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We will study the convergence rates of solutions for homogenization of the mixed boundary value problems. By utilizing the
smoothing operator as well as duality argument, we deal with the mixed boundary conditions in a uniform fashion. As a
consequence, we establish the sharp rate of convergence in �1 and �2, with no smoothness assumption on the coe
cients.

1. Introduction

Convergence rates estimates of solutions are one of the main
questions in homogenization theory. 	ere are many papers
about convergence of solutions for elliptic homogenization
problems. Assume that all of functions are smooth enough,
the �(�) error estimate in �∞ was presented by Bensoussan,
Lions, and Papanicolaou [1]. In 1987, Avellaneda and Lin
[2] proved �� convergence by the method of maximum
principle. At the same year, they [3] also obtained �∞ error
estimate when � is less regular than Bensoussan, Lions,
and Papanicolaou’s. Recently, there were many activities in
the theory of homogenization with error estimates. In 2012,
Kenig, Lin, and Shen [4] obtained convergence of solutions in

�2 and�1/2 in Lipschitz domains with Dirichlet or Neumann
boundary conditions. In 2014, they [5] have also studied the
asymptotic behavior of the Green and Neumann functions
obtaining some error estimates of solutions. In 2015, the �rst

author [6] obtained the pointwise as well as�1,� convergence
results, which is based on Fourier analysis. In 2016, Shen [7]

proved the�1 convergence rates with Dirichlet or Neumann
conditions.

	e problems of changing type of boundary conditions
in homogenization have been studied extensively in various

settings in the past years. In [8] the �1 weak convergence
of solutions was obtained in homogenization problems of
multi-level-junction type. In 2011, Cardone [9] considered

the homogenization with mixed boundary value problems in
a thin periodically perforated plate and obtained the loga-
rithmic rate of convergence of solutions. In the monograph

[10], the �1 convergence rate was shown by the method of
potentials for the solutions to the Dirichler-Fourier mixed
boundary value problem in the perforated domain. 	e �2
convergence rate of Steklov-type problemswas studied in [11].

In 2017, Shen [12] also obtained the �2 convergence rate with
Dirichlet-Neumann mixed boundary value problem.

In homogenization problems for the Poisson equations

in a domain with oscillating boundary, the �1 convergence
rate have been studied in [13–15], while work [16] deals with
the multilevel oscillation of the boundary with di�erent con-
�icting boundary conditions. See also [17–19] formore results
on the asymptotic behavior of eigenvalues for the boundary
value problems in domains with oscillating boundaries or
interfaces.

In this paper, we shall establish the sharp rates of
convergence in �1 and �2 for oscillating operators with the
mixedDirichlet-Robin boundary condition. In particular, the�2 estimate was proved by Griso in [20, 21] for Dirichlet or
Neumann boundary conditions, using the periodic unfolding
method. Our results, on one hand, extend the classical
Laplace operator to oscillating operator; on the other hand
they extend the classical boundary value problems to a
broader mixed boundary conditions settings in homogeniza-
tion. Meanwhile, our approach is utilizing the smoothing
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operator which ismuchmore simple and direct than periodic
unfolding method.

More precisely, let Ω be a bounded 	1,1 domain in R
�.

Suppose that 
Ω = Γ1 ∪ Γ2, where Γ1 and Γ2 are two disjoint

closed sets of 
Ω. Let � ∈ �1(Ω) be a weak solution to the
following problem:

��� = −div (�(�
� )∇�)

= − 


�� (��� (�

� )

�
��) = � �� Ω,

� = � �� Γ1,

�
]� + �� = ℎ �� Γ2,

(1)

where � ≥ 0 is a number. Here 
�/
]� = �����(
�/
��)
denotes the conormal derivative with �� and �(�) is the
outward unit normal to 
Ω at the point �.

	roughout this paper, the summation convention is
used. We assume that the matrix �(�) = (���(�)) with 1 ≤�,  ≤ � is real symmetric and satis�es the ellipticity condition,
i.e.,

��� (�) = ��� (�) ,
# $$$$%$$$$2 ≤ ��� (�) %�%� ≤ 1

# $$$$%$$$$2 ,
��& � ∈ R

� ��' % = (%�) ∈ R
�,

(2)

where # > 0, and the periodicity condition

� (� + *) = � (�) ��& � ∈ R
� ��' ℎ ∈ Z

�. (3)

We impose the smoothness condition

� (�) �- 2��'3' 43�-&�253, � ∈ �2 (Ω) , �
∈ �1 (
Ω) , ℎ ∈ �−1/2 (
Ω) . (4)

Without loss of generality, we also assume the compatibility
condition

∫
�Ω

� (�) '7 (�) = ∫
Ω
� (�) '� + ∫

Γ2
ℎ (�) '7 (�) = 0. (5)

Associated with (1) is the homogenized problem

�00 = −8�� 
20
��
�� = � �� Ω,
0 = � �� Γ1,


0
]0 + �0 = ℎ �� Γ2,
(6)

where the constant matrix 8�� is known as the homogenized
matrix of ���(�) and 
0/
]0 = ��8��(
0/
��).

Recall that � is called the weak solution of (1), if for any9 ∈ �1(Ω), function � − � ∈ �1(Ω) holds
∫
Ω
��∇� ⋅ ∇9'� + �∫

�Ω
�9'7 (�)

= ∫
Ω
�9'� + ⟨ℎ, 9⟩�−1/2(�Ω)×�1/2(�Ω) .

(7)

	e existence and uniqueness of the weak solution to the
mixed boundary value problem (1) follow from Lax-Milgram
theorem. It is well known that the solution � converges to 0
weakly in�1(Ω) and strongly in �2(Ω), as � ?→ 0.

For the Dirichlet or Neumann boundary value problems,
the regularity estimates of solutions in quantitative homoge-
nization have been studied extensively. By the compactness

method, interior and boundary Hölder’s estimates, �1,�
estimates, and Lipschitz estimates, the regularity of solutions
for second-order elliptic systems or equations was established
by Avellaneda, Kenig, Lin, Shen, and Suslina in a serious
of papers [2, 3, 22–26]. For the case of homogenization
with mixed boundary value problems, the uniform interior
estimates and boundary Hölder’s estimates have already
been established in [27], and the sharp boundary regularity
estimates have obtained in [28]. See also [29–32] for more
related results on uniform regularity estimates.

	e novelty of this paper lies in the fact that it deals with
the mixed Dirichlet-Robin boundary condition which is a
more general settings, for instance, in the case of Dirichlet
problem when Γ2 = 0, in the case of Robin problem whenΓ1 = 0, and for the Neumann problemwhen Γ1 = 0 and � = 0.
As far as the author knows, very few convergence rates results
are known for (1) of such mixed boundary value problems.

	e following are the main results of this paper.

�eorem 1. Suppose that � ∈ �1(Ω) and 0 ∈ �2(Ω) are the
weak solutions of the mixed boundary value problems (1) and
(6), respectively. �en, under the assumptions (2)–(5), there
exists a constant C such that

BBBB� − 0 − �CD� (∇0)BBBB�1(Ω) ≤ 	� BBBB0BBBB�2(Ω) , (8)

where D� is the smoothing operator and C is the solution of the
cell problem.

�eorem 2. Under the conditions as �eorem 1, then there
exists a constant C such that

BBBB� − 0BBBB�2(Ω) ≤ 	� BBBB0BBBB�2(Ω) . (9)

	e rest of the paper is organized as follows. Section 2
contains some basic formulas and useful propositions which
play important roles to get convergence rates. In Section 3,
we show that the solution � of partial di�erential equation
with mixed boundary value problems �1(Ω) and �2(Ω)
convergence to the solutions of the corresponding homog-
enized problems is based on using of smoothing operator.
Finally, we summarize our results and discuss possible further
development in Section 4.
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2. Preliminaries

We begin by specifying our notations.
LetE(�) = {� ∈ R

� : |�−�| < &} denote an openball with
center � and radius & and Ω̃� = {� ∈ R

� : '�-I(�, 
Ω) ≤ �}.
Since Ω is Lipschitz, then there exists a bounded extension
operator J : �2(Ω) ?→ �2(R�), such that ̃0 = J(0) is
an extension of 0 and ‖̃0‖�2(R�) ≤ 	‖0‖�2(Ω). We set M ∈	∞0 (R�) to be a smooth function and ‖M‖�1(R�) ≤ 	‖M‖�1(Ω).
Wewill also use	 to denote positive constant whichmay vary
in di�erent formulas.

Associated with operator �� in (1), the homogenized
operator is

�0 = −8�� 
2

��
�� �� Ω, (10)

where�0 is a constant coe
cient operator which is also called
homogenized operator.	e constant matrixN = (8��) is given
by

8�� = ∫
�
[��� (�) + ��� (�) 
C� (�)


�� ]'�, (11)

where Q = [0, 1)� ≃ R
�/Z�. Function C(�) = (C�(�)) is a

solution of the following cell problem:

− 


�� [��� (�)


C� (�)

�� + ��� (�)] = 0, �� Q,

C� (� + ℎ) = C� (�) ,
��& � ∈ R

�, ℎ ∈ Y
�,

∫
�
C� (�) '� = 0,

(12)

Fix S ∈ 	∞0 (E1(0)) such that S ≥ 0 and ∫
R
� S'� = 1.

De�ne operator D� on �2 as
D� () (�) =  ∗ S� = ∫

R
�
 (� − �)S� (�) '�, (13)

where S�(�) = �−�S(�/�). We also call it the smoothing
operator.

Proposition 3. If 0 ∈ �2(R�), then
BBBB∇0 − D� (∇0)BBBB�2(R�) ≤ 	� BBBBB∇20BBBBB�2(R�) (14)

and BBBBBD� (∇20)BBBBB�2(R�) ≤ 	 BBBBB∇20BBBBB�2(R�) (15)

Proof. 	ese estimates have proved by Parseval’s 	eorem
and Hölder’s inequality, which may be found in [7].

Proposition 4. Let X��(�) ∈ �2(Q) be a periodic function, Q =
[0, 1)�. Suppose that ∫� X��(�)'� = 0 and (
/
��)(X��(�)) = 0.
�en there exists Φ��� ∈ �1(Q) such that X�� = 
Φ���/
�� andΦ��� = −Φ���.

Proof. 	is proposition had been proved by Kenig, Lin, and
Shen [4].

Remark 5. Let

X�� (�) = 8�� − ��� (�) − ��� (�) 
C� (�)

�� . (16)

Note that periodic function X��(�) satis�es ∫� X��(�)'� = 0
and (
/
��)(X��) = 0. It follows from Proposition 4 that there
exists a function Φ���(�), such that Φ��� = −Φ��� and X�� =
Φ���/
��.
Remark 6. Under the assumption �(�) is bounded measur-

able inR�, it is known that C(�) ∈ 	0,�(R�).	is implies thatΦ(�) ∈ 	0,�(R�). In particular, ‖C‖�∞(R�) + ‖Φ‖�∞(R�)+ ≤ 	.
Proposition 7. If 0 ∈ �2(R�), then

BBBBD� (∇0)BBBB�2(Ω̃�) ≤ 	�1/2 BBBB0BBBB�2(R�) . (17)

Proof. By Fubini’s 	eorem,

∫̃
Ω�

$$$$D� (∇0)$$$$2 '�

≤ 	 ∫̃
Ω�

∫
�1(0)

$$$$∇0 (� − ��)$$$$2 '�'�

≤ 	∫
�1(0)

'� ∫̃
Ω2�

$$$$∇0 (�)$$$$2 '� ≤ 	� BBBB0BBBB2�2(R�) ,
(18)

where we have used the well-known estimate for the last
inequality. See [33] or [12] for the proof.

3. Proofs Theorems

	e goal of this section is to establish �1 and �2 convergence
rates of solutions.

Let

Z� = � − 0 − �CD� (∇̃0) . (19)

In order to prove 	eorem 1, it su
ces to show that‖Z�‖�1(Ω) ≤ 	�‖0‖�2(Ω).
By the represented formula of Z�, then Z� satis�es the

following boundary value problem:

��Z� = �00 − ��0 − �� (�CD� (∇̃0))
�� Ω,

Z� = −�CD� (∇̃0) �� Γ1,

Z�
]� + �Z� = 
0
]0 −


0
]� −

 (�CD� (∇̃0))
]�

− ��CD� (∇̃0) �� Γ2,

(20)

where we have used (1) and (6) satis�ed by � and 0,
respectively.
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In view of the fact that

∫
Ω
��∇� ⋅ ∇M'� + �∫

�Ω
�M'7 (�)

= ∫
Ω
N∇0 ⋅ ∇M'� + �∫

�Ω
0M'7 (�) ,

(21)

we obtain

∫
Ω
��∇Z� ⋅ ∇M'� + �∫

�Ω
Z�M'7 (�)

= ∫
Ω
[N∇0 − ��∇0 − ���∇ (CD� (∇̃0))] ⋅ ∇M'�

− �∫
�Ω

���CD� (∇̃0) M'7 (�) .
(22)

It is easy to calculate that

N∇0 − ��∇0 − ���∇ (CD� (∇̃0))
= [N (∇0 − D� (∇̃0)) − �� (∇0 − D� (∇̃0))
− ���CD� (∇2̃0)] + [N − �� − ��∇C] D� (∇̃0) .

(23)

	en, it follows from the bilinear form that

∫
Ω
��∇Z� ⋅ ∇M'� + �∫

�Ω
Z�M'7 (�)

= ∫
Ω
[N (∇0 − D� (∇̃0)) − �� (∇0 − D� (∇̃0))

− ���CD� (∇2̃0)] ⋅ ∇M'� + ∫
Ω
[N − �� − ��∇C]

⋅ D� (∇̃0) ⋅ ∇M'� − �∫
�Ω

���CD� (∇̃0) M'7 (�)
≐ a1 + a2 + a3.

(24)

To estimate a1, we note that, by Proposition 3,$$$$a1$$$$ ≤ 	� BBBB0BBBB�2(Ω) BBBB∇MBBBB�2(Ω) . (25)

Next, we shall estimate a2. Let X�� = 8�� − ���(�) −
���(�)(
C�(�)/
��). Note that X�� is periodic and satis�es the
conditions of Proposition 4.	en, in view of Remark 5, there
exists a periodic function Φ��� ∈ �1(Q), such that Φ��� =
−Φ���, and 8�� − ���(�) − ���(�)(
C�(�)/
��) = 
Φ���/
��.

	us, by the divergence theorem, it gives

a2 = ∫
Ω




�� (�Φ���) D� (


̃0
��) ⋅ 
M

�� '�

= −∫
Ω
�Φ���D� ( 
2̃0
��
��)


M

�� '�

− ∫
Ω
�Φ���D� (
̃0
��)


2M

��
��'�

= −∫
Ω
�Φ���D� ( 
2̃0
��
��)


M

�� '�.

(26)

Note that the second term vanishes in view of the antisym-
metry ofΦ���.

As a result, using Proposition 3 and Remark 6, we get that$$$$a2$$$$ ≤ 	� BBBB0BBBB�2(Ω) BBBB∇MBBBB�2(Ω) . (27)

It remains to estimate a3. It follows from Proposition 7
that

$$$$a3$$$$ ≤ � ∫
�Ω

� $$$$��CD� (∇̃0) M$$$$ '7 (�)
≤ 	� ∫̃

Ω�

$$$$D� (∇̃0)$$$$ ⋅ $$$$M$$$$ '�
≤ 	� BBBBD� (∇̃0)BBBB�2(Ω̃�) BBBBMBBBB�2(Ω�)
≤ 	�3/2 BBBB0BBBB�2(Ω) BBBBMBBBB�2(Ω�) .

(28)

	is, together with (25) and (27), gives that

$$$$$$$$∫Ω��∇Z� ⋅ ∇M'� + �∫
�Ω

Z�M'7 (�)$$$$$$$$
≤ 	� BBBB0BBBB�2(Ω) BBBB∇MBBBB�2(Ω) .

(29)

By the coercive condition of bilinear form and duality
argument, we get the desired result, which completes the
proof of 	eorem 1.

It follows from 	eorem 1 and Proposition 3, by
Minkowski’s inequality, that

BBBB� − 0BBBB�2(Ω) ≤ 	� BBBB0BBBB�2(Ω) + BBBB�CD� (∇0)BBBB�2(Ω)
≤ 	� BBBB0BBBB�2(Ω) .

(30)

	is completes the proof of 	eorem 2.

4. Conclusions and Perspectives

In this paper, we research the convergence rates of solutions
for homogenization of the mixed Dirichlet-Robin boundary
value problems. Our approach is utilizing the smoothing
operator, which is much more simple and direct to deal with
boundary discrepancies. As a consequence, we obtain the�1
and �2 convergence rates results, which extend the classical
boundary value problems to a broader mixed boundary
condition settings.

Indeed, it is expected that one could obtain the �1,�
convergence rates, for any 1 ≤ b < ∞. To the best of
our knowledge, such estimates for the mixed boundary value
problems in homogenization have not been reported so far in
the literature. Hence, how to utilize the smoothing operator
and avoid di
cult of the terms from boundary discrepancies
for such problems are an interesting problem. 	is is one
further possible direction to be developed.

Generally, many other types of equations with the mixed
boundary conditions settings could be considered by this
method. One may naturally try to extend the classical
second-order equations to 24-order higher-order equations
or nonlinear elliptic equations. It is expected that the method
of this work could contribute to a better solving of the mixed
boundary value problem in homogenization.
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