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FACT 1. Any stochastic matrix P has an eigenvalue equal to 1. 
Proof. Define the vector u by u(x) = 1 for all x E X, then it is easily verified that 

Pu=u. D 

We now write the (generalized) eigenvalues of P (counted with algebraic multiplic- 

ity) as Xo, XA, . . ., Anl-. Without loss of generality we take Xo = 1. We further set A* = 

maxI<j <n-I IXj1 the largest absolute value of the nontrivial eigenvalues of P. 

FACT 2. We have XA < 1. Furthermore, if P (x, y) > Ofor all x, y e X, then XA < 1. 
Proof. Suppose Pv = Av. Choose an index x so that I v(x)I > Iv(y)I for all y e X. Then 

AXv(x)I = I(Pv)xI = I E P(X, y)v(y)I < E Iv(y)lP(x, y) < E Iv(x)IP(x, y) = Iv(x)l, 
y y y 

so that IXI < 1. Hence XA, < 1. 

Now suppose P (x, y) > 0 for all x and y. It is then easily seen that the inequality above 

can only be equality if v is a constant vector, i.e., v(O) = v(1) = *.* = v(n - 1). This shows 

that Xo = 1 is the only eigenvalue of absolute value 1 in this case. Hence if P is diagonalizable 

we are done. 

If P is not diagonalizable, then we still need to prove that the eigenvalue Xo = 1 is not 

part of a larger Jordan block. If it were, then for some vector v we would have Pv = v + u, 

where u = (1, 1, . . ., 1)t. But then, choosing x E X with .91e v(x) > 'Re v(y) for all y E X, 

we have that 

1 + Re v(x) = ie (Pv)x = 'JRe , P(x, y)v(y) < .9te , P(x, y)v(x) = Nte v(x), 
y y 

a contradiction. D 

The importance of eigenvalues for convergence properties comes from the following. 

FACT 3. Suppose P satisfies X,, < 1. Then, there is a unique stationary distribution 7r on 
X and, given an initial distribution ,uo and point x E X, there is a constant Cx > 0 such that 

Ivtk(X) - (X) < CxkJi (X*)k-J+l, 

where J is the size of the largest Jordan block of P. (Itfollows immediately that 11k - 11 < 

CkJ-I (X*)k-J+l, where C = 2 Cx.) In particular, if P is diagonalizable (so that J = 1), 

then 

n-I n-I 

Lk(x)-T(X)| < Ea1 (X)<, 
Ik < l lam. v. (x)J ) (X*)k, 

m=1 m=l 

where vO . . ., Vn,I are a basis of right eigenvectors corresponding to Xo, . Xn. , respec- 
tively, and where am are the (unique) complex coefficients satisfying 

Alo = aovo+ajv +***+an_1Vnv-1 

If the eigenvectors vj are orthonormal in L2(7w), i.e., if Ex vi (x)vj (x)w(x) = ij, then we get 
the further bound 

l-i /n-1 

E i (a(x) - 7z(X) 127(X) = l12 I XmI2 k < (E lam 12) (X*)k. 
x tn=1 \n=1 

Proof. We begin by assuming that P is diagonalizable. Then, using that I1k = ,o pk, that 

Vm P = AZn Vin, and that Xo = 1, we have that 

I1k = aovo+ a IvI (X 1)k + + a,,Iv-, (Xn-I )k. 
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Since < 1, we have (m)k _0 as k -+oo for I < m < n-1, so thatgA -* aovo. It follows 
that r = aovo must be a probability distribution. Hence, in particular, ao = (ZX vo(y))-l so 
it does not depend on the choice of go. Thus, 

gk(X) -7r(X) = aivi(x)(Xi)k + * + an-ivn-I(x)(Xn-I)k. 

The stated bound on I gk (x) - 7r (x) I now follows from the triangle inequality. The expression 
for the L2(wT) norm of gk - w follows immediately from orthonormality. 

For nondiagonalizable P, we must allow some of the vectors vm to be generalized eigen- 
vectors in the sense that we may have Vm P = Xm Vm + Xm+ 1. The only difference from the 
previous argument is that now Ilk may contain some additional terms. If vj, vj+l . . . vj+f_ 

form a Jordan block of size e, corresponding to the value Xm, then we may have to add to 

11k extra terms of the form arVs(Xm)k,0 with j < r < s < j + t-1 and ko > k - e + 1. 
Keeping track of these extra terms, and bounding their number by k-1, the stated conclusion 
follows. 0 

We illustrate these ideas with a concrete example. 
Example. Consider the Markov chain on the state space X = { 1, 2, 3, 4}, with transition 

probabilities 

(0.4 0.2 0.3 0.1 

P- 0.4 0.4 0.2 0 
0.6 0.2 0.1 0.1 

0.7 0.1 0 0.2 

Suppose the Markov chain starts in the state 1, so that g-o = (1, 0, 0, 0). 
We compute numerically that the matrix P has eigenvalues Xo = 1, XI = 0.2618, X2 = 

0.0382, X3 = -0.2, with corresponding left eigenvectors 

vO = (0.4671, 0.2394, 0.2089,0.0846), 

VI = (-0.4263, 0, 0.4263,0), 

V2 = (-0.0369, 0.2301, -0.5656, 0.3724), 

V3 = (-0.2752,0.4854,0.0898, -0.3). 

In terms of these eigenvectors, the initial state gto = (1, 0, 0, 0) can be written as 

Ao = Vo- 1.031 v1 - 0.4518 v2 - 0.2791 V3. 

Now, we have taken vo to be a probability vector, so we immediately have 7rQ) = vo(.). 

Also, by the eigenvector properties, we have for example that 

uk(3) = vo(3) - 1.031 (X1)kvI (3) -0.4518(X2)k v2(3) -0.2791(X3)k v3(3) 

= (0.2089)- 1.031-(0.2618)k (0.4263) 

- 0.4518(0.0382)k (-0.5656) - 0.2791 (-0.2)k (0.0898). 

Thus, noting that I(1.031)(0.4263) + (0.4518)(0.5656) + (0.2791)(0.0898)1 < 0.8, and that 

A* = 0.2618, we have that 

1gk(3)-7r(3)1 < 0.8 (0.2618), 

from which we can deduce values of k that make 1uk (3) arbitrarily close to ir (3). Other points 
in the state space (besides 3) are handled similarly. 
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Fact 3 gives a nice picture of a Markov chain converging geometrically quickly to a unique 
stationary distribution r. However, many Markov chains will not satisfy the condition that 
P(x, y) > 0 for all x and y. This raises the question of necessary and sufficient conditions to 
have A*, < 1. The answer is as follows. 

FACT 4. A finite Markov chain satisfies A* < 1 if and only if it is both indecomnposable 
and aperiodic. 

Proof. If the Markov chain is decomposable, with disjoint closed subspaces XI and X2, 
define vectors uI and u2 by uj (x) = 1 if x E Xj, 0 otherwise. Then it is easily seen that 
Pu1 = uj, for ] = 1, 2, so that P has multiple eigenvalues 1, and A*, = 1. 

If the Markov chain is periodic, there are subspaces XI, ..., Xd with P(x, Xj+V ) = 1 for 
x E Xi, 1 < < d- 1, and P(x, XI) = 1 forx E Acd. Define the vector v by v(x) = e27rijld 
for x E Xj. Then it is easily verified that Pv = e27ri/dv. Thus, e2r i/d is an eigenvalue of P, 
so that again A* = 1. 

For the converse, assume the Markov chain is indecomposable and aperiodic. Assume 
first that the Markov chain contains no transient states, i.e., there is positive probability of 
getting from any point x to any other point y (in some finite number of steps). We argue that 
some power of P has all its entries positive, so that the result follows from our Fact 4. 

Fix x E X, and let Sx = {k I Pk(X, x) > O}. Our assumptions imply that Sx is infinite 
and has greatest common divisor (g.c.d.) 1. The set Sx is also additive, in the sense that if 
a, b E Sx then a + b E Sx. It is then a straightforward exercise to verify that there must be 
some kx > 0 such that k E Sx for all k > kx. 

Find such k, for each x E X, and set ko = (maxx kx) +n. We claim that pko (X, y) > 0 for 
all x, y E X. Indeed, given x and y, by assumption there exists rx, such that prxt (x, y) > 0, 
and we may clearly take rrY < n. But then Pko(x, y) > PkOrxY(x,x)Pr-(x, y) > 0, as 
desired. 

It remains only to consider transient elements of the Markov chain. Suppose x E X is 
transient. Then there exists y E X and r > 0 such that Pr(x, y) = E > 0, but Pm(y, x) = 0 
for all m > 0. Set T = {j E X I Pm(j, x) > 0 for some m > O}, so y V T. It is then easily 
computed that 

E I(Vpr)jl < E Iv(j)l - E IV(X)I. 

jET jET 

It follows that if vP = Xv with IX1 = 1, then we must have v(x) = 0, so that X is an eigenvalue 
of the Markov chain restricted to X - {x}. This reduces the problem to the previous case. 0 

We close by observing that this discussion has relied heavily on the fact that the state 
space X is finite. On infinite spaces, P is a linear operator but not a finite matrix, and the 
notion of eigenvalues must be replaced by the more general notion of spectrum of an operator. 
Conclusions about convergence rates are much more difficult in this case, but some progress 
has been made. See for example Belsley (1993) for countable state spaces, and Schervish and 
Carlin (1992) and Baxter and Rosenthal (1994) for general (uncountable) state spaces. 

5. Random walks on groups. There is a particular class of Markov chains for which 
the eigenvalues and eigenvectors are often immediately available, namely, random walks on 
groups. Here X is a group (finite for most of the present discussion), and Q(.) is a probability 
distribution on X (to be referred to as the "step distribution"). The transition probabilities 
are then defined by P(x, y) = Q(x-ly); this has the interpretation that at each step we 
are multiplying our previous group element x on the right by a new group element, chosen 
according to the distribution Q(.); the probability that this brings us to y is the probability that 
we multiplied by the group element x- Iy. 

Typically we take JLo(id) = 1. Then ,Al = Q, and /k+I = ILk * Q, where * stands for 
the convolution of measures. 
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These random walks on groups are much easier to analyze in terms of convergence to 
stationarity than are general Markov chains. The ideas presented here were pioneered by 
Diaconis and Shashahani (1981), and were greatly advanced by Diaconis (1988) and many 
others. This section draws heavily upon Chapter 3 of Diaconis (1988); in particular, many of 
our examples are taken from there. The interested reader is urged to consult this reference for 
a deeper treatment of this subject. 

We begin with an elementary fact. 
FACT 5. Any random walk P on a finite group X satisfies 7r P = 7r, where 7r is defined 

by 7r(x) = 1/n for all x E X (and where n = I X I). In words, the uniform distribution is 
stationary for any random walk on anyfinite group. 

Proof. We have 

(rP), = E7r(x)P(x,y) = (1/n)EQ(x-'y) = (1/n)EQ(z) = 1/n = (y), 
x x 

as desired. O 
We begin our investigation with the abelian case, in which there are very complete and 

satisfying results. 

5.1. Finite abelian groups. All finite abelian (i.e., commutative) groups X are of the 
form 

X = Z/(nl) x Z/(n2) x ... x Z/(nr), 

a direct product of cyclic groups. That is, they consist of elements of the formx = (xI, Xr), 

with the group operation being addition, done modulo nj in coordinate j. A random walk on 
such X is defined in terms of a probability distribution Q( ) on X. This induces transition 
probabilities defined by P(x, y) = Q(y - x). (We write y - x instead of x-Iy here simply 
because we are writing the group operation using additive notation, as is standard for abelian 
groups.) 

Example 1. Let X = Z/(2), the two-element group, and set Q(1) = p, Q(O) = 1 - p. 

This corresponds exactly to our "simplest nontrivial example" with q = p. 
Example 2. Frog's Walk. Let X = Z/(n), the integers mod n, and set Q(-1) = Q(O) = 

Q(1) = 1/3. This corresponds to our frog's walk from the Introduction, in which there are n 
points arranged in a circle, and the frog either moves one step to the right, one step to the left, 
or stays where she is, each with probability 1/3. 

Example 3. Bit flipping. Let X = (Z/(2))d, a product of d copies of the two-element 
group. Set Q(O) = Q(el) = ... = Q(er) = 1/(d + 1), where er is the vector with a 1 in 

the rth spot and 0 elsewhere. This corresponds to a "bit-flipping" random walk on binary 
d-tuples, where at each stage we do nothing (with probability I/(d + 1)) or change one of the 

d coordinates (chosen uniformly) to its opposite value. 
The usefulness of random walks on finite abelian groups comes from the fact that we 

can explicitly describe their eigenvalues and eigenvectors. To do this, we need to introduce 
characters. For m = (ml, . Md) E X, define 

Xm(X) = e27ri[(mIxi/n )+---+(tndXd/Ind)] X E X. 

Thus, Xm is a function from the state space X to the complex numbers. The following facts 
are easily verifed. 

1. Xm (X + y) = X,n (X) Xm?(Y). -_ 

2. Xm(O) = 1. IXrn(X)I = 1. X,n(-X) = X..(X). 
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3. (Xrn, Xj) = Smj, where the inner product is defined by (f, g) = (1/n) 1, f (x)g(x). 
In words, the characters are orthonormal in L2(7r). In particular, they form a basis for all 
functions on X. 

4. JZm xm (x) = nsxo. 
These properties imply the following key fact. 

FACT 6. For each m E X, we have 

7P = RAm Xin, 

where 

Xrn = EQ (Xm). 

In words, for each m, X7 is an eigenvector of P corresponding to the eigenvalue EQ (Xmn) 
Proof. We have 

(X,7 = P)y =j Xm (X) P(x, Y) = E xm (-X) Q(y - x) = X(Z - Y) Q(Z) 
x x z 

= xm (z) Xm (-Y) Q (z) = EQ (xm) xm (Y), 
z 

as desired. O 
This fact immediately gives us all of the eigenvalues of the random walk, which is a 

significant achievement. (For example, in the simplest nontrivial example with q = p, it 
correctly predicts the eigenvalue EQ ((-1)X) = 1 - 2p.) Combining this with Fact 3, and 
recalling that the characters are orthonormal in L2(7r), we have the following fact. 

FACT 7. A random walk on a finite abelian group satisfies 

llItk - J1 < jI pImj2k 
< 
< (VH/2)(X*)k, 

in#O 

where ;m = EQ(Xm). 

Proof. We have from Fact 3 (since the Xm are orthonormal) that 

E I 1k (X) -_ (X) 12I (X) = Ei lam 12 Xm 12k, 
x m#O 

where ;Xm = EQ(Xm) as in Fact 6. Recalling that 7r(x) = 1/n = am, this reduces to 

E _k(X)-2T(X)I = (1/n) I 1m2k. 
x in#O 

The result now follows from 

411Ak I rll2 = (z LLLk(x) - (X) <n 1 L=Lk( _7) r(X)12, 

by the Cauchy-Schwarz inequality. O 
Let us now apply this bound to the second and third examples above. For the frog's walk, 

we have 

Xm = EQ(X,n) = (1/3) + (2/3) cos (2rm/n). 
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so that the character and the representation are essentially the same; in that case, the current 
situation reduces to the previous one. In general, we have that Em din Xm(s) = n8s,id; again, 
if dm = 1 for all m, this reduces to the previous case. Also, once again, the characters are 
orthonormal in L2(7T). 

In this generality, one cannot obtain simple formulas for the eigenvalues of the transition 
matrix P. Indeed, the matrix for P need not even be diagonalizable. However, let us assume 
that the step distribution Q(.) is conjugate invariant, in the sense that Q(x- yx) = Q(y) for 
all x, y E X. That is easily seen to imply that pm(x-')EQ(pm)pm(x) = EQ(Pm) for all m 
and for all x E X. In words, the matrix EQ(pm) commutes with every matrix of the form 

pm (x), for x E X. A well-known result from group representation theory, Schur's Lemma, 
then implies that EQ (XM) is a scalar matrix, i.e., a multiple of the identity. It follows by taking 
traces that 

EQ(pm) = (EQ(Xm)/dm) Idm, 

where I,,m is the dM x d,M identity matrix. 
Under this "conjugate invariant" assumption, we have the following fact. 
FACT 8. Let P correspond to a conjugate invariant random walk on a finite group X as 

above. ForO < m < r, and 1 < i, j < dm, we have 

Pm(ij) P = (EQ(Xm)/dm) Pm(ij) 

In words, the vector whose value at the point x e X is the complex conjugate of the ij entry 
of the matrix pm (x), is an eigenvectorfor P, with eigenvalue EQ(Xm)/dm. 

Proof. For g E X, we have 

(PTM(ij) P)g = E pm(ij)(x) P(g, x) 
xEX 

= Ej Pm (ij) (X) Q (x g) 
xEX 

= E Pm(ij)(gY ') Q(y) 
yEX 

= , Q(Y) E Pm(iz) (g)Pn(jz)(Y) 
y z 

= ((pm(g))iz (EQ(pm)*)jz 
z 

= (EQ(Xm)/dm) (Prn(g))' 

where we have used that EQ(pm) is diagonal, with diagonal entries EQ(Xm)/dn. O 
It follows immediately that the eigenvalues of P are precisely EQ(Xm)/dmn, each repeated 

(dm )2 times. It also follows that the vector XJ7 is an eigenvector with this same eigenvalue, 
which directly generalizes the abelian case. Furthermore, as mentioned above, the characters 

Xm are again orthonormal in L2(7r). By exact analogy with our discussion there, we have the 
following fact. 

FACT 9. The variation distance to the uniform distribution Tr satisfies 

ILk -f ||ii < - ZI(dm)21X_ 12k < (a/2)(X k), 

with n = IXI and with X,m = EQ (X,n)/d -,. 
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Example. Random transpositions. Consider the symmetric group Se, with step distribu- 

tion given by Q(id) = 1/E, Q((ij)) = 2/j2 for all i :A j. This corresponds to shuffling a 

deck of cards by choosing a random card uniformly with the left hand, choosing a random 

card uniformly with the right hand, and interchanging their positions in the deck (and doing 

nothing if we happened to pick the same card with both hands). Bounds on the distance to 

stationarity then correspond to bounds on how long the deck of cards must be shuffled until it 

is well mixed. 

This was the example that motivated Diaconis and Shashahani (1981) to develop the 

modem, quantitative study of random walks on groups. To do a careful analysis of this model 

requires detailed knowledge of the representation theory of the symmetric group, which is 

rather involved. We note here simply that XI for the symmetric group is the function that 

assigns to each group element, one less than the number of points in { 1, 2, . . }, f I that it leaves 

fixed. Thus, XI (id) = f - 1, and XI ((ij)) = f -3. Also, di = f - 1. Hence, the eigenvalue 

corresponding to XI is given by 

= EQ(X)/dl = (I/f)(f - 1) + (1 - (1/f))(f - 3) 2 < e-2/e 

Now, it so happens (though we cannot prove it here) that for this random walk, A* = Al. Thus, 

using our bound developed above, we have that 

AIIk - |r|I < e/2(x ek < e 

which is small if k is large compared to j2 log e. Diaconis and Shashahani (1981) did a much 

more careful analysis of this process, using all the eigenvalues, and proved that to first order 

in 2 e log f steps were necessary and sufficient, again proving a cut-off phenomenon. 
A number of other random walks on finite groups have been considered and shown to 

exhibit a cut-off phenomenon, including random transvections (Hildebrand (1992)) and rank- 

one deformations (Belsley (1993)). Bayer and Diaconis (1992) analyzed ordinary "riffle" card 

shuffles on the symmetric group, and proved a cut-off phenomenon at (3/2) log2 f iterations. 

In particular, for f = 52, they showed that about seven such shuffles were required to get close 

to stationarity. This shuffle is not conjugate invariant; thus, their methods were somewhat 

different from the above, and involved deriving exact expressions for Itk for this random 

walk. 

Finally, we mention that similar analyses to the above have been carried out for conjugate- 

invariant random walks on (infinite) compact Lie groups, such as those proposed for encryption 

algorithms by Sloane (1983). In Rosenthal (1994a), a process of "random rotations" on the 

orthogonal group SO(n) was shown to converge to Haar measure with a cut-off at 1n log n. 

In Porod (1993), generalizations of a process of "random reflections" were shown to exhibit 

the cut-off phenomenon on all of the classical compact Lie groups (orthogonal, unitary, and 

symplectic). The basic method of proof in these examples is the same as for finite groups. 

However, here the number of eigenvalues is infinite, so there is the additional complication 

that bounds required are infinite sums. 

6. Coupling and minorization conditions. Often, Markov chains of interest will not 

have the restrictive structure of a random walk on group. Thus, it is necessary to consider 

other approaches to bounding their convergence. In this section, we present an approach that 

does not use eigenvalues at all. Rather, it uses probabilistic ideas directly. 

6.1. Coupling. The basic idea of coupling is the following. Suppose we have two random 

variables X and Y, defined jointly on some space X. If we write L(X) and L(Y) for their 

respective probability distributions, then we can write 
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IL(X) - (Y)II = sup IP(X E A) - P(Y E A)l 
A 

=suplP(X E A,X = Y)+P(X E A,X X Y) 
A 

- P(Y E A, Y = X) - P(Y E A, Y A X)l 

= suplP(X E A, X A Y) - P(Y E A, Y 0 X)I 
A 

< P(X# Y). 

Thus, the variation distance between the laws of two random variables is bounded by the 
probability that they are unequal. 

We make use of this fact as follows. Given a Markov chain P on a space X, with initial 
distribution tAo, suppose we can find a new Markov chain (Xk, Yk) on X x X with 

(i) Xo - '4o; 
(ii) Yo -7r; 

(iii) P(Xk+l E A I Xk) = P(Xk, A); 

(iv) P(Yk+I E A I Yk) = P(Yk, A). 
(v) There is a random time T such that Xk = Yk for all k > T. 
In words, the chain Xk starts in the distribution Ato and proceeds according to the transitions 

P(, ). The chain Yk starts in the distribution 7r and proceeds according to the same transitions 
P(, *). However, the joint law of (Xk, Yk) is arbitrary, except that after some time T (called 
the coupling time), the two processes become equal. 

The benefit of the above "coupling" is as follows. Since Xk is updated from P(, ), we 
have L(Xk) = 11k. Also, since Yk is also updated from P(, ), and since the distribution 7r is 
stationary, we have L(Yk) = 7r for all k. It follows that 

III'k - 7r1j = iL(Xk) - L(Yk)II < P(Xk : Yk) < P(T > k). 

Thus, if we can find a coupling as above, we get an immediate bound on IItLtk - 11 simply in 
terms of the tail probabilities of the coupling time T. 

There is a huge literature on coupling, and it has a long history in Markov chain theory. 
See for example Aldous (1983), Lindvall (1992), and references therein. We shall concentrate 
here on a particularly simple and elegant use of coupling, related to minorization conditions. 

6.2. Uniform minorization conditions. Suppose a Markov chain satisfies an inequality 
of the form 

Pko(x,A) > /3(A), xeR, ACX, 

where ko is a positive integer, R is a subset of the state space X, ,B > 0, and (() is some 
probability distribution on X. 

Such an inequality is called a minorization condition for a Markov chain, and says that the 
transition probabilities from a set R all have common overlap of at least size /B. Minorization 
conditions were developed by Athreya and Ney (1978), Nummelin (1984), and others. We 
shall see that they can help us define a coupling to get bounds on the chain's rate of convergence. 

We consider here the uniform case in which R = X, i.e., in which the minorization 
condition holds on the entire state space. (This is sometimes called the Doeblin condition.) 
We further assume for simplicity that ko = 1. 

We shall now use this minorization condition to define a coupling. First define (Xk, Zk) 

jointly as follows. Choose Xo -~ Ao and Zo - r independently. Then, given Xk and Zk, 

choose Xk+l and Zk+1 by flipping an independent coin that has probability P of coming up 
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heads, and then (a) if the coin is heads, choose a point z E X distributed independently 

according to ~(.), and set Xk+1 = Zk+1 = Z. (b) If the coin is tails, then choose Xk+1 and 

Zk+I independently with 

P(Xk+l e A) = P(Xk, A) -6 (A) 

P(Zk+l E A) = P (Zk, A) - , (A) 

(Note that the minorization condition ensures that these choices are in fact from probability 

distributions.) 
These probabilities have been chosen precisely so that P(Xk+l E A I Xk) = P(Xk, A) 

(and similarly for Zk+l). The point is, option (a) forces Xk+I to be equal to Zk+1, and this 

chance of becoming equal is good for getting coupling bounds. 

Let T be the first time the coin comes up heads. Then define Yk by 

v 
Zk, k<T; 

| Xk, k > T. 

Thus, Yk is essentially the same as Zk, except that after the Markov chains become equal at 

time T, they will remain equal forever. 
The combined chain (Xk, Yk) is now a coupling with coupling time T. Also, since we 

had probability ,8 of choosing option (a) each time, we see that P(T > k) = (1 f)k Our 

above inequality immediately gives the following. 
FACT 10. Suppose a Markov chain satisfies P(x, A) > 16 ((A), for all x E X and for 

all measurable subsets A C X, for some probability distribution ( (.) on X. Then given any 

initial distribution ,-o and stationary distribution 7r, we have 

IlAk - 7r11 ' 1-p 

This fact goes back to Doob (1953) and has been used in Roberts and Polson (1994), 

Rosenthal (1993a), and many other places. It is quite powerful. For example, it immediately 

generalizes our earlier result that, on a finite state space, if all entries of the matrix P are 

positive then the chain converges geometrically quickly. In fact, now we require only that 

some column of P be all positive (and furthermore we immediately obtain a quantitative 

bound on convergence in that case). 
It is easily seen that, given a Markov chain P(x, *), the largest value of 16 that we can use 

as above should be given by 

,B= f/ inf P(x,dy), 
JXEX 

x 

which on a discrete space reduces to 

16 = E min P(x, y). 

.xX 

In words, we may take ,B to be the sum of the minimum values of the entries in each col- 

umn of P. (Note that 16 = 1 if and only if P(x, ) does not depend on x, in which case the 
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A related approach is presented in Meyn and Tweedie (1993), who use minorizations, drift 
conditions, splittings, and careful bounding to obtain bounds on II lk - ir II directly, without 
introducing a second, coupled chain. 

Instead of trying to bound ItLk - xr 11 directly, or use coupling, another approach is as 

follows. Consider a single Markov chain Xk, and each time it is in the subset R, with probability 

P update it according to (-). Call the times of such updatings regeneration times. Then, it is 

easily seen that the distribution of Xk depends only on the time since the last regeneration time. 
Thus, if these "times since the last regeneration" converge, then the original chain Xk must also 

converge. This is the essential idea behind convergence results in Athreya and Ney (1978), 
Nummelin (1984), Asmussen (1990), Mykland, Tierney, and Yu (1992), and elsewhere. 

7. Other approaches. There are many other methods of bounding convergence rates of 
Markov chains, many of which have been applied to a number of examples of interest. We 

briefly mention some of these methods here. 
For certain Markov chains including birth-death chains (i.e., Markov chains on the inte- 

gers, which can move at most distance I on a given step), the eigenvalues and eigenvectors are 

related to the "orthogonal polynomials." Classically known results can be used to get good 
bounds on convergence rates. See Belsley (1993) and references therein. 

Related to the coupling and minorization bounds presented herein is the method of strong 
stopping times (Aldous and Diaconis (1986), (1987)). Essentially, if the reference measure 

~(() in the minorization condition happens to be the stationary distribution Tr(.), then one 

can construct a random time r such that the law of XT is precisely xr(-), and such that XT is 
independent of T. Such a time -T is a strong stopping time, and it is easily seen that 11 yk- ,r I< 

P(T > k). Another method of constructing strong stopping times is by constructing a dual 
Markov chain that keeps track of "how stationary" the Markov chain has become; see Diaconis 
and Fill (1990). 

A different and very beautiful method of bounding convergence to certain specific distri- 
butions (e.g., normal, Poisson) is the method of Stein (1971) and Chen (1975). This involves 
characterizing the distribution of interest through some "identity" that it satisfies, and then 

seeing to what extent the distribution ,ak approximately satisfies that identity. In certain cases 
the technique has been simplified to the point where it is very usable. See Arratia, Goldstein, 
and Gordon (1989) and Barbour, Holst, and Janson (1992). 

Finally, geometric arguments involving "paths" on graphs have recently been used to 

bound eigenvalues of Markov chains with great success in certain examples; see Jerrum and 

Sinclair (1989) and Diaconis and Stroock (1991). Geometric approaches have also been used 

to allow different Markov chains to be "compared" to each other, so that known information 

about one Markov chain can be used to obtain information about related chains; see Diaconis 

and Saloff-Coste (1993). 
Some of these approaches use reversibility of a Markov chain, meaning that the identity 

xr(dx)P(x, dy) = 7r(dy)P(y, dx) holds for all x, y E X. This is equivalent to saying that, 
if the chain starts in the stationary distribution xrO, it has the same law whether time runs 

forwards or backwards. This immediately implies that P is a selfadjoint operator on L2)(7) 

(and hence its eigenvalues are all real). Such structure is discussed and exploited in Diaconis 

and Stroock (1991), Keilson (1979), and elsewhere. In Fill (1991), it is shown how to make 

use of reversibility to obtain bounds on convergence, even if the original Markov chain P is 

nonreversible. 
Most of the above work has been concerned primarily with convergence in total variation 

distance (or the related separation distance). There are, of course, many other notions of 

distance between probability measures that could be used, such as relative entropy. See Su 

(1994) for a start in this direction. 
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Naturally, these few words scarcely begin to cover the depth of work that has been ap- 
plied to convergence questions. The reader is strongly encouraged to consult these and other 
references for further information. 

Acknowledgments. I thank Eric Belsley for comments and corrections, and thank Persi 
Diaconis for introducing me to this subject and teaching me so much. 
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