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Introduction. Let {Xk : k ̂  1} denote a sequence of random variables, {a„ : n 2ï 1}
a sequence of real numbers, {bn: n ^ 1} a nondecreasing sequence of positive
real numbers and let Sn = lTk = xXk. Many of the limit theorems of probability
theory may then be formulated as theorems concerning the convergence of either
the sequence {P( | (S„ - an)jb„ | > e) : n ^ 1} or {P(sup,è„ | (Sk - ak)jbk \>s):
n ^ 1}, fore > 0, to an appropriate limiting value. It is the purpose of this paper to
study the rates of convergence of such sequences. The results of this paper will
include those previously announced in [1].

In the first part of the paper attention is restricted to sequences of independent
and identically distributed random variables. In analogy with the Law of Large
Numbers the normalizing constants b„ are chosen to be n", cc> 1/2, and the
centering constants a„ = ESn, provided the expectation exists and is finite.
Necessary and sufficient conditions are found, in terms of the order of magnitude
of P( | Xk | > n), for the sequences {P( | (S„ - EStt)jna \ > e): n ^ 1} and
{P(supf.g„|(St-ES^/k"! > e): n ^ 1} to converge t0 zero at specified rates.
These results extend and complete previous work on this problem.

The next results, again for independent and identically distributed random
variables, consider the problem of convergence rates when the Z>„'s are a sequence
in the upper class cf the S„'s and again a„ = ESn. Next the independence con-
ditions on the sequeice {Xk: k 5: 1} are relaxed and it is assumed only that the
random variables forn a stationary sequence. It is shown here that no conditions
on the size of the variables, i.e. conditions on the magnitude of £*( | Xfc | > n),
can insure a prescribid rate of convergence of P( j (Sn — ES„)jn \> s) to zero
when the Xk's form ai ergodic stationary sequence. However, in the converse
direction, a prescribed rate of convergence to zero of the above probabilities
does imply conditions oi the magnitude of P( | Xk | > n).

Finally in the last se<tion of the paper some propositions and examples are
presented for the case oi independent but not necessarily identically distributed
random variables.
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CONVERGENCE RATES IN THE LAW OF LARGE NUMBERS 109

Independent, identically distributed random variables. In this section only
sequences {Xk: fc ̂  1} of independent and identically distributed random variables
will be considered. Given a sequence {c„: nïîl}of bounded, non-negative numbers
converging to zero, one method of measuring the rate of convergence is to de-
termine which, if any, of the series Z„"i nrcn converge where rà£ — 1. This is
the idea behind the first three theorems of this section.

Theorem 1. Let 0 < í < 1.   The following  two  statements  are  equivalent:
(a) E\Xk\'<œ;
(b) ZB°°= i n~XP{ | S„ | > n11' £} < oo for alls>0.
Let 1 rs t < 2. The following two statements are equivalent:
(c) E \Xk\' < oo and EXk = p;
(d) T™=yn~1P{ | SH - np\ > nu,E} < oo for all e > 0.

Proof. First it will be shown that (a) =>(b) and (c)=>(d). Assume, with no loss
of generality, that £ = 1 and, if EXk exists, that E(Xk) = 0. For n = 1,2, ••• and
k = 1,2, ■■-, n define

\xk   if\Xk\<n1",

10     otherwise
and observe that

00

Z n-1P{\S„\>n1"}
n = l

oo

(1) g.  Z n~1P{\Xk\^nUt for some k i% n}
n = l

+ Z «-1P(    Z (Xk„-EXkl,)\ >n1/'(l-n1-1/,|£^n)).
n=l \    k=l I

The first series on the right-hand side of (1) converges since

00 I \ CO

Z n-'P   IXk\ ^ n1" for some k rg n     S Z P{|Xk\ ^ n1"}
n=l { J n=l

and the finiteness of the last series is equivalent to E | Xk |' < co.
For í ^ 1 it follows from integration by parts and the fact that EXk = 0 that

^kni1   vt I EXkn I -> 0 as n -^ oo ; for 0 < t < 1

n'-^EX^n1-11^ Ixl'ijxl/n1"}1-'^) - 0.

Thus to show that the second series on the right side of (1) is finite it is enough
to show that Z„œ= ! n-1P{ | Z^i^-FXjJ | > en1"} < oo for some c,0<c<l.
This is done as follows :
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110 L. E. BAUM AND MELVIN KATZ [October

£ n'P [   Î iXkn-EXkn) >cn1") z%cï n^'^E [  I iXkn-EXkn) )
n=i \    fc=l j n=l I   k=i )

oo n go /•

è c S n'1-21'  I EXl = c I n'2"] x2Fidx)
n=l k = l n = i J \x\<nV*

oo n
(2) è c I n~2lt   S fc2/,P{fc - 1 Ú | *i T < fc}

n=l fc=l

co oo

= c I k2l'P{k -lz%\Xy\'<k}-  I n-2"
fc = i

S c S fcP{fc - 1 z% | X. |' < fc} < oo.
fc = i

Note that in (2) and throughout this paper c denotes all constants and thus even
in a single inequality c can denote two different values.

To prove the converse assertions we may assume EXk = 0. The proof proceeds by
showing first that S^jn11' -*■ 0 in probability, where Xs will always denote the
symmetrized random variable X. Assume that S'Jn11* does not converge in proba-
bility to zero. Then there exists e > 0 such that either P{SsnJnllt > e} > £ or
P{SnJnllt< — e} > e for infinitely many i. For argument's sake assume
P{SsnJn¡1' > e} > £ for infinitely many i. With no loss of generality choose
ni+x > 2n¡. Now for each ;" such that n¡<jz% 2n¡ it follows by symmetry that
P{ ¿U,i + i X'k^ 0} ̂  1/2 and thus P{ I¿=1X^//f£/2l/'} ^ £/2 for n¡ Újú2nx.
Therefore

oo oo       2n¡

I n-'Pfâjn1"^ E¡21"}^ I    E n-1P{Ssnln1"^ej211'}
n = í i = í   n —ni

(3) 8       oo 2n,

2    ¡=i   n=m

However, (3) implies that I„°°=1 «_1P{|S„|/n 1/(^ fi/21/, + 1} = oo, a contra-
diction. Thus Ssnjnll'-*0 in probability and in addition we also conclude
that nP{ | Xsk | > n1/(£} -> 0 as n -> oo for all £ > 0. We may thus proceed exactly
as in [3] to prove that ¿ZnxLyP{ \XSX\ > n1"} < oo. Therefore E|A"i|' < oo and
consequently £|^j'<oo. Finally, if f2zl, it follows from Marcinkiewicz's
theorem [8, p. 242] that (S„ - £S„)/n1/( -> 0 almost surely and therefore EXk = 0.
This completes the proof.

In the case t = 1 the above theorem has been proved in [9] by entirely different
methods. The methods here employed are much more elementary and have the
further advantage that they can be applied to give unified and simplified proofs
of all the results of this type.

Theorem 2. Let 0 < t < 1. The following three statements are equivalent:
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1965] CONVERGENCE RATES IN THE LAW OF LARGE NUMBERS 111

(a)E\Xk\'lg+\Xk\<co;
(b) Z„°°= i »-1 lgnP{ | S„ | >n1/(e}< oo for all e > 0;
(c) Zr= i n  l P{supfcS„ | SJk1" \> e}< oo for all £>0.

Let 1 rg í < 2. The following three statements are equivalent:
(d) E\Xk\'lg+\Xk\<cx) and EXk = p;
(e) Z„00=in~1lgnP{|5„-«p|>n!/,£}<oo/of all £ > 0;
(f) Z„°°= y n~1 P{supk¿„ |(Sk -fcp)/fc1/f| >£}< oo for all £ > 0.

Proof. The proof that (a) o (b) and (d) o (e) is, except for details, the same
as that given in Theorem 1 and will be omitted.

We proceed by showing that (a) A (b) => (c) and (d) A (e) => (f). Again we
assume that E(Xk) = 0 if it exists. Since

P ( sup I SJk1" I > £ ) è P (  sup   I SJk1" I > e\
{ tan j I  kg 2' I

for   2' rg n < 21+1   it   is   clearly   sufficient   to   show   that   (b)   or   (e)    =>
Z¡tiP{sup)tg2i|,S')i/fc1/'| > £} < oo for all £ > 0. Now observe that

00 00

(4) Z n-1lgnP(\s:\>n1"£)^cI   lg(2')P(\ S"2,\ > 2(i + 1)/,£).
n = 1 ¡ = 1

This follows since

P(SS2¡ + Xs2i + 1 + - +X'n>2 (i + 1)/1 e) ^P(SS2¡ > 2,i+1)" £,(X;i+1 + - + Xsn) ̂  0)

^^P(Ss2j>2('+n/,£).

Next note that the finiteness of the-right hand side of (4), for all £ > 0, => that
Z^,P{supts2i | S£/fc1/r | > £} < oo for all e > 0. This follows from

Z p( sup I SJk1" | > fi] rs Z   Z p(   max     | SHI1" \ > e)
¡ = 1      I 1:22' )        ¡ = 1   j = l     [2'<1¿2J*1 I

00 00

(5) = 2 Z    Z P{|S2J+,| > 2(i+2)/i (£/22/')}
¡=1   j=i

00

= 2Z;P{|SS2J + 1| >2(J'+2)/'(e/22/i)}
j = i

where we have used P. Levy's inequality [8, p. 247] for the second inequality.
From the symmetrization inequalities [8, p. 247] it follows that

Z p( sup I SJk1" | > e) < oo for all £ > 0
i = l      (   fcâ2' J

=> Z p( sup \SJku'- xned(SJk1")\> e) < co for all £ > 0;
¡ = 1     I   kg2' I
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112 L. E. BAUM AND MELVIN KATZ [October

further, (a) or (d)=>thatmed(SJfc1/,)-»0 as fc-»oo by [8, p. 242]. Thus the finiteness
of the right-hand side of (4), for all e > 0, =*• £" yP{supk^2¡ | SJk l"\ > s} < oo
for all £ > 0 and again by the symmetrization inequalities it follows that (b) or (e)
guarantees the finiteness of the left side of (4) for all £ > 0.

To complete the proof of the theorem, we now show that (c) =>(a) and (f) =>(d).
Again let EXk = 0. Define an+k = P(\XX\' > (n + fc)) and choose £ = 1/2. Then

oo   >   £ n~xp[  sup | SJk1" | > 1/2 j
n=l 1   kin I

CO /     IB

(6) ^   I n-'Pl  IJ   [\Xn+k\>(n + k)1"]
n = l

^   £ n  1      £ an+k -la,4n + k *-•   "n + k
B=l \   fc = l fc = l

£ an+;
j>k J   1

By Theorem 1, £ | Xx | '< oo and hence lim,,.,,» Ej^=i «„+; = 0. Thus
00/00 r \     \ CO CO

£ «_1      E a„+fc ( 1 - E a„ + y )\^ c ¿Z n'1 ¿Z an+k,
n = l U = l \ j>k 1   I n = l fc = l

oo   >

with c > 0. This, however, implies that £„œ=, a„ lg n < oo which is equivalent to
£|X! |'lg+ \XX I < oo. In case i^l we have as before that EXk = 0 and the
proof is complete.

Theorem 3. Let t > 1, r > 1 and 1/2 < rjt Sí L The following three statements
are equivalent:

(a) E\Xk\' < oo and £Xt = p;
(b) E„°°=i nr_2P{ | S„ - np | > nr/'£} < oo for all s > 0;
(c) £„°°=i «r~2P{suptê„ | (Sk - kp)jkr" | > £} < oo for all e > 0.

Let t > 0, r >l and rjt > 1, The following three statements are equivalent:
(d)E|*k'| <oo;
(e) E„œ=i nr-2P{ \Sn\> nr/'e} < oo for all e> 0;
(f) ZB™ i nr_2F{sup^„ | Skjkr" | > e} < oo for all £ > 0.

Proof. The proof that (b) => (c) and (e)=>(f) is essentially that given in Theorem
2; only the details are different. That (c)=>(b) and (f)=>(e) is trivial. Thus to
prove this theorem we need to show that (a) is equivalent to (b) and (d) to (e).
The proof that (a) =>(b) and (d) =>(e) has been given in [6]. This proof is basically
the same as the proof of Theorem 1 ; namely a systematic use of the truncation
method and Markov inequality.

It remains only to prove that (b)=>(a) and (e)=>(d). We need consider only
the case 1 < r < 2 since for r Ï: 2 this result has been proven in [6] using the
methods of [3]. However, for 1 < r < 2, the proof in Theorem 1 that (b)=>(a)
and (d) =>(c) applies equally well here to give the desired result. We omit the details.
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Next we state as a lemma a result on infinite series that we need but to which
we could find no reference in the literature.

Lemma. Let {an} be a nonincreasing sequence of non-negative numbers
converging to zero. Let t 2: 0, then if Z,^! n'an < oo it follows that nt + 1an-*0.

In particular if in Theorem 3 we let r = t > 1 it follows that EXk = 0 and
E\Xk\t < co =>n'~1P{\SJn\> e} -+0 for all £ > 0. Next we apply the lemma
to obtain a corollary to Theorem 3.

Corollary. Let EXk = p and E | Xk |'< oo for some t ^ 1. Then the series
Zati ( - l)''nt~1P{mpk&„ | (Sk - fcp)/fc | > e} is finite for all s > 0.

Proof. We can assume í > 1 since for t = 1 we have an alternating series of
terms monotonically decreasing to 0. Let a„ = P{supk^„\(Sk —kp)/k\> s}   for
arbitrary £ > 0, and let T„k = {n'~1a„ - (n + l)'-1a„ + 1 -I-±(n + k)'~1an+k}.
We will show that given 8 > 0 there exists n(8) such that for n ^ n(8) and all
k, | Tnk ¡ S S. Since {an} is a nonincreasing sequence it is clear that Tnk is minimized
if fl„ = an+y, an + 2 = an + 3, etc. Thus

(7) r...^
(*-l)/2

-(t-1)    Z    (n + 2/ + l)'-2
¡ = o

(i/2)-l
-(t-1)     Z   (n + 2/ + l)'-2

11 + 21

in + 2l

if fc odd

if fc even.

On the other hand Tn<k = {n'  1an+[-(n + l)t  1aB+1 + ••• ±{n + fc)1   1aa+k~]}
and is clearly maximized if an + x = a,l + 2, a„ + 3 = a„+4, etc. Therefore

(8) Tn,k <

k/2
lan + (t - 1)   Z (n + 21)t-2.

1 = 1

(fc-D/2
i'-1a„ + (t-l)      Z   (n + 2/),-2aB+2/

¡ = i

if fc even,

if fc odd.

By Theorem 3 the series on the right-hand side of (7) and (8) converge to zero as
n -*■ oo and from the lemma it follows that n'~ 1a„ -* 0. This completes the proof.

The next theorem determines necessary and sufficient conditions for conver-
gence rates  to  zero for the sequences

{P(|S„/n|>£):n^l}   and   (p(sup|S, Jk\ >£ :n^ 1

Theorem 4. Let t §; 0. The following two statements are equivalent:
(a) n'+1P{\Xk\>n}^0 and }M<nxdF(x)->0;
(b) n'P{ | Sn | > he} -> 0 for all e > 0.

If t >0, the above two statements are equivalent to:
(c) n'P{supkt.„ | SJk | > e} -> 0 for all s > 0.
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114 L. E. BAUM AND MELVIN KATZ [October

Proof. Note that the case t = 0 is just a restatement of the Weak Law of
Large Numbers for identically distributed random variables. In proving that
(a) =>(b) it is convenient to make the proof for symmetrized random variables Xk
which, by the symmetrization inequalities, also satisfy the hypothesis
of (a). We will prove n'P{ \ Ssn | > ne} -» 0 for all e>0. This implies
n'P{ | SJn - med(SJn) [ > e} -> 0 for all £ > 0. However, the hypotheses of (a)
imply SJn -» 0 in probability and thus med (S„/n) -* 0, completing the proof.

Let Ss„„ = £¡? = 1AX, where X^„ denotes the fcth, fc si n, symmetrized random
variable truncated at n. Then

ntP{\Z\>m}£n,+1P{\Xl\>m} + ntP{\SU\>ns},
and since n' + 1P{ | X[ | > ne} ->0 it remains to prove n'P{ \S„\\> ne} -»0. Choose
r to be an even integer greater than 2r + 1. From Markov's inequality we obtain

nn\SL\>ns}úcn'-rE(S:jrzicn,-r{nE(X¡J + n(n-l)E(Xtny-2E(X\n)2+ ■■■}.

Let {2iy, 2i2, ••», 2im} be a partition of r into positive even integers. A
bound for the corresponding term in the preceding expansion is then given by
cn'~r+mE(Xsy„)2il--E(Xsy,)2lm. By hypothesis n,+ 1P{\X\ | > n} ->0 and thus
upon integrating by parts we obtain that all factors E(X[„)2iJ for which 2i¡ < t + 1
are bounded, those with 2i¡ = í + 1 are o(lgn) and those with 2¿j > t + 1 are
o(n2ij~"'_1). Consequently cn''r+mE(X\n)2il -■ E(X\n)2im is bounded by a product
a A where a„ = 0(nu) and b„ - 0(nt-l'"+w,1 lgBn) with u = £IJ<((+1)/2(2iJ. - 1),
v = number of ij = (t + l)/2 and w = number of i¡ > (t + l)/2. It follows from
this that for r>2t+l all partitions of r into even integers yield o(l) terms.
Thus we have shown that (a) =>(b).

Now we prove that (b) =>(a).

P{S5n >ne}^ P (j ¡iX'¡>ne) r, (     £     X) ^ 0
¡ = 1 I \  j = l;j*i

è   I   [\p(Xsi>m)-P(Xt>ne)    £     P(X)>nÉ)\

=   t PiX\ > ne) {-2 - in - l)PiX¡ > ne) j

^ nP(X?>n£)^-ö]

where ô can be chosen arbitrarily close to zero for sufficiently large n.
Hence n'P{|S„| > ne} -*0=>n'P{\Ssn\ > ne} ̂ 0^nt+1P{\Xj\ > ne} -> 0 =>
nt+1P{X¡ I > he} -* 0. Finally the hypotheses of (f>) imply that SJn -* 0 in proba-
bility and thus by the Weak Law of Large Numbers [8, p. 278] J|x| <„xdF(x) -> 0.

The proof is completed by showing that (b) =>(c) since clearly (c)=>(b). Let
2'-1 < n sj 2', then it follows from Levy's inequalities that
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sup
kin

zt
k |£     =2E    P

•>2i

V âe/2

Thus

M«P{ SUP   I -^
*g« «'l^Ihl >2J

2> èe/2 '-""'"s tr=r] 2d

where i has been chosen so large that n'P{ | SsJn | S: e/2} ^ á for all n ^ 2 '. Since
(b) =>med(SJfc)->0, we conclude that ntP{supk^„\SJk\ ^ e} ->0.

In the preceding theorems we have obtained convergence rates for expressions
of the form P(\S„\>n"E) and P(supk^„\SJk"\>e) with a > 1/2 and £>0.
Now we consider the problem of convergence rates when £ is replaced by a sequence
{e„} decreasing to zero. Thus we are led to consider convergence rates of sequences
{P(Sn >b„): n ^ 1} when {b„} belongs to the upper class of {S„}. In[5] Feller has
given a criterion for a sequence to be in the upper class: Let {Xk:k^l} be a
sequence of independent and identically distributed random variables with
EXk =0, EX¡= 1 and EXk(lg+ \Xk\)1+ô < 00 for some 8 > 0. Let <b(t) be a
positive monotonically increasing function. Then P(S„ > yjn(b(n) i.o.) =0 if and
only if  J? (0(O/í)e-(1/2)'í,2('>ííí < 00.

For sequences in the upper class we have the following results on convergence
rates.

Theorem 5. Let {Xk:k^l} and (b(t) satisfy the hypotheses of Feller's cri-
terion. Then

V    4>2(n)l'-P(Sn > Jntpin))

converges if and only if

i
m e-um*Ht)dt < 00.

Proof. Let 3>(x) denote the distribution function of a normal random variable
with mean zero and variance 1 and let F„(x) = P(S„/x/n Sj x). By hypothesis
EXk = 0, EX\ = 1 and £Z2(lg+ \Xk\)1+i < 00 and hence by [7]

sup|F„(x)-í>(x)|gC/(lgn)1+á.

Therefore by a result of Esseen [4, p. 70] it follows that

I-, v     ~ vi^     1      Í   /2 41glgn + l       1
\F^-^\^TT^\Jñ2(lglgnyt2  ItenT + Clglgw

0g»)1+a
Now

Z ^P(Sn > MW)
n = l      ■

=   £  £Qr_FMn))-<bi<Kn)y]   +   Z   ^(!-<!>((b(n)))
n = l
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and setting x = eb(n) in the previous inequality the first term on the right-hand
side of this equation is absolutely convergent. Therefore the left side of the equation
converges and diverges with £"=1(</>2(n)/n)(l - <£(</>(")))• However,

CZÜW(1 l   jr'^'á £  *fW(i-fl>(«»)))
„ = i     n    \cb(n)      cb3(n)J „ = 1     n

< c£   ^"^ ç-u/2)^")_     »-i     «

and consequently from the integral convergence test it follows that

£    ÈM (i _ cb^n))) < oo
n = i       n

if and only if j1°(cj)(t)lt)e~<-ll2)'t'H')dt < oo, completing the proof.
If we let eb(n) = (1 + £)(21glgn)1/2, for e > 0, we obtain

Theorem 6. // {Xt: fc S; 1} satisfies the hypotheses of Feller's criterion then

I('w",f(s(iÄü5>l+ih
for all £ > 0.

Proof. It is clearly sufficient to prove the result for all £ contained in the interval
(0, 1). Choose and fix such an £. Let y denote a number in (1,2) such that
(1 + ej2)jy > 1. Using [a] to denote the largest integer contained in a, let (0 denote
the smallest positive integer such that (a) [/] < [yl+1] for all i ^ ¡0 — 2,
(b) lglg[yio_1] > (2y)2/£2, and (c) yio~2> lj(y - I). Finally let nQ be the largest
integer such that n0 sj [y'°] and for n 2: n0 define i„ to be the smallest integer
such that n < [y'"]. Now note that

£   (nlgn) 1 P{ sup   .„, ,  /,,, -> 1 + e
„=„„ \k/n    (2fclglgfc)-/2 j

i%    £(nign)_1(p(       max ,*—-— > 1 + e )
I      \    nSfc<iy„]    (2klglgfc)W2 /

+      £   P (       max * > 1 + £ ) ].¡=.-„+i     \   Ma<[,»>] (2fclglgfc)i/2 /J
Since EX2k < oo it follows from Levy's inequalities that

P\       max        ,„, ,  ,*,.,„ > 1 + £ I
\   .sKïtA]    (2klglgfc)i/2 /

sîp(      max      Sfe>(l+£)(2nlglgn)1/2)

g 2P(Sr?1„] £(1 + £)(2nlglgn)1/2 - (2[y'"])1/2).
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From (b) and (c) it follows that (1 + E)(2nlglgn)1/2 - (2[y'"])1/2 = (1 + e/2)
(2/y2lglg[v'"-1])1/2[y'"]1/2 and thus we have that

I/l>1+«
,/ sk
I ngt<[y«-,](2fclglgfc)1/

á 2P(SrrtJ = (1 + el2)(2iy2]Slg[yi"-1ly)1>2[yi"y>2).

In a similar manner we obtain that P(maxr),i„]âJi<[),,„+i]Sfc/(2fclglgfc)1/2> 1 + £)
^ 2P(S[A + 1J fc(l + E/2)(2/y2lglg[y'"])1/2[y'"^^1/2). Thus

(9)

Í SZ  (nlgn) ' P   sup * > 1 + £
n=«o l   kïn   (2fclglgfc)!/2

00 00

^ 2  Z(nlgn)-1  Z   PÍS^^d+E^í^lglg^'-1])^2^']1/2).
n=no ¡=¡n

To prove that the right-hand side of (9) is finite it is sufficient to consider only
the case when the Xk axe normal random variables with mean zero and variance
one. This follows since

sup P^j^jg-jtx) - J" îl(2n)l'2e-t2'2dt | ^C(lg[7'])-1-

(by [7]) and in^lgyn. However, for centered normal random variables with
variance one it follows from well known inequalities that the right side of (9) is
bounded by cZ„=no(nlgn)-1 Z¡=,„(lg[7i-1])"((1+£/2)/y) and since ((l+£/2)/y)2>l
and i„ ̂  lgyn the above series is finite. This completes the proof.

Stationary random variables. Let {Xk: fc ̂  1} be a stationary ergodic
sequence with EXk = 0. From the ergodic theorem it follows that n ~1 S„ -* 0
a.e. and thus by analogy with Theorem 1 of this paper one might hope to show that
Z"= i n~1 P{ | S„ | > ns} < oo for all £ > 0. However, the following construction

demonstrates that this is not the case and in fact for the general ergodic stationary
case no size restriction on the Xk can guarantee Z^°= i n'P( ¡ S„ | > ne) < oo for
all £ >

Example. There exists a stationary ergodic sequence such that \Xk\ = l,
EXk = 0 and Z™= i n~ 1P{ | S„ | ^ n} = oo. We construct the example by defining
a probability space (fi, s£,P) an ergodic measure preserving transformation T on
Q and a function (b on Q. such that | </> | = 1 and j" (b(co)P(dcû) = 0. The desired
stationary sequence is {Xk = (b(Tk~i)}.

Let Í2 = U"=o fi„ where Q„ = {(x, n): 0 ^ x < /„} with {/„} a nonincreasing
sequence of non-negative numbers such that Z„°t0'n = 1- The /„'s are defined
implicitly by

[/n(lgü2]_1=n + C     for » = 1,2,...,
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with C chosen fixed and so large that £™=1 /„ < 1/2. This is possible since for
large x one has

x(lgx)2/(lgx + 21glgx)2 < x < x(lgx)2lglgx/(lgx + 21glgx + lglglgx)2

and consequently the solution, y, of [XlgjO2]-1 = x satisfies

[xOgx^lglgx]-1 < y < [x(lgx)2r \

The class sé of measurable sets is the class of unions of linear Lebesgue measurable
sets and P is the sum of the linear Lebesgue measures. Let T0 be a measure
preserving ergodic transformation on Q0 and define T on Q as follows :

T(x,y) =
fix,y + l)      if(jc,j- + l)eß,

l(Tox,0) if ix,y+I) 4 Q.
T is an ergodic, measure preserving transformation on Q. Let A0 c fi0 be a
measurable subset of Q0 of measure (1/2 — £„" y l„). Define eb on Q as follows

4>ico) =
+ 1, coe

00 -i

{JOnUAfy],
n = l i

— I,  coeQ0 — A0.

Let Xk = epiTk~1), then clearly {Xk: fc ̂  1} is a stationary, ergodic sequence such
that I Xk I = 1 and EXk = 0. For this process

ico: S„ico) = n} 2 {ix,y): (x,y + n - l)eQ,y > 0}
and hence

(10)

£ n-'PiS^n) ^   £ in + C)-1   (* " {[x(lgx)2]"1 - (n + C)}dx
n = 1 n = 1 Jo

=    £ (n + Q-^-Og/J-1 -in + C)Q
n = i

^    Hin + Cf1 {lg [in +C)lg2in + Qlglg (n + C)]}"1

n = l

=     CO.

In the converse direction let í > 1 and suppose {Xk: fc ̂  1} is a stationary
ergodic sequence, with £"= y n'~2Pi | S„ | > ne) < oo for all £ > 0. By the methods

License or copyright restrictions may apply to redistribution; see https://www.ams.org/journal-terms-of-use



1965] CONVERGENCE RATES IN THE LAW OF LARGE NUMBERS 119

of [2, Theorem 1] it follows easily that £|Xfc[i-1 < oo. However, if in addition
it is assumed that the random variables are independent then by Theorem 3 of this
paper it follows that £|Xt|'< co. Consequently it is of interest to investigate
whether in the general stationary ergodic case one can prove that moments larger
than the (i — l)st exist. The following example shows this is not the case.

Example. Let í > 1. There exists a stationary ergodic sequence {A"fc:fc^l}
suchthat Z„" yn'~2P(\S„\ > ns)< oo for all e > 0, £|Xfc|'-1 < oo and
E\Xk\'~1+i= oo for all 8>0. We proceed as in the previous example. Define
Q = U^o^n w*tn ^" = {(x'n): 0 = x < /„}, /„ nonincreasing and Z„"0K = !•
sä is the o--field of Lebesgue measurable sets of Q and P is Lebesgue measure on Ci.
Let T0 be a measure preserving, ergodic transformation on Ci0 an(l T the extension
as defined in the preceding example. Thus (Ci, sä,P) is a probability space with
T an ergodic, measure preserving transformation on it. Finally we define the
sequence {/„: n = 0} and a function (b on Í2:

hn - Ï2.+1 = 2-"-2 for n = 0,1,2,-,
,2«\i/(i-D

4>(co) =
©

■©

ifa>ei22„,        n = l,2, ■

»\i/(<-i)
ifcueQ2n+1,    B = l,2,-.,

if ca e Q0 U Qx.

Let Zfc = «KT*-1) for fc = 1,2,- . Then E\ Xfc|'-1 = (1/2) Z^in~2 < oo while
for any <5 > 0 £|Zfc|,-1+Ä = (1/2) Z„cS12"w-1)"-[2+2W-1" = ^^ We finish
by showingZB°i1n'-2P(| S„\ > ns) < oo for all e > 0. This follows since at all
points of Q the summands Xk, k = 1, •••, n, occur in pairs of equal and opposite
sign except possibly for Xy and X„. If both these are unpaired they are of opposite
sign and different absolute value. Thus |S„|<n£ unless max( — Xy,Xn) _ ne.
Therefore,

P{|S„| = nË}=P{|</»| = «£} z% Cn1-'(lg2n)
-2

and hence
oo

Z n'-2P{|S„|>n£} = C  Z   n-1(lg2n)-2<oo.
n = l

Independent, nonidentically distributed variables. In this section we will consider
only sequences {Xk: fc ̂  1} of independent, but not necessarily identically distri-
buted, variables.

Proposition 1. (a) Z"= 1n~1P{\Sn/n- med (SJn) |>e}<co for all £>0
=> [SJn — med(S„/n)] -> 0 a.s. but not conversely.

(b) If in addition ¡X¡\< i, then Z¡¡°= i n~1 P{ \(S„ - ES„)/n \ > e} < oo for all
e>0=>(Sn-ESn)ln-*Oa.s.
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Proof. By the hypothesis of (a)
GO , GO

oo > £ fi_1P{| SsJn | > £} ^ ¿  £ P{\ SS2J/2J\ > 2e}
„ = i 4 j-o

> \  £ f (lS^~.^-l>2e
- 8 J=1    \        2j

Therefore, by the a.s. stability criterion [8, p. 252] we have Ss„jn-*0 a.s. and
hence [S„/n — med(S„/n)] -+0 a.s. We prove that [S„jn — med(S„/n)]->0 a.s.
does not imply the finiteness of £„°°=1n_1P{| Snjn — med(S„/n)| > e} for all
£ > 0 by exhibiting a sequence of independent random variables for which this
is the case. Let Xt be a symmetric random variable such that P{Xy > t}
= P{Xy <-t}= (logt)*1 for large t and define X2 = X3 = ••• = 0; then clearly
SJ -> 0 a.s. but £^=1 n_1P{| SJn | > 1} = oo .

Under the hypothesis of (b) we may conclude, as in (a), that Ss„ jn —> 0 in pro-
bability and therefore that the characteristic function of Ss„jn, say g*(w), con-
verges to 1 uniformly in every finite interval. Further we have that | X¡ | < i and
thus it follows from the truncation inequality [8, p. 196] that

2£ a\XJn) = £ o2iXsJn) è - 121og ̂(1/2)^0.
i = 1 1 = 1

Therefore |med(5„/n) - EiS„jn) | zi {2o-2(1S'„/n)}1/2->0 and an application of part
(a) concludes the proof.

Now we present an example to show that without the size restrictions on
the .XYs we cannot dispense with the med(S„/n) terms. For ¡' S; 10 let w(f") = 22'.
Define a sequence of independent variables as follows. Xj = 0 except if 7" = uii)
or j = uii) + 1 ;

«(i)     with probability = 2u(i)/[«(0 + 2"(0],

with probability == u(i)/[«(/) + 2"(i)],

-uii) with probability = w(¿)/[m(¡) + 2"(i)],

2"(i)     with probability = 2"(i)/[u(i) +  2U(0].

For this sequence E.Y,-= 0, / = 1,2 • • •. However, mediSuliJuii)) = I, and
med(Sjjj) — 0 for / # u(i). Thus S„jn does not converge to 0 a.s. but for each
e > 0 and each í > 0

00 00 2"2"<"/e 00

£ n-1P{\SJn\> e}ii2    £ [u(i)/2m]      £   j~'   +     £    [u(0r'<co.
n = l ¡ = 10 J=«(0 i=10

The classical Kolmogorov criterion for the Strong Law (and also Brunk's
extended criteria) imply also the stronger form of convergence.

r"(0 = {_2„(i)

XU(i) + i =
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Proposition 2. Let {Xk:k ^ 1} be a sequence of independent random varia-
bles with E(Xk) = 0 and 1,?= y E\ Xk\2r ¡kr+1 < co for some r>l. Then for
all £>0Zi=in-1P{|5„|/n>E}<oo.

Proof.
oo co ,   n \   i

Z n-iP{\Sn\>na} =   Z n-1Cn'-1(Z   E\Xk\2')±-
n = 1 n = l U = 1 /"

1 = 1        K

where we have used [8, p. 263, problems 4,5] for the first inequality.
The following example demonstrates that Kolmogoroff's criterion Zo-2/fc2 < oo

does not imply the stronger rate of convergence

Zn-1p( sup
\ k>n

^ - med^fc fc > £1  <  CO

and a fortiori by Proposition 3 below it does not imply
00

Z n'P{\SJn - med(SJn)\> e} < oo
n = l

for any t > — 1.
Let Xk be symmetric independent variables with

\Xk | = fc   with probab ility ,fc(lg fc)

= 0   with probability    1 fc(lgfc)2'J

fc = 3,4,

Then

while

Z a2\k2
k = 3 fc(lgfc),< oo

Z n-1p(sup LC_Ui/2¡ ^   Z n-1P{|Xn+t| = n + fc for some fc = 1}
n = 3 Uin        "• I n = 3

i1 ".í+i Tog])2")^   Z n-1   Z
3 »-« + !    ̂ (Igfc)2

^ c  Z i
„ = 3 nlgn

=    00
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Proposition 3. Let {Xk} be a sequence of independent variables. If t > — 1
then

(a)£"=1n(P{|5„/n -med(S„ln) | > e} < oo for all e>0 if and only if
ZïHyn'plsup^|Skjk - med(Skjk)| > e} < oo   for   all   e>0.

If moreover i^ 0 then also
(b) £„œ=1 n'P{\SJn\ > e} < oo for all e > 0 i/ and only if

£ n'Pjsup \Sk |/fc > eJ < oo

/or a// £ > 0.

Proof,   (a) follows by the methods of the proof of Theorem 2. If r _; 0

00 il S I       1£ n'P 1—"-I > £   < oo for all £ > 0 =>mediSJn)^>0

so (b) follows.
In the converse direction the methods of [2, p. 189] suffice to prove.

Proposition 4. For sequences {Xk:k^l} of independent variables if
CO

£ n_1P{|5„| >ne} < oo for all e > 0
n = l

then Elg+|Ark| < oo for all k. For í > 1, if
00

£ n,_2P{|5n| >n£}< oo for all e > 0
n = l

then E\Xk\'~1< oo for all k.

That this result cannot be improved follows trivially by considering sequences
for which Xk = 0, k = 2,3,-- and JET|-35TX]*— x < °o but E\Z1|'"1+i = oo for all
c5>0.

In [2, p. 190] we obtained necessary and sufficient size restrictions on the in-
dividual independent variables Xk for an "exponential rate of convergence" of
S„/n. We have been unable to obtain such satisfactory necessary and sufficient
conditions for the present rates of convergence: £"=1n'P{|S„|/n > e} < oo.
Proposition 1 of this section suggests that such a theorem for the case t = — 1
is related to the classical problem of necessary and sufficient conditions for con-
vergence with probability 1 of S„ jn.
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