)

+A

≤ log(1 + c+ a) +
c

2
log((1 + a+ c)n2) + n log

(

1 +
c

n
+

a

n2

)

+A

= 2 log(1 + a+ c) + log(nc) + log

(

1 +
c+ a

n

n

)n

+A

(3.42)

By injecting the last inequality into (3.38), for all n ≥ 1, we obtain :

En+1 ≤ E1

[

2(1 + a+ c)A

(

1 +
c+ a

n

n

)n

nc

]

≤ Cnc (3.43)

for a positive constant C > 0, since

(

1 +
c+ a

n

n

)n

is bounded, as a convergent sequence ( such a bound

is for example ec+a ). This concludes the proof of Theorem 3.2 up to substituting n by n+ b− 1.

4 The perturbed case

In many cases the calculation of the proximal operator is not exact In this section we present i-FB
algorithm in presence of some error parameters as the ones considered in [4] [14], [17], [9]. In what
follows we keep the same notations as in the unperturbed case for the different sequences.
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4.1 Inexact computations of the proximal point

In this section, we introduce the different notions used to approximate a proximal operator in this work.
As recalled in the first section, if F is a proper, convex and l.s.c function and γ > 0, we can define the
proximal map ProxγF by

ProxγF (y) = argmin
x∈H

{

F (x) +
1

2γ
‖x− y‖2

}

(4.1)

Let us denote by

Gγ(x) = F (x) +
1

2γ
‖x− y‖2. (4.2)

The first order optimality condition for a convex minimum problem yields

z = ProxγF (y) ⇐⇒ 0 ∈ ∂Gγ(z) ⇐⇒ y − z

γ
∈ ∂F (z) (4.3)

We now introduce the notion of ε-subdifferential of F at the point z ∈ domF as:

∂εF (z) = {y ∈ H | F (x) ≥ F (z) + 〈x− z, y〉 − ε, ∀x ∈ H} (4.4)

It is worth noticing that it holds:

0 ∈ ∂εF (z) ⇐⇒ F (z) ≤ inf F + ε (4.5)

The ε-subdifferential is a generalization of the subdifferential as given in section 2. Note that if
ε > 0, then ∂f(x) ⊂ ∂εf(x).

We start by giving some definitions on the different types of approximations of the proximal operator
that on can find in [4], following [14] and [17].

Definition 4.1. We say that z ∈ H is a type 1 approximation of ProxγF (y) with ε precision and we
write z ≈1 ProxγF (y) if and only if

0 ∈ ∂εGγ(z) (4.6)

Definition 4.2. We say that z ∈ H is a type 2 approximation of ProxλF (y) with ε precision and we
write z ≈2 ProxγF (y) if and only if

y − z

γ
∈ ∂εF (z) (4.7)

Notice that if z ≈2 ProxγF (y), then z ≈1 ProxγF (y) (see Proposition 1 in [14]).
Finally we make call of a technical lemma taken from [15] ( see Lemma 2 ), that enables to consider

approximations of types i = 2 or i = 3 in the same setting.

Lemma 4.1. If x ∈ H is a type 2 approximation of ProxγF (y) with ε precision, then there exists r such

that ‖r‖ ≤ √
2γε and

y − x− r

γ
∈ ∂εF (x) (4.8)

Notice that when r = 0, then we get the definition of a type 2 approximation.

4.2 Convergence rate for inexact i-FB algorithm

In this framework we consider the inexact i-FB algorithm as follows :

Algorithm 2 Inexact i-FB

Let 0 < γ ≤ 1
L

and b ∈ (0, 3). We consider the sequences {tn}n∈N∗ , {xn}n∈N, {yn}n∈N, such that
x0 = y0 ∈ H and for every n ∈ N

∗ we set :

xn = T εn
en

(yn−1) (4.9)

yn = xn + an(xn − xn−1) where an =
n

n+ b
(4.10)

where T εn
en

(x) ≈εn
j Proxsg

(
x− γ(∇f(x) + en)

)
where j ∈ {1, 2}

We present here the main results concerning the inexact i-FB algorithm :
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Theorem 4.1. Let 0 < γ ≤ 1
L
, b ∈ (0, 3) and {xn}n∈N the sequence generated by the inexact i-FB

algorithm. Then for λ = 2b
3 and ξ = 4b2

9 , for every η > 0, there exists Cη > 0, such that for all n ≥ 1,
we have :

En ≤

(

2An +
√

2
(
Cη +Bn

)
)2

2γ
(n+ b− 1)

2(3−b)
3 +η (4.11)

where : An =

n∑

i=1

t
1− c+η

2
i

(
γ‖ei‖+

√

2γεi
)

and Bn = γ

n∑

i=1

t
2−(c+η)
i εi (4.12)

Corollary 4.1. Let 0 < γ ≤ 1
L
, b ∈ (0, 3) and {xn}n∈N the sequence generated by the inexact i-FB

algorithm. Then for every η > 0, there exists Cη > 0, such that for all n ≥ 1, we have :

F (xn)− F (x∗) ≤

(

2An +
√

2
(
Cη +Bn

)
)2

2γ(n+ b− 1)
2b
3 −η

and ‖xn − xn−1‖2 ≤

(

2An +
√

2
(
Cη +Bn

)
)2

(n+ b− 1)
2b
3 −η

(4.13)

where : An =

n∑

i=1

t
1− c+η

2
i

(
γ‖ei‖+

√

2γεi
)

and Bn = γ

n∑

i=1

t
2−(c+η)
i εi (4.14)

Remark 1. The last Corollary asserts that under the supplementary hypothesis over the perturbation
terms An and Bn, the convergence rates for the inexact i-FB algorithm remain "almost" the same
as in the unperturbed case(i-FB algorithm). Formally, let 0 < γ ≤ 1

L
, b ∈ (0, 3) and {xn}n∈N the

sequence generated by the inexact i-FB algorithm. If in addition, for every η > 0, we make the following
assumptions :

+∞∑

n=1

n1− c+η
2 ‖en‖ ≤ A < +∞ and

+∞∑

n=1

n1− c+η
2
√
εn ≤ B < +∞ (4.15)

Then there there exists Cη > 0, such that for all n ≥ 1, we have :

F (xn)− F (x∗) ≤ Cη

2γ(n+ b− 1)
2b
3 −η

and ‖xn − xn−1‖2 ≤ Cη

(n+ b− 1)
2b
3 −η

(4.16)

We begin by adapting the Lemma 3.1 of the previous section, for the perturbed version :

Lemma 4.2. Let y ∈ H and γ ≤ 1
L
. For all x ∈ H , we have :

F (x)− F (T ε
e (y)) + ε+ 〈e+ r

γ
, x− T ε

e (y)〉 ≥
1

2γ

(
‖T ε

e (y)− x‖2 − ‖y − x‖2
)

(4.17)

where r ∈ H sucht that ‖r‖ ≤ √
2γε

For a complete proof of Lemma 4.2, we address the reader to Lemma A.1. in [4].
We are now ready to present the proof of Theorem 4.1 :

Proof of Theorem 4.1. In the same way than the one in the unperturbed case, by applying Lemma 4.2

to y = yn and x =

(

1− λ
tn+1

)

xn + λ
tn+1

x∗ we obtain ( here λ ∈ (0, 1 + b)):

2γ(t2n+1wn+1 − t2nwn) ≤ 2γkn+1wn + ‖(tn − 1)(xn − xn−1) + λ(xn − x∗)‖2 − vn+1

− 2γtn+1〈en+1 +
rn+1

γ
, λ(xn − x∗) + tn+1(xn+1 − xn))
︸ ︷︷ ︸

=vn+1

〉+ 2γt2n+1εn+1
(4.18)

Therefore by using the last inequality, and performing the same computations as the ones made in
proof of Theorem 3.2, we find that for all n ≥ 1, it holds:

En+1 − En ≤
(c+ a

n+b−1 )

n+ b− 1
En − (n+ b)〈en+1 +

rn+1

γ
, vn+1〉+ (n+ b)2εn+1 (4.19)
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For ease of notation we will use the re-indexation n+ b− 1 ; n, which we will replace at the end of
the proof. Hence we rewrite the previous inequality as :

En+1 − En ≤ (c+ a
n
)

n
En − (n+ 1)〈en+1 +

rn+1

γ
, vn+1〉+ (n+ 1)2εn+1 (4.20)

Let η > 0. We define the sequence {Hn}n∈N∗ , such that for all n ≥ 1 :

Hn =
En

nc+η
+

n∑

i=1

i1−(c+η)〈ei +
ri

γ
, vi〉 −

n∑

i=1

i2−(c+η)εi

For all n ≥ 1, we have :

Hn+1 −Hn =
En+1

(n+ 1)c+η
− En

nc+η
+

(n+ 1)〈en+1 +
rn+1

γ
, vi〉

(n+ 1)c+η
− (n+ 1)2εn+1

(n+ 1)c+η

=
En+1 − (1 + 1

n
)c+ηEn + (n+ 1)〈en+1 +

rn+1

γ
, vi〉 − (n+ 1)2εn+1

(n+ 1)c

=
En+1 − En − c

n
En + (n+ 1)〈en+1 +

rn+1

γ
, vi〉 − (n+ 1)2εn+1 − η

n
En +O

(
n−2

)
En

(n+ 1)c

(4.20) ≤
(

O
(
n−1

)
− η

)
En

n1+c

(4.21)
Since for any η > 0 there exists Nη ∈ N, such that the right-hand side of the last inequality

is non-positive, we deduce that the tail sequence {Hn}n≥Nη
is non-increasing. Therefore by setting

Cη = max{Hn : n ≤ Nη}, using the definition of Hn, the Cauchy-Schwartz inequality and Lemma 4.1,
for all n ≥ 1 we find :

En

nc+η
≤ Cη −

n∑

i=1

i1−(c+η)〈ei +
ri

γ
, vi〉+

n∑

i=1

i2−(c+η)εi

≤ Cη +

n∑

i=1

i1−(c+η)‖ei +
ri

γ
‖‖vi‖+

n∑

i=1

i2−(c+η)εi

≤ Cη +

n∑

i=1

i1−( c+η
2 )

(
‖ei‖+

√
2γεi
γ

)
i−

c+η
2 ‖vi‖+

n∑

i=1

i2−(c+η)εi

(4.22)

Using the last inequality and the definition of {En}n≥1, we find :

(n
−c−η

2 ‖vn‖)2 ≤ 2Cη + 2Bn + 2
n∑

i=1

i1−( c+η
2 )

(
γ‖ei‖+

√

2γεi
)
i−

c+η
2 ‖vi‖ (4.23)

By applying Lemma A.2 with :

un = n
−c−η

2 ‖vn‖ , an = 2n1−( c+η
2 )

(
γ‖en‖+

√

2γεn
)

and Sn = 2Cη + 2Bn (4.24)

we find that for all n ≥ 1, it holds :

‖vn‖ ≤
(

2An +
√

2
(
Cη +Bn

)
)

n
c+η
2 (4.25)

By injecting this last inequality into (4.22) and multiplying both members by 2γ, we find :

2γEn

nc+η
≤ 2An

(

2An +
√

2
(
Cη +Bn

)
)

+ 2
(
Cη +Bn

)

=

(

2An +
√

2
(
Cη +Bn

)
)2 (4.26)

It follows that :

En ≤

(

2An +
√

2
(
Cη +Bn

)
)2

2γ
nc+η (4.27)

which by replacing n by n+ b− 1 and c = 2(3−b)
3 , concludes the proof of Theorem 4.2.
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A Appendix

The next two Lemmas are the discretized versions of Gronwall’s Lemma and Gronwall’s-Bellman’s
Lemma ( see for example Theorem 4 in [11] and Lemma 1 in [15] ).

Lemma A.1. Let C0 a positive real number and {un}n∈N, {an}n∈N two non-negative sequences such

that u1 ≤ C0 and for all n ≥ 1 :

un+1 ≤ C0 +

n∑

i=1

aiui (A.1)

Then for all n ≥ 1 it holds :

un+1 ≤ C0

n∏

i=1

(1 + ai) (A.2)

Lemma A.2. Let C0 a positive real number and {un}n∈N, {an}n∈N two non-negative sequences, such

that for all n ∈ N
∗ it holds

u2
n ≤ Sn +

n∑

i=1

aiui

where {Sn}n∈N is a non-decreasing sequence such that u2
1 ≤ S1. Then for all n ≥ 1, it holds :

un ≤
n∑

i=1

ai +
√

Sn

Remark. While submitting this paper we were informed that in a parallel but independent way Attouch
and al. worked in the same problem and had just submitted the preprint "Rate of convergence of the
Nesterov accelerated gradient method in the subcritical case α ≤ 3" ( see [2], https://arxiv.org/abs/
1706.05671 ).

Nevertheless our method allow us to conclude with Corollary 3.2 concerning the estimates (3.12),
i.e.

F (xn)− F (x∗) ≤ C

(n+ b− 1)
2b
3

and ‖xn − xn−1‖ ≤ C

(n+ b− 1)
b
3

(A.3)

which is a better result as the one proven in [2] which corresponds to the following estimates (see
Theorem 4.1 and Remark 4.1 of [2]) :

F (xn)− F (x∗) ≤ Cp

(n+ b− 1)2p
and ‖xn − xn−1‖ ≤ Cp

(n+ b− 1)p
(A.4)

where 0 < p < b
3 . In addition we give a complete proof of Theorem 4.1, concerning the results for the

inexact i-FB algorithm.
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