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INTEGRAL EQUATIONS FROM DISCRETE NOISY DATA

By DoucLas W. NYcHKA AND DENNIs D. Cox!

North Carolina State University and University of Illinois, Urbana

Given data y; = (Kg)(u;) + ¢; where the £’s are random errors, the u’s
are known, g is an unknown function in a reproducing kernel space with
kernel r and K is a known integral operator, it is shown how to calculate
convergence rates for the regularized solution of the equation as the evalua-
tion points {u;} become dense in the interval of interest. These rates are
shown to depend on the eigenvalue asymptotics of KRK*, where R is the
integral operator with kernel r. The theory is applied to Abel’s equation and
the estimation of particle size densities in stereology. Rates of convergence of
regularized histogram estimates of the particle size density are given.

1. Introduction. Integral equations often provide a crucial link between
observations on a system and a function g that characterizes the state of the
system. We consider an observational model of the form

(1.1) in= [ Rty 0)8(0) do + 6,y i=1,2,..,0.
0

Here, the kernel function k: [0,1] X [0,1] - R is assumed known, the u’s are
known points in [0, 1] and the &’s are mean zero, random errors. g: [0,1] — R is
an unknown function that is thought to lie in a Hilbert space of smooth
functions Z'. In particular, & will be a reproducing kernel Hilbert space (RKHS)
with a continuous reproducing kernel r: [0,1] X [0,1] — R. This class of £’s
encompasses a rich variety of spaces including the Sobolev spaces

Wy[0,1] = {f: {9 absolutely continuous for 0 < j < £ — 1 and
f® e L,[o,1]}.

Given the observation vector

Yn = (yil""’ yin) ’

the statistical problem is to obtain an estimate of g. If Z is finite dimensional,
then this can be treated by standard parametric regression techniques. However,
there is frequently no sound basis for assuming a parametric form for g, in which
case it is appropriate to apply nonparametric methods, i.e., use an infinite
dimensional parameter space . This makes the estimation problem somewhat
more difficult.
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REGULARIZATION OF INTEGRAL EQUATIONS 557

The type of estimator which is analyzed here is the so-called method of
regularization (MOR) estimator, which was first proposed in the integral equa-
tion context by Tikhonov (1963) [see also Nashed and Wahba (1974)]. Statistical
justifications for such estimators have been given by Li (1982) [see also
Speckman (1985)]. The arguments in Kimeldorf and Wahba (1970) can be
adapted to show that linear Bayes estimators are MOR estimators. The estima-
tor is obtained by minimization over A € & of

1
A(h, Wh)e+ -~ Y

i=1(yin - j£0

where W € #(%') = {all bounded linear operators £ — £} and A € (0, c0). It is
assumed that (h, Wh)4 is positive semidefinite for 2 € & ({ - ,* )4 denotes the
inner product on &), that the null space of W has finite dimension and that
(h, Wh)z= 0and [ 1k(u;,, v)h(v) do = 0,for 1 < i < n, together imply A = 0.
This latter condition guarantees that the resulting estimate (denoted £,,) is
uniquely defined. MOR estimators are widely used and appear to ‘work well in
practice. A typical choice for & is W[0,1] with (h, Wh)g= [o,11(A¥(0))* dv
and in this case the null space of W will be the set of polynomial functions with
degree less than k. With this specific choice of W, (h, Wh), is referred to as a
roughness penalty while A is called the smoothing parameter. Note that the
smoothing parameter controls the relative weight between the roughness of the
estimate and its fit to the data. Some pertinent references are Wahba (1977,
1980), Lukas (1980, 1981, 1988) and O’Sullivan (1986).

The main interest here is to study asymptotic properties of 8,, as n — o and
the u,; become dense in [0,1]. In particular, we will show that for appropriate
sequences of A, £, is a consistent estimator and we can obtain upper bounds on
the rates of convergence. These results are useful for indicating how the features
of the problem (i.e., choice of A, ¥, W, the true g and the design points {u,,})
affect the estimation error. Determination of A is another important issue and
these results can also be applied to study the use of generalized cross validation
for the adaptive choice of A {see Cox (1984)].

The next section uses the general results on MOR estimates from Cox (1988)
and adapts them to the particular problem of solving integral equations. In
Section 3 this theory is applied to the weakly, singular Volterra kernel

2

v)h(v)dv|,

n

in?’

k(u
1]

s

k(u,v) = {(U —u)"? o>y,

0, v < U
If we let K denote the integral operator

(12) (Ke)(w) = [

then for g unknown and A known, h = Kg gives Abel’s equation. The statistical
problem we address is to estimate g from noisy measurements of / on a discrete
set. MOR estimates give one solution to this ill-posed problem.
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Abel’s equation has a diverse range of applications in the physical sciences
[Kosarev (1980) and Bullen (1963)] and in stereological microscopy [Anderssen
and Jakeman (1975a, b), Anderssen (1976) and Nychka, Wahba, Goldfarb and
Pugh (1984)]. In this latter field one is interested in estimating the probability
distribution (or its density) of the radii of spherical bodies embedded in a
medium using the cross sectional radii observed on a planar slice of the medium.
In the last section of this paper, we solve this stereologic problem using a MOR
estimator based on a histogram of the observed cross sectional areas. Hall and
Smith (1985) apply kernel density estimates in this context and obtain compara-
ble results. Watson (1971) and Franklin (1981) give a more traditional statistical
approach to this problem.

We end this introduction by reporting the specific results for Abel’s equation.
In this context, we take & to be the Sobolev space with boundary conditions

Z= {h e W7[0,1}: (1) = (1) = 0}.
One possible MOR estimate of g is obtained by minimizing

2
1 h(D)
(ym'_.Lm v—u,, db)

i=1

Aj(;l(h(z)(v))2 do + %

overall he %.
(In this case W = I since ||A®||32(q 1, is a norm for Z.)
The following conditions will be assumed throughout this paper.

CoNDITION 1. Eg, = 0 and there are constants {S,} C (0, o) such that
1 \2 S,

R
n n

uniformly for n € R®, as n - .
Note that for errors that are uncorrelated S, ~ 1/n.

CoNDITION 2. If F, is the empirical distribution of the design sequence
{u:1<j<n} clo,1],

then there is a distribution function F with density f bounded away from 0 and
oo on [0, 1] such that

d:

n

sup |F(u) — E,(u)| >0 asn— co.

O<u<l1

THEOREM 1.1. Let K be the integral operator in (1.2). An upper bound on
the rate of convergence of 8, to g is for all > 0,

(1.3) E|K (8. — &)l = O[ N2 g%+ S,A~@a+ /5] \ =2
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uniformly for g € &, A € [A,,, ©0) provided for some & > 0,
(1.4) A, =0, d2\;@I/15+2/3%9 0 and 0<q<2.

The proof is given in Section 3. When ¢ is not an integer, Wy should be
interpreted as the Besov space BY, [see Cox (1988) and Sections 4.4.2 and 4.6.1 of
Triebel (1978) for a discussion of these spaces].

The following result gives the optimal upper bound in (1.3) over the range of
A € [\, o0) where A, satisfies (1.4).

CoROLLARY 1.1. If g€ %, A\* ~ 8% d,=0(S,) and S, > 0 as n - oo,
then

E|K(& — &)z, = O(S¥5*%) forall 8 > 0.

Note that A plays a critical role in the convergence rate and S, does also, but
to a lesser extent. Surprisingly, the asymptotic behavior of the design
{u;,» 1 <i < n} is only important for determining the range of A where these
approximations are valid. The fractional constant in the exponent of S, is largely
determined by the asymptotic behavior of the eigenvalues for the integral kernel

au,0) = [ ' [ "R(u, x)r(x, y)k(v, y) dxdy,

where % is Abel’s kernel and r is the reproducing kernel for Z. We have focused
on reproducing kernel Hilbert spaces because of this concise characterization.

A relationship between these eigenvalues and the convergence rates of &,, to
£ was originally conjectured in Wahba (1977). Wahba’s conjectures are proved in
Lukas (1988) and here. Lukas’ analysis depends on the assumption that the
eigenvalues of ¢ converge to zero at an exact polynomial rate. For Abel’s kernel
it is not known whether this assumption holds and to investigate this particular
integral equation we have weakened the assumption on the rate of eigenvalue
decay (see Assumption E, Section 2).

2. Convergence rates for MOR estimators. The first part of this section
enlarges the convergence and approximation theorems in Cox (1988) (subse-
quently referred to as AMORE). This extension is needed for situations where
the eigenvalues of € are not known to decay as an exact power, such as the case
for Abel’s equation (see Section 3).

First we formulate an abstract version of our problem, state the relevant
assumptions, prove an important lemma and then give the main result, Theorem
2.1. The proof of Theorem 2.1 is very similar to that in AMORE and rather than
reiterate the entire proof we only state the necessary modifications. The second
half of this section translates the fairly abstract assumptions for Theorem 2.1
into a more succinct set of conditions tailored to integral equations.

In the rest of the paper it will be convenient to use the following notation: For
{@,}n=1,0 a0d {b,},21 0> @, <D, means a,=0(b,) as n > . a,= b, is
equivalent to a, < b, and b, < a,. Also, for an operator A with domain Z, we



560 D. W.NYCHKA AND D. D. COX

will use
H(A) ={gex: A(g) =0}
to denote the null space of A.

AssUMPTION A. Let %, and Z be separable Hilbert spaces with K, €
L(X,%,) for all n. Suppose

where ¢, is a random element in %, satisfying E(e,) = 0 and E{n, ,)5 = S,||nl|3
uniformly in # € %, for some sequence {S,} < (0, ).

AsSSUMPTION B. W e £(%) is such that:

(i) (h,Wh)e>0forall he Z.
(il) dim A (W) = m < oo.
(iii) (h, Wg)g= (Wh, g)4 forall g, hin Z.

AssuMPTION C. For all n sufficiently large
V(K,) NN (W) = {0}.

The last three assumptions define an operator U that is used to approximate
K>*K,.

AssuMPTION D. There is a compact, positive and self-adjoint operator U €
L(Z, %) with Z(U) dense in Z.

From the compactness of U, there is a basis {¢,},_, ,, for Z and eigenvalues
0<y, <y, < -+ < oo such that

<(pv7 Uq)p>f= 6Vp,’
<(pu’ W(pp,>f= szvyy
where §,, is Kronecker’s delta and for x € 7,

x = Z <x’ Uq)v)f(pv

v=1

(see Proposition 2.2 from AMORE).
AssuMPTION E. There are 0 < r < ¢ < oo such that j” < v; < j%

Forx € & let
1/2

lxll, = | 2 (1 +v,)¢x, Us, )5

v=1
and 20 = {x € Z: ||x||, < oo}. Now take Z, to be the completion of Z,> under
Il o
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AssuMPTION F. There exists s € (0,1 — 1/r), {py,p, --- p;} € [0,s] and
{d,} € [0, ) with d, — 0 such that for all x,, x, € Z,

J
[(%1, Uxg)a— (K %1, KpXo)a | < dy 2011201, 01201 p -
i=1

REMARKS. These assumptions are identical to those in AMORE except for
Assumption E where in AMORE r = q.

In this general context, the MOR estimator &, is obtained by the minimiza-
tion of A(h, Wh)g+ ||K,h — y,/l3 and one can show by standard arguments
that 2,, = (AW + U,) 'K *y,, where K * € #(%,, &) is the adjoint of K, and
U, = K *K,. The main idea behind our asymptotic representation is to approxi-
mate U, by the “continuous” version U (see Assumption F).

The following quantity figures prominently in our development, and is related
to the variance of g,,:

(2.1) C(Ap)= T v +ay) 7%
j>m
LEMMA 2.1. Fix 0 < p <2 — 1/r. Then C(A,p) < 0 and as A - 0,
(2.2) A—P+D/a < (X, p) g AL/,
(2.3)  A~@+HD0(A, p) s A% with e(p) = (1 — r/q)(p + 1/r).
Also
(2.4) ' C(A,p)=A"2 asA— oo.

ProoF. The case ¢ = r was already treated in Theorem 2.4 of Cox (1988), so
we only sketch the proof. Define the function

w(u) = w(u; p) = u(1 +u) 2
Then
C(\,p) =27 X w(Myj; p).

j>m
Note that « has its maximum at u,= p/(2 — p). To make Assumption E
explicit, suppose
) Yj = MO] r’ v .I 1

and let
n(A) = max{m, [(uo/}\Mo)l/' + 1]}

Then, since w(u) is decreasing for u > u,,

C(A, p) < A-P[w(uo; Pr) + T (MM p)]
Jzn()

< A‘”[w(uo; p)n(A) + (MO}\)—V'/;rx‘"(l + x’)—zdx].
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Note that the integral is finite if p < 2 — 1 /r. If this is the case, then both terms
within the brackets in the last expression are O(A~/") so the upper bound in
(2.2) follows. For the lower bound, suppose y; < M, j% j > m, and use

N*w(Ays; p) = MEjP/(1 + AM,j9) = (Mg/MP/I)N~"/%( M\ j% rp/q),
valid for j > m. Hence,
(2.5) C(A, p) > MA™/2 T o(MAJ%; 10/q),
j>m

where 0 < M < 0. Now as A |0,

(MM Y w(MAj9% ro/q) — foox"’(l +x9) % dx.
j>m 0
If this limit is used in (2.5), the lower bound in (2.2) is obtained. (2.3) follows
directly from this result while (2.4) is established just as in AMORE. O

THEOREM 2.1. Let 0 <p<2—s—1/r and suppose p< B <p + 2 and
A, — 0 as n > co. Then under Assumptions A-E,

E\, — &l; < min{1, M*~?}lig||g + S,{C(A, p) + m}
uniformly for A € [A,, ) and g € Z; for each of the different conditions:
D1-1/r<sp<2-s-1/r,s<B <2 d2\,*/D 5,

dn}\;(sﬂ(p)) - 0.
({) 0<p<1-1/r,s<B<2 d2\;e+2p+1/1) 0,

Proor. If r = q in Assumption E, then the theorem follows directly from
estimates of the bias of g,, in Theorems 4.3(i) and (ii) and 2.3 in AMORE and
the approximation of the variance is a consequence of Lemma 4.4 and Theorem
4.5 of AMORE. We will complete the proof by describing the modifications to
the proofs of these theorems and lemmas when r < g.

The proof of Theorem 2.3 of AMORE is not affected and because Theorem 4.3
only requires upper bounds on C(A, p) this proof also does not need to be altered.

We now argue that both Lemma 4.4 and Theorem 4.5 in AMORE hold for the
rates on A, specified above. For Lemma 4.4 under case (i) we must have

C(A,p+s)
C(A,p)

This follows by Lemma 2.1 and the hypotheses on A .
For case (ii) considering the second upper bound derived for the expression at
line (4.5) of AMORE, we must have

d.CV (A, s — p,)C(A, p + py/2)  d A Gpct1/n/2\~(ovoi/241/m)
C(h, p) S NRGRZEED)
= dﬂ}\;(s+2e(p)+1/r)/2 -0

S,d, >0 forAe [\, ©).
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by (2.3) and thus under case (ii) this result will still hold. For Theorem 4.5 of
AMORE the estimates of E|(AW + U)™'T,*e,||2, will hold provided that
di\,¢*1/D > 0 as n > oo. This estimate remains valid because only upper
bounds on C(A, -) are used in the argument. Substituting these estimates into
the expression at line (4.6) of AMORE, Theorem 4.5 of AMORE will follow if

d2[A,e+s+2/D] /C(N,,p) >0 asn > co.

This convergence is a consequence of (2.3) and the hypotheses on A,. O

Although Theorem 2.1 restricts attention to the case when g € %; and
B < p + 2, the extension to larger 8 is simple. If g € &, for some a > p + 2,
then the theorem will hold with 8 = p + 2. In other words, after a certain point
increasing the smoothness of g will not improve the convergence rate. This
saturation phenomenon is well known in approximation theory. (In nonparamet-
ric density estimation this effect is illustrated by the upper limit of £ for the
convergence rate of the mean integrated squared error of a density estimate
using a nonnegative kernel.)

This section ends by giving a more convenient set of conditions that imply
Assumptions A-F for the model (1.1). Note that Conditions 1 and 2 have already
been introduced in Section 1.

CONDITION 3. % C L? is a reproducing kernel Hilbert space with a continu-
ous reproducing kernel r. Let

R(h)(u) = / r(u, v)h(v) do
[0,1]
and assume A(R) = {0}.
ConDITION 4. K € Z(L,[0,1]) with #°(K) = {0}.

Note that R € #(L,) is a compact operator by Mercer’s theorem, so
Q = KRK* € #(L,)
is also compact and hence has a spectral decomposition with eigenvalues
(2.6) PrZpezpg o0 >0,

where p; — 0 as j — oo. (Positivity of the eigenvalues follows as (k, Qh),, =
(K*h, RK*h); > 0V h# 0 by Conditions 3 and 4.)

CONDITION 5. The eigenvalues (2.6) of @ satisfy
Jispsi
CoNDITION 6. There is a p>0 such that 1/p<1-1/r and K&
L (X, WE).

_ ConprTiON 7. W € #(Z%) and W is self-adjoint and nonnegative definite. If
K € P(%, Ly(F)) denotes the restriction of K to &, then thereisa 0 < M < ©
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such that
|(W+ K*E)h|,> Mlhly ¥V hex.

Note that in Condition 4, K is regarded as having domain L,, whereas K has
domain &. This distinction is important because K* and K* are different.

We identify %, with R” equipped with the inner product (1/n)7’¢ for 7,
{ €R” and let K (k) = (Kh(u,,), Kh(u,,),..., Kh(u,,)). In the following
discussion it will be shown that Conditions 1-7 imply the more abstract Assump-
tions A-F.

Note that

1
K (M)l3r < suplK(R)P

and thus the continuity of K, is a consequence of Wy < C° and Condition 6.
The remaining parts of Assumptions A and B follow from Conditions 1 and 7
and the discussion in Section 1. The discussion of Assumption C will be deferred
until Assumptions D-F have been established.

In order to deal with Assumption D, we first motivate the choice of the
limiting operator U. Referring to Assumption F, we wish to approximate (for
h 12 h2 EX )’

(Kuuy Kohods, = = 3 [, 0)(0) o) [, 0)ho(o) e
2.7) =1

= ffhl(v)wn(v, v')hy(v') dodv’,

where the kernel w, is given by

w, (v, v) = fk(u,v)k(u,v’) dF,(u).
If we replace w, by its continuous analog

w(v,v’) = fk(u, v')k(u,v) dF(u),
then the last expression in (2.7) becomes

/ fhl(u)w( v, 0)hy(v)) dodv’ = (Khy, Khy)p = (hy, K*Ehy)g,

where K is given in Condition 7. Hence,

(2.8) U=K*K

is the correct choice. B .

The compactness of K follows from the composition K = Jo K, where by
Condition 6, K € £(%, W}) and J is the compact embedding operator from W§
to L, for p>1. U must also be compact since U= K*K, where K* is
continuous.
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Assumption D now follows from the compactness of U and the fact that
A(U) = {0}.

Before discussing Assumption E we state some properties for the integral
operator R from Condition 3. Because r is a continuous reproducing kernel,
RY2 € #(L,) is a well defined, self-adjoint square root of R that is also compact
[Riesz and Nagy (1955), pages 242-246]. Also, R* L, > & is an isometric
isomorphism between these two Hilbert spaces.

The next lemma verifies Assumption E.

Lemma 2.2, Under Conditions 1-7,1/p.; = v;.

PrOOF. From the discussion in AMORE Section 2, the eigenvalues «; =
1/(1 + v;) can be generated by successive minimizations of the Rayleigh quo-

tient
(2, Ux)g/{x, (U + W)x)g.

Using Condition 7, the boundedness of dF/du away from 0 and oo (Condition 2)
and the isometric isomorphism between L, and %, there are constants
0<C,C, <oosuchthat forall x € &,

(f, AAf)r, (% Ux)e _  (F,A"Af),
VO, T (U Wx)e T IR,

with f=R™'% and A = KR? If {B;},_, , are the eigenvalues of A*A
(including multiplicities), then by applying the mapping principle to these
inequalities [see Weinberger (1974), page 57] it follows that 8; < «; < B;, or in
other terms, 1/8; = ;. Finally, we note that p; = B; because #"(A) = {0} so the
eigenvalues of A*A are the same as those of AA* = Q. O

LemmMaA 2.3. Condition 6 implies assumption F with s =1/p, p; =0, p, =
1/p and d,, = sup|F — F,|.

Proor. The proof is given in the remarks following Assumption 4.1 of Cox
(1988), so we only sketch it here. For h,, h, € &, an integration by parts
followed by the Cauchy—Schwarz inequality gives

|Chy, Uhade— (Kb, K hoda, | = ’ J(Bh,)(KRy)d(F - F,)

< d(IKh\lwgll KRoll 1, + 1 KBl | KPrsllwy )
and to complete the proof, we argue that
|Khllw; < M| Ally,,, VheZX

for some constant M € (0, o0). This inequality can be established from standard
interpolation theory and the details are given in Section 3 of AMORE. [See also
the introductions to interpolation theory in Triebel (1978), pages 18-27, or
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Butzer and Behrens (1967).] Applying the K method of interpolation functor to
the pairs of spaces (%), Z,) and (Ly(F), W), it follows that %, ,, = (Zp, 1)1, 2
and Wy = (Ly(F), Wf), ,p,o- Now K € L(%,, W}) and K € L(Z,, L*(F)) and
therefore K € £(%, ,,, W) by the fundamental properties of the interpolation
functor. O

We complete this discussion by treating Assumption C. The argument is by
contradiction. Suppose that for any r thereisa {, € /(W) such that K ({,) =0
but {, # 0. Without loss of generality, we can take (U¢,, {,) = 1. By Assump-
tion F and by the fact that A (W) is finite dimensional, one can make n
sufficiently large such that

|<Un§n’ g‘n>ﬁ"_ <U§n’ §n>ﬂ'l < %‘
Thus
1= <U§n’ §n>ﬂ”< % + <Un§n7 §n>9l”= %’
a contradiction.
One problem we have not dealt with so far in this section is the explicit
description of the spaces %, for p > 0. Only for p =1 and p = 0 is there an
easily obtainable equivalent norm, namely,

Al = lkllgs  NIAllo = 1 KAl L,

The first follows from ||A||? = (h,(W + K*K)h), and Condition 7. The second
relation follows since ||A||2 = (h, Uh)y = || Kh|| LyF) and Ly(F) is equivalent to
L, by Condition 2. Furthermore, as W and F are not involved in | 4|/, and
| KR ,, we have that different choices of W and F (subject to Conditions 2, 4
and 7) lead to equivalent %, norms for 0 < p < 1. For p = 0,1, this follows as
above, while for 0 < p < 1, this follows from the fact that the %, norm is
equivalent to the norm on (%, %)), , given by the K-method of interpolation.
Finally, we should note that the interpolation argument outlined in Lemma 2.3
generalizes to give the bound

”Kgllwéw <Mlgll, vg€Zand0<p<1.

3. Abel’s kernel. Theorem 1.1 is proved by verifying Conditions 3-7 of
Section 2 and then applying Theorem 2.1. We also discuss the regularization of
histograms to estimate a particle size distribution in stereology.

Let

X=W}po={he W[0,1]: A9(1)=0,0<j<k -1}
for some & > 2 and take as an inner product
<f, h>£”= <f(k)’ h(k)>L2'

. The reproducing kernel for & with this inner product is

1 1 k-1 k-1
r(u,o)=W[)(w—u>+ (w — 0)% " dw,
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where (x),= max{x,0}. Now r is continuous on [0, 1]2. It is straightforward to

show that A'(R) = {0} because the basis {r(:, u): u € [0,1]} spans & [Aubin

(1979), page 116] and &= W'2’f pe is dense in L,. Thus, Condition 3 holds.
Turning to Condition 4, we will use the following lemma.

LEmMA 3.1. () K€ Z(Ly, L) foralll < q < oo.
(i) K € (2, WP) for8<k+ L

Proor.

i h(u
fllKhlq do < fll—[f | ( il du;dv (by Fubini’s theorem)
0

0 j=1%v Vu — v
q
<[ @ [TIk()du,
[0,1}¢ Jj=1

(3.1)

where

y(w) = [ 7 H>0)

Also, it is straightforward to show
[ v du—ff[f du rdold%
[0,1J¢ max(oy, o) Y (& — 0) (& — )
and from Selby [(1979), page 430],

- fror BT

=2/;1£102w10gq(1fz

Applying the Cauchy-Schwarz inequality to (3.1) now gives

f(Kh)"dos W[[}ﬂd;;]

) dv, dv,

)dwdv2=M< 0.

q/2

and (i) follows.

For h € &, integrating by parts [ times and applying the boundary conditions
for members of & it is easy to show that
(3.2) D'’Kh = (-1)'KD'h forl<k

and from part (i) we have K € £(%, W) for 1 < g < oo. Now W} c W+1/2-¢
provided 1/g < & [Triebel (1978), Section 4.6.1] and thus (ii) holds. O

The first part of Condition 4 now follows from Part (i) of the lemma. In
order to prove that the null space of K only contains 0, we will use the
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inversion formula Kh = g & Kg absolutely continuous and —(1/7)DKg = h
a.e. [Cochran (1972), page 7]. Thus,

Kh=0=h=0ae. = A4(K)={0}.

Before verifying Condition 5, it will be useful to cite the relationship of K and
R to fractional integration. For a > 0, put

1 .
(Lh)(u) = -r—(—‘;)-fu (0 —u)* 'h(v) dv.

Then K = #'/?I, ,,, while R = I, I;¥, where I, € #(L,) if k > }. I, is an exten-
sion of a-times iterated integration to fractional orders [Ross (1975)]. Further-
more, one can show

(33) IaIB = Ia+ﬁ, a, ,B >‘ 07
and hence
(3.4) Q@ = KRK* = 7, o1} o

This latter formula is now used to estimate the eigenvalues of Q.

LeEmMA 3.2. The eigenvalues {p;} of I, .1 1% 1 s salisfy

j—2(k+1) < ”j Sj_(2k+l)

and hence Condition 5 holds with q = 2(k + 1) and r = 2k + 1.

ProofF. The upper bound follows from Theorem 3.2 of Faber and Wing
(i985) and (3.4). For the lower bound set M = ||I}%,|| »,1,, and using (3.3) one can
show

1‘4—2||I/§"+1h||i2 < ALysr oI 0hy BY L,

where 0 < M < 0. Let {»} denote the eigenvalues of II*. Then by the
mapping principle [Theorem 3.6.1 of Weinberger (1974)] and the above inequali-
ties, M~ 2p**D < p. LI* is the Green’s operator for the differential operator
D?' with boundary conditions

f(O)(l) = f(l)(l) = «i0 = f(i—l)(]_) =0
and
f(i)(o) = ... = f(2i—1)(0) =0.
The standard theory for the asymptotics of the eigenvalues of such operators
[e.g., Naimark (1967), Section 4 or Triebel (1978), page 392] yields
VJ(i) ~ -2, 0

Condition 6 follows directly from Lemma 3.1(ii) with p < k + } and Condi-
tion 7 holds because W = I.
We now can apply Theorem 2.1 to obtain general convergence results for the

regularization of Abel’s equation.



REGULARIZATION OF INTEGRAL EQUATIONS 569

Set
1 2

1
s(p)=2(k+1)(p+2k+1 2k+1°

Note that W = I, m = 0 and by Lemma 2.1, C(}, p) < N\~(»+1/@*+1) Now for
some e>0let v=2—-s5s—-1/r—e=2-3/(2k + 1) — &. Assume A, - 0 and
also that

1. 2k/@2k+ 1) <p <,

)ands>

dﬁ}\;(3/(2k+1)+s) -0

and
dn}\;(Z/(2k+1)+e(p)+s) -0

or
2.0 <p<2k/(2k + 1) and d2\;@/Ck+D+er2ee)) ; q,

From Theorem 2.1 if
g €%, p<B<p+2ands< B <2

then for A € [A,, o0),
(3.5) E|&.n — g“g < min{1, }\(B—p)}”g”% + Sn}\—(p+1/(2k+1)).

The interpolation norm in (3.5) can be bounded by a Sobelev norm using the last
inequality of Section 2 and Lemma 3.2. For any & > 0 such that p + § < 1 there
is an M < oo so that

| KRl 01m0 < M|bl,15 forall b€,

Theorem 1.1 now follows with £ = 2 and 8 = 1. Corollary 1.1 is established by
minimizing the upper bound in (3.5).

We now describe our proposed estimator for the stereology problem and give
upper bounds on its convergence rate. Suppose that the centers of spheres
embedded in a medium follow a three-dimensional Poisson process with rate A,
per unit volume and that the radius R of a sphere is a random variable
independent of the centers and radii of the other spheres. Let A; = 7R? denote
the equatorial area. We assume A, has Lebesgue density f,, with support on
[0,1] (any other upper bound can be accommodated by rescaling) and let

hy(a) = Ayfy(a).
Now suppose that the medium is sliced by a plane whose orientation is indepen-
dent of the spheres’ locations. Spheres that have been cut produce circular cross
sections on the plane. If attention is restricted to those cross sections whose
centers lie in a region with area A then the number of circular cross sections
with area between a, and a; (0 < g, < @, < 1) is a Poisson random variable
with mean

A["hy(a) da.
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Moreover
hy(a) = 2(Kh;)(a),
K being Abel’s operator in (1.2). This latter equation follows from a change of

variables in (5) of Watson (1971). For the histogram bin limits 0 = u,, < u,, <
- <u,,=1, let m;,, denote the number of cross sections with areas in

[©;_1 noui,)- We take as “observations” Y, = m,,/[A(u;, — u;_, ,)] and set
8 = 2h,. E(Y,) = T,(g) where the ith element of T,g has the form
T..(8) = " Keg(v) do.

(um_ut ln) Ui1,n
Note that the number of histogram bins is actually the relevant sample size, not
the actual number of observed cross sections.

In order to study the MOR estimator in this context we will determine S, in
Condition 1. Because the components T, are not exactly in the form of evalua-
tion functionals, Assumption E will not follow from the Conditions 1-7 and must
be shown directly. Nevertheless we will argue that U = K*K is still the appro-
priate asymptotic approximation to T,*7,. The other assumptions follow from
having verified Conditions 3-7 for Abel’s kernel above.

Let ¢, =Y, — EY,. Then

E 2 zn: 2Var(Y,,

ot
ns'm

n

= 5 LA~ i) A" Ka(o)do

i=1 Ui—1,n

n?,
1

and, using the mean value theorem,

= [nAmin(uin - ui—l,n)] - sup |Kg(u)|“11 n.
O<u<l
As already noted above Kg € W, if g € 2 and hence sup|Kg| < oo. Thus,
E|1/n)en|® < S,(1/n)n'y with S, = [nAmin, _; _ (u;, ~ u;_, ,)]7"
We will now argue that Assumption E holds with

(3.6) d, =max| sup |F(u) = F(z)],4,],
O<ux<1
where F, is the empirical distribution function for {,,} and
A,= max |u, ~u;,_, .|
1<i<n ’

For f, g € &, by the mean value theorem we can choose {%;,}, {u}} and (@)
such that

ul 1,n < um’ uln’ u S um’

3.7 T.(f) = Kf (i

and

d -
T.,(8) = Kg(ul) = Kg(@i,) + —-Ke(,)(@in — u3)-
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Take K, € 2(%,R") to be the operator so that K, h evaluates Kh at the points
{u,,). For f, g € ¥ it follows that

I(Tn*Tnf7 g).’f_ (Uf7 g).’f'

— — 1
—<-|<Kn*an’g>£'_ <Uf!g>.’£”| + An; E

i=1

d -
Kf () - Ke (i) |-

Now Assumption F can be applied to the first term of this expression. Thus,

d
—Kg

< (I llolgllp + £ ll/pllEllo) + A suplKfisup| -

b

where d, = sup|F, — F| and p < k + 3.
For all e > 8 > 0,
sup|Kf| < |1Kf lwyzes S W llaje+iyo

and similarly,

sup < 18l s 2+6)/p-

dK
du o

Therefore, Assumption F will hold with s > 4/(2k+ 1), p, =0 and p, >
1/(2k + 1). Finally, we note that by the triangle inequality and (3.7),

= 1 -
d, <sup|F, — F| + - and so d, = sup|F, — F}.

For an example of this application of Abel’s equation take & = VVZ2 Bcl0, 1],
k = 2 and suppose that

max (ui nT Ui n) < min (ui n— Ui n) asn — oo.
1<isn ’ ’ 1<i<n ’ !

Then
d,=n"t, S, =A"!
and so if g € VV22 5c» then the upper bound in Theorem 1.1 will hold provided
that n = 00, A = o0, A = 0 and n~2A(16/16+29/18+¢) _, () for some £ > 0.
Typically, one is interested in the size distribution of the spheres in terms of
radius rather than area. If g,, is normalized to integrate to 1, then an estimate
for the radial density can be obtained from a simple change of variables.
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