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CONVERGENCE RATES FOR DENSITY ESTIMATION WITH
BERNSTEIN POLYNOMIALS
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Mixture models for density estimation provide a very useful set up for
the Bayesian or the maximum likelihood approach. For a density on the
unit interval, mixtures of beta densities form a flexible model. The class
of Bernstein densities is a much smaller subclass of the beta mixtures
defined by Bernstein polynomials, which can approximate any continuous
density. A Bernstein polynomial prior is obtained by putting a prior dis-
tribution on the class of Bernstein densities. The posterior distribution of
a Bernstein polynomial prior is consistent under very general conditions.
In this article, we present some results on the rate of convergence of the
posterior distribution. If the underlying distribution generating the data is
itself a Bernstein density, then we show that the posterior distribution con-
verges at “nearly parametric rate” �log n�/√n for the Hellinger distance.
If the true density is not of the Bernstein type, we show that the posterior
converges at a rate n−1/3�log n�5/6 provided that the true density is twice
differentiable and bounded away from 0. Similar rates are also obtained
for sieve maximum likelihood estimates. These rates are inferior to the
pointwise convergence rate of a kernel type estimator. We show that the
Bayesian bootstrap method gives a proxy for the posterior distribution and
has a convergence rate at par with that of the kernel estimator.

1. Introduction. Mixture models, formed by convex combinations of den-
sities from parametric families give us simple, well-behaved, flexible
nonparametric classes of densities. Mixture models are used in various infer-
ence problems such as density estimation, clustering analysis and robust esti-
mation; see for example, Lindsay (1995) and McLachlan and Basford (1988).
On the real line, a mixture of normal densities is often used to model an
unknown smooth density. From a Bayesian point of view, the mixture model
gives us a very convenient set-up for density estimation in that one can induce
a prior distribution on the densities simply by specifying a prior distribution
on the mixing distribution. Early users of this approach were Ferguson (1983)
and Lo (1984), who used a Dirichlet process prior for the mixing distribution
and gave expressions for posterior expectations of functions. Ghosal, Ghosh
and Ramamoorthi (1999) showed that a Dirichlet mixture of normals prior
gives rise to a consistent posterior under general conditions for the weak topol-
ogy and the variation distance. Ghosal and van der Vaart (2001) showed that
the posterior converges at “nearly parametric rate” if the true density gener-
ating the observations is also a mixture of normals with standard deviations
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bounded away from zero and infinity. Gibbs sampling techniques to compute
the posterior mean and other posterior characteristics have been developed;
see, for example, Escobar and West (1995) and the references therein.
While the normal mixture model is a very sensible choice for densities on

the entire real line, its usefulness is rather limited when we consider densi-
ties on a known bounded interval, taken to be �0�1� without loss of generality.
The normal kernel density estimate suffers from boundary effects at 0 and
1. In this case, the family of beta distribution forms a flexible two-parameter
family of densities and mixtures of beta distributions form an appropriate
mixture model. In fact, a mixture of only a relatively few beta densities can
approximate any distribution on (0,1]. For a continuous probability distribu-
tion function F on (0,1], the associated Bernstein polynomial

B�x�k�F� =
k∑
j=0
F�j/k�

(
k

j

)
xj�1− x�k−j(1.1)

converges uniformly to F as k → ∞. Clearly, B�x�k�F� is a mixture of beta
distributions, since it has density

b�x�k�F� =
k∑
j=1

�F�j/k� −F��j− 1�/k��β�x�j� k− j+ 1��(1.2)

where β�x�a� b� stands for the beta density

β�x�a� b� = ��a+ b�
��a���b�x

a−1�1− x�b−1

The uniform approximation property of the Bernstein polynomials motivated
Vitale (1975) to study density estimates based on the Bernstein polynomials.
Tenbusch (1994) extended this idea to multidimensional densities. Diaconis
(1993) suggested that a prior on the class of densities on (0,1] with a full
topological support may be constructed using the approximating property of
the Bernstein polynomials. Using this idea, Petrone (1999a, b) proposed the
following hierarchical prior called the Bernstein polynomial prior: the density
f�·� on (0,1] is given by the following mixture of beta densities:

f�x� =
k∑
j=1
wj�kβ�x�j� k− j+ 1��(1.3)

where k has probability mass function ρ�·�, and given k� wk = �w1� k�    �wk�k�
has a distribution Hk�·� on the k-dimensional simplex

�k =
{
�x1�    � xk� � 0 ≤ xj ≤ 1� j = 1�    � k�

k∑
j=1
xj = 1

}


Following Petrone (1999a, b), we shall call the right-hand side (RHS) of (1.3)
a Bernstein density with parameters k and wk, and denote it by b�x�k�wk�;
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here we slightly abuse the notation in (1.2). The class of all Bernstein densities
of order k will be denoted �k. It is useful to note that

f�x� = k
k∑
j=1
wj�kpj�k�x��(1.4)

where pj�k�x� = (
k−1
j−1
)
xj−1�1− x�k−j. In particular, f�x� ≤ k.

Petrone (1999a) showed that if for all k, ρ�k� > 0 and wk has full support
on �k, then every distribution on (0,1] is in the weak support of the Bernstein
polynomial prior, and every continuous distribution is in the topological sup-
port of the prior defined by the Kolmogorov–Smirnov distance.
The posterior mean, given k, is

E�f�x��k� x1�    � xn� =
k∑
j=1
E�wj�k�x1�    � xn�β�x�j� k− j+ 1��(1.5)

and the distribution of k is updated to ρ�k�x1�    � xn�. Petrone (1999a, b)
and Petrone and Wasserman (2001) discussed Markov chain Monte Carlo
(MCMC) algorithms to compute the posterior expectations and carried out
extensive simulations to show that the resulting density estimates work well.
The MCMC algorithm is largely satisfactory, but sometimes the convergence
could be slow. Petrone and Wasserman (2001) also suggested an alternative
to the Bayes estimate by considering the average of the maximum likelihood
estimate (MLE) for each k with respect to weights obtained by normalizing
the BIC or AIC.
The issue of consistency of the posterior distribution of a Bernstein poly-

nomial prior has been addressed by Petrone and Wasserman (2001). They
showed that if for all k� ρ�k� > 0 and wk has full support on �k, then the pos-
terior distribution is consistent at any continuous density f0 on (0,1] for the
weak topology. If further, the sequence of weights ρ�k� satisfies a certain tail
condition, then the posterior is consistent with respect to the Hellinger (equiv-
alently, variation) metric. The main idea behind the proof of consistency is to
show that the prior satisfies Schwartz’s (1965) condition of positivity of the
prior probabilities of every neighborhood of the true density f0 defined by the
Kullback–Leibler divergence. See Ghosal, Ghosh and Ramamoorthi (1999b)
and Wasserman (1998) for recent reviews on consistency.
In this article, we obtain the rate of convergence of the posterior distribution

for the Bernstein polynomial prior, under additional smoothness conditions.
Note that the rate of convergence of a density estimate may be arbitrarily slow
at a density which is merely continuous. Assuming more smoothness in the
true density, we compute the concentration rate of the prior distribution on
a Kullback–Leibler type neighborhood and then apply the general theory of
posterior rate of convergence developed by Ghosal, Ghosh and van der Vaart
(2000).
Since we study rate of convergence, we need a sufficiently tight lower

bound on the posterior probability of a shrinking Kullback–Leibler type ball,
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and therefore we will work with less general priors compared to Petrone
and Wasserman (2001). Note that wk is a random element on �k, so a k-
dimensional Dirichlet distribution D�k�α1� k�    � αk�k� is a reasonable choice.
We restrict our attention to the cases where αj�k are bounded by some number
M for all j and k. This assumption will be in force throughout. The following
two special cases correspond to two important choices of αj�k’s that satisfy the
required condition. In the first case, αj�k =Mα���j− 1�/k� j/k��, whereM is
a positive constant and α is a probability measure on (0,1]. This is equivalent
to saying that given k, the density f has form (1.2) where F has the Dirichlet
process distribution with parameter Mα�·�. This prior has been named the
Bernstein–Dirichlet prior by Petrone (1999a). Another choice, often thought
to be noninformative, corresponds to αj�k = 1 for all j� k.
We show that if the true density is itself a Bernstein polynomial, then

the posterior converges at �log n�/√n rate. If the true density is not of the
Bernstein type, then the convergence rate, of course, cannot be this fast. We
show that if the true density is continuously differentiable in (0,1), bounded
below and has a bounded second derivative, then the posterior distribution
converges at the rate n−1/3�log n�5/6. A slight improvement to n−1/3�log n�1/3
is possible by considering a sequence of priors. It should be noted that the
Bayes estimate, defined as the pointwise posterior expectation, also converges
at the rate equal to that of convergence of posterior distribution; see the dis-
cussion following Theorem 2.5 of Ghosal, Ghosh and van der Vaart (2000).
Similar rates are also obtained for the sieve maximum likelihood estimate.
These rates are substantially slower than n−2/5, the rate of convergence of the
kernel type estimator of Vitale (1975). To overcome this drawback, we con-
sider the Bayesian bootstrap method and show that the proxy posterior has
the desired n−2/5 convergence rate. Confidence intervals and bands are easy
to obtain from the Bayesian bootstrap distribution.
The organization of the paper is as follows. In the next section, we study

the convergence rate of the posterior distribution of a Bernstein polynomial
prior. Convergence rate of the MLE is treated in Section 3. In Section 4, we
present a result on the convergence rate of the Bayesian bootstrap. We shall
use the symbol “� ” to mean an inequality up to a constant multiple.

2. Convergence rate of posterior. Let X1�X2�    be independent
observations from a density f on (0,1]. To estimate f, a Bernstein polyno-
mial prior is put on f. We determine the rate of convergence of the posterior
distribution. We apply the general theorem of Ghosal, Ghosh and van der
Vaart (2000) on the rate of convergence of the posterior described below.
The Bernstein polynomials of order k have a uniform rate of approximation

k−1 at smooth densities. More precisely, if f�x� is a continuously differentiable
probability density on (0,1] with bounded second derivative,

sup
0<x≤1

�f�x� − b�x�k�F�� = O�k−1��(2.1)
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where F is the distribution function corresponding to f. This property is well
known and may be shown by observing that

b�x�k�F� = kE
( ∫ �J+1�/k

J/k
f�z�dz

)
�

where J has a binomial distribution with parameters �k− 1� and x, and then
using the Taylor series expansion. See Lorenz (1953) for more details on the
properties of the Bernstein polynomials.
For a distance d on a class of densities � , let D�ε�� � d� stand for the

ε-packing number defined to be the maximum number of points in � such
that the distance between each pair is at least ε. We refer the readers to
Kolmogorov and Tihomirov (1961) and van der Vaart and Wellner (1996)
for details on packing numbers and related concepts. Let the true density
f0 ∈ � , a class of densities and let P0 be the probability measure with den-
sity f0. Let �f− f0�1 stand for the L1-distance and h�f�f0� = �f1/2 − f1/20 �2
stand for the Hellinger distance. Put K�f0� f� = ∫

log�f0/f�dP0, V�f0� f� =∫ �log�f0/f��2dP0, N�ε� f0� = �f� K�f0� f� ≤ ε2� V�f0� f� ≤ ε2�. Let d
stand for either the L1 or the Hellinger distance. The following variation of
Theorem 2.1 of Ghosal, Ghosh and van der Vaart (2000) will be useful. A
similar result under stronger conditions has also been obtained by Shen and
Wasserman (2001).

Theorem 2.1. Let &n be a sequence of priors on � . Suppose that for pos-
itive sequences ε̄n� ε̃n → 0 with nmin�ε̄2n� ε̃2n� → ∞, constants c1� c2� c3� c4 > 0
and sets �n ⊂ � , we have

logD�ε̃n��n� d� ≤ c1nε̄2n�(2.2)

&n�� \�n� ≤ c3e−�c2+4�nε̃2n�(2.3)

&n�N�ε̃n� f0�� ≥ c4e−c2nε̃
2
n (2.4)

Then for εn = max�ε̄n� ε̃n� and a sufficiently large M > 0, the posterior
probability

&n�f� d�f�f0� >Mεn�X1�    �Xn� → 0(2.5)

in Pn0 -probability.

Let Q�k�α1� k�    � αk�k� denote the probability measure induced on �k by
assigning the Dirichlet distribution D�k�α1� k�    � αk�k� to wk. The mixture∑∞
k=1 ρ�k�Q�k�α1� k�    � αk�k� is considered as the prior on the density f.
Our first theorem shows the rate n−1/2 log n of convergence is obtained

when the true density is actually a Bernstein density. This is analogous to
Theorem 5.1 of Ghosal and van der Vaart (2001) for the case of normal
mixtures.

Theorem 2.2. Let the true density f0 = b�·�k0�w0
k0

� for some k0 andw0
k0

∈
�k0 . Let 0 < ρ�k� ≤ Be−βk for some constants B and β. Then for a sufficiently
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large constant C,

&

(
f� d�f�f0� > C

log n√
n

∣∣∣X1�    �Xn

)
→ 0(2.6)

in Pn0 -probability.

Proof. Observe that when f�x� = b�x�k0�wk0
�, we have

�f− f0�1 ≤
k0∑
j=1

�wj�k0 −w0
j� k0

�

Therefore, if
∑k0
j=1 �wj�k0 −w0

j� k0
� ≤ ε, then �f−f0�1 ≤ ε, and so h�f�f0� ≤ √

ε.
Let wk0

be such that

k0∑
j=1

�wj�k0 −w0
j� k0

� ≤ ε� w1� k0 > ε
4�wk0� k0 > ε

4(2.7)

Then

f�x� ≥ w1� k0k0�1− x�k0−1 +wk0� k0k0xk0−1 > k02−�k0−1�ε4

Applying Theorem 5 of Wong and Shen (1995), it then follows that

max�K�f0� f��V�f0� f�� � ε

(
log

1
ε

)2


Therefore, for some C1,

N

(
C1

√
ε log

1
ε
� f0

)
⊃ �b�·�k0�wk0

�� (2.7) holds�

We estimate the probability of the sets in (2.7). By Lemma A.1 of the
Appendix, these probabilities are bounded below by a multiple of e−c log�1/ε�,
where c is a constant. Since k0 is fixed and ρ�k0� > 0, it follows that for
some C1,

&

(
N

(
f0�C1

√
ε log

1
ε

))
≥ D1e

−d1 log�1/ε��

for constants D1 and d1. Putting η = C1
√
ε log�1/ε� and observing that log

�1/η� ∼ log�1/ε�, we have
&�N�f0� η�� ≥ D2e

−d2 log�1/η��

for constants D2 and d2. Therefore ε̃n = n−1/2�log n�1/2 satisfies (2.4).
To check the first two conditions (2.2) and (2.3) in Theorem 2.1, we pro-

ceed as in the proof of Theorem 5 of Petrone and Wasserman (2001). Let
�n = ⋃kn

r=1�r, where kn will be determined shortly. Then D�ε��n� d� ≤∑kn
r=1D�ε��r� d� Since �r is the class of all convex combinations of r ≤ kn

fixed densities, its packing numbers can be obtained by relating them with the
packing numbers of the r-dimensional simplex. To be more precise, we claim
that for some absolute constant C,

D�ε��r� d� ≤ D�ε��r� d′� ≤ �C/ε�r�(2.8)
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where d′ is the -1-distance
∑r
j=1 �xj − yj� on �r if d is the L1-distance on

densities, and d′ is the Hellinger distance h′�x�y� = �∑r
j=1�

√
xi−√

yi�2�1/2 on
�r if d is the Hellinger distance h on densities. If d is the L1-distance, then
the first relation in (2.8) follows by the triangle inequality while the second
by the estimate of packing numbers of �r for the -1-distance; see, for instance,
Lemma A.4 of Ghosal and van der Vaart (2001). If d is the Hellinger distance
on densities, then the two relations in (2.8) follow, for instance, respectively
by Lemma 4 and Lemma 2 of Genovese and Wasserman (2000), and the rela-
tionship between packing and covering numbers. Therefore,

logD�ε��n� d� ≤ log

(
kn∑
r=1

�C/ε�r
)

≤ kn log�C/ε� + log kn

If we choose L1 log�1/ε̃n� ≤ kn ≤ L2 log�1/ε̃n� for constants L1 and L2, where
ε̃n = n−1/2�log n�1/2 and ε̄n = �log n�/√n, then logD�ε̄n��n� d� � �log�1/ε̄n��2.
As �log�1/ε̄n��2 � nε̄2n, (2.2) holds. Now,

&�� c
n � ≤

∞∑
j=kn

ρ�j� � e−βkn ≤ e−L1β log�1/ε̃n� ≤ e−Lnε̃2n�

where L can be made as large as we want by choosing L1 sufficiently large.
It follows that condition (2.3) is satisfied, and hence the result follows.

Remark 2.1. As remarked in Petrone and Wasserman (1999), an extended
Bernstein prior, which is supported on extended Bernstein densities∑k
r=1

∑r
j=1wj�rβ�x�j� r − j + 1� instead of Bernstein densities, may also be

considered. Note that extended Bernstein densities are nothing but mixtures
of Bernstein densities. It can be easily checked that if the true density is of
the extended Bernstein type and an extended Bernstein prior [see Petrone
and Wasserman (2001)] is used, then the same rate �log n�/√n is obtained.

When the true density f0 is not of the Bernstein type, the convergence
rate would be naturally much slower. The following result shows that if the
true density is continuously differentiable in �0�1�, bounded away from 0 and
has a bounded second derivative, then the posterior distribution converges
at the rate n−1/3�log n�5/6. This rate is somewhat slower than the n−2/5 rate
of Vitale’s Bernstein polynomial density estimator. While our theorem only
gives an upper bound for the rate of convergence of the posterior distribu-
tion, it is nevertheless an indication of a weaker rate. We believe that the
obtained rate is essentially sharp except possibly for factor a power of log n.
The reason behind our belief is that Bernstein polynomials have a relatively
weak approximation property (2.1), which, unlike the approximation by con-
volutions, is only proportional to bandwidth k−1. This means that we must
use very high degree Bernstein polynomials to approximate a general smooth
density. Somewhat paradoxically, Vitale’s estimator does not suffer from a rate
deficiency since the variance of his estimator is small compared with analo-
gous kernel estimators with the same bandwidth.
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Theorem 2.3. Let the true density f0 be bounded away from 0 and have
bounded second derivative. Consider a Bernstein polynomial prior for f sat-
isfying the condition B1e

−β1j ≤ ρ�j� ≤ B2e
−β2j for all j for some constants

B1�B2� β1� β2 > 0. Then for a sufficiently large constant C,

&�f� d�f�f0� > Cn−1/3�log n�5/6�X1�    �Xn� → 0(2.9)

in Pn0 -probability.

Proof. For k ≥ 1, define fk�x� = b�x�k�F0�, where F0 is the cumulative
distribution function for f0. By (2.1), sup0<x≤1 �f0�x� − fk�x�� = O�k−1�, and
so fk is also uniformly bounded away from 0 for all large k. Note that we may
also write fk�x� = b�x�k�w0

k�, where w0
k = �w0

1� k�    �w
0
k� k� and

w0
j� k =

∫ j/k
�j−1�/k

f0�x�dx = F0�j/k� −F0��j− 1�/k�� j = 1�    � k

Also observe that

�b�x�k�wk� − b�x�k�w0
k�� =

∣∣∣∣k
k∑
j=1

�wj�k −w0
j� k�

(
k− 1
j− 1

)
xj−1�1− x�k−j−1

∣∣∣∣
≤ k max

1≤j≤k
�wj�k −w0

j� k�

≤ k
k∑
j=1

�wj�k −w0
j� k�

(2.10)

Therefore if �wk − w0
k�1 ≤ ε2 and d1ε−1 ≤ k ≤ d2ε

−1 for some constants
d1 and d2, then sup0<x≤1 �f0�x� − b�x�k�wk�� ≤ D1ε for a constant D1 and
also b�x�k�wk� is bounded away from 0 for sufficiently small ε. It therefore
follows that for some constant D2, h�f0� b�·�k�wk�� ≤ D2ε and so (8.6) of
Ghosal, Ghosh and van der Vaart (2000) implies that b�·�k�wk� ∈N�C1ε� f0�
for a constant C1. Hence

N�C1ε� f0� ⊃ �b�·�k�wk� � �wk −w0
k�1 ≤ ε2�

If we choose kn satisfying

b1

(
n

log n

)1/3
≤ kn ≤ b2

(
n

log n

)1/3
(2.11)

for some constants b1 and b2 and ε̃n = k−1
n , Lemma A.1 of the Appendix implies

that for some constants C3�C4�D and d,

&�N�C1ε̃n� f0�� ≥ ρ�kn�C2e
−C3kn log�1/ε̃n�

≥ B1e
−β1d2/ε̃n ×C2e

−C3d2�1/ε̄n� log�1/ε̄n�

≥ De−d�1/ε̄n� log�1/ε̄n�

Hence ε̃n = n−1/3�log n�1/3 satisfies condition (2.4) of Theorem 2.1.
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Let sn be an integer satisfying

L1
1
ε̃n

log
1
ε̃n

≤ sn ≤ L2
1
ε̃n

log
1
ε̃n

(2.12)

for some constants L1 and L2. Then

L′
1n

1/3�log n�2/3 ≤ sn ≤ L′
2n

1/3�log n�2/3�
where we may choose L′

1 = L1/6 and L
′
2 = L2/3. Put �n = ∪snr=1�r. Then for

constants B3�B and L,

&�� c
n � ≤

∞∑
r=sn+1

ρ�r� ≤ B3e
−β2sn ≤ Be−L�1/ε̃n� log�1/ε̃n��

and L can be made arbitrarily large by choosing L1 sufficiently large. As
�1/ε̃n� log�1/ε̃n� and nε̃2n have the same order, (2.3) holds.
Now by the arguments given in the proof of Theorem 2.2, for some constants

C and L3, we have

logD�ε��n� d� ≤ sn log
(
C

ε

)
+ log sn

≤ L′
2n

1/3�log n�2/3 log
(
C

ε

)
+ log

(
L′
2n

1/3�log n�2/3)

≤ L3n
1/3�log n�2/3 log 1

ε


So (2.2) holds for the choice ε̄n = n−1/3�log n�5/6. Hence the posterior converges
at the rate n−1/3�log n�5/6. ✷

A slight improvement in the rate is possible by considering a sequence
of priors. Here we choose a sequence of prior supported on the sieve �n so
that condition (2.3) becomes trivial. It will then allow us to choose sn = kn
in the proof of the last theorem and will yield the slightly stronger rate
n−1/3�log n�1/3. The result is stated below, but the proof is omitted.
Consider a sequence of priors

&n =
kn∑
r=1
ρn�j�Q�r�α�n�

1�r�    � α
�n�
r�r��

where kn is a sequence of integers tending to infinity and
∑kn
r=1 ρn�r� = 1 for all

n. Assume, as before, that for some constant M, α�n�
j�r ≤M for all j = 1�    � r

and sufficiently large n and r.

Theorem 2.4. Let the true density f0 be bounded below and have bounded
second derivative. Consider a sequence of priors &n defined above satisfying the
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condition ρn�j� ≥ Be−bj for some constants B� b > 0 for all n and j, and choose
a sequence kn satisfying the condition

b1

(
n

log n

)1/3
≤ kn ≤ b2

(
n

log n

)1/3
(2.13)

for some constants b1 and b2. Then for a sufficiently large constant C,

&�f� d�f�f0� > Cn−1/3�log n�1/3�X1�    �Xn� → 0(2.14)

in Pn0 -probability.

3. Sieved maximum likelihood estimate. The sieve method was intro-
duced by Grenander (1981) and studied by many authors including Geman
and Hwang (1982), van de Geer (1993, 1996), Shen and Wong (1994), Wong
and Shen (1995) and Birgé and Massart (1998). This sieved MLE is obtained
by maximizing the likelihood function on a suitable subset of the parameter
space called the sieve. For Bernstein polynomial densities, the convergence
rate of the sieve MLE is obtained below by applying Theorem 4 of Wong and
Shen (1995). Alternatively, one can also apply Theorem 3.4.4 of van der Vaart
and Wellner (1996). This refines the conclusion of Theorem 8 of Petrone and
Wasserman (2001) from consistency to a rate of convergence statement under
the stated conditions.

Theorem 3.1. Consider a sieve �n = ∪knr=1�r, the space of all Bernstein
densities of the order kn or less, where kn is a sequence of integers tending to

infinity. Let f̂n maximize the likelihood on this sieve.
If the true density f0 = b�·�k0�w0

k0
� for some k0 and w0

k0
∈ �k0 , that is,

f0 itself is a Bernstein density, then d�f̂n� f0� = Op�k1/2n n−1/2�log n�1/2�. In
particular, the rate can be made arbitrarily close to n−1/2�log n�1/2 by letting
kn grow arbitrarily slowly.

If f0 is not of the Bernstein type, but is bounded away from 0 and has a
bounded second derivative, then for the choice

c1n
1/3�log n�−1/3 ≤ kn ≤ c2n1/3�log n�−1/3�

where c1 and c2 are constants, we have d�f̂n� f0� = Op�n−1/3�log n�1/3�.

Proof. In the first case, �n contains the true density f0 for sufficiently
large n. Therefore it suffices to check (3.1) of Wong and Shen (1995) with ε a
multiple of k1/2n n−1/2�log n�1/2. As the ε-bracketing Hellinger entropy of �n is
bounded by a multiple of kn log�1/ε� (see the arguments given in the proof of
Theorem 2.2), the stated claim follows easily.
When f0 is not of the Bernstein type, consider, as in the proof of Theorem 2.3,

fk�x� = b�x�k�w0
k�, wherew0

k = �w0
1�k�    �w

0
k�k� andw0

j�k = F0�j/k�−F0��j−
1�/k�. Then by the arguments similar to that in Theorem 2.3, K�f0� fk� ≤
Dk−1 for a constant D. Thus �n approximates f0 at the rate k−1

n in the
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Kullback–Leibler distance. As (3.1) of Wong and Shen (1995) holds for a mul-
tiple of k1/2n n−1/2�log n�1/2, Theorem 4 of Wong and Shen (1995) implies that

d�f̂n� f0� = Op�max�k−1
n � k

1/2
n n−1/2�log n�1/2��

For the stated choice of kn, the two rates inside the maximum agree and the
rate n−1/3�log n�1/3 is obtained. ✷

It is interesting to note that the obtained rate of convergence of the sieved
MLE agrees with the corresponding rate of the posterior given by Theorem 2.4.
This suggests that the suboptimality of the rate of convergence of the posterior
is possibly not due to the inadequacy of the prior, but due to the slow rate of
approximation in (2.1).

4. The Bayesian bootstrap of Bernstein densities. An attractive fea-
ture of the Bayesian approach is that the posterior distribution not only gives
an estimate, it also gives us a probability distribution on the parameter space
given the data, which may be viewed as an updated opinion about the param-
eter in the light of the data and can be used for many purposes such as for
the construction of confidence intervals or prediction of the next observation.
Unfortunately, in nonparametric problems, Bayesian and the maximum like-
lihood approach may suffer from suboptimality in the rate of convergence; see
Ghosal, Ghosh and van der Vaart (2000) and Shen and Wasserman (2001). As
these methods are model based, often they perform very well if the model is
right and is not too large, but generally the methods will suffer if either the
model is incorrect or the model size is too large. Further, both the methods
are tied up with the Hellinger distance and the Kullback–Leibler divergence,
which are difficult to bound, particularly for mixtures. Also, Bayesian methods
can suffer from an additional difficulty due to the lack of sufficient prior prob-
ability in the neighborhoods of the true density, as it is generally difficult for a
prior to assign substantial probabilities to every part of the entire parameter
space in a nonparametric model.
The Bayesian bootstrap (BB), introduced by Rubin (1981), provides an alter-

native to the Bayesian method in that it also gives us a probability distribution
for the parameter given the data, and so it can be used for constructing con-
fidence intervals. On the one hand, it is easy to compute the BB distribution
by simulations, whereas the convergence properties of the BB are also easy
to study using the simple structure of the BB. It should be noted that the BB
does not provide a different estimator, but it gives us a proxy for the posterior
distribution which is roughly centered at a standard estimator. Below, we show
that the the BB approach can be applied to the Bernstein polynomial density
estimation problem to construct a posterior distribution of the density given
the data so that the rate of convergence agrees with the convergence rate
of Vitale’s (1975) kernel type estimator. The BB approach has been used for
standard kernel density estimation [Lo (1987)], who called it the smoothed BB.
The treatment here is somewhat similar, and therefore, it will be only briefly
described.
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Let α�·� be a finite measure (the possibility of the null measure is not ruled
out) on �0�1�. Let m0 stand for the prior strength α��0�1�� and ᾱ = α/m0
if m0 > 0. The density is modeled by (1.2) and a Dirichlet process prior �α
with base measure α assigned to the mixing measure F. An honest Bayesian,
believing that the observations are generated from f�x� = b�x� k�F�, first
induces a prior on f from the prior for F and then computes the posterior dis-
tribution obeying the Bayes principle. A Bayesian bootstrapper, not restricted
by Bayes principle, first computes the “posterior distribution of F” pretending
that X1�    �Xn are observations from the distribution F, and then induces
it on f�x� = b�x�k�F�. Note that if the observations X1�X2�    had had the
law F which is given a Dirichlet prior �α, then �α+∑n

i=1 δXi
would have been

the posterior distribution of F. Let the BB distribution of f�·� be denoted by
&BB
n �·�X1�    �Xn�. In the BB approach, it is also easy to incorporate one’s

prior opinion and the strength of this prior belief is α��0�1��. The null mea-
sure corresponds to the “noninformative prior.” In fact, following Lo (1987), it
would be more appropriate to call &BB

n the posterior smoothed Dirichlet pro-
cess, while calling the special case corresponding to α = 0 the smoothed BB.
However, the idea behind these distributions is the same and they are asymp-
totically equivalent. Therefore, we will simply use the more convenient and
familiar term, the Bayesian bootstrap.
Let Fn stand for the empirical distribution n−1∑n

i=1 δXi
and D∗

n be the
empirical distribution of a bootstrap sample, that is, n−1∑n

i=1 δX∗
i
, where

X∗
1�    �X

∗
n are i.i.d. Fn. Let Dn�α denote a random probability distribution

distributed as the Dirichlet process �α+∑n
i=1 δXi

. When α is the null measure,
Dn = Dn�0 is Rubin’s BB.
Let k = kn vary with n. Then Vitale’s (1975) estimator can be written as

f̂n�x� = b�x�kn�Fn�(4.1)

The bootstrap distribution of f is defined as the distribution of b�·�kn�D∗
n�,

while &BB
n is the distribution of b�·�kn�Dn�α�. Thus &BB

n is supported on the
space of Bernstein polynomials densities of order kn and has expectation given
by

f̂n� α�x� = m0

m0 + nb�x�kn� ᾱ� + n

m0 + nf̂n�x�(4.2)

Note that the estimator obtained from the BB approach is essentially the same
as Vitale’s estimator except for a shrinkage toward the prior mean. In fact,
for Rubin’s BB, the estimator is exactly equal to Vitale’s estimator.
The following result shows that the BB distribution of f�x� concentrates

near f0�x� at the right rate n−2/5 if kn is chosen to be of the order n2/5. Let
F0 stand for the cumulative distribution function of f0.

Theorem 4.1. Assume that the true density is twice differentiable. Let α
have a continuous density and let c1n

2/5 ≤ kn ≤ c2n
2/5 for some constants c1
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and c2. Then for 0 < x < 1 and any sequence Mn → ∞,

&BB
n �n2/5�f�x� − f0�x�� ≥Mn�X1�    �Xn� → 0(4.3)

in Pn0 -probability.

To prove the theorem, it suffices to show that the BB mean of f�x� con-
verges to f0�x� at the rate n−2/5 in probability and the BB variance of f�x� is
Op�n−4/5�. Abbreviate kn by k. To prove the first assertion, note that the first
term on the RHS of (4.2) is bounded by m0k/�m0 + n�, while the second term
is asymptotically equivalent to f̂n�x�. Vitale (1975) showed that

E�f̂n�x� − f0�x��2 = O�k−2 + k1/2/n�
Note that the variance can be written as var

(
k
∑k
j=1wj�kpj�k�x�

)
where

�w1� k�    �wk�k� has D�k�α∗
1� k�    � α

∗
k� k� distribution and

α∗
j� k = αj�k +

n∑
i=1
I

{
j− 1
k

< Xi ≤ j

k

}


Noting that

cov�wj�k�wl�k� =
{
α∗
j� k�m0 + n− α∗

j� k�/��m0 + n�2�m0 + n+ 1��� j = l�
−α∗

j� kα
∗
l� k/��m0 + n�2�m0 + n+ 1��� j �= l�

the BB variance of f�x� is bounded by k2n−2∑k
j=1 α

∗
j� kp

2
j� k�x�, where pj�k�x�

is as in (1.4). Since E�α∗
j� k� = αj�k + n�F0�j/k� −F0��j− 1�/k�� and

�F0�j/k� −F0��j− 1�/k��p2j�k�x� ∼ k−3/2 f0�x�
2
√
x�1− x�

by Vitale [(1975), pages 93–95], the BB variance is Op�k1/2/n�. When k is of
order n2/5, the orders of the variance and the square of bias agree and equal
n−4/5. The result follows.
The above result shows that the BB credible intervals for f�x� will have

length of the order n−2/5. It is easy to construct these intervals with the help of
simulations. The result extends immediately to densities at points x1�    � xm
and credible confidence set for �f�x1��    � f�xm�� may be obtained by exploit-
ing the log-concavity of its BB density; see Choudhuri (1998) for details.
It is a natural to ask whether the credible interval obtained from the BB

has asymptotically the right frequentist coverage. In Bernstein polynomial
density estimation, or density estimation in general, the order of the bias
matches the variability. Therefore, the credible interval, which is centered
at the Bernstein polynomial density estimate, drifts away from f0�x� by an
amount that has order equal to the scale of interest, resulting in a loss of
confidence. To counter the effect of this bias, we will have to view the interval
as a confidence interval for b�x� kn�F0� only. Below, we indicate why the BB
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credible interval is expected to have the right asymptotic frequentist cover-
age. Note that a confidence interval for f0�x� may be obtained from that of
b�x� kn�F0� by either estimating the asymptotic bias

f′
0�x��1− 2x� + f′′

0�x�x�1− x�
2kn

�

or using a conservative bound for the absolute value of bias, and subsequently
increasing the interval.
First, we observe that Vitale’s estimator f̂�x� = b�x� kn�Fn� is asymptot-

ically normal. To see this, use Komlós, Major and Tusnády’s (1975) strong
approximation of the empirical process; see Csörgö and Révész (1981) for a
detailed account of strong approximation. Let k abbreviate kn, which is of
order n2/5. The stochastic process

√
n�Fn�x� − F0�x�� is uniformly approxi-

mated by a Brownian bridgeZn�F0�x�� on  0�1� almost surely, within an error
of n−1/2 log n. Note that we can write Zn�F0�x�� =Wn�F0�x�� −F0�x�Wn�1�,
where Wn is a Brownian motion. Now√

n

k1/4
�b�x�k�Fn� − b�x�k�F0��

= k3/4
k∑
j=1

�Wn�j/k� −Wn��j− 1�/k��pj�k�x�

+ k3/4Wn�1�
k∑
j=1

�F0�j/k� −F0��j− 1�/k��pj�k�x�

+O�k3/4n−1/2 log n�
Since Wn�1� is N�0�1� and

k
k∑
j=1

�F0�j/k� −F0��j− 1�/k��pj�k�x� = b�x�k�F0� → f0�x��

the second term is Op�k−1/4�, and the third term goes to zero as well. The first
term is clearly normal with mean zero and variance

k3/2
k∑
j=1

�F0�j/k� −F0��j− 1�/k��p2j�k�x� → f�x�
2
√
πx�1− x�

by Vitale (1975). Thus√
n

k1/4
�b�x�k�Fn� − b�x�k�F0�� →d N

(
0�

f0�x�
2
√
πx�1− x�

)
�(4.4)

and hence for k ∼ n2/5,√
n

k1/4
�f̂n�x� − f0�x��

→d N

(
f′
0�x��1− 2x� + f′′

0�x�x�1− x�� f0�x�
2
√
πx�1− x�

)
(4.5)

The last assertion strengthens the conclusion of Vitale’s theorem.
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Note that Lo’s strong approximation theorem for BB [Lo (1987), Theorem 2.1]
also gives a Gaussian process approximation Z∗

n�x�, which has the same law
as Zn�x�, for the normalized BB process

√
n�Dn�α−Fn�, and hence we should

similarly expect that
√
n

k1/4
�b�x�k�Dn�α� − b�x�k�Fn�� →d N

(
0�

f0�x�
2
√
πx�1− x�

)
a.s.(4.6)

A comparison of (4.4) and (4.6) leads to the conclusion that the BB cred-
ible interval has asymptotically the right frequentist coverage probability
for the parameter b�x� k�F0�. Unfortunately, (4.6) cannot be concluded from
Lo’s theorem, as the error of the strong approximation there is only known
to be O�n−1/4�log n�1/2�log log n�1/4�. Note that the case of Bernstein polyno-
mial density estimation is somewhat different from that of symmetric kernels
in that b�x�k�F� and b�x�k�G� differ by n2/5 sup��F�z� − G�z��� 0≤ z≤1�.
In the latter case, one chooses the bandwidth of the order n−1/5 so that∫
h−1ψ��x − z�/h�dF�z� and

∫
h−1ψ��x − z�/h�dG�z�, where ψ is the ker-

nel, differ only by the order n1/5 sup��F�z� −G�z���. However, we still believe
that (4.6) is true. Note that the bootstrap is asymptotically equivalent to the
BB by Lo’s theorem. It should be noted that the BB distribution of f�x� is
completely different from a Bayesian’s actual posterior distribution. Indeed,
Theorems 2.2, 2.3 and 4.1 suggest that these two distributions have very dif-
ferent convergence properties.
Similarly, if the global deviation properties of the Vitale’s estimator and the

BB are similar, then the conjecture above could be strengthened to confidence
bands. To be precise, we shall need the results analogous to Theorem 3.1 of
Bickel and Rosenblatt (1973) and Theorem 5.1 of Lo (1987) for Bernstein poly-
nomial density estimation. The former, in particular, will give a convergence
rate for Vitale’s estimator in the supremum norm.

APPENDIX

The following lemma generalizes the estimate of a Dirichlet probability given
by Lemma 6.1 of Ghosal, Ghosh and van der Vaart (2000).

Lemma A.1. Let �X1�    �XN� be distributed according to the Dirichlet dis-
tribution on the unit -1-simplex in �N, N ≥ 2, with parameters �m�α1�    �
αN�, where Aεb ≤ αj ≤ M and

∑N
j=1 αj = m for some constant A, b, m and

M ≥ 1. Let �x1�    � xN� be any point on theN-simplex. Then there exist positive
constants c and C depending only onA,M,m and b such that for ε ≤ 1/�MN�,

P

( N∑
j=1

�Xj − xj� ≤ 2ε� Xj > ε
4 for all j

)
≥ Ce−cN log�1/ε�(A.1)

To prove, first assume thatM = 1, and proceed as in the proof of Lemma 6.1
of Ghosal, Ghosh and van der Vaart (2000). As shown there, �Xj − xj� < ε2
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for all j = 1�    �N − 1, implies that XN > ε
2 > ε4 and

∑N
j=1 �Xj − xj� ≤ 2ε.

Therefore, the set on the left hand side (LHS) of (A.1) contains

��Xj − xj� ≤ ε2� Xj > ε
4� j = 1�    �N− 1�

and hence the probability on the LHS of (A.1) is bounded below by

��m�∏N
j=1 ��αj�

N−1∏
j=1

∫ min�xj+ε2�1�

max�xj−ε2�ε4�
y
αj−1
j dyj

Each interval of integration contains an intervals of length at least ε2 − ε4 >
ε2/2. The proof follows as before.
For a general M, we may assume without loss of generality that M is an

integer. For each j = 1�    �N, consider an auxiliary independent randomiza-
tion that splitsXj intoXj�1�    �Xj�M according to the Dirichlet distribution
D�M� �αj/M��    � �αj/M��. Then the joint distribution of the whole collection
�Xj�k� j = 1�    �N� k = 1�    �M� is Dirichlet satisfying the conditions of
the lemma with M = 1 and N replaced by MN. Clearly, the set on the LHS
of (A.1) contains{

N∑
j=1

M∑
k=1

∣∣∣∣Xj�k − xj

M

∣∣∣∣ ≤ 2ε� Xj�k > ε
4� j = 1�    �N− 1� k = 1�    �M

}


The result follows from the special case.
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Birgé, L. and Massart, P. (1998). Minimum contract estimators on sieves: exponential bounds
and rates of convergence. Bernoulli 4 329–375.

Choudhuri, N. (1998). Bayesian bootstrap credible sets for multidimensional mean functional.
Ann. Statist. 26 2104–2127.
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