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CONVERGENCE RATES FOR U-STATISTICS
AND RELATED STATISTICS

By WiLLiaAM F. GraMs! AND R. J. SERFLING
The Florida State University

Bounds are provided for the rates of convergence in the central limit
theorem and the strong law of large numbers for U-statistics. The results
are obtained by establishing suitable bounds upon the moments of the dif-
ference between a U-statistic and its projection. Analogous conclusions
for the associated von Mises statistical functions are indicated. Statistics
considered for exemplification are the sample variance and the Wilcoxon
two-sample statistic.

1. Introduction. The data consists of ¢ independent collections of independent
observations {X;*, ..., XV}, ..., {X,©, ..., X7} taken from distributions
F,, ..., F,, respectively. Consider a parametric function § = 6(F,, - - -, F,) for
which there is an unbiased estimator. That is,

(1.0) 0 = ER(X,®, -, XP5 o5 X, .o X©

for some function # which will be assumed, without loss of generality, to be
symmetric within each of its ¢ blocks of arguments. Corresponding to the “kernel”
h, and assuming n, > my, - - -, n, = m,, the U-statistic for estimation of # is ob-
tained by averaging 4 symmetrically over the data:

(1.1) U=T[ (;3;)-1 3 h(xg:;, - Xg;nl; e X X

ic1? 1cmc) .
Here {i;;, -+, ijn} denotes a set of m; distinct elements of the set {1, 2, - - -, n;},
1 £j < ¢, and };, denotes summation over all such combinations.

The one-sample (¢ = 1) U-statistics were introduced by Hoeffding [10] and a
central limit theorem (CLT) covering a wide class of such statistics was proved.
The treatment was generalized for ¢ = 1 by Lehmann [13] and Dwass [4]. In
[11] Hoeffding proved the strong law of large numbers (SLLN) for U-statistics
(c = 1). Later Berk [1] gave a different argument, exploiting the reverse martin-
gale character of a sequence of one-sample U-statistics.

It is the purpose of the present paper.to exhibit rates of convergence apropos
to these limit theorems. Our method is to approximate U by its projection,

(1.2) 0= ¥ D34 BU| X)) — (N = 1)0,

where N =n, + ... + n,. (See Hajek [8] for exposition of the notion of projec-
tion of a statistic upon the basic observations.) Since the summands of U are
independent, it may be dealt with by standard theory. We then infer conclusions

Received January 31, 1972; revised June 13, 1972.

1 Research of first author supported by the National Institute of General Medical Sciences
under Training Grant 5-T01-GMO00913-10 and presented as a portion of a dissertation in partial
fulfillment of the requirements for the Ph. D. degree in Statistics at Florida State University

153

Institute of Mathematical Statistics is collaborating with JSTOR to digitize, preserve, and extend access to

The Annals of Statistics. ®

WWW_jstor.org



154 WILLIAM F. GRAMS AND R. J. SERFLING

about U by showing that U — U is negligible. This is accomplished by estab-
lishing, in Section 2, suitable bounds on the moments E|U — (?|“. Application
is made to the CLT in Section 3 and to the SLLN in Section 4. The main results
of the paper are Theorems 2.1, 3.1 and 4.1.

It is shown in Section 5 that analogous results hold for the associated von Mises
statistic, which is given by replacing F,, -- -, F, by the respective sample df’s
in the formulation of 4.

Many familiar statistics are of the U-type. See [10] and [13] for examples.
We examine the sample variance and the Wilcoxon two-sample statistic in
Section 6.

Finally, certain generalizations and further notions are discussed in Section 7.

2. The moments of U — U. From (1.1) and (1.2) we readily obtain

@2.1) U0—0=73:,%0 l—h “(X:7),
J
where

2.2) h*(x) = E[R(X®, -, X;};; e X@ X:;i)]Xl(j) =x]—6.

It follows that U — 6 may be expressed in the form (1.1) with the role of kernel
played by

(2.3)  9(XG, e X5 e Xis s Xi0 ) = 25a DR BH(XE)

Define now a further ‘“kernel” H by
(2.4) H=h—g—20,
and we have

(2.5) U—U= 11530 Do HXD, o500, Xi2 )
Thus U — U is of the form (1.1) with kernel H. Note that E[H] = 0 and
E[H|X{] = 0.

Let n = min,;, n

i

THEOREM 2.1. Let r be a positive integer. If E[H*] < oo (implied by E[h*] <
o0), then

(2.6) E(U — O)r = O(n~), n— co.
Proor. By (2.5), the quantity in (2.6) may be written
2.7) [I5= ()™ 2 EMITEm H(X Gy - o o5 5o os XG0 )1

where the indices are as in (1.1), with the additional suffix “a” identifying the
factor within the product, and }; denotes summation over all []s_, (m3)*r of
the indicated terms. Clearly, the hypothesis of the theorem implies that
E(U — Uy < co.

Let M = m, + --- 4+ m, and consider a typical term in the sum in (2.7).
all M indices occurring in one of the factors inside the expectation occur only
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in that factor, then the independence of that factor from the other factors implies
that the product of factors has expectation zero. If (M — 1) of the indices in
one of the factors occur only in that factor, then again the product of factors
has expectation zero, since the conditional expectation, given all variables but
the (M — 1) designated, is zero. Hence a term in (2.7) may have nonzero ex-
pectation only if each factor in the product contains at least two indices which
appear in other factors of the product.

For the ath factor and the jth sample, let ¢, be the number of indices not
repeated in other factors, and let p,'> = m; — ¢, be the number of indices
repeated elsewhere. Among the repeated indices within the jth sample, let g,
be the number of distinct elements. Then clearly

(2.8) 297 = ZaLapa?
The number of ways of selecting these ;% ¢, indices for the jth sample is,
making use of (2.8), of order

(2.9) O(n;Za=0t'?) = O(nrmi~4Z17a?) = O(n prmin=4Zelora?y |

Here the implicit constants depend upon rand m,, - - ., m_, but not upon ny, .- -,
n,. This is true also of the number of ways of selecting the values ¢,?, - - -, g{?.
Therefore the overall number of ways of selecting the indices for the jth sample
is of order given by the right-most term in (2.9). It follows that the number of
terms in the sum in (2.7) for which the expectation is possibly nonzero is of
order

(2.10) O(IT o nrmin Zjm=aara?) = O([T5-, nyrin~)
since Y5, p,'¥ = 2. Thus (2.6) follows. []
The case r = 1 of Theorem 2.1 was proved by Hoeffding [10] and suffices for

applications such as the CLT and SLLN. For information on the rates of these
convergences, however, the generalization for » > 1 is relevant.

3. Rate of convergence in the CLT. The variance of the projection U is found
from (2.1) to be

(3.1) "2(0) = i mC/n,,

where {; = Var [A,*(X,'")]. Asymptotic normality theorems [10], [4], [13] for
U-statistics state that

(3.2) P[(U — 6)/a(0) < 1] - D(1), n— oo,

where @(f) = (27)~* {, exp (—#*/2) du, n = min {n,, - - -, n,} as previously, and
it is assumed that EA* < oo and no*(U) > B > 0 as n — oo.

The rate of convergence in (3.2) is seen in the theorem below to satisfy a bound
which improves with the order of the moments that may be assumed on 4 (or H).
If moments of all orders may be assumed, the bound may be brought “close”
to the order O(n~?), which in view of the Berry-Esséen theorem [3] is the best
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possible without specific assumptions on the underlying distributions F,, ..., F,
of XV, ..., X;. Thus, e.g., regarding the two-sample Wilcoxon statistic,
which has a bounded kernel, we are able to corroborate remarks of Stoker [17]

on improvement of the order O(n~%) which he obtained.

THEOREM 3.1. Assume that h satisfies

(3.3) Eh* (X, )P < oo, 1Zi< c(implied by EJhf < oo)
and
(3'4) n Z$=1 mi2Ci/ni 2 B > 0 ) n— oo .

If, further, EH*" < oo (implied by Eb*" < oo) for a positive integer r, then
(3.5) sup, |P[(U — 0)/a(0) < 1] — ®()] = O(nr/r+vy n—oo.
Proor. We will apply a standard device (see, e.g., [2]). Namely, if
(3.6) sup, [P[(0 — 6)/a(U) < 1] — O(1)] = O(a,) , n— oo,
for a sequence of constants {a,}, then
(3.7)  sup, |P[(U — 0)/a(0) < 1] — ®() o
= 0(a,) + P[|U — Ul/o(V) > a,], n—oo.

The proof is elementary.
Now, by the classical Berry-Esséen theorem, as stated in Loéve ([15], page288),
it follows directly from (2.1) that

w4y (my[n, P E|h* (X D)

(3.8)  sup, [P[(U — 0)/a(0) < 1] — O(1)| < € L= & 5(0)

where C is a universal constant. It is checked easily that the RHS of (3.8) is
O(n~*) as n — oo subject to (3.4).

Consequently, for any sequence of constants a, satisfyingn~* = O(a,) asn — oo,
we have (3.6) and thus (3.7). We now utilize Theorem 2.1 in selecting the best
sequence {a,}. By (3.1), (3.4) and Markov’s inequality, we have

(3.9) P[|U — Ul/o(0) > a,] < n"a,*B~"E(U — U)r .

By Theorem 2.1, the RHS of (3.9) is O(n~"a,~*). Setting a, = O(n~"a,™™), we
obtain a, = O(n="/®+), []

CoROLLARY 3.1. Assume that h has finite moments of all orders and that (3.4)
holds. Then, for every ¢ > 0,

(3.10) sup, |P[(U — 0)[a(0) < 1] — O(1)| = O(n~t+), n— oo .

4. Rate of convergence in the SLLN. In this section we consider one-sample
U-statistics (¢ = 1). The following lemma will be required.

LemMA 4.1 (Katz-Baum [9]). Let §,§,, --- be i.i.d. random variables. If
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r > 1, the following are equivalent:

4.1) P[|&| > n] = O(n") and E§ = p;
(4.2) Plln=* 331 &, — p| > ¢] = O(n*7), foreach ¢ > 0;
(4.3) P[sup,., [k 246, — p| > ] = O(n*—7), foreach ¢ > 0.

A corollary of this lemma is that if E|¢,|" < oo, then (4.3) holds. This corollary
is generalized to U-statistics in the following result.

THEOREM 4.1. Let {U,} be the sequence of U-statistics generated by a kernel h
applied to a sequence of observations {X;}. Assume ER < oo for a positive integer
r. Then, for any ¢ > 0,

(4.4) P[sup,., |U, — 8] > ¢] = O(n'-%), n— oo.
Proor. Let ¢ > 0 be given. Then
(4.5)  P[sup,,, |U, — 0] > ¢]

< P[supkz” U, — (7,,| > ;_] + PI:sukan |(7k -0 > %]

Since U, — 0 = k' Y;*_, m,h*(X,), the right-most term in (4.5) is O(n~*) by
Lemma 4.1. Now the sequence {U, — U,} is a reverse martingale (see Geertsema
[7] for discussion), so that by Loéve ([15], page 391),

(4'6) P[Supkgn lUk - (I]Ic' > C] é C_WE(U?L - Un)zr

for any constant C. Therefore, by Theorem 2.1, the first term of the RHS of
(4.5) is O(n=*). Thus (4.4) follows. []

5. Analogous results for related von Mises statistics. We shall deal with the
one-sample case. Let {X,} be an i.i.d. sequence with df F. Let § = §(F) =
Eh(X,, - --, X,,). For a sample of size n, the U-statistic for estimation of @ is,
recalling (1.1),

(51) Un = (:Ln)_l Zc h(‘Xi17 ] Xim) ’

where 37, denotes summation over all combinations {i, - - -, i,} from {1, - .., n}.
The associated von Mises statistic (see Hoeffding [10] for discussion) is

(5'2) Vn =n" K cc i h(Xil, ctty /Yzm) .

i=1 =1

The following result parallels Theorem 2.1 and shows that properties of ¥,
may be inferred from those of U, just as in Section 3 and Section 4 properties
of U, were inferred from those of U,.

THEOREM 5.1. AssumeElh(X,, -+, X; )" < A< ooforalll <iy,---,i, <m
and r a positive integer. Then

(5.3) E|U, — V,Jf = O(n").
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Proor. Let n,, =n(n — 1) ... (n — m + 1). Clearly,
(5'4) nm(Un - Vn) = [nm - n(m)]Un - Z* h()(il’ R} ‘X;m) ’

where 37, denotes summation over choices {i,, - - -, i,} from {1, 2, - . ., n} where
at least one equality i, = i;, @ # b, holds. As the number of terms in ], is
n™ — n,,, we have by Minkowski’s inequality that

(5.5) . E|Y h(Xpy oo X, )7 < A[n™ — ng,)]
Likewise, E|U,|" < A. Thus
(5.6) n"E\U, — V,|" < 2"A[n™ — n,,,]" .

But n™ — n,, = O(n™~?), which yields (5.3). []

With the use of Theorem 5.1 where earlier Theorem 2.1 was needed, Theorem
3.1 may be extended to apply to ¥, in place of U,. Theorem 4.1 can also be
extended, since by (5.3), Markov’s inequality, and a crude summation, we have
P[sup,z, |V, — U,| > ¢] = O(n*-?).

6. Examples. Typical examples of U-statistics are given by the sample vari-
ance, Fisher’s k-statistics, Gini’s mean difference, Kendall’s z, the grade cor-
relation coefficient, and Wilcoxon’s one- and two-sample statistics. (See [10],
[13].) Let us briefly examine two of these examples.

(i) Sample variance. Let X, - - -, X, be independent observations from a dis-
tribution F. Assume E(X,) = 0 and 6(F) = ¢ = E(X;?) > 0. The sample vari-
ance is given by

1 -
6.1) U = (X = X) = (57 D M(XGS X)),

=1
n—1°"

where X = n~ 311 X, and h(x,, x;) = §(x, — x,)>. Thus h*(x) = 3(x* — o?),
H(x,, x,) = x;x,, and ¢*( (7) = n'E(X;? — ¢ If E(X,”) < oo for an integer
r = 3, then clearly the hypothesis of Theorem 3.1 is satisfied and the rate of
convergence in (3.2) is O(n="/®"+V). See also Section 7, Remark (vi).

(ii) Wilcoxon two-sample statistic. Let {X,¥, ..., XV} and {X,®, ..., X} be
independent observations from contintious distributions F, and F,. Then, for
O(F,, Fy) = § F,dF,, an unbiased estimator is the Wilcoxon two-sample statistic,
which may be written

(6.2) U= (mny)™ X1 252 o, (G — X)),

where 1,(+) is the indicator of the set 4. In this case the kernel is bounded and
(3.4) is satisfied. Hence, by Corollary 3.1, the rate of convergence in (3.2) is,
for any ¢ > 0, of order O(n—#+¢).

7. Concluding remarks. (i) Since the X;?’s enter into the definition of U only
through the kernel 4, our results apply also to vector observations.
(ii) In similar fashion as we have dealt with the CLT and SLLN, rates of
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convergence could also be established for the law of the iterated logarithm for
U-statistics, which has been given in [16].

(iii) Although our Theorem 4.1 was restricted to the 1-sample case, a gener-
alization to the c-sample case proceeds as follows. Consider a sequence of c-
vectors {(n,, - - -, n,)} in which all components increase strictly from one vector
to the next. For the associated sequence of c-sample U-statistics, the sequence
of differences U — U again forms a reverse martingale, as established by the
smoothing properties of conditional expectations (see[15], page 350, #4). Hence,
in view of (2.1), and by application of Lemma 4.1 ¢ times, the method of proof
of Theorem 4.1 extends to the general case.

(iv) In Theorem 3.1, condition (3.3) may be weakened to

(3.3) Elh* (X, < o0, Igi<e,
for some positive constant 6 < £. In this case we can conclude only
(3.5 sup, [P[(U — 6)/o(U) < 1] — @(1)] = O(n~*")..

The appropriate Berry-Esséen result needed here stems from Liapounov’s work
[14] and is given as Theorem 1 of Esséen [5].

(v) Itisclear that Theorem 2.1 holds when the distributions F,, - - ., F, depend
upon n, provided that sup E(H*") < oo, where the supremum is taken over the
class of distributions & = {(F,,, - -+, F,,), n = 1}. Similar generalizations hold
for Theorems 3.1 and 4.1.

(vi) Our results are limited by the crudity of (3.7). By a direct analysis for
any particular U-statistic, one might obtain a sharper rate of convergence. For
example, for the sample variance, Hsu [12] has obtained the rate O(n~*) under
6th moment assumptions whereas in 6 we can give only O(n~%) under the same
assumptions and require all moments to achieve O(n=t*e).

(vii) It has come to our attention since preparing this paper that Theorem 2.1
in the 1-sample case has been proved (by different methods) by Funk [6] and
applied to establish a moderate deviation theorem for U-statistics. However,
Funk deals with the c-sample case by a different approach that entails some
cumbersome restrictions. It appears that the use of our Theorem 2.1 would
provide a more direct approach leading to simpler conditions to check.
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