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A scalar, elliptic boundary-value problem in divergence form with stochastic diffusion coefficient a(x, ω)
in a bounded domain D ⊂ R

d is reformulated as a deterministic, infinite-dimensional, parametric
problem by separation of deterministic (x ∈ D) and stochastic (ω ∈ Ω) variables in a(x, ω) via
Karhúnen–Loève or Legendre expansions of the diffusion coefficient. Deterministic, approximate solvers
are obtained by projection of this problem into a product probability space of finite dimension M and
sparse discretizations of the resulting M-dimensional parametric problem. Both Galerkin and colloca-
tion approximations are considered. Under regularity assumptions on the fluctuation of a(x, ω) in the
deterministic variable x , the convergence rate of the deterministic solution algorithm is analysed in terms
of the number N of deterministic problems to be solved as both the chaos dimension M and the mul-
tiresolution level of the sparse discretization resp. the polynomial degree of the chaos expansion increase
simultaneously.

Keywords: partial differential equations with stochastic coefficients; Karhúnen–Loève expansion; poly-
nomial chaos; sparse tensor-product approximation.

1. Introduction

The numerical solution of elliptic partial differential equations (PDEs) with stochastic input data by
deterministic methods has been employed in engineering for several decades now (see, e.g. Ghanem &
Spanos, 1997, and the references therein). We distinguish two broad classes of approaches to the de-
terministic numerical solution of elliptic stochastic PDEs—the perturbation approach and the spectral
approach.

The perturbation approach is widely used in engineering applications (see Kleiber & Hien, 1992,
and references therein). There are several variants, of which the first-order second moment (see, e.g.
Dettinger & Wilson, 1981) technique became very popular, all based on Neumann expansion of the
stochastic solution around its mean field (see Keller, 1964), and successive computation of (in general
only) low-order terms in this expansion.

The spectral approach is based on the Wiener/generalized polynomial chaos (gPC) expansion (see
Wiener, 1938; Schoutens, 2000; Xiu & Karniadakis, 2002) of the input random fields and the random
solution combined with either Galerkin projection or collocation in the stochastic variables of the input
data. The numerical analysis of this approach has started only quite recently (see, e.g. Babuška et al.,
2004, and the references therein).

There, exponential convergence rates have been proved with respect to the spectral order of the
stochastic discretization, at fixed dimension M of the stochastic parameterization. Since, however,
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the number of stochastic variables in Wiener’s gPC parameterization of random fields is unbounded,
gPC-type formulations parameterize stochasticity of the random data and the random solution by a finite
number M of so-called stochastic variables. It is essential here that the dimension M of the stochastic
variables is a discretization parameter for the input and output random fields and can therefore be arbi-
trarily large.

Hence, exponential convergence with respect to the degree of tensor-product-type polynomial ap-
proximations in these variables as shown, e.g. in Babuška et al. (2004), does not, in general, imply low
computational complexity of the spectral approach.

More precisely, if tensor-product polynomial discretizations are used in the stochastic variables to
ensure consistency, the number of stochastic degrees of freedom (and, hence, the number of determin-
istic boundary-value problems (BVPs) to be solved) must increase at least exponentially with simul-
taneously increasing polynomial degree and stochastic dimension, even with adaptive and anisotropic
polynomial degree selection. As a consequence, exponential convergence in terms of the number of
stochastic degrees of freedom and, hence, in the number of deterministic problems to be solved is lost in
space dimension larger than 1, and only subalgebraic convergence rate can be shown (see Frauenfelder
et al., 2005).

In this paper, we present new regularity estimates and sparse approximation error bounds for spectral
Galerkin and collocation approximations of elliptic PDEs with stochastic coefficients. As in other recent
works (e.g. Babuška et al., 2004), we consider as a model problem a diffusion process in a random
medium occupying a bounded domain D ⊂ R

d with Lipschitz boundary Γ = ∂ D. For brevity of
exposition, we focus here mainly on the error analysis of semi-discretization in the stochastic variable.

We model data uncertainty by allowing stochastic diffusion coefficients a(x, ω), where ω ∈ Ω and
(Ω,Σ, P) is a suitable probability space given a set Ω of events, a sub-sigma algebra Σ of the Borel
sets of admissible diffusion coefficients, and a probability measure P on the set of admissible data.

ASSUMPTION 1.1 We consider a ∈ L∞(D × Ω) to be strictly positive, with positive lower and upper
bounds a− and a+, respectively,

a− � a(x, ω) � a+, λ × P-a.e. (x, ω) ∈ D × Ω. (1.1)

Here, λ denotes the Lebesgue measure in Rd .

The stochastic diffusion problem then reads{−div(a(·, ω)∇u(·, ω)) = f (·, ω) in D,

u(·, ω) = 0 on ∂ D,
P-a.e. ω ∈ Ω. (1.2)

The coefficient a(x, ω) as well as the solution u(x, ω) are random fields in D ⊂ R
d, i.e. jointly meas-

urable functions from D × Ω to R. Whereas the random field u(x, ω) is a mathematically well-defined
object (see Theorem 1.3 below), the task of computing u(x, ω) is less obvious to realize numerically
and is of limited interest in practice. In applications, only certain statistics and moments of u(x, ω) are
of interest, and this is also our goal of computation, which we formulate as follows.

PROBLEM 1.2 Given statistics (with respect to ω ∈ Ω) of the stochastic data a, compute statistics of
the random solution u to (1.2), such as the mean field,

Eu : D → R, Eu(x) :=
∫

Ω
u(x, ω)dP(ω), x ∈ D,
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two-point correlation (or higher-order moments),

Cu : D × D → R, Cu(x, x ′) :=
∫

Ω
u(x, ω)u(x ′, ω)dP(ω), (x, x ′) ∈ D × D,

or probabilistic level sets,

Dα
ε := {x ∈ D: P(|u(x, ·)| > α) < ε}.

As mentioned above, good performance of the perturbation approach has been demonstrated in
practice (at least for small fluctuations, when the perturbation series could be truncated after the first-
order terms). The computation of higher-order terms in the perturbation series (needed in the case of
relatively large fluctuations) involves numerical approximation of higher-order moments of the random
solution. Using standard discretizations, this results in a loss of linear complexity1.

Using sparse approximation of the higher-order moments of the data, perturbation algorithms of
linear complexity have been developed recently (see Todor, 2005). The results in the present work can
be viewed as spectral counterparts of those in Todor (2005) on the convergence of the perturbation
approach.

The parameterization of uncertainty is one of the key points in the numerical treatment of problems
with stochastic data. A Karhúnen–Loève (KL) expansion separating the deterministic and stochastic
variables optimally in the mean-square sense (see, e.g. Loève, 1977, 1978) is a standard procedure to
transform the original stochastic problem into a parametric deterministic one. The resulting parameteri-
zation belongs to a hypercube of dimension M which is itself a discretization parameter.

The parametric problem is then solved using, e.g. a stochastic Galerkin (sG) method (variation-
ally in both the stochastic parameter and the physical variable; note the need for numerical integration
schemes in high-dimensional domains) or by collocation and interpolation in the parametric variable.
Back substitution finally gives an approximation to the original stochastic problem and postprocessing
is required to obtain statistical information on the random solution. Just as in the case of a Monte Carlo
(MC) simulation, detailed information on the joint probability densities of the input data is in general
needed. Tensor-product discretization or tensor-product collocation grids in the parametric variable re-
sult, however, in superalgebraic complexity rates (see, e.g. Babuška et al., 2004; Frauenfelder et al.,
2005; Matthies & Keese, 2005). This is, in principle, due to the unfavourable scaling of the required
computational effort with the parameter dimension M .

The main results of this paper (Theorem 4.11, Theorem 4.17 and Theorem 5.7) are based on ex-
plicit constructions of finite element (FE) spaces in the parametric (i.e. stochastic) variables, which are
not of tensor-product type, and for which we show here optimal convergence rates of the correspond-
ing Galerkin or Collocation approximations of (1.2) to hold (precisely, algebraic order p + 1 for the
wavelet-FE-based construction, where p denotes the fixed polynomial degree, and superalgebraic for the
p-FE-based polynomial chaos in the sense of Wiener, 1938). Note that the rates are expressed in terms
of the number N of deterministic problems to be solved for and are independent of the dimension M
of the stochastic variables (see, e.g. Theorem 4.17). We emphasize that our numerical analysis gives,
in particular, a concrete, explicit selection of basis functions in the chaos expansion to be used in the
stochastic discretization.

We conclude this introductory part by noting that the problem (1.2) is well-posed. This follows
trivially from (1.1) and the well-posedness of the deterministic diffusion problem (see also, e.g. Todor,
2005).

1Here and throughout the paper, linear complexity is understood as log-linear with respect to the number of degrees of freedom
for a FE discretization of one deterministic version of the stochastic BVP.
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THEOREM 1.3 If Assumption 1.1 holds and p � 0, then for any f ∈ L p(Ω, H−1(D)), there exists
a unique u ∈ L p(Ω, H1

0 (D)) that is a solution to (1.2) (here p = 0 corresponds to measurability).
Moreover, for p � 1 there exists a positive constant ca , independent of f and u, such that

‖u‖L p(Ω,H1
0 (D)) � ca‖ f ‖L p(Ω,H−1(D)).

2. Separation of deterministic and stochastic variables

To reduce (1.2) to a high-dimensional deterministic problem, we separate the deterministic and stochas-
tic variables in the coefficient a(x, ω) using an expansion in a deterministic basis, with random co-
efficients. Several choices are possible here, of which we mention and discuss the Legendre and KL
expansions. We consider a splitting of the diffusion coefficient into a deterministic expectation e and a
random fluctuation r . To this end, we must strengthen the positivity Assumption 1.1.

ASSUMPTION 2.1 The random field a ∈ L∞(D × Ω) satisfying (1.1) can be represented as

a(x, ω) = e(x) + r(x, ω) ∀ (x, ω) ∈ D × Ω, (2.1)

with a positive e ∈ L∞(D) (not necessarily equal to the mean field Ea) such that

0 < e− � e(x) � e+ < ∞ ∀ x ∈ D. (2.2)

It follows from (2.2) that r ∈ L∞(D × Ω) too, and we require that the fluctuation r be pointwise
smaller than the deterministic expectation e.

ASSUMPTION 2.2 For the representation (2.1), we assume that

0 � σ := ess sup
x∈D

‖r(x, ·)‖L∞(Ω)

e(x)
< 1. (2.3)

REMARK 2.3 The constant expectation

e(x) := (a− + a+)/2 ∀ x ∈ D,

satisfies Assumption 2.2 with σ � (a+ − a−)/(a+ + a−) < 1.
The more natural (from a statistical point of view) choice e = Ea satisfies (2.3) if the probability

density of r(x, ·) is symmetric for any x ∈ D, i.e. if positive and negative fluctuations occur with equal
probabilities.

Concerning the fluctuation term r , we also formulate a modelling assumption as well as a condition
of regularity in the physical variable.

ASSUMPTION 2.4 The fluctuation r can be represented in L∞(D × Ω) as a convergent series

r =
∞∑

m=1

ψm ⊗ Xm (2.4)

with known deterministic ψm ∈ L∞(D) and stochastic Xm ∈ L∞(Ω). Without loss of generality we
also assume that ψm, Xm �= 0 for all m ∈ N+.

The representation formula (2.4) describes the tensor-product nature of the random field r , and
achieves the separation of the deterministic and stochastic variables, x ∈ D and ω ∈ Ω , respectively.
Note also that we require uniform convergence of (2.4) in order to allow control of the error in the
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solution to (1.2) via Strang’s lemma, after truncation of (2.4). The regularity of the random field r is
quantified by the convergence rate of the series (2.4).

ASSUMPTION 2.5 The fluctuation r admits a representation (2.4) for which there exist constants cr , c1, r ,
κ > 0 such that

‖ψm ⊗ Xm‖L∞(D×Ω) � cr exp(−c1,r mκ) ∀ m ∈ N+. (2.5)

In the following two sections, Assumption 2.5 will be shown to hold with κ = 1/d if the fluctuation
r is piecewise analytic in the physical variable x ∈ D ⊂ R

d . Two examples of separating expansions
(2.4) will be presented and discussed in detail, the Legendre and the KL expansions, respectively.

We further assume that complete probabilistic information on the stochastic part of the separating
expansion (2.4) is available, as follows.

ASSUMPTION 2.6 The joint probability density functions of the family X := (Xm)m∈N+ are known.

In fact, this assumption will be only needed later for the postprocessing of the chaos solution to our
stochastic problem (1.2).

2.1 Legendre expansion

The validity of Assumption 2.5 with κ = 1/d and the existence of a Legendre expansion (2.4) follow
from standard approximation theory of analytic functions (see, e.g. Davis, 1963), if the random fluctua-
tion r is piecewise analytic in the physical variable, with values in L∞(Ω) (r ∈ Apw(D, L∞(Ω))).

EXAMPLE 2.7 If D ⊂ [−1, 1]d and r ∈ A ([−1, 1]d , L∞(Ω)), then a representation (2.4) exists
with (ψm)m∈N+ being the Legendre polynomials in [−1, 1]d (tensor-products of standard Legendre
polynomials in [−1, 1] scaled to have L2-norm equal to 1) and

∀ n ∈ N+ : Xm(ω) :=
∫

[−1,1]d
r(x, ω)ψm(x)dx, P-a.e. ω ∈ Ω.

Moreover, Assumption 2.5 holds with κ := 1/d and c1,r depending on the size of the analyticity domain
of r in a complex neighbourhood of [−1, 1]d .

2.2 KL expansion

An alternative to the Legendre expansion is the KL series, which is known to be the L2(D ×Ω) optimal
representation satisfying the separation ansatz (2.4) (see also Schwab & Todor, 2006). For analytic
fluctuations r , the convergence rate of the KL series is also exponential, i.e. qualitatively similar to that
of the Legendre expansion. However, determining it requires an additional eigenpair computation for
the compact integral operator Cr with kernel Cr given by the two-point correlation of r ,

Cr: D × D → R, Cr (x, x ′) :=
∫

Ω
r(x, ω)r(x ′, ω)dP(ω), (x, x ′) ∈ D × D.

We start by noting that Cr : L2(D) → L2(D) given by

(Cr u)(x) :=
∫

D
Cr (x, x ′)u(x ′)dx ′, λ-a.e. x ∈ D, ∀ u ∈ L2(D), (2.6)
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is a symmetric, nonnegative definite and compact integral operator. It therefore possesses a countable
sequence (λm, φm)m∈N+ of eigenpairs with

R � λm ↘ 0, as m ↗ ∞,

where the KL eigenvalues are enumerated in decreasing order of magnitude counting multiplicity. We
also have the following result (see Loève, 1977).

THEOREM 2.8 Under Assumption 2.1, there exists a sequence X := (Xm)m∈N+ of uncorrelated (and
centred at 0 if e = Ea) random variables∫

Ω
Xn(ω)Xm(ω)dP(ω) = δnm ∀ n, m ∈ N+, (2.7)

such that the random field r can be expanded in L2(D × Ω) as

r(x, ω) = a(x, ω) − e(x) =
∑

m∈N+

√
λmφm(x)Xm(ω). (2.8)

Note that the L2(D × Ω) convergence of the KL expansion is due to the trace-class condition

∞∑
m=1

λm = Tr(Cr ) =
∫

D

∫
Ω

r(x, ω)2 < ∞. (2.9)

REMARK 2.9 The convergence rate of the KL series in L2(D × Ω) is equal to the convergence rate of
the trace in (2.9).

Note that the L2(D×Ω) convergence of the KL expansion (2.8) is not strong enough to allow control
of the error in the solution of (1.2) via Strang’s lemma, after truncation of (2.8). However, analytic
regularity of r in the physical variable plus uniform boundedness of the family X = (Xm)m∈N+ ⊂
L∞(Ω) will be next shown to ensure the uniform convergence of the KL expansion (2.8).

ASSUMPTION 2.10 The familyX = (Xm)m∈N+ of random variables is uniformly bounded in L∞(Ω),
i.e. there exists cX > 0 such that

‖Xm‖L∞(Ω,dP) � cX ∈ R ∀ m ∈ N+. (2.10)

The eigenvalue and eigenfunction decay estimates derived in Propositions 2.13 and 2.16 of the
following two sections immediately imply the desired strong convergence result.

PROPOSITION 2.11 If D ⊂ [−1, 1]d , r ∈ A ([−1, 1]d , L∞(Ω)) with the associated KL expansion
given by (2.8), and Assumption 2.10 holds, then Assumption 2.5 holds too, with κ := 1/d and ψm :=√

λmφm for all m ∈ N+.

For the proof, we refer to Schwab & Todor (2006), Theorem 3.5.

2.2.1 Eigenvalue decay. Next we state decay rates for the KL eigenvalues in terms of regularity of the
correlation kernel Cr . The results we present in this section are standard (see, e.g. König, 1986; Pietsch,
1987; Pinkus, 1985), following from the abstract theory of Weyl/approximation/entropy numbers via
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approximation of K by discrete, finite-rank (separable with respect to (x, x ′)) kernels. Roughly speak-
ing, the smoother the kernel the faster the eigenvalue decay, with finite Sobolev regularity implying
algebraic rates of decay and analytic kernels giving rise to exponential decay.

Remarkably, all these results hold for piecewise regular kernels on product subdomains of D, in
the sense of Definition 2.12 below. Note that general piecewise regularity allowing singularities on
the diagonal set of D × D ensure in general only a slower eigenvalue decay (see, e.g. König, 1986;
Ghanem & Spanos, 1997, for examples with known exact eigenelements). We focus on the case of
piecewise analytic correlation kernels Cr , and refer the reader to Todor (2006) for a discussion of less
regular kernels.

DEFINITION 2.12 If D is a bounded domain in Rd , a measurable function Cr : D × D → R is said to
be ‘piecewise analytic on’ D × D if there exists a finite familyD = (D j ) j∈J of subdomains of D such
that

i. D j ∩ D j ′ = ∅ ∀ j, j ′ ∈ J with j �= j ′;
ii. D\ ∪ j∈J D j is a null set in Rd ;

iii. D ⊂ ∪ j∈J D j ;

iv. Cr |D j ×D j ′ is analytic on D j × D j ′ ∀ j, j ′ ∈ J .

We denote by AD (D2) the space of piecewise analytic functions on D × D in the sense given above.
Moreover, if there exists also a finite family G = (G j ) j∈J of open sets in Rd such that

v. D j ⊂ G j ∀ j ∈ J ;

vi. Cr |D j ×D j ′ has an analytic continuation to G j × G j ′ ∀ j, j ′ ∈ J ,

then we say that K is piecewise analytic on a covering of D × D and we denote by AD,G (D2) the
corresponding space.

Similarly, we introduce spaces of piecewise analytic functions defined on D, which we denote by
AD (D), AD,G(D), etc.

The next result, established in Proposition 2.18 in Schwab & Todor (2006), shows that the eigen-
values in the KL expansion decay exponentially provided the correlation kernel is piecewise analytic.

PROPOSITION 2.13 If Cr ∈ AD,G(D2) and (λm)m∈N+ is the eigenvalue sequence of its associated
integral operator (2.6), then there exist constants c1, c2 > 0 such that

0 � λm � c1 exp(−c2m1/d) ∀ m ∈ N+. (2.11)

EXAMPLE 2.14 One is often interested in Gaussian kernels of the form

Cr (x, x ′) := σ 2 exp(−|x − x ′|2/(γ 2Λ2)) ∀ (x, x ′) ∈ D × D, (2.12)

where σ, γ > 0 are real parameters (standard deviation and correlation length, respectively) and Λ is the
diameter of the domain D. Cr given by (2.12) has an entire continuation toCd and defines a nonnegative
compact operator via (2.6).

Since Cr given by (2.12) admits an analytic continuation to the whole complex space Cd , the eigen-
value decay is in this case even faster than in (2.11).
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PROPOSITION 2.15 If Cr is given by (2.12), then for the eigenvalue sequence (λm)m∈N+ of the corre-
sponding integral operator Cr defined by (2.6) we have

0 � λm � cσ,γ
(1/γ )m1/d

Γ (m1/d/2)
∀ m ∈ N+. (2.13)

For a proof, we refer to Proposition 2.19 in Schwab & Todor (2006).
Note that the decay estimate (2.13) is subexponential in dimension d > 1, and this is essentially due

to the higher multiplicity of the eigenvalues in dimension larger than 1 (this can be explicitly seen, e.g.
for the separable kernel (2.12) on a product domain D).

2.2.2 Eigenfunction estimates. The smoothness assumption on the correlation kernel Cr allows also
a good control of the eigenfunctions in terms of corresponding eigenvalues via the Gagliardo–Nirenberg
inequalities. For a proof of the following result, we refer the reader to Todor (2006).

PROPOSITION 2.16 Let Cr ∈ L2(D × D) be piecewise analytic on D × D, such that all subdomains
D j in Definition 2.12 satisfy the uniform cone property. Denote by (λm, φm)m∈N+ the sequence of
eigenpairs of the associated integral operator via (2.6), such that ‖φm‖L2(D) = 1 for all m ∈ N+. Then
for any s > 0 and any multi-index α ∈ Nd , there exists cr,α,s > 0 such that

‖∂αφm‖L∞(D) � cr,α,s |λm |−s ∀ m ∈ N+. (2.14)

3. Uncertainty parameterization

Throughout this section, we suppose that the separating expansion (2.4) of the random fluctuation r
satisfies the decay Assumption 2.5. As shown before, this is the case if r is piecewise analytic in the
physical variable x ∈ D (in which case κ = 1/d).

3.1 Truncation of fluctuation expansion

Since computations can handle only finite data sets, we truncate the fluctuation expansion (2.4) and
introduce, for any M ∈ N, the truncated stochastic diffusion coefficient

aM (x, ω) = e(x) +
M∑

m=1

ψm(x)Xm(ω), (3.1)

for which the following pointwise error estimate holds due to Assumption 2.5.

PROPOSITION 3.1 If Assumption 2.5 holds, then

‖a − aM‖L∞(D×Ω) � cr exp(−c1,r Mκ) ∀ M ∈ N. (3.2)

The diffusion problem with truncated coefficient aM is therefore well-posed for M large enough
(depending on a). This follows immediately from Strang’s lemma, which allows also explicit control of
the error in the solution u to (1.2).

COROLLARY 3.2 If the stochastic diffusion coefficient a satisfies Assumptions 2.1 and 2.5, then there
exists a truncation order Ma,r ∈ N of the expansion (2.4) such that (3.4) below is well-posed in
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L∞(Ω, H1
0 (D)) for any M � Ma,r . Moreover, if u and uM are the unique solutions in L∞(Ω, H1

0 (D))
of

−div(a(·, ω)∇u(·, ω)) = f (·) in H−1(D), P-a.e. in Ω, (3.3)

and

−div(aM (·, ω)∇uM (·, ω)) = f (·) in H−1(D), P-a.e. in Ω, (3.4)

respectively, then

‖u − uM‖L∞(Ω,H1
0 (D)) � ca,r exp(−c1,r Mκ) · ‖u‖L∞(Ω,H1

0 (D)) (3.5)

for all M � Ma,r .

For a proof, we refer to Todor (2005).

REMARK 3.3 If the expectation e is chosen to be equal to the mean-field Ea and the family X =
(Xm)m∈N+ is assumed to be independent, then (3.4) is well-posed for any M � 0, i.e. Ma,r can be
chosen equal to 0 in Corollary 3.2. The possible loss of ellipticity in (3.4)—due to a Gibbs’ effect—is
therefore not possible in the presence of an independent family X = (Xm)m∈N+ , even in the case of
slow, nonuniform convergence of the separating expansion (2.4). The typical example here is the KL
expansion of a fluctuation r with low regularity of its two-point correlation Cr , which exhibits only slow
convergence in L2(D × Ω).

Under the assumptions in Remark 3.3, the well-posedness of (3.4) can be seen for instance for the
KL expansion as follows. For any N ∈ N+ denote by ΣN ⊂ Σ the σ -algebra generated by the random
variables X1, X2, . . . , X N . For any M > N , from (3.1) it follows (conditional expectations) that

E[aM |ΣN ] = aN , (3.6)

since (Xm)m∈N+ are assumed to be independent and, by construction of the KL expansion, centred at 0.
For any ΩN ∈ ΣN , we use (3.6) and the defining property of the conditional expectation to write∫

D

(∫
ΩN

(aN − a)dP(ω)

)2

dx =
∫

D

(∫
ΩN

(aM − a)dP(ω)

)2

dx

�
∫

D

∫
ΩN

(aM − a)2 dP(ω)dx
M→∞→ 0, (3.7)

due to aM → a in L2(D × Ω) as M ↗ ∞. Since ΩN ∈ ΣN was arbitrary, we conclude from (3.7) that

aN = E[a | ΣN ].

The positivity of the conditional expectation ensures then that the lower and upper bounds on a hold
also for aN .

3.2 Parametric deterministic problem

In this section, we connect (3.4) obtained by truncation at level M ∈ N of the separating expansion (2.4)
of the random fluctuation r to an auxiliary, purely deterministic parametric problem. Without loss of
generality, we suppose in the following that for (Xm)m∈N+ in (2.4) we have (this can be achieved by a
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rescaling of ψm and Xm)

‖Xm‖L∞(Ω) = 1/2 ∀ m ∈ N+, (3.8)

so that

Ran Xm ⊆ I := [−1/2, 1/2] ∀ m ∈ N+.

To aM we associate the function ãM : D × I M → R defined by

ãM (x, y1, y2, . . . , yM ) := e(x) +
M∑

m=1

ψm(x)ym (3.9)

for all y = (y1, y2, . . . , yM ) ∈ I M and x ∈ D.
We now consider the purely deterministic, parametric elliptic problem of finding ũM : I M → H1

0 (D)
such that

−div(ãM (·, y)∇ũM (·, y)) = f (·) in H−1(D) ∀ y ∈ I M . (3.10)

The uniform ellipticity of all truncates aM for M � Ma,r , following from Corollary 3.2, ensures the
well-posedness of (3.10). The solution of (3.4) can be obtained from the solution of (3.10) by back
substitution, as follows.

PROPOSITION 3.4 If ũM is the solution of (3.10) and uM solves (3.4), then

uM (x, ω) = ũM (x, X1(ω), X2(ω), . . . , X M (ω)), (3.11)

(λ × P)-a.e. (x, ω) ∈ D × Ω .

The proof is immediate, observing that both the left-hand side and the right-hand side of (3.11) solve
the well-posed problem (3.4).

Assuming that sufficient statistical information is available on the family X = (Xm)m∈N+ to allow
the postprocessing (i.e. the computation of various statistics of uM , see Assumption 2.6) via (3.11),
Proposition 3.4 reduces the elliptic problem with stochastic data (1.2) to a question in approximation
theory for the parametric (in y ∈ I M ) solution to (3.10), which we formulate as follows.

PROBLEM 3.5 For any M , compute the solution ũM to (3.10) in L∞(I M , H1
0 (D)) up to an error of

exp(−c2,r Mκ).

Note that the truncation order M of the separating expansion (2.4) is the dimension of the parameter
space I M and, in fact, a discretization parameter. In Section 4, the aim will be therefore to solve Problem
3.5 by developing efficient approximations for ũM as a function of y ∈ I M . The key point of our
analysis will be the regularity of ũM with respect to the stochastic parameter y, to which we shall refer
as stochastic regularity. While it is easy to see that the dependence on y of the solution ũM is analytic,
we shall prove that the domain of analyticity of ũM as a function of ym increases in size as m ↗ ∞.
Our estimates indicate in particular that ũM as a function of ym ∈ I becomes ‘flat’ as m increases at a
rate which is governed by the convergence rate of the separating expansion (2.4).

To see this, we note that the decay rate of the expansion (2.4) of the random fluctuation r shows the
decreasing sensitivity of ãM with respect to ym as m ↗ M . Intuitively, ũM is then expected to exhibit a
similar behaviour.
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Note that we are not interested in approximating ũM with arbitrarily high accuracy, but only up to
an error which matches the truncation error O(exp(−c1,r Mκ)) in the separating expansion (2.4). The
required accuracy thus depends on the dimension M of the domain I M over which the function ũM to
be approximated is defined.

4. Sparse Galerkin approximation

For the solution of the approximation problem 3.5, we use an approach inspired by nonlinear approxi-
mation results. To describe it, let (φM,α)α∈Λ ⊂ L∞(I M ) be a family of real-valued functions defined
on the hypercube I M such that ũM admits the expansion

ũM =
∑
α∈Λ

φM,α ⊗ cM,α in L∞(I M , H1
0 (D)), (4.1)

with cM,α ∈ H1
0 (D) for all α ∈ Λ.

DEFINITION 4.1 If (4.1) holds, we call the series on the right-hand side of (4.1) a chaos expansion of
dimension M of u, the solution to (1.2).

For a finite index set Λ′ ⊂ Λ, we define the corresponding truncation of (4.1)

ũM,Λ′ :=
∑
α∈Λ′

φM,α ⊗ cM,α ∈ L∞(I M , H1
0 (D)). (4.2)

In the spirit of the theory of adaptive/best N -term approximation, we consider the most economical
chaos truncation (4.2) which achieves an accuracy comparable with that obtained after truncation of the
separating expansion of r (see Corollary 3.2).

DEFINITION 4.2 If (4.1) holds, we define

ΛM := argmin
{
|Λ′|: ‖ũM − ũM,Λ′ ‖L∞(I M ,H1

0 (D)) � ‖u − uM‖L∞(Ω,H1
0 (D))

}
(4.3)

and call the truncation ũM,ΛM the adapted chaos expansion of dimension M of u, the solution to (1.2).

Due to explicit control of the truncation error in the case of a diffusion coefficient with known decay
rate of coefficients in the fluctuation expansion (2.4), it is more convenient to work with the following
more explicit version of Definition 4.2.

DEFINITION 4.3 If Assumption 2.5 and (4.1) hold, we set

ΛM := argmin
{
|Λ′|: ‖ũM − ũM,Λ′ ‖L∞(I M ,H1

0 (D)) � exp(−c1,r Mκ)
}

(4.4)

and call the truncation ũM,ΛM the adapted chaos expansion of dimension M of u, the solution to (1.2).

The aim of the following sections is the (approximate) identification of the index set ΣM , based on
the regularity properties of ũM with respect to y (analyticity and explicit bounds for all derivatives), if
the family (φM,α)α∈Λ ⊂ L∞(I M ) is chosen to generate the standard FE spaces (piecewise polynomials
of fixed degree on regular meshes/polynomials), corresponding to h- and p-FE over I M , respectively.
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4.1 Stochastic regularity

We start by observing that Assumption 2.5 and (3.8) trivially ensure the following norm estimates

0 � ρm := ‖ψm‖L∞(D) � cr exp(−c1,r mκ) ∀ m ∈ N+. (4.5)

Explicit bounds on all derivatives of ũM are then obtained by either using (3.10), (3.9) (as shown
below) or by Cauchy’s formula (see, e.g. Todor, 2005).

PROPOSITION 4.4 If ũM solves (3.10), then

‖∂α
y ũM (y, ·)‖H1

0 (D) � c|α|
a,r · |α|! ·

M∏
m=1

ραm
m · ‖ũM (y, ·)‖H1

0 (D) (4.6)

∀ y ∈ I M , ∀ α ∈ NM , ∀ M ∈ N, M � Ma,r .

Proof. We prove the estimate (4.6) by induction on |α|. Since (4.6) is clear for |α| = 0, we assume it
to hold also for all α ∈ NM such that |α| � k, for some k ∈ N. We consider a multi-index α such that
|α| = k + 1 and we apply ∂α

y to (3.10). We obtain

−div(ãM (·, y)∇∂α
y ũM (·, y)) =

M∑
m=1

αm div(ψm(·)∇∂α−em
y ũM (·, y))

from which it follows that

ca,r‖∂α
y ũM (·, y)‖H1

0 (D) �
M∑

m=1

αmρm‖∂α−em
y ũM (·, y)‖H1

0 (D). (4.7)

The desired estimate then follows by using (4.6) in (4.7) for all multi-indices α − em , 1 � m � M ,
whose length equals k. �

4.2 Sparse chaos approximations

Using Proposition 4.4, we next investigate convergence rates of adapted chaos approximations for
ũM : I M → H1

0 (D), if tensor-product families (φM,α)α∈Λ ⊂ L∞(I M , H1
0 (D)) corresponding to stan-

dard h- or p-FE in I M are chosen in (4.1) to expand ũM .

4.2.1 h-FE-based adapted approximation. For p ∈ N+ and l ∈ N, let V l,p be the space of piecewise
polynomials of degree at most p − 1 on a regular mesh of size 2−l in I . We set V −1,p := {0}, and by

W l,p := V l,p ∩ (V l−1,p)⊥,

we define the hierarchical excess of the scale (V l,p)l∈N, where the orthogonal complement is taken in
the sense of L2(I ). In this way, we obtain an L2(I )-orthogonal decomposition

L2(I ) =
∞⊕

l=0

W l,p. (4.8)
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If H is an arbitrary Hilbert space and PV denotes the L2(I, H) � L2(I )⊗ H projection onto the closed
subspace V ⊗ H of L2(I ), the standard (vector-valued) approximation property of the scale (V l,p)l∈N
reads

‖v − PV l,pv‖L2(I,H) � cp2−lp‖∂ pv‖L2(I,H) ∀ v ∈ H p(I, H), (4.9)

with some constant cp > 0.

REMARK 4.5 Note that an estimate similar to (4.9) holds also in the L∞(I, H) norm, for v ∈ W p,∞
(I, H).

Using the FE spaces V l,p in I , we build FE spaces in I M as tensor products. More precisely, for any
multi-index l = (l1, l2, . . . , lM ) ∈ NM , we define

W l,p :=
M⊗

m=1

W lm ,p,

which enables us via (4.8) to decompose L2(I M ) as

L2(I M ) =
⊕
l∈NM

W l,p. (4.10)

In L2(I M , H), we then have

v =
∑

l∈NM

v l, v l := PW l,p⊗H v ∀ v ∈ L2(I M , H). (4.11)

For ũM ∈ L∞(I M , H1
0 (D)) ⊂ L2(I M , H1

0 (D)), the solution to (3.10), we next estimate the size of
the general term (detail of ũM at level l) in the corresponding orthogonal decomposition (4.11) with
H := H1

0 (D). To this end, we first introduce several pieces of notation. We define the length |l| of a
multi-index l = (l1, l2, . . . , lM ) ∈ NM by

|l| := l1 + l2 + · · · + lM . (4.12)

Further, the support of l will be denoted by

Jl := supp(l) = {m: 1 � m � M, lm > 0}, (4.13)

and its length by jl := |Jl|, so that Jl = {m1, m2, . . . , m jl}.
PROPOSITION 4.6 If ũM solves (3.10) and Assumption 2.5 holds, then

‖ũl
M‖L2(I M ,H1

0 (D)) � c jl
a,p · 2−|l|p · (pjl)! ·

jl∏
j=1

ρ
p
m j · ‖ũM‖L2(I M ,H1

0 (D)), (4.14)

where ũl
M := PW l,p⊗H1

0 (D)ũM for all l ∈ NM .

Proof. For a fixed multi-index l ∈ NM , we define its support multi-index e := (e1, e2, . . . , eM ) ∈ NM

(depending on l) by

em :=
{

1 if lm > 0,

0 if lm = 0,
∀ 1 � m � M,
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and write

ũl
M = PW l,p ũM =

M⊗
m=1

(PV lm ,p − PV lm−1,p )ũM .

Replacing PV lm ,p − PV lm−1,p by PV lm ,p − I + I − PV lm−1,p for all m in the support of l and expanding
the resulting product, we obtain

ũl
M =

∑
f∈NM , f�e

(−1)M−|f|
(

M⊗
m=1

Qlm , fm

)
ũM , (4.15)

where

Qlm , fm :=
{

PV 0,p if lm = 0,

I − PV lm− fm ,p if lm > 0.

Using the approximation property (4.9) and noting that the sum in (4.15) consists of 2 jl terms, we deduce
that

‖ũl
M‖L2(I M ,H1

0 (D)) �
∑

f∈NM ,f�e

c jl
p 2−(|l|−|f|)p · ‖∂ p·e

y ũM‖L2(I M ,H1
0 (D))

�
∑

f∈NM ,f�e

(2pcp)
jl2−|l|p · ‖∂ p·e

y ũM‖L2(I M ,H1
0 (D)) (4.16)

� (2p+1cp)
jl2−|l|p · ‖∂ p·e

y ũM‖L2(I M ,H1
0 (D)).

Proposition 4.4 coupled with (4.16) leads now to the desired estimate (4.14). �
REMARK 4.7 Based on Remark 4.5, an estimate similar to (4.14) can be shown also in the L∞(I M ,
H1

0 (D)) norm.

Next, we define a scale of sparse FE spaces in I M which will be shown to achieve an almost optimal
convergence rate of the corresponding approximations of ũM . In fact, we prescribe an index set in NM

corresponding intuitively to the largest details in the orthogonal decomposition (4.11) of ũM . To this
end, we introduce for µ, ν ∈ N the set of all multi-indices l ∈ NM not exceeding µ in length and having
at most ν nontrivial entries,

Λµ,ν ⊂ N
M , Λµ,ν := {l ∈ NM : |l| � µ, jl � ν}. (4.17)

Correspondingly, we define, in view of (4.10), the following finite-dimensional subspace of L2(I M ),

V̂ µ,ν :=
⊕

l∈Σµ,ν

W l,p.

Using V̂ µ,ν ⊗ H1
0 (D) ⊂ L2(I, H1

0 (D)) as semidiscretization space to approximate ũM , we now prove
the main approximation result of this section. Here and in the following, PV̂ µ,ν denotes the L2(I, H1

0 (D))

projection onto V̂ µ,ν ⊗ H1
0 (D).
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PROPOSITION 4.8 If µ, ν ∈ N and Assumption 2.5 holds, then for ũM , the solution to (3.10), we have

‖ũM − PV̂ µ,ν ũM‖L2(I M ,H1
0 (D)) � ca,r,p,θ

(
e−ν1+κ c1,r p/2(1+κ)

+ 2−p(µ+1) · eν log(M+1)+ν log(µ+2)
)

· ‖ũM‖L2(I M ,H1
0 (D)). (4.18)

Besides,

dim V̂ µ,ν � p(M + 1)ν(µ + 1)ν+12µ. (4.19)

Proof. For notational ease and since in the following arguments all functions are evaluated in the stan-
dard norm of L2(I M , H1

0 (D)), we drop the corresponding subscript from all estimates. For arbitrary
µ, ν ∈ N, we write

‖ũM − PV̂ µ,ν ũM‖ �
∑

l∈NM \Σµ,ν

‖ũl
M‖ =

∑
l∈NM

jl>ν

‖ũl
M‖ +

∑
l∈NM

jl�ν
|l|>µ

‖ũl
M‖ (4.20)

and next estimate the two sums S1, S2 on the right-hand side of (4.20) separately. In both cases, we use
Proposition 4.6 and the notations (4.12), (4.13). We start with S1 and write

S1 =
M∑

j=ν+1

∑
l∈NM

| jl|= j

‖ũl
M‖ (4.14)

�
M∑

j=ν+1

c j
a,p · (pj)! ·

∑
l∈NM

| jl|= j

2−|l|p ·
j∏

k=1

ρ
p
mk · ‖ũM‖. (4.21)

Indexing the multi-indices in the second sum on the right-hand side of (4.21) over their support, we have
that

∑
l∈NM

| jl|= j

2−|l|p ·
j∏

k=1

ρ
p
mk

(4.5)
� c j

r ·
∑

1�m1<···<m j�M

j∏
k=1

e−c1,r mκ
k p ·

∞∑
lm1 ,...,lm j =1

2−p
(

lm1+···+lm j

)

�
M∑

j=ν+1

c j
r ·

∑
1�m1<···<m j�M

j∏
k=1

e−c1,r mκ
k p. (4.22)

We then use Lemma A.2 (with y = c1,r p and z = (1 + κ)θp) in (4.22) to obtain from (4.21),

S1 � cr,p,θ

M∑
j=ν+1

c j
a,r,p · (pj)! · e− j1+κ θp · ‖ũM‖, (4.23)

for any θ ∈ (0, c1,r/(1 + κ)). The fast, supergeometrical decay of the third factor on the right-hand side
of (4.23) as j ↗ ∞ (due to κ > 0) allows us to absorb of the first two (exponential and factorial). We
conclude

S1 � ca,r,p,θ e−ν1+κ θp · ‖ũM‖ ∀ θ ∈ (0, c1,r/(1 + κ)). (4.24)
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We now turn to the second sum S2 in (4.20). Using again Proposition 4.6 and Lemma A.2, we similarly
deduce that

S2
(4.14)
�

∑
l∈NM

jl�ν
|l|>µ

c jl
a,p · 2−|l|p · (pjl)! ·

jl∏
j=1

ρ
p
m j · ‖ũM‖

� ca,r,p,θ

∑
l∈NM

jl�ν
|l|>µ

e− j1+κ
l θp · 2−|l|p · ‖ũM‖, (4.25)

for any θ ∈ (0, c1,r/(1 + κ)). Now, using a counting argument on the right-hand side of (4.25) and then
Lemma A.1 with t = 2−p, we obtain

S2 � ca,r,p,θ

ν∑
j=1

(
M
j

)
e− j1+κ θp ·

∞∑
l=µ+1

(
l
j

)
2−pl · ‖ũM‖

� ca,r,p,θ 2−p(µ+1) ·
ν∑

j=1

(
M
j

)
e− j1+κ θp · (1 − 2−p)− j−1 · (µ + 2) j · ‖ũM‖

� ca,r,p,θ 2−p(µ+1) · (M + 1)ν · (µ + 2)ν · ‖ũM‖, (4.26)

since
( M

j

)
� (M + 1) j . The inequality (4.18) now follows from (4.24) and (4.26) by choosing θ =

c1,r/2(1 + κ).
It remains to estimate the dimension of V̂ µ,ν . Taking into account that the dimension of the detail

space W l,p equals p2l , we have

dim V̂ µ,ν = p
ν∑

q=0

µ∑
l=0

(
M
q

)(
l
q

)
2l � p(M + 1)ν

ν∑
q=0

µ∑
l=0

(
l
q

)
2l

� p(M + 1)ν
µ∑

l=0

(l + 1)ν2l � p(M + 1)ν(µ + 1)ν+12µ,

which concludes the proof. �
COROLLARY 4.9 Under Assumption 2.5, there exist positive constants c1, c2 such that by choosing

µ := �c1 Mκ�, ν := �c2 Mκ/(κ+1)�, (4.27)

for ũM , the solution to (3.10), we have

‖ũM − PV̂ µ,ν ũM‖L2(I M ,H1
0 (D)) � ca,r,p exp(−c1,r Mκ + o(Mκ)) (4.28)

with κ as in Assumption 2.5 and with the number N of deterministic problems to be solved given by

N = dim V̂ µ,ν � cκ,p exp

(
c1,r

p
Mκ + o(Mκ)

)
, (4.29)

as M ↗ ∞, and with the same constant c1,r as in (3.5).
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Proof. We choose the parameters in (4.18) of Proposition 4.8

µ = �(2(1 + κ)/p)1/(1+κ)Mκ/(κ+1)�, ν = �c1,r Mκ/p log 2�, (4.30)

so that (4.28), (4.29) follow directly from (4.18) and (4.19), respectively. �
REMARK 4.10 The proof of Corollary 4.9 also provides (see (4.30)) explicit values for the constants
c1, c2 in (4.27). Note that c1 depends only on κ, p and never exceeds 3, whereas c2 scales linearly
with c1,r .

Combining (4.28) and (4.29), we reformulate the main approximation result of this section (opti-
mality of the adapted chaos expansion) as follows.

THEOREM 4.11 If Assumption 2.5 holds, then

inf
v∈V̂ µ,ν⊗H1

0 (D)
‖ũM − v‖L2(I M ,H1

0 (D)) � ca,r,p N−p+o(1) as M ↗ ∞, (4.31)

and for the choice (4.27) of the parameters µ and ν, where N = dim V̂ µ,ν is the number of deterministic
diffusion problems in D to be solved.

REMARK 4.12 The convergence rate (4.31) of the h-FE-based adapted chaos expansion is, already for
p = 1 (corresponding to piecewise constant elements), faster than the Monte Carlo (O(N−1/2)) or
quasi-Monte Carlo (O(N−1(log N )cM )) rate, where N denotes here the number of samples.

4.2.2 p-FE-based adapted approximation. The analyticity of ũM in y ∈ I M , following, e.g. from
Proposition 4.4, suggests the use of polynomial approximation (sometimes called polynomial chaos, cor-
responding to a polynomial basis (φM,α)α∈Λ in (4.1), see, e.g. Wiener, 1938) in the stochastic variable
y. In this section we give, for any M ∈ N+, the construction of a polynomial space of low dimension
in y, and in which ũM : I M → H1

0 (D) can be approximated with the desired accuracy, i.e. up to an
error of O

(
e−c1,r Mκ )

. The construction is based, just as in the case of h-FE discussed in Section 4.2.1,
on a priori estimation of the coefficients cM,α in (4.1) using a tensor-product basis in I M . Selection
of the largest estimated coefficients then leads to an upper estimate of the optimal index set ΣM in
Definition 4.3.

The tensor-product basis we use to represent ũM is given by the monomials in y1, . . . , yM ,

Λ := N
M , φM,α(y1, y2, . . . , yM ) := yα1

1 yα2
2 · · · yαM

M ∀ α ∈ Λ.

The chaos expansion (4.1) then holds as the Taylor expansion of ũM around y = 0, due to the analyticity
of the solution established in Proposition 4.4. Moreover, it can be shown (see also Todor, 2005) that ũM

as a function of y admits a complex analytic extension to a cylindric complex neighbourhood U M × iR
of I M , where I ⊂ U ⊂ R.

In analogy with the construction of the FE space V̂ µ,ν in Section 4.2.1, we consider, for M, M ′, η, µ,
ν ∈ N with M ′ � M and in the context of the p-FE, the polynomial spacePM ′,η,µ,ν in the M variables
y1, y2, . . . , yM spanned by all monomials satisfying three additional properties as follows. First, we
require that the monomials have degree at most η in each of the first M ′ variables y1, y2, . . . , yM ′ .
Second, their total degree in yM ′+1, yM ′+2, . . . , yM is at most µ. Finally, each monomial is nonconstant
in at most ν variables taken from yM ′+1, yM ′+2, . . . , yM . Formally, we adopt the following definition.
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DEFINITION 4.13 For M, M ′, η, µ, ν ∈ N with M ′ � M and ν � M ′′ := M − M ′, we set

PM ′,η,µ,ν := span{φM,α : α ∈ ΣM ′,η,µ,ν}, (4.32)

where the index set ΣM ′,η,µ,ν ⊂ N
M is given by

ΣM ′,η,µ,ν := {α = (α′, α′′) ∈ NM ′ × NM ′′
: |α′|∞ � η, |α′′| � µ, |supp(α′′)| � ν}. (4.33)

In order to prove an approximation property for the polynomial space PM ′,η,µ,ν ⊗ H1
0 (D) similar

to the one derived in Proposition 4.8 in the context of the h-FE, we first recall that the solution ũM of
(3.10) satisfies the estimate (4.6), which we reformulate as follows.

PROPOSITION 4.14 If ũM solves (3.10), then

‖∂α
y ũM‖L∞(I M ,H1

0 (D)) � c|α|
a,r, f |α|! ρα ∀ α ∈ NM , (4.34)

where ρα := ∏M
m=1 ρ

αm
m .

Based on (4.34) we next prove the main approximation result for ũM in the spacePM ′,η,µ,ν .

PROPOSITION 4.15 If ũM solves (3.10), then there exist M ′ ∈ N and constants c1, c2, c3 > 0 depending
only on the data a, r, f , such that (recall the notation (4.2))∥∥∥ũM − ũM,ΣM ′,η,µ,ν

∥∥∥
L∞(I M ,H1

0 (D))
� c1

(
e−c3η + ec2η−c3µ + ec2η−c3ν

1+κ
)

(4.35)

for any M, η, µ, ν ∈ N with ν � M ′′ = M − M ′. Besides,

dimPM ′,η,µ,ν � (η + 1)M ′
(M ′′ + 1)ν(µ + 2)ν+1(ν + 1). (4.36)

Proof. Let us introduce the notation y = (y′, y′′) corresponding to the following splitting of the stochas-
tic variable y,

y′ = (y1, y2, . . . , yM ′) ∈ I M ′
, y′′ = (yM ′+1, yM ′+2, . . . , yM ) ∈ I M ′′

,

where M ′ will be chosen later. We consider the Taylor expansion of ũM with respect to y around y = 0,

ũM (y′, y′′) =
∑

α′∈NM ′

α′′∈NM ′′

∂α′
y′ ∂α′′

y′′ ũM (0)

α!
y′α′

y′′α′′
, (4.37)

which converges absolutely for y in a neighbourhood of I M .
Next, we estimate using Proposition 4.14 the size of that part of the expansion (4.37) which corre-

sponds to the complement of the index set Ση,µ,ν ⊂ N
M given by

Ση,µ,ν := Σ ′
η × (

Σ ′′
µ ∩ Σ ′′

ν

)
(4.38)
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with

Σ ′
η := {α′ ∈ NM ′

: |α′| � η} ⊂ N
M ′

,

Σ ′′
µ := {α′′ ∈ NM ′′

: |α′′| � µ} ⊂ N
M ′′

,

Σ ′′
ν := {α′′ ∈ NM ′′

: |supp(α′′)| � ν} ⊂ N
M ′′

.

Note that, due to (4.38),

N
M\Ση,µ,ν = ((NM ′ \Σ ′

η) × NM ′′
) ∪ (Σ ′

η × (NM ′′ \Σ ′′
µ)) ∪ (Σ ′

η × (NM ′′ \Σ ′′
ν )). (4.39)

Let us denote by T1, T2, T3 those parts of the Taylor expansion (4.37) which correspond to the three
disjoint index sets in (4.39), respectively.

An upper bound for T1 (corresponding to the index set (NM ′ \Σ ′
η) × NM ′′

) follows by a standard p-
FE estimate (or using Cauchy formula), due to the analyticity of ũM (·, y′′) in a neighbourhood UM ′ × iR
of I M ′

in CM ′
, uniformly in y′′ ∈ I M ′′

,∥∥∥∥∥∥∥∥∥∥
∑

α′∈NM ′ \Σ ′
η

α′′∈NM ′′

∂α′
y′ ∂α′′

y′′ ũM (0)

α!
y′α′

y′′α′′

∥∥∥∥∥∥∥∥∥∥
L∞(I M ,H1

0 (D))

� ca, f,M ′ e−c1,a, f,M ′η. (4.40)

Concerning T2 (corresponding to the index set Σ ′
η × (NM ′′ \Σ ′′

µ)) we have, by (4.34) and the multi-
nomial formula, with ρ′ := (ρ1, ρ2, . . . , ρM ′), ρ′′ := (ρM ′+1, ρM ′+2, . . . , ρM ),∥∥∥∥∥∥∥∥∥∥

∑
α′∈Σ ′

η

α′′∈NM ′′ \Σ ′′
µ

∂α′
y′ ∂α′′

y′′ ũM (0)

α!
y′α′

y′′α′′

∥∥∥∥∥∥∥∥∥∥
L∞(I M ,H1

0 (D))

�
∑

α′∈NM ′
,α′′∈NM ′′

|α′|�η,|α′′|�µ+1

c|α|
a, f

|α|!
α!

ρα. (4.41)

Using the inequality |α|! � |α′|! · |α′′|! · 2|α| we separate the variables α′, α′′ in the summation on the
right-hand side of (4.41) and obtain

‖T2‖L∞(I M ,H1
0 (D)) �

∑
α′∈NM ′
|α′|�η

c|α′|
a, f

|α′|!
α′!

ρ′α′ ·
∞∑

l=µ+1

∑
α′′∈NM ′′
|α′′|=l

cl
a, f

l!

α′′!
ρ′′α′′

=
η∑

n=0

(ca, f |ρ′|)n ·
∞∑

l=µ+1

(ca, f |ρ′′|)l

� cη+1
a,r, f (ca, f |ρ′′|)µ+1 � ca,r, f ec2,a,r, f η−c3,a, f µ, (4.42)

where the last two estimates hold if M ′ is chosen in such a way that

ca, f (ρM ′+1 + ρM ′+2 + · · · ) < 1/2.
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Note that such a choice is always possible due to the decay condition (4.5), and that this is how we
determine M ′, depending therefore only on the data a, r, f . In turn, the dependence on M ′ of the two
constants in the upper bound (4.40) can be replaced by dependence on r .

Next we estimate T3, corresponding to the index set Σ ′
η × (NM ′′ \Σ ′′

ν ). We deduce from (4.34) that

‖T3‖L∞(I M ,H1
0 (D)) �

∑
α′∈NM ′

,α′′∈NM ′′
|α′|�η,|supp(α′′)|�ν+1

c|α|
a, f

|α|!
α!

ρα

�
∑

α′∈NM ′
|α′|�η

c|α′|
a, f

|α′|!
α′!

ρ′α′ ·
∞∑

l=0

∑
α′′∈NM ′′

|supp(α′′)|�ν+1,|α′′|=l

cl
a, f

l!

α!
ρ′′α′′

. (4.43)

The first sum (over α′) on the right-hand side of (4.43) can be evaluated just as in (4.42), so we only
analyse the second one (over l and α′′), which we denote in the following by S. To this end, we parame-
terize the indices α′′ through their support (consisting of at least ν + 1 integers between 1 and M ′′), and
obtain

S =
∞∑

l=0

M ′′∑
j=ν+1

∑
1�m1<···<m j�M ′′

∑
α′′∈NM ′′

,|α′′|=l
supp(α′′)={m1,...,m j }

cl
a, f l!

j∏
k=1

ρ
α′′

mk
M ′+mk

α′′
mk

!

=
∞∑

l=0

M ′′∑
j=ν+1

∑
1�m1<···<m j�M ′′

∑
α′′∈NM ′′

,|α′′|=l
supp(α′′)={m1,...,m j }

cα′′cl
a, f l!

j∏
k=1

ρ
α′′

mk
−1

M ′+mk

(α′′
mk

− 1)!

with

cα′′ :=
j∏

k=1

ρM ′+mk

α′′
mk

�
j∏

k=1

ρM ′+mk . (4.44)

Using (4.44) and the multinomial formula, we obtain the estimate

S �
∞∑

l=0

M ′′∑
j=ν+1

l!

(l − j)!

∑
1�m1<···<m j�M ′′

cl
a, f |ρ′′|l− j

j∏
k=1

ρM ′+mk

�
∞∑

l=0

M ′′∑
j=ν+1

j! c j
a, f

(
l
j

)
εl− j

∑
1�m1<···<m j�M ′′

ρM ′+m1 · · · ρM ′+m j , (4.45)

where

ε := ca, f (ρM ′+1 + ρM ′+2 + · · · + ρM ).
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Note that, by increasing M ′ if necessary (still depending only on the data a, r, f ), we can assume,
without loss of generality, that ε < 1/2.

Now, from the decay estimate (4.5) we obtain with Lemma A.2 to bound the last sum in (4.45) the
bound

S �
∞∑

l=0

M ′′∑
j=ν+1

j! c j
a,r, f

(
l
j

)
εl− j e−cr j1+κ

.

Performing first the sum over l via (A.3) in Lemma A.1 and absorbing then the factorial and the expo-
nential functions of j in the last factor, we arrive at (ε < 1/2)

S �
M ′′∑

j=ν+1

j! c j
a,r, f

1

(1 − ε) j+1
e−cr j1+κ � ca,r, f e−c4,a,r, f ν

1+κ
, (4.46)

which ensures via (4.43) that

‖T3‖L∞(I M ,H1
0 (D)) � ca,r, f ec2,a,r, f η−c4,a,r, f ν

1+κ
. (4.47)

Now, (4.35) follows from (4.40), (4.42) and (4.47).
Finally, the dimension estimate (4.36) follows by a counting argument, based on the combinatorial

fact that the equation x1 + x2 + · · · + xq = l has exactly
(

l
q
)

solutions (x1, x2, . . . , xq) ∈ Nq
+, which

ensures that

∣∣Σ ′′
µ ∩ Σ ′′

ν

∣∣ =
µ∑

l=0

ν∑
q=0

(
M ′′
q

)(
l
q

)
� (M ′′ + 1)ν

µ∑
l=0

ν∑
q=0

(
l
q

)

= (M ′′ + 1)ν
ν∑

q=0

(
µ + 1
q + 1

)
� (M ′′ + 1)ν(µ + 2)ν+1(ν + 1),

and the proof is concluded. �
We recall that we are not asking for an arbitrarily high accuracy in the computation of ũM , since

the truncation of the expansion (2.4) of the diffusion coefficient already results in an error between
u and uM of order O

(
e−c1,r Mκ )

(see Problem 3.5). Making therefore an appropriate choice for the
parameters η,µ, ν in order to match this accuracy, we arrive at a superalgebraic (though subexponential)
convergence rate of the semi-discrete solution of (3.10) with respect to y.

COROLLARY 4.16 If Assumption 2.5 is satisfied and ũM solves (3.10), then there exist M ′ ∈ N and
positive constants c4, c5, c6 depending only on a, r, f , such that for

η := �c4 Mκ�, µ := �c5 Mκ�, ν := �c6 Mκ/(κ+1)� (4.48)

with κ as in Assumption 2.5, we have∥∥ũM − ũM,ΣM,η,µ,ν

∥∥
L∞(I M ,H1

0 (D))
� ca,r, f exp(−c1,r Mκ) (4.49)

for all M ∈ N, M � Ma,r , with

N = dimPM ′,η,µ,ν � exp(ca,r, f Mκ/(κ+1) log(M + 2)). (4.50)
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Proof. We first choose c4 so that the first term in the upper bound (4.35) matches (4.49). Then we also
choose c5, c6 (depending on c2, c3 in (4.35) and c4) so that the other two error terms on the right-hand
side of (4.35) match (4.49). The dimension estimate (4.50) then follows from (4.36). �

Combining (4.49) and (4.50), we reformulate the main approximation result of this section as
follows.

THEOREM 4.17 If Assumption 2.5 holds, then

inf
v∈PM ′,η,µ,ν⊗H1

0 (D)
‖ũM − v‖L∞(I M ,H1

0 (D)) � c1,a,r, f exp(−c2,a,r, f (log N )1+κ−o(1)) (4.51)

as M ↗ ∞ and for the parameter choice (4.48), where N = dimPM ′,η,µ,ν is the number of determin-
istic diffusion problems to be solved in the physical domain D ⊂ R

d , and where κ = 1/d.

Note that the estimated convergence rate (4.51) is asymptotically superalgebraic in the number of
deterministic problems N to be solved (due to κ > 0 in Assumption 2.5), but not asymptotically expo-
nential, as M ↗ ∞ (or, equivalently, as N ↗ ∞).

REMARK 4.18 Our proof of Theorem 4.17 is based on the Taylor expansion of ũM around y = 0
(expansion in the standard monomial basis). A similar result can be obtained for the Legendre expansion,
by explicitly estimating its coefficients using Proposition 4.4.

4.3 Postprocessing

For brevity of exposition, we only consider here the p-FE-based adapted approximation discussed in
Section 4.2.2. Analogous results hold for the h-FE-based chaos approximation of Section 4.2.1.

We show that Theorem 4.17 allows control of the chaos expansion error in the solution to the initial
problem (1.2) with respect to a strong (L∞) topology in the stochastic variable ω.

THEOREM 4.19 Under Assumption 2.5, for

uM,ΣM,η,µ,ν (·, ω) := ũM,ΣM,η,µ,ν (·, X1(ω), . . . , X M (ω)) ∈ H1
0 (D) P-a.e. ω ∈ Ω,

we have, with κ as in Assumption 2.5,∥∥u − uM,ΣM,η,µ,ν

∥∥
L∞(Ω,H1

0 (D))
� c1,a,r, f exp(−c2,a,r, f (log N )1+κ−o(1)) (4.52)

as M ↗ ∞ and for the choice (4.48) of discretization parameters.

Proof. The claim follows immediately from (4.51) (adapted chaos error estimate) and (3.5) (fluctuation
truncation error estimate), taking into account the relationship between the number M of stochastic
variables ym and the number N of deterministic problems to be solved given by (4.50). �
REMARK 4.20 The boundedness of the kth moment operator between L∞(Ω, H1

0 (D)) and
H1

0 (D) ⊗ · · · ⊗ H1
0 (D)︸ ︷︷ ︸

k times

ensures an upper bound similar to (4.52) also for the y-semidiscretization error

in these moments.

5. Sparse collocation approximation

The construction of the p-FE-based adapted chaos expansion in Section 4.2.2 shows that the sG method
can achieve convergence rates which are superalgebraic in terms of the number N of deterministic
problems to be solved. This should be compared with the rate N−1/2 exhibited by MC approximations.
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This comparison which appears unfavourable for MC methods must be amended by the fact that the
sG discretization requires the solution of a very large, linear system of equations (its matrix being the
Kronecker Product matrix of the stochastic mass matrix from the Galerkin projection in the y variable
and the stiffness matrix of the deterministic problem in the physical domain).

We therefore propose and discuss in this section another (Chebyshev type) interpolant of ũM , for
which superalgebraic convergence similar to that of the p-FE-based adapted chaos expansion shown
in Section 4.2.2) holds, but whose computation only requires sampling of ũM at prescribed values of
y ∈ I M ; it can, in particular, be obtained with the same computational work as a MC approximation
based on N samples, which are, like MC approximations, computable independently and in parallel.

Throughout this section, we focus only on the p-FE-based adapted chaos expansion which, com-
pared to its h-FE counterpart in Section 4.2.1, best exploits the analyticity of the solution with respect
to the stochastic variable y.

We start by observing that the definition of the adapted sparse polynomial space in Definition 4.13
together with the parameter choice (4.48) show that ũM , which depends in principle on M variables
y1, . . . , yM , can be approximated to the desired accuracy (see (4.49)) by a linear combination of func-
tions of at most ν := �c6 Mκ/(κ+1)� � M (as M ↗ ∞) variables taken from {y1, . . . , yM }, where we
assume without loss of generality that M ′ = 0. We therefore construct the interpolant of ũM by taking
Chebyshev-type interpolants of all functions in the representation of ũM .

We start by introducing several notations. If I = [−1/2, 1/2], B is a Banach space and g: I M → B
a B-valued analytic function, we denote for every subset S of {1, 2, . . . , M} by gS : I |S| → B the
restriction of g to ym = 0 for all m /∈ S. Note that by definition we then have g∅ = g(0). With these
notations the following combinatorial identity holds.

PROPOSITION 5.1 If g: I M → B is analytic and ν ∈ N, ν � M , then∑
S⊂{1,...,M}

|S|�ν

(−1)ν−|S|
(

M − |S|
ν − |S|

)
gS(y) =

∑
α∈NM

|supp(α)|=ν

∂αg(0)

α!
yα ∀ y ∈ I M . (5.1)

Proof. The formula is a consequence of the inclusion–exclusion principle. Denoting for α ∈ N
M by

tα := ∂αg(0)yα/α! the general term of the Taylor expansion of g around 0, we expand all functions gS

appearing in (5.1) in Taylor series around 0,

gS(y) =
∑

β∈NM

supp(β)⊆S

tβ,

and calculate the resulting coefficient of tα on the left-hand side of (5.1) for arbitrary α ∈ N
M with

|supp(α)| � ν. Note first that for |supp(α)| = ν, the term tα only appears in the Taylor expansion of hS

with S = supp(α), so that its coefficient on the left-hand side of (5.1) equals 1. For r := |supp(α)| < ν,
the coefficient of tα equals then (s := |S|)

ν∑
s=0

(−1)ν−s
(

M − s
ν − s

)(
M − r
s − r

)
=

ν∑
s=r

(−1)ν−s
(

ν − r
ν − s

)(
M − r
ν − r

)

= (1 − 1)ν−r
(

M − r
ν − r

)
= 0,

which concludes the proof. �
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Proposition 5.1 yields the following representation of g.

COROLLARY 5.2 If g: I M → B is analytic and ν ∈ N, ν � M , then

g(y) −
∑

S⊂{1,...,M}
|S|�ν

γM,|S|,νgS(y) =
∑

α∈NM

|supp(α)|>ν

∂αg(0)

α!
yα ∀ y ∈ I M , (5.2)

where

γM,s,ν =
ν∑

r=s

(−1)r−s
(

M − s
r − s

)
. (5.3)

Proof. Formula (5.2) follows easily from (5.1) after replacing ν by r and taking the sum over r from 0
to ν. �

We note for later use that the coefficients γ in the sparse interpolation operator in (5.2) which are
given by (5.3) satisfy the following estimate.

LEMMA 5.3 If ν ∈ N, for γM,s,ν given by (5.3) we have∑
S⊂{1,...,M}

|S|�ν

|γM,|S|,ν | � (ν + 1)(M + 1)2ν. (5.4)

Proof. The formula follows using the inequality
( n

k

)
� (n + 1)k to bound (5.3) from above and

noting that the number of terms in the summation on the left-hand side of (5.4) does not exceed
(ν + 1)(M + 1)ν . �

Formula (5.2) allows control of the error in the approximation of g as a function of y ∈ I M by
an explicit linear combination of restrictions of g to lower-dimensional hyperplane sections of I M . We
will apply it to approximate ũM,h : I M → Vh , the semi-discrete (in the deterministic variable x ∈ D)
solution to (3.10). More precisely, Vh ⊂ H1

0 (D) denotes here a FE space in the physical domain D (h
stands for the discretization parameter), so that ũM,h : I M → Vh solves the deterministic, parametric
elliptic problem (in variational form)

−div(ãM (·, y)∇ũM,h(·, y)) = f (·) in V �
h ∀ y ∈ I M . (5.5)

We first note that uniform ellipticity of (3.10) for M � Ma,r ensures the quasioptimality of the FE
solution ũM,h , uniformly in y ∈ I M ,

‖ũM (·, y) − ũM,h(·, y)‖H1
0 (D) � ca inf

v∈H1
0 (D)

‖ũM (·, y) − v‖H1
0 (D) ∀ y ∈ I M , (5.6)

which in turn can be combined with the approximation property of Vh to derive uniform in y, semi-
discrete (in the deterministic variable x ∈ D) convergence rates for ũM,h(·, y), under standard data-
regularity assumptions.

We apply Corollary 5.2 with g := ũM,h , whose analyticity domain in y is, just as in the case of ũM ,
the complex neighbourhood U M × iR of I , with I ⊂ U ⊂ R. The right-hand side of (5.2) then satisfies
an estimate identical to (4.47) with M ′ = 0, so that we obtain



256 R. A. TODOR AND C. SCHWAB

PROPOSITION 5.4 For ν ∈ N, ν � M , we have∥∥∥∥∥∥∥∥ũM,h −
∑

S⊂{1,...,M}
|S|�ν

γM,|S|,ν ũM,h,S

∥∥∥∥∥∥∥∥
L∞(I M ,H1

0 (D))

� ca,r, f e−c4,a,r, f ν
1+κ

, (5.7)

where the coefficients γ are given by (5.3).

Note that, in order to match the required accuracy O(exp(−c1,r Mκ)) in the computation of ũM,h ,
we will later choose ν as in (4.48).

The approximation of ũM,h considered so far is only semi-discrete (in the deterministic variable
x ∈ D), and full discretization is needed in order to allow computation of ũM,h . We consider therefore
for a fixed order µ ∈ N (to be chosen later), the tensor-product Chebyshev interpolants IµũM,h,S of
ũM,h,S for all S as in (5.7), i.e.

Iν,µũM,h :=
∑

S⊂{1,...,M}
|S|�ν

γM,|S|,νIµũM,h,S . (5.8)

We next carry out the error analysis for the interpolant (5.8). We start by recalling that for the tensor-
product, Chebyshev interpolant of analytic functions holds the following pointwise estimate of the in-
terpolation error.

THEOREM 5.5 Suppose B is a Banach space and g: [−1, 1]M → B has an analytic extension to
Eθ := Eθ1 × Eθ2 × · · · × EθM ⊂ C

M , where for θ > 1, Eθ denotes the closed ellipse with foci at ±1
and sum of its semi-axes equal to θ . Then for any µ = (µ1, . . . , µM ) ∈ NM , the anisotropic Chebyshev
interpolant Iµg of g satisfies

‖g −Iµg‖L∞(I M ,B) � 2M/2+1
M∏

m=1

1√
1 − θ−2

m

(
M∑

m=1

θ−2µm
m

)1/2

‖g‖L∞(Eρ,B). (5.9)

After applying a scaling argument on I = [−1/2, 1/2], we apply Theorem 5.5 with g = ũM,h,S .
From Proposition 5.4 and Theorem 5.5, we obtain the following error estimate of the interpolant given
by (5.8).

PROPOSITION 5.6 Under Assumption 2.5, for the interpolant (5.8) of ũM,h , the solution to (5.5), we
have that

‖ũM,h −Iν,µũM,h‖L∞(I M ,H1
0 (D)) � ca,r, f

(
e−c4,a,r, f ν

1+κ + (M + 1)2ν ec5,a,r ν−c6,a,r µ
)

. (5.10)

Moreover, the construction of Iν,µũM,h only requires sampling of ũM,h at not more than

N := (ν + 1)(M + 1)ν(µ + 1)ν (5.11)

sampling points y ∈ I M using any solver of the deterministic diffusion problem with FE space Vh .
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Proof. Using the triangle inequality and (5.4), (5.7), we have in L∞(I M , H1
0 (D)),

‖ũM,h −Iν,µũM,h‖

�

∥∥∥∥∥∥∥∥ũM,h −
∑

S⊂{1,...,M}
|S|�ν

γM,|S|,ν

ũM,h,S

∥∥∥∥∥∥∥∥ +
∑

S⊂{1,...,M}
|S|�ν

|γM,|S|,ν |‖ũM,h,S −IµũM,h,S‖

� ca,r, f e−c4,a,r, f ν
1+κ + (ν + 1)(M + 1)2ν · max

S⊂{1,2,...,M}
|S|�µ

‖ũM,h,S −IµũM,h,S‖. (5.12)

In order to estimate the interpolation error ‖ũM,h,S −IµũM,h,S‖ via Theorem 5.5, we first choose θ > 1
(depending on the fluctuation r and the bounds on a) such that ũM,h is analytic in E M

θ for all M ∈ N+.
Note that this choice is possible due to (4.5). We apply now Theorem 5.5 with g = ũM,h,S (and M
replaced by |S| � ν), noting that

‖ũM,h,S‖L∞(E M
θ ,H1

0 (D)) � ca,r, f

for any S ⊂ {1, 2, . . . , M} and any M ∈ N+, M � Ma,r due to the uniform in y ellipticity of (5.5). We
obtain

‖ũM,h,S −IµũM,h,S‖ � ca,r, f ec5,a,r ν−c6,a,r µ ∀ S ⊂ {1, 2, . . . , M}, ∀ M ∈ N+, M � Ma,r ,

which we now combine with (5.12) to obtain (5.10).
The estimated computational cost for the collocation approximation (5.8) of solving N elliptic problems
with N as in (5.11) of (5.8) follows by noting that IµũM,h,S can be obtained by sampling of ũM,h,S at
(µ + 1)|S| (Chebyshev) points in the coordinates ym with m ∈ S, plus a counting argument similar to
the one used to derive (4.36). �

An appropriate choice of the parameters ν, µ ensures the desired accuracy of the interpolant (5.8).

THEOREM 5.7 If Assumption 2.5 is satisfied and ũM,h solves (5.5), then there exist positive constants
c7, c8 and Ma,r depending only on a, r, f , such that for

ν := �c7 Mκ/(κ+1)�, µ := �c8 Mκ�, (5.13)

we have

‖ũM,h −Iν,µũM,h‖L∞(I M ,H1
0 (D)) � ca,r, f exp(−c1,r Mκ) (5.14)

for all M ∈ N, M � Ma,r .
Moreover, the construction of Iν,µũM,h only requires sampling of ũM,h in at most

N � exp(ca,r, f Mκ/(κ+1) log(M + 1))
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points y ∈ I M , each sample corresponding to the solution of the deterministic diffusion problem with
FE space Vh .

Proof. We first choose c7 and then c8 such that the two estimated error contributions on the right-hand
side of (5.10) match the right-hand side of (5.14). The estimated computational cost for the interpolant
(5.8) then follows using (5.13) in (5.11). �
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Appendix A

Here, we state and prove two technical lemmas which we used repeatedly in the derivation of conver-
gence and complexity bounds.

LEMMA A.1 For any t ∈ [0, 1) and j, L ∈ N with j � L , we have

∞∑
n=0

(
L + n

j

)
tn � (L + 1) j (1 − t)− j−1. (A.1)

Proof. Using the factorial representation of the binomial coefficients it is easy to see that(
L + n

j

)
� (L + 1) j

(
j + n

j

)
∀ n ∈ N,

which ensures

∞∑
n=0

(
L + n

j

)
tn � (L + 1) j

∞∑
n=0

(
j + n

j

)
tn . (A.2)

Denoting by S j the sum on the right-hand side of (A.2), the binomial identity(
j + n

j

)
=

(
j + n − 1

j

)
+

(
j + n − 1

j − 1

)

leads to the recursive formula S j = t S j + S j−1, which shows that (S0 = (1 − t)−1)

S j = (1 − t)− j−1. (A.3)

(A.1) then follows from (A.2) and (A.3). �
We now prove that, if y, κ > 0 and j ∈ N+, the sum of the series with general term exp

( − y
∑ j

i=1
mκ

i

)
indexed over 1 � m1 < · · · < m j < ∞ is, qualitatively and uniformly in j ∈ N+, just as large as

the leading term, corresponding to mi = i for all 1 � i � j . More precisely, we have the following
result.

LEMMA A.2 If κ > 0 and x > y > z > 0, then there exist cκ,x,y, cκ,y,z > 0 such that

cκ,x,y exp

(
−x

1

1 + κ
j1+κ

)
�

∑
1�m1<···<m j <∞

j∏
i=1

exp(−ymκ
i ) � cκ,y,z exp

(
−z

1

1 + κ
j1+κ

)
(A.4)

for all j ∈ N+.

Proof. For y > 0 and j ∈ N+, J ∈ N+ ∪ {∞} with j � J , we set

S j,J :=
∑

1�m1<···<m j�J

j∏
i=1

exp(−ymκ
i ). (A.5)
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The lower bound in (A.4) follows by observing that the sum in (A.5) contains the term corresponding
to mi = i for all 1 � i � j , so that

S j,J � exp

⎛
⎝−y

j∑
i=1

iκ

⎞
⎠ ,

where

j∑
i=1

iκ � ( j + 1)1+κ

∫ 1

0
xκ dx = 1

1 + κ
( j + 1)1+κ .

It remains to prove the upper bound of the sum in (A.4). It follows from (A.5) that the sequence
(S j, j ) j∈N+ is rapidly decaying, i.e.

S j, j � cκ,y,ββ j ∀ j ∈ N+, ∀ β > 0. (A.6)

We also derive from (A.5) the recursive formula

S j,J+1 = S j,J + exp(−y(J + 1)κ)
∑

1�m1<···<m j−1�J

j−1∏
k=1

exp(−ymκ
k )

= S j,J + exp(−y(J + 1)κ)S j−1,J . (A.7)

By induction on j in (A.7) we immediately see that

S j,J < S j,∞ = lim
J↗∞ S j,J < ∞ ∀ j ∈ N+,

and that

S j,∞ � S j, j +
∞∑

i= j+1

exp(−yiκ) · S j−1,∞. (A.8)

Now, for an arbitrary γ ∈ ]0, 1[ we have, for j large enough ( j � j0, with j0 depending on y, κ, γ ),

∞∑
i= j+1

exp(−yiκ) � γ,

which ensures via (A.8)

S j,∞ � S j, j + γ S j−1,∞ ∀ j � j0. (A.9)

We deduce from (A.6) and (A.9) that

S j,∞ � cκ,y,β(γ + β) j + γ j− j0+1S j0−1,∞,
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which shows that S j,∞ → 0 as j ↗ ∞, by choosing β such that γ + β < 1. The sequence (S j,∞) j∈N+
is in particular bounded, i.e.

S j,∞ � cκ,y ∀ j ∈ N+. (A.10)

Since this inequality holds for any y > 0, the conclusion then follows from (A.10) upon replacing y by
y − z and noting that

j∑
i=1

iκ � j1+κ

∫ 1

0
xκ dx = 1

1 + κ
j1+κ .

�


