
QUARTERLY OF APPLIED MATHEMATICS

Volume LXII December • 2004 Number 4

DECEMBER 2004, PAGES 601-621

^-CONVERGENCE RATE OF VISCOSITY METHODS FOR SCALAR
CONSERVATION LAWS WITH THE INTERACTION OF

ELEMENTARY WAVES AND THE BOUNDARY

By

HONGXIA LIU and TAO PAN

Department of Mathematics, Jinan University, Guangzhou, 510632, P. R. China

Abstract. This paper is concerned with global error estimates for viscosity methods
to initial-boundary problems for scalar conservation laws ut+f(u)x = 0 on [0, oo) x [0, oo),
with the initial data u(x,0) = uq(x) and the boundary data u(0,t) = u_, where U- is
a constant, Uq(x) is a step function with a discontinuous point, and / G C2 satisfies
f" > 0, /(0) = /'(0) = 0. The structure of global weak entropy solution of the inviscid
problem in the sense of Bardos-Leroux-Nedelec [11] is clarified. If the inviscid solution
includes the interaction that the central rarefaction wave collides with the boundary
x = 0 and the boundary reflects a shock wave, then the error of the viscosity solution
to the inviscid solution is bounded by 0(e1^2 + e|lne| + e) in Z^-norm. If the inviscid
solution includes no interaction of the central rarefaction wave and the boundary or
the interaction that the rarefaction wave collides with the boundary and is absorbed
completely or partially by the boundary, then the error bound is 0(£|lne| + e). In
particular, if there is no central rarefaction wave included in the inviscid solution, the
error bound is improved to 0(e). The proof is given by a matching method and the
traveling wave solutions.

1. Introduction. Consider the scalar conservation laws

ut + f(u)x = 0, a; > 0, t>0 (1.1)

with the initial condition
u(x, 0) = uq(x), x > 0, (1-2)

Received October 31, 2001.
2000 Mathematics Subject Classification. Primary 35L65, 65M15.
Key words and phrases, conservation laws, initial-boundary problem, viscosity methods, error estimate.
The work for the first author is supported by the National Natural Science Foundation of China 19901012
and Guangdong Natural Science Foundation 031904.
The work for the second author is supported by the National Natural Science Foundation of China
10061001 and Jinan University Foundation 51204033.
E-mail address: hongxia-liu@163.net
E-mail address: tpan@jnu.edu.cn

©2004 Brown University
601



602 HONGXIA LIU AND TAO PAN

and the boundary condition
u(0,t) — t> 0. (1.3)

The viscosity method approximating the initial-boundary problem (1.1)—(1.3) is to
solve the parabolic equation on [0, oo) x [0, oo)

() t f 7 ' )xx ( I •*!)

with the initial data
!y(.r. 0) • : (.'li(^)- £ > 0, (1.5)

and the boundary data
<v(0./) -- '';>(')) t>0, (1.6)

where e > 0 is a small viscosity parameter, and the weak entropy solution u of (1.1) (1.3)
can be constructed as the limit of solutions of the initial-boundary problems (1.4)—(1.6)
for the parabolic equation.

Viscosity methods play an important role in both theoretical analysis and practical
computation for hyperbolic conservation laws. The accuracy and error bound of viscos-
ity approximation are of much concern from the viewpoint of numerical computation.
Goodman-Xin [1] developed a matching method, by which they showed the viscosity
method approaching piecewise smooth solutions with a finite number of non-interacting
shocks to a system of conservation laws has a local e rate of convergence away from
shocks. By using the matching method, Teng-Zhang [2] derived an optimal first-order
rate of L1 -convergence for the viscosity methods to piecewise constant entropy solutions
on the Cauchy problem of scalar conservation laws, which is an improvement over the
half-order rates of L1 -convergence for various approximation methods (see [3-9], etc.).
The analysis used in [2] was extended to more general cases for scalar convex conserva-
tion laws, such as piecewise smooth solutions with finitely many discontinuities, and an
L1 -convergence rate of 0(:-:jIn.-j + e) was established (see [10]).

For the initial-boundary problems of scalar conservation laws with several space vari-
ables, vanishing viscosity method proving the existence of the global weak solution was
established by Bardos-Leroux-Nedelec [11]. The main difficulty for scalar conservation
laws with boundary is to have a good formation of the boundary condition. Namely,
for a fixed initial value as (1.2), we really cannot impose such a condition at the bound-
ary as (1.3), and the boundary condition is necessarily linked to the entropy condition
(see also [11-14]). In other words, the weak entropy solution u(x,t) of (1.1)—(1.3) does
not admit a trace at the boundary, namely, u(0,t) ^ lit(i) for t > 0. Whereas, as vis-
cosity approximation of the weak entropy solution u(x,t) of (1.1)—(1.3), the solution of
initial-boundary problems of parabolic equation (1.4)—(1.6) does admit a fixed trace at
the boundary. Therefore, it is very interesting to consider the error estimates for the
viscosity approximation to the initial-boundary problems of scalar conservation laws.

For the Riemann initial-boundary problem of scalar conservation laws, i.e., uo{x),Ub(t)
are constant, by using a matching method used in [1,2,10], we proved that the error of
the viscosity solution to the in viscid solution is bounded by 0(e|lne| + e) in L1-norm
for all cases with convex fluxes and some cases with non-convex fluxes, respectively. If
there is no central rarefaction wave included in the inviscid solution, the error bound
was improved to O(e) (see [15]). As a next step, we investigate the cases in which the
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weak entropy solutions of (1.1)—(1.3) include the interaction of elementary waves and the
boundary. In other words, we consider the following initial-boundary problem:

ut + }{u)x = 0, x>0,t> 0
tt(0, t) = Ub(t) := U-, t> 0

u(x, 0) = uq(x) :=
(1-7)um, 0 < x < a

u+, x > a,

where u±,um are constant, uo{x) ^ for x > 0 and x a, a > 0 is a constant, and
/ G C2 satisfies

/" > 0, /(0) = /'(0) = 0. (1.8)
The viscosity equation with initial-boundary conditions corresponding to (1.7) is denoted
by

(ve)t + f{ve)x = e(v£)xx, x > 0,t > 0
v£(0,t)=u-, t> 0 (1.9)
wE(a:,0) = vq(x)(x > 0) —> u+{x —» oo).

In this paper, we establish the global error bounds of L1 -convergence for the viscosity
methods for the initial-boundary problem (1.7). Because the weak entropy solutions
of (1.7) include the interaction of elementary waves and the boundary, there are some
different phenomena in the solution structure from the initial value problem, especially
for the case when the inviscid solution includes the interaction that the central rarefaction
wave collides with the boundary x = 0 and the boundary reflects a shock wave. This
discussion will help us understand the more general problem with boundary, such as the
problem with piecewise smooth solution. The problem with piecewise smooth solution
will be investigated in our forthcoming paper.

This paper is organized as follows. The structure of the weak entropy solution of (1.7)
is stated in Sec. 2. In Sec. 3, we introduce an L1-stability lemma and a traveling wave
solution lemma, which play important roles in obtaining the L1 -convergence rate. Using
the conclusions obtained in Sec. 2 and Sec. 3, we extend the analysis used in [1,2,10] to
our problem and derive the uniform error estimates for the viscosity methods in the final
section.

2. Solution structures. Following Bardos-Leroux-Nedelec [11], we give the defini-
tion of the weak entropy solution to the initial-boundary problems (1.1)—(1.3) (see also

[12-14]).
Definition 2.1. A bounded and local bounded variation function u{x,t) on [0, oo) x

[0, oo) is called a weak entropy solution of the initial-boundary problems (1.1)—(1.3), if
for each k G (—00,00), and for any nonnegative test function 4> 6 Co°([0, 00) x [0, 00)),
it satisfies the following inequality

fOO pOO POO

{|w — k\4>t + sgn(u — k)(f(u) — f(k))<j)x}dxdt + / \uo(x) — k\4>(x,0)dx
Jo

sgn(ub{t) - k)(f(u{0, t)) - f(k))<j>(0, t)dt > 0.

(2.1)
TJo
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For the initial-boundary problems (1.1)—(1.3) with general bounded and local bounded
variation initial data and boundary data, the existence and uniqueness of the global weak
entropy solution in the sense of (2.1) have been obtained, and the global weak entropy
solution satisfies the following boundary entropy condition (2.2) (see also [11 14]).

Lemma 2.1. If u{x,t) is a weak entropy solution of (1.1)—(1.3), then,

u(0, t) = Ub(t) or

-°- *e/(u(0,<),u6(t)), Mu(0,«), a-e. t> 0, (2'2)
u( 0, t) — k

where I(w(0, t), Ub(t)) = [min{u(0, t), Ub(t)}, max{u(0, t), Uf,(£)}].

The following lemma is easily proved by Definition 2.1 and Lemma 2.1 for the piecewise
smooth solution (see also [14.16]).

Lemma 2.2. Under the assumption of (1.8), a piecewise smooth function u{x,t) with
piecewise smooth discontinuity curves is a weak entropy solution of (1.7) in the sense of
(2.1), if and only if the following conditions are satisfied:

(1) u{x,t) satisfies Eq. (1.7)i on its smooth domains.
(2) If x = x(t) is a weak discontinuity of u(x, t), then cl^p- = f'(u(x(t), t)). If x = x(t)

is a strong discontinuity of u(x,t), then

dx{t) f(u )-/(«+)
(Rankine — Hugoniot condition)

dt u~ - u+

and

u~ > u+, (Lax's shock condition)

where u~ = u(x(t) — 0,t),u+ = u(x(t) + 0.t).
(3) The boundary entropy condition (2.2) holds.
(4) u(x, 0) = Uo(x) a.e. x > 0.

For the scalar conservation laws, Chang-Hsiao [17] discussed the interaction of ele-
mentary waves on the upper half of the x-t plane (—00,00) x (O.oc), and clarified the
structure of solutions of the following Cauchy problem

(2.3)

With the aid of the analysis method in [17], we study the interaction among elementary
waves and the boundary x — 0. From this, and by using Lemma 2.2, we clarify the
structure of the weak entropy solution and its behavior at boundary x = 0 to (1.7),
which are very important for error estimates for vicosity methods.

When urn — u+ ^ u~, (1.7) is degenerated into a Riemann initial-boundary problem,
which was investigated in [15]. From now on, um ^ u+ is supposed. We divide our
problem into five cases: (I) U- = um7^ u+; (II) u- < um < u+; (III) u+ < um < u~;
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(IV) u-,u+ < um\ (V) um < u-,u+. For convenience, in this paper we denote

f(u 1) - f(u2)
s(ui,u2) =

Ul - u2

2.1 Case (I): u_ =um ^ u+.
In this case, (2.3) is degenerated into a Riemann problem. Let u(x, t) be the restriction

of weak entropy solution v(x, t) of (2.3) in the first quadrant of the x-t plane, i.e., u(x, t) =
v(x, i)l(0lOO)x(0,oo)- Then it is easy to verify that u(x,t) satisfies conditions (l)-(4) in
Lemma 2.2. Thus u(x,t) is the weak entropy solution of (1.7).

2.2 Case (II): u- <um < u+.
When u_ < um < u+, the weak entropy solution v(x,t) of (2.3) includes two cen-

tered rarefaction waves R\ and R2, centered at point (0,0) and (a,0) of the x-t plane,
respectively, which are not able to overtake each other since the propagating speed
of the wave front in Rx is the same as that of the wave back in R2 (see [17]). Let
u(x,t) = v(x, t)|(o,oo)x(0,oo); then it is also easy to verify that u(x,t) satisfies the condi-
tions in Lemma 2.2, hence u(x,t) is the weak entropy solution of (1.7). If f'(um) > 0,
the weak entropy solution of (1.7) includes two centered rarefaction waves R and R2
away from the boundary x = 0 (where R is the restriction of Ri on (0, oo) x (0, oo), i.e.,
R = -Ri|(o,oo)x(o,oo))- If f'(um) = 0, the solution only includes the centered rarefaction
wave R2 away from the boundary. If f'(um) < 0, the solution only includes the cen-
tered rarefaction wave R2 which will interact with the boundary and be absorbed by the
boundary.

2.3 Case (III): u_ > um> u+.
In this case, two shock waves S\ with speed s(w_,um), and S2 with speed s(um,u+),

starting at point (0,0) and (a, 0), respectively, appear in the weak entropy solution of
the initial value problem (2.3). By Lax's shock condition, S\ will overtake S2, and the
interaction of Si and S2 generates a new shock wave S3, with speed s(u-, u+), starting
at point (ai,ii), where t\ = a/(s(u-,um) — s(um,u+)), a\ = s(u-,um)t 1.

We divide this case into two sub-cases: (1) s(u-,um) < 0; (2) s(u_,um) > 0.
In sub-case (1), the shock wave Si is in the second quadrant or lies on the i-axis and

the shock wave S2 intersects the f-axis at time t* = —a/s(um, u+). We construct a local
weak entropy solution v(x,t) on (—00,00) x [0, t*) for (2.3), and let

/ , x f «-• x < 0 ,
v(x ,£►) = < , . nx (2.4)v(x, t* — 0) = u+, x > 0.

We then take v(x, t*) as the new initial value and solve (2.3) 1, (2.4) on (—00, 00) x \t*, 00);
thus we can extend the solution v(x, t) to (—00, 00) x [0, 00). From Lemma 2.2, u(x, t) —
v(x,t)|(0,oo)x(0,oo) is the weak entropy solution of (1.7), whose expression is as follows:

u(x,t) —

for 0 < t < i«, and

um, 0 < x < a + s(um, u+)t
u+, x > a + s(um, u+)t

u(x,t) = u+ for x > 0, t > t*.
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Namely, in sub-case (1), the weak entropy solution of (1.7) includes the shock wave S2
with speed s(um,u+), starting at point (a,0). The shock wave S2 collides with the
boundary x — 0 and is absorbed by the boundary at time t■ = t„.

In sub-case (2), the shock wave S\ is in the first quadrant. If s(u-,u+) > 0, S3 is in
the first quadrant. If s(u-,u+) < 0, S3 crosses the t-axis from the first quadrant and
enters the second quadrant. We construct a local solution v{x,t) on (—00,00) x [0,fi)
for (2.3) and take

U-, x < 0
v(x, ti — 0), x > 0

as the new initial value. Using the previous method, we can extend v(x, t) to (—00, 00) x
[0,oo) for s(u-,u+) > 0, and to (—00,00) x [0,<2) for s(u-,u+) < 0, where t2=ti —
a\/s(u-,u+) is the time at which the shock S3 intersects the t-axis. When s(u-,u+) < 0,
using

U-, x < 0
v(x, t2 — 0) = u+, x > 0

as the new initial value, as above, we can extend v(x,t) to (—00,00) x [0, 00). From
Lemma 2.2, u(x,t) = v(x,t)|(0.oo)x(0,oo) is the weak entropy solution of (1.7), whose
expression is as follows.

When 0 < t < t±,

U-, 0 <x<s(u-,um)t
u(x,t) = { um, s(u-,um)t < x < a + s(um,u+)t (2.5) 1

u+, x > a + s(um,u+)t,

v(x,t2) :=

when t\ <t<t2,

u(x,t) = i U- 0<x<ai + s(u u+)
' u.|_, x > a\ + s(u-, u+),

when t > t2, for x > 0,

«(*,*)={ (")2-.. '25'3
(_ u+, ii s(w_,u+) < 0.

Namely, for sub-case (2), the weak entropy solution of (1.7) includes two shock waves Si
with speed s(u_,um), and S2 with speed s(um,u+), starting at point (0,0) and (a,0),
respectively, and the interaction of Si and S2 generates a new shock wave S3, with speed
s(u-,u+), starting at point (ai,ti). If s(u-,u+) > 0, then S3 does not interact with the
boundary; if s(u-,u+) < 0, then S3 interacts with the boundary x = 0 and is absorbed
by the boundary at time t = t2.

2.4 Case (IV): u-,u+ < um.
In this case, a central rarefaction wave R centered at point (0, 0) and a shock wave S

with original speed s(um, u+), starting at point (a, 0), appear in the weak entropy solution
of the initial problem (2.3). The shock wave S will overtake the central rarefaction wave
R at finite time ti = a/(f'(um) — s(um,u+)) by virtue of Lax's shock condition. The
shock S will cross R with a varying speed of propagation during the penetration; that
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is, the shock S, also denoted by x = X(t), is no longer a straight line at t > t±, which
satisfies the Rankine-Hugoniot condition

^ = s(u(X(t) - 0,t),u(X($+0,t)) (2.6)

and Lax's shock condition

u(X(t) — 0, t) > u(X(t) + 0,t). (2.7)

The varying speed of propagation can be determined by

<^=S(U,U+), /'(«) = y, /'(«_) < J < f'(um)
X(ti) = ai,

where ai = Because X = f'(u)t,

dX/dt = tf"(u)du/dt + f'(u),
with which (2.8) can be integrated as

f"{u)du tr = In — (u_ < u < um),
J Urr, s{u,U+) - f'(u) h

from which, if u_ = u+, the shock x = X(t) is able to cross the whole of the rarefaction
wave R completely only when t —> oo. If > u+, the shock x — X(t) will cross the
whole of R completely at time

, , , r~ f"(u)du ^
t2=tiexp{ — r -—)

Jum s{u,u+) - f'(u)
and after t = t2, the shock wave is a straight line; if < u+, it is impossible for the
shock wave to cross the whole of R completely (see also [17]). We denote by s(t) the speed
function of the shock x = X(t), i.e., s(t) = dX(t)/dt. Then from (2.8), s(t) G C([0, oo)),
and is not increasing for t £ (0, oo).

Next, we construct the weak entropy solution of (1.7) by dividing this case into three
sub-cases: (1) u-,u+ < um < 0; (2) 0 < «_,u+ < um or u- < 0 < u+ < um
or u+ < 0 < u- < um,f(u+) < f(u-)\ (3) u+ < 0 < u_ < um,f(u+) > f(u_) or

U-, u+ < 0 < um.

2.4.1 u^,u+ < um < 0.
In this sub-case, the centered rarefaction R is in the second quadrant and the initial

shock speed s(um,u+) < 0. We construct a local solution v(x,t) on (—00,00) x [0, to)
for (2.3), where to = —a/s(um,u+) is the intersection of the shock S and the t-axis. Let

v(x,t0)
U-, x < 0
v(x, to — 0) = u+, x > 0,

repeat the process using v(x,to) as the new initial condition, and solve the correspond-
ing Cauchy problem on (—00,00) x [t0,oo); then we can extend the solution v(x,t) to
(—00,00) x [0,00). Let u(x,t) = v(x,t) |(0,oo)x(0,oo)- In view of Lemma 2.2, u(x,t) is
the weak entropy solution of (1.7). Consequently, the interaction in the weak entropy
solution of (1.7) is that the initial shock S interacts with the boundary x = 0 and is
absorbed by the boundary at the time t = to-
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2.4.2 0 < u-,u+ < um or u_ < 0 < u+ < um or u+ < 0 < u_ < um,f(u+) < /(it_).
In this sub-case, the central rarefaction wave interacts with the shock wave S in the

first quadrant, and the generating shock wave x = X(t) (t £ (<i,oo)) is also located in
the first quadrant in the weak entropy solution of (2.3). From (2.8), we conclude that
the shock speed s(t) > 0 for t € (0, oo). We take u(x,t) = v(x,t) |(o,oo)x(o,oo) as the
weak entropy solution of (1.7). In fact, by virtue of Lemma 2.2, we can really do this.

We now state the interaction in the weak entropy solution of (1.7). A central rarefac-
tion wave Ro centered at point (0,0) (where Rq = .R|(o,oc)x(o,oo)) overtakes the shock S
at t = t\ and at t > t\ the shock will cross Rq with a varying speed of propagation during
the penetration. The shock before and after interaction is just x = X(t) (t € (0, oo)).
As an example, for the case of u_ < 0 < u+ < um, the weak entropy solution of (1.7) is
written as for t > 0:

„(*,() =f *><*•'>• ° < *<*<<> (2.9)1 ' \ «+, x>X(t), { '
where

f (/rx(f), o<j<f(um)
Ui{x,t)=l x* t (2.10)

^ Umj ~ J \Um).

2.4.3 u+ < 0 < U- < um, f(u+) > /(w_) or u-,u+<0<um.
In this sub-case, we have for (2.3) that after penetrating the part of the central rar-

efaction wave located in the first quadrant completely, the generating shock x = X (t)
crosses the i-axis and enters the second quadrant. From this, using Lemma 2.2, we can
construct the weak entropy solution of (1.7). First, construct a local solution v(x,t) to
(2.3) on (—00,00) x [0,t2) (where 12 is the time at which the shock x = X(t) intersects
the t-axis). Next, take

v{x,t2) ■=
x < 0

v(x, ^2 — 0) = U+, X > 0

as the new initial value of (2.3) 1 and solve the corresponding initial value problem; then
v(x,t) can be extended to (—00,00) x [0,00). The function u(x, t) := v(x,t)|(0,oo)x(0,Oo) is
just the weak entropy solution of (1.7). We only give the expression of the weak entropy
solution of (1.7) for the case of ?x_,u+ < 0 < um as follows:

u(x,t) = { (2'9)\ CM)G(0,oo)x(0,t2)
\ u+, (x,t) £ (0, 00) x (i2,00).

The interaction in the weak entropy solution of (1.7) is stated as follows: the shock
wave x — X (t) interacts with the central rarefaction wave at t = t\ and crosses the
rarefaction wave at t > t\, then collides with the boundary x = 0; finally, it is absorbed
by the boundary.

2.5 Case (V): um < u-,u+.
When um < u-,u+, a shock wave S with original speed s(u_,um) starting at point

(0,0) and a central rarefaction wave R centered at point (a, 0) appear in the weak entropy
solution of the initial problem (2.3). The shock S overtakes the central rarefaction wave
R at time to = a/(s(u-,um) — /'(um)), and at t > to the shock S : x = X(t) will cross
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R with a varying speed of propagation during the penetration. As in Sec. 2.4, the shock
speed function s(t) := dX(t)/dt is determined by

, . n / I \ ^ fl nil \ X nil \— = s(u-,u), f (u) = —J—, f (um) < —— < f (u+) ^ ^
X {to) = ao

for t > to, where ao = s(u-,um)to and the size of u± determines whether the shock
x — X(t) is able to cross the whole of R completely. By (2.12), s(t) 6 C([0, oo)) and is
not decreasing.

We divide this case into the following three sub-cases: (1) f(um) > /(«-); (2)
/(um) = /(«-); (3) f(um) < /(«-)•

2.5.1 f(Um)>f{U-).
In this sub-case, the initial shock wave S : x = X(t) (t £ (0,to]) is hi the second

quadrant. If um < u^,u+ < 0 or um < U- < 0 < u+ or um < u+ < 0 < u_,
f(u+) > fiu-) or um < u~ = u+ = 0, the generating shock wave x = X(t) (t £ (to, oo))
in the weak entropy solution of (2.3) is in the second quadrant and its speed s(t) < 0.
Therefore the weak entropy solution of (1.7) is the following central rarefaction wave,
which was absorbed completely or partially by the boundary x = 0,

where

U(x,t) Ur (x, t) | (o,oo) X (0,oc) 5 (^*13)

x<a + f'{um)t

n(x,t)={ (/') a + f (um)t < x < a + f (u+)t (2.14)

u+, x > a + f'(u+)t.
If um < u+ < 0 < U-, f(u+) < f(u-), or um < 0 < u+,u-, u_ ^ 0, there

exists u* £ (um, 0) such that f(ut) = /(u_); furthermore, there is > to such that
s(t„) = s{u-,u*) = 0, where s(t) is the speed function of the shock wave x = X(t) in
the weak entropy solution of (2.3). Moreover, after t = t», s(t) > 0 and the shock crosses
the t-axis at some finite time, it then enters the first quadrant. If we take the restriction
of the solution of (2.3) in the first quadrant as u(x,t), then u(x,t) does not satisfy the
boundary entropy condition (2.2) at t > t\\, where t\ = —a/f'(u*) < t* is the time at
which the characteristic x = a + f'(u*)t intersects the t-axis (see Figures 2.1-2.2). Thus,
by virtue of Lemma 2.2, it is not the weak entropy solution of (1.7). So, in the process of
constructing a weak entropy solution of (1.7), we must take into account the boundary
entropy condition (2.2) in our minds. Now we reconstruct the solution of (1.7). Using
the local solution v(x,t) of (2.3) on (—00,00) x [0, ti), by taking

v{x,t 1) :=
{

it_, x < 0
v(x, t\ — 0), x > 0

as the new initial value of (2.3) 1, we can extend v(x,t) to (—00, 00) x [0, 00). Let u(x, t) =
v(x, t)|(0,oo)x(0,oo)- Then, from Lemma 2.2, this u(x,t) is the weak entropy solution of
(1.7) (see Figures 2.1-2.2), which can be expressed as follows:

u(x,i) = ur(a:,t)|(o,oo)x(0,0o) for 0 < t < h, (2.15)i
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and for t > t \
, ,v / U-, 0 < X < X+(t)

= l uAx.t), 2>X+(i), <2J5)2
where ur(x,t) is defined by (2.14), and x — X+(t) is a new shock wave, starting at point
(0, ti), which is located in the first quadrant and determined by the following problem:

-jj-= s{u-,u), f (u) =    , / (u*) <    </(«+) (2.16)
X+(h) = 0.

Figure 2.1 Figure 2.2

In what follows, we give the statement of the interaction in the weak entropy solution
of (1.7). One part of the rarefaction wave R collides with the boundary x = 0, and
then the boundary x — 0 reflects a new shock wave x = X+(t) at time t = t\, which will
penetrate another part R+ of the rarefaction wave R with a varying speed of propagation
determined by (2.16), where R+ is just the restriction of R at Similar to
the analysis on the previous shock wave x = X{t), making use of (2.16), we can derive
the following properties for the new shock wave x = X+(t). If u_ = u+, the shock wave
x = X~+(t) is able to cross the whole of R+ completely only when t —► oo. If U- > u+,
the shock wave x = X+(t) will cross the whole of R+ at finite time. If u._ < u+, it is
impossible for the shock wave x = X+(t) to cross the whole of R+ completely. Moreover,
the new shock speed function, still denoted by s(t), with s(ti) = 0 and s(t) > 0 for t > t\,
is continuous and not decreasing for t>t\.

2.5.2 f(um) = f{u-).
In this sub-case, the part (from t — 0 to t\ —a/f'(um)) of the shock wave x = X(t)

appearing in the weak entropy solution v(x,t) of (2.3) lies on the t-axis, and another
part (from t == t\ to oo) is in the first quadrant. Thus, by Lemma 2.2, u(x,t) =
v(x,t)|(0,oo)x(0,oo) is the weak entropy solution u(x,t) of (1.7), which can be written
as

■u(x,t) = ur(x,t) Ue(0,oo) for 0 < t < ti
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and for t > t\,
, r u-, o < x < x+(t)

U X' \ ur(x,t), x > X+(i),

where ur(x,t) is defined by (2.14) and x = X+(t) is the restriction of x = X(t) at t > t\.
We now state the structure of the weak entropy solution of (1.7). The rarefaction wave

R collides with the boundary x = 0 at time t\. The interaction of R and the boundary
x — 0 generates a shock x = X+(t), which will penetrate R after t = t\. This shock
x = X+(t) is just the restriction of x = X{t) at t > t\. Similar to sub-section 2.5.1, the
speed s(t) of the shock wave x = X+(t) satisfies s(£i) = 0 and s{t) > 0 for t 6 (ti, oo).

2.5.3 f{um)<f(u.).
In this sub-case, for the initial problem (2.3), the shock wave x = X(t) interacts with

the central rarefaction wave in the first quadrant, and the shock wave x = X(t) (t G
(0,oo)) is located in the first quadrant. By (2.12), the shock speed s(t) > s(u-,um) > 0.

Therefore, from Lemma 2.2, u(x,t) = v(x, i)|(ol00)x(o,oo) is the weak entropy solution
of (1.7), where v(x,t) is the weak entropy solution of (2.3). The weak entropy solution
u(x,t) of (1.7) does not include the interaction of elementary waves and the boundary,
which can be written as

u(x,t) =
U-, 0 < x < X{t)
ur(x,t), x > X(t),

where X(t),ur(x,t) is determined by (2.12), (2.14), respectively.

From the discussion in Cases (I)-(V), we can obtain the following lemma, which is
necessary for the error analysis.

Lemma 2.3. Assume that (1.8) holds. Then the weak entropy solution u(x,t) of (1.7)
satisfies for 0 < e < t < T < oo,

K(0-M)|, \ux(z±0,t)\ <j, z> 0

and

Jr \\uxx{'-,T)||li[o,oo)^t < C\ lne| + C,

where C is a constant independent of e.

According to the arguments in sub-sections 2.1-2.5, we can divide the interaction of
elementary waves and the boundary x = 0 in the weak entropy solution of (1.7) into the
following three cases, which will be respectively investigated for the error bounds for the
viscosity methods in Sec. 4.

(1) The central rarefaction wave interacts with the boundary and the boundary reflects
a shock wave if um,u± satisfy one of the following conditions:

(Ai) um<u+<0<u-, and f(u+)<f(u-)<f(um);
(A2) um < 0 < u+,u-,u- j=- 0, and /(u_) </(um);
(A3) um<u-,u+, and f(um) = f(u-).

See sub-sections 2.5.1 and 2.5.2.
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(2) There is no central rarefaction wave included in the weak entropy solution if um,u±
satisfy one of the following conditions:

(Ai) w_ > um > u+;
(A5) u-,u+ <um< 0.

See sub-sections 2.1, 2.3, and 2.4.1.
(3) The central rarefaction wave does not interact with the boundary or the rarefaction

wave is absorbed completely or partially by the boundary if conditions (j4i )—(yls) do not
hold (see sub-sections 2.1, 2.2, 2.4.2, 2.4.3, 2.5.1, 2.5.3).

3. Basic Lemmas. Throughout this paper, the norm || • || denotes the standard L1-
norm, || ■ Hx,1 [o,oo) j C or C{t) denotes a positive constant independent of e, and c denotes
a positive constant independent of t and e, but with different values at different places.

As in [2,10], the error estimates are based on a stability lemma for nonhomogeneous
viscous equations with initial-boundary conditions and a traveling wave solution lemma.
We first establish an L1 -stability lemma.

Lemma 3.1. Let v^(x,t) (i — 1,2) be continuous and piecewise smooth solutions of the
following equations

{vM)t + f(vM)x - e(vM)xx = gi(x, t), x > 0, t > d > 0, i = 1,2. (3.1)

The above equations hold for all values of x > 0 except on some curves Xm(t), 1 < m <
M, where vx rnay not exist. If ui := — v^ —> 0 as x —» oo, then

||w(-,t)|| < |M-,d)|| + [ ||<7i(■, t) — 52(': T)\\dT

r* r
+£ \u)x(0+,T)\dT + / sgnu;(0, r)(f(v(1)(0, t)) - f(v(2)(0, r)))dr

Jd x JdM ft
/ |wx(Xm(r) +0,r) - ujx(Xm(T) - 0, r)|dr. (3.2)

m=1 J d

Proof (see also [15]). We now prove this Lemma by a similar technique as in [10]. It
follows from (3.1) that

"t + if(v(1)) - f{v{2)))x = euxx +gi(x,t) - g2(x,t). (3.3)

If ui > 0 or ui < 0 for all x, then straightforward integration on the above equation gives
(3.2). Let (0 <)pi(t) < Pi(t) < ■ ■ ■ be the points such that, at those points, ui changes
signs. Let a? be the sign of u> in (p3, p3 + [)(j = 0,1, 2, 3, • • • ,po = 0). Multiplying (3.3)
by aj(j = 1,2, • • ■) and integrating the resulting equation over {pj,pj+i) yield

rPj+i rPi+i
aJ ujtdx =£(ajujx(pj+i-0,t) - aju>x(pj+0,t)) + aj (gi(x, t) - g2(x, t))dx

+e otj(^x(Xm(t) + 0, t) — u)x(Xm(t) — 0, t)).
Pj<Xm<Pi +1

(3.4)
Since ui(pj,t) = ui(pj+i,t) = 0 and ajui > 0 for x € (p3,pJ+i), we have

d fPj+1

+£
m= 1

dt
rPj+i rPj+i
/ \oj\dx = a.j / ujtdx.

JPj Jpj
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Moreover, observing that otjU)x(pj+1 — 0,t) < 0 and a.jujx{pj + 0,t) > 0 (j = 1,2,...)
... uj(x.t) — u)(pj+i,t) , a-jUi(x,t)

(because ajLux(pj+i — 0, t) = q7- lim   = lim — < 0), we
x-+pJ+1 x - Pj+1 x-p7+1 ® - Pj+i

obtain from (3.4) that

d rPj+i
I \uj\dx < eaj\ujx(Xm(t) +0,t) -ux{Xm(t) - 0, t)|
Pj Pj<^Xm<^Pj +1•Pj + 1 .

fliOM) - £2(2, t)|da;.

dt yj -

-fj Pi'Pi

Since the above inequality is true for all j > 1, we have

d
dt

rp rp
■ \uj\dx < ^ e\ux(Xm(t)+0,t)-ujx(Xm(t)-0,t)\+ \gi(x,t)-g2(x,t)\dx,
Jpi Pi<Xm<p- Jpi

(3.5)
where p* = sup^ pj. If p* < oo, using a similar method as above yields

d
dt

/>oo   rOO

/ \uj\dx<e ^2 Wx(Xm(t)+0,t)-ujx{Xm(t)-0,t)\+ \gi(x,t)-g2(x,t)\dx.
J V* v- •' V*XTn >P*

(3.6)
In obtaining the last inequality, we have used the fact that ui —> 0 as x —> oo. In order
to get (3.2), we need to estimate ^ /0Pl \co\dx. Multiplying (3.3) by aq and integrating
the resulting equation over (O.pi) yield

d l'Pl rPi
— J \u\dx = ao(/(w(1)(0,t)) - /(f(2)(0,t))) +a0J {g\{x,t) - g2(x,t))dx

+e(a0wx(pi - 0, t) - aowx(0-M)) + £ a0e(ux(Xm(t) + 0,t)-ujx(Xm(t)-0,t)),
0 <Xm<pi

then

d fPl
— \to\dx < e\u>x(0+,t)\ + £\ux(Xm(t) + 0,t) - ujx(Xm(t) - 0,t)|
at Jo 0<Xm<pi

rPi
+ / \gi(x,t) - g2{x,t.)\dx + sgnuj(0,t)(f(v(1){0,t)) - f(v(2)(0,t))).

Jo
(3.7)

Using (3.5)-(3.7), we obtain the desired result.
Assume that x=X(t) is a smooth curve satisfying the R-H jump condition (2.6) and

Lax's shock condition (2.7), where dX/dt, is the shock speed. Let u~ := u(X(t)—0,t) and
u+ u(X(t) + 0, t). If are independent of t, it is known that there is a traveling wave
solution to scalar viscous conservation laws (1.4), in the form v£(x,t) = V(x — X(t)),
where the shock speed dX/dt is a constant, satisfying V(—oo) = u~, V(oo) = u+. When
tt± are functions of t, we introduce the following generalization.

Lemma 3.2 ([10]). Let u~(t) > u+(t) be two given functions, X(t) be defined by
(2.6). Then there is a unique traveling wave V(x — X(t);u~,u+) of (1.4) taking on
V(—oo; u~, u+) = u~~, V(0; u~, u+) = (u~ + u+)/2, V(oo; u~ ,u+) = w+, which has the
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following properties:

(1) V(£ ;u~,u+) is a decreasing function with respect to £.
(2) \V(£ ;u~,u+) — ,u+)\ < (u~ — u+) exp{—a(u~ — u+)\£\/2s}.
(3) \\H(- \u~,u+) - V{• ;w",w+)||li(_oo,oo) < ce.
(4) ||K-(- -,u~,u+)u~ + Vu+{- ;u~,u+)u+ - H(- ;u~,ii+)||

< ce(\ux(X(t) + 0,i)| + |ux(X(t) - 0, t)\),

where ?i± = d(u±)/dt, H is the so-called Heaviside function defined by

TT ( — + \ f ^ ' X 0H(x\u ,u^) = < ,
[ u+, x > 0,

and a is a constant defined by

/"(«). (3.8)

4. Main results. In this section, we apply the solution structures, L1-stability lem-
ma, and traveling wave lemma obtained in previous sections to prove the main conclusions
of this paper.

In this section, we always suppose that ||wo(') — uo(')ll < °°-

Theorem 4.1. Assume that (1.8) and one of the conditions (Ai) — (A3) hold. If ve is the
smooth solution of (1.9) and u is the weak entropy solution of (1.7), then the following
error estimate holds for any T > 0:

sup \\ve(-,t) - u(-,t)|| < |M") - uo(-)ll + C(T)(e1/2 +e|lne| +e). (4.1)
0 <t<T

Theorem 4.2. Suppose that (1.8) is valid and that um,u± are three constants which
do not satisfy the conditions (Ai) — (A3). Let v£ be the smooth solution of (1.9) and u
be the weak entropy solution of (1.7). Then the following error estimate holds for any
T > 0:

sup \\ve(-,t) - u(-,t)\\ < ||t>o(-) - uo(-)ll + C(T){e\ lne| + s). (4.2)
0 <t<T

In particular, if there is no rarefaction wave included in the solution of (1.7), namely, um
and u± satisfy (A4) or (A5), then the following error bound is valid for any T > 0:

sup ||ue(-,t) - u(-,0|| < \\v0(-) - U0(-)|| +C(T)s. (4.3)
0 <t<T

It is well known that under the condition that vo S C2([0,00)) satisfies the compati-
bility conditions uo(0) = U- and ^(0) = v'q(0) = 0 and |M-)llc([o,oo)), |^o(')IL21(io.oo))
are bounded for e, there exists a unique smooth solution v£ to the parabolic equation
(1.9) with initial-boundary conditions such that ||ue||c([o,oo)x[o,T]) and ||wex(0, OIUhio.t])
(VT > 0) are bounded for £ (see, for instance, [18], or [19]).

We will use Lemma 3.1 and Lemma 3.2 to prove Theorem 4.1 and Theorem 4.2. Ap-
plying Lemma 3.1 requires the condition that the solutions of (3.1) should be continuous.
However, as discussed in Sec. 2, there is rarefaction wave or shock wave discontinuity
for the weak entropy solution of (1.7). Across the rarefaction wave region, the solution
is continuous, but on the shock curves, the solution is discontinuous. In order to get
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the desired results, following [2,10], if the weak entropy solution u(x,t) of (1.7) does not
contain shock discontinuity for t G (tl,T2) (0 < T\ < T2 < T < oc), then in the interval
(ti, 7*2), we can directly apply Lemma 3.1 to ve(x,t) and u(x,t); otherwise, we construct
a reasonable approximation v£(x, t) to u(x, t) in (n, 72) to get rid of shock discontinuities
and use Lemma 3.1 to v£(x, t) and ve{x, t).

Proof of Theorem 4.1. By the arguments in sub-sections 2.5.1 and 2.5.2, when t £
(0,£i), the weak entropy solution of (1.7) contains no shock discontinuity; when t €
(£1,00), the solution of (1.7) contains only one shock x — X+(t)(> 0), starting at point
(0, £ 1) (see Fig. 2.2). We replace v^(x, t), v^2\x, t) in Lemma 3.1 by ve(x,t),u(x,t),
respectively, then we get for 0 < e < t < t\,

IMM) - «(M)|| < \\v£(-,e) -u(-,e)|| + e (1^(0, r)| + \ux(0,t)\)cIt

+£j^\\uxx(-,T)\\dT + J sgn(u_-«(0,t))(/(u_) -/(u(0,r)))dr

+eJ (\ux(Xi(t) + 0,t)| + jux(Xr(r) - 0,r)|)dr

< |b£(-,e) - u(-,e)|| + C(T)(e\ lnej +e),
(4.4)

where Xi(t) := a + f'(um)t, Xr(t) := a + f'(u+)t. I11 obtaining (4.4), we have used
(2.15)i, (2-2), and Lemma 2.3. Since ve and u satisfy the following stability results

IK(-,t) - Ue(-,T0}|| < C\t - r0|, IIu(-,t) - u(-, t0)|| < C\t - r0|, (4.5)

from (4.4), we obtain for 0 < t < t\

|we(-,t) -u(-,t)|| < \\v0(-) -Ho(-)ll + C(e + e| lne|). (4.6)

When ti < t < 00, we take the approximation ve(x,t) to u(x,t) as

ve(x,t) = u(x,t) + V(x — A'+(t); it_, u+) — H(x — X+(t);u-,u+), (4.7)

where u+ = u+(t) := u(X+(t) + 0,t) and u(x,t) is determined by (2.15)2- We easily
verify that ve(x, t) is continuous and piecewise smooth in (0, 00) x (t 1,00), which satisfies
that

v£(x, t) — v£(x, t) —> 0, as x —> 00

and (vE)x,ux are discontinuous on the same curves. By direct computation, v£ satisfies
the equation

(%)t + f(Ve)x - £(Ve)xx = ]j(x, t)

in its smooth regions, where g(x, t) = Ix +/2 - euxx,h = -f(u)x - f(V)x + f(ve)x,12 =
Vu+ii+ — H(x — X+; 0, u+). By using the same technique as in [10], from Lemma 2.3 and
Lemma 3.2, one has

ll5(M)ll<^,
from which it follows for t\ < t < T <00,

rt

f \\g(-,T)\\d,T <C(T)e. (4.8)
Jt!
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Using Lemma 3.2 yields
\\v£(-,t) ~ W(-,*)II < C£. (4.9)

Therefore, Lemma 3.1 can be applied to ve(x,t) and ve(x,t), and by (4.7)-(4.9), Lemma
2.3, and Lemma 3.2, it can be concluded that for t\ < t < T < oo,

||veM) - ^e(-,i)|| < ||"vE(-,ti) - wc(-,ti)|| + I \\g(-,T)\\dT
t t

+£ [ (|^£x(0,t)| + \vEX(0,T)\)dT + I sgn(u_ — t7e(0, t))(/(m_) — /(we(0,r)))dr
Jt1 Jti

+£ [ (\ux(X+(t) ±0,t)| + \ux(Xr(r) ±0,t)|)c2t
t

< lke(-,ii) - u(-,*i)H + C{T)s + c f \V(-X+(t);u^,u+) - u_|dr

< -w(-,ti)|| + C(T)e + c [ (uJ - «+)exp{-a(u_ - u+)X+(t)/2e}.
Jti

(4'10)
Let Io := Jf (u_ — u+) exp{— a(u- — u+)X+[t)/2e}dr. We now estimate the boundary
integral Iq. The key point is to estimate X + (t) for t > t\. Since X+(t)(t > ti) is
smooth and increasing, there exists t2 > such that X+(t2) = £0, where £0 is a given
constant which satisfies that 0 < £q < a for the case when (A2) or (.A3) holds and
0 < eo < a + f'{u+)t^ for the case when (Ai) is valid, here

, , , r+ f'{u)du ,
t3 = tlexp{ —     .

Ju, s(u-,u) - f'(u)

Furthermore, there exists u** £ (w*, 0) such that u+(t2) = u** and /'(«**) = {£Q—a)/t2 <
0 < f'(u+) (if (A3) holds, then u* = um). Thus when t £ [t\,t2], u+ £ and
0 < s(t) < s(t2), where w+(<i) = u», s(£) := X+(t) = s(u-,u+(t)). Consequently, by
direct computation and Taylor's formula, we have for t, £ [£1,^2]

-r+ _ f(u-) - f(u+) - f'{u+)(u- - u+) du+X+{t)
(u_-w+)2 dt

/"(?1) s(t)t + a — X+(t) (a — £0)a
2 ' f"(u+)P ~ 2(3

where u+ < rj < u^, a is defined by (3.8), (3 = supmin{umi„±}<u<max{um,u±}/"(u).
Then, by applying Taylor's formula again, we conclude that

X+(t) =X+(t1)+X+(t1)(t-t1) + X+(l)(t-t1)2/2 (l£(tut))

>^|-(t'h)2 (t€[tl,t2]),

from which we get for t £ [£i,£2],

Iq < [ (U--Um)exp{-——(t - ti)2/£}dr < c£1/2.
Jti opt 2

When f G [£2* since s(t) is not decreasing,

X + (t) > x+(t2) + s(t2)(t - t2) = £0 + s(t2)(t - t2).

(4.11)
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Then, making use of the above inequality, one can derive that for t. 6 [£2, T] (£2 < T < 00),

f (u- — u+) exp{—a(u- — u+)X+(r)/2e}dT
t

/ (u- - um) exp{—a(w_ - u+{T))(e0 + s(t2)(r - t2))/2ejdr
J to

<

< C{T)e. (4.12)

Combining (4.9)-(4.12) and (4.6) gives (4.1).
Proof of Theorem 4.2. We prove this theorem only for the following cases: (1) u+ <

^771 ̂  "U—, f{um) < /('«-); (2) um < u- < 0 < u+; (3) V>—i /(^m) ^ /(^—)>
or u- < 0 < u+ < um; (4) u-,u+ < 0 < um.

For the other cases, we have an analogous discussion.
(1) When u+ < um < ti- and f(um) < f(u-), there is no rarefaction wave contained

in the weak entropy solution u(x, £) of (1.7) and the structure of this solution was obtained
in sub-section 2.3.

We take the approximation to u(x,t) for £ £ [0, £1] as

v£(x, £) = u(x,t) + V(x - s(u-,um)t;u-,um) - H(x - s(it_, um)£; m_, um)
+V{x - s(um,u+)t - a\urn,u+) - H(x - s(um,u+)t - a;um,u+).

(4.13)
Then, ve{x,t) is a smooth function on (0,00) x [0, £1]. Similar to [10], by Lemma 3.2, we
can verify that v£(x, £) satisfies

(ve)t + f(ve)x - e{v£)xx = h{x, £), 0 < £ < £1,

where h(x, £) satisfies
et

||h(-, r)\\dr < ce.
J 0

Therefore, using Lemma 3.1 yields

- «e(*>£)ll < \\v0{-)-v£(-,0)\\ + ce + c f |u_ - v£(0,t)\cIt
Jo

— Il^o(-) "o(-)ll II ' um) ^ u— i um) || L1 ( — 00,00)
+ ||^(-;Wm,M+) - H(-t Um, U+)||Li(_oo,00) +ce

+c / (|v(-s(u_,um)r;u_,!ira) - H(-s(u-, um)r; u_, um)\
Jo

+ \V(-s(um,u+)r - a;um,u+)-H(-s(um,u+)T - a;um,u+)\)d.T.

Applying Lemma 3.2 to (4.13) and the above inequality yields for £ € [0, £i],

||ue(-,£)-ii(-,£)|| < ||ue(-,£) -we(-,£)|| + ||v«r(-,£) - u(-,£)|| < ||u0(-) -u0(-)ll + Ce- (4-14)

If f(u-) > f(u+), the approximation to u(x,t) on [£i,oo) is taken as v£(x,t) =
V(x — s(u-,u+)t — ai;u-,u+); if /(«-) < f(u+), the approximation to u(x,t) on [£i,oo)
is taken as follows:

57 _ / V(x - s(u-,u+)t - ai,u-,u+), te(ti,t2]
e( , ) I «+, te(t2,00).

Repeating the above process, we can prove that (4.14) holds for £ e [£i,T](£i < T < oo).
Thus (4.3) is valid.



618 HONGXIA LIU AND TAO PAN

(2) When um < U- < 0 < u+, by the argument in sub-section 2.5.1, there is no shock
appearing in the weak entropy solution of (1.7). We can directly apply Lemma 3.1 to
ve(x,t) and u(x,t) to get (4.2).

(3) When um < f(um) < f{u-) or U- < 0 < u+ < um, the weak entropy
solution of (1.7) includes one shock x = X(t), t 6 [0, oo) and we have for 0 < t < T < oo,
respectively,

X(T)
X(t) > s(u-,um)t or X(t) > t. (4-15)

See sub-section 2.5.3 or 2.4.2. The approximation to u(x,t) is taken as, respectively,

v£(x ,t) = u(x,t) + V(x — X(t);u-,u+) — H(x — X~(t);u-,u+),

where u+ = u+(t) := u(X(t) + 0,t), or

v£(x,t) = u(x,t) + V(x — X(t)\u~,u+) — H(x — X(/): u ' . u •.),

where u~ = u~(t) := u(X(t) - 0,t).
In what follows, we estimate the boundary integral

/ o : =:= I sgn(u£(0, r) — ue(0, r))(/(t>e(0, r)) — f(ve(0, t)))cIt
t

= sgn(Ue(0,r) - u-)(f(vE(0, r)) - /(u_))dr.

For the case of urn < w,_,u+, f(um) < f(u-), using (4.15) and Lemma 3.2, one gets for
e < t <T < oo,

Iq <cf |u£(0,r) - u-\dr
t

< c / (u— — u+) exp{— a(u_ — u+)X(r)/2e}dr
t

— CJ (u- ~~ urn) exp{— Ct(u- — U+(T))X{t)/2c}dr < C{T)e. (4-16)

We now estimate Io for the case of U- < 0 < u+ < um. By Lemma 3.2 and (4.15),
one gets

0 < H(-X(t)-u-(t),u+) - V(-X(ty,u-{t),u+)
< c(um - u+)exp{-a(um - u~(T))X(T)t./2Te} := e(t), t> 0. (4.17)

Since the function e(t) defined by (4.17) is strictly decreasing for all t > 0, there exists at
most one point such that, at this point, the function — U- — e(t) changes sign; that is to
say, the function ——e(t) satisfies one of the following for t £ (0, T\: (i) — U- —e(t) > 0;
(ii) — U- — e(t) < 0; (iii) There is a unique point t£ £ (0,T] such that, at this point,
—u- — e(t) changes sign. In case (i),

v£(0,t) - = -u- - (H(—X(t);u~(t),u+) - V(—X(t);u~(t),u+)) > —u_ - e(t) > 0
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for e < t < T <00; thus by f(u~) > 0, (1.8), and (4.17),
rt rt

h = f sgn(ve(0,r) - u-)f(ve(0,T))d,T - f sgn(uE(0, r) - u_)/(u_)dr
t t

— CJ l^e(0, r)\dr = cj |V(—X(t);u~(t),u+) — H( — X(t);u~(t),u+)\(It

< c ( e(r)dr < C(T)e.

(4.18)
In case (ii), for e < t < T < oo, it follows from (4.17)

I o —c |ve(0, r) — u-\dr
t

<cf IV(—X(t); u~(t), u+) — H(— X(t)\u~(t), u+) — u_|dr
t

< c ( (-U- + H(—X(t);u~(t),u+) — V(—X(t);u~(t),u+))dT
t

jC 2e(t)dr < C(T)e. (4.18)< Cj

In case (iii), by the techniques used in case (i) and case (ii), we can obtain for e < t <
T < oo

7o = / sgn(w£(0,r) - u_)(/(iJe(0, r)) - f(u-))dr
t

+ [ sgn(tJ£(0,r) - u_)(/(fJ£(0, r)) - /(u_))dr
' t

< cJ^ 2e(t)dr < C(T)e. (4.18)3

Following the proof of Theorem 4.1, we can verify (4.2) by means of Lemma 3.1, (4.16),
(4.18), and (4.5).

(4) When u-,u+ < 0 < um, from the discussion in sub-section 2.4.3, there is only
one shock, starting at point (a, 0) and terminating at point (0,^), included in the weak
entropy solution u(x,t) of (1.7), and for t € [0,^],

X(t)>a-—t> 0. (4.19)
t-2

We take the approximation to u(x, t) as

ve(x,t) = |
u(x,t) + V(x — X(t);u ,u+) — H(x — X(t);u ,u+), if £6(0,^2]

if t G {t-2, 00),

where u = u (t) := u(X(t) — 0, t). Similar to (4.18), for t G (e, <2], we can conclude
that the boundary integral

Jr sgn(w£(0, r) - z;e(0, r)){f(vE(0, r)) - f(vs(0, r)))dr < C{T)e. (4.20)

As in the proof of Theorem 4.1, the desired error estimate (4.2) can be derived by using
Lemma 3.1, Lemma 3.2, (4.19), (4.20), and (4.5). The details are omitted here.
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Remark. If we take i>o(x) G C2([(). oo)) as follows:

vif(x), x g [0,e-)
um, x G [e, a)
^(i), xe[a,a + s)
u+, x 6 [a + e, oo),

where vi£(-) G C2([0,e]), t>2£-(-) G C2([a, a + e]) satisfies the corresponding compatibility
conditions, and |Ke(-)llc([o,e])> IK'2e(-)llc([a.a+e]), and ||wi(-)llxo2-1([o,e]), IM-)IL21([a.«+£])
are bounded for e, then (4.1), (4.2), and (4.3) are respectively replaced by the following:

sup |M-,i) - u(-J)|| < C(T){e1/2 + e| lne| +£),
0 <t<T

sup \\v£(-J) - u{-,t)II < C{T){e\ Insr| +e),
0 <t<T

and
sup |i?e(-, £) - u(-, i)|| < C(T)e.

0 <t<T
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