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Convergence Rates of Approximate Least Squares
Solutions of Linear Integral and Operator

Equations of the First Kind*

By M. Z. Nashed and Grace Wahba

Abstract. We consider approximations \xn] obtained by moment discretization to (i)
the minimal £2-norm solution of Six = y where 3C is a Hilbert-Schmidt integral operator
on £2, and to (ii) the least squares solution of minimal £2-norm of the same equation
when y is not in the range 5i(X) of X. In case (i), if y £ <R(X), then xn —> X^y, where 3Cf is
the generalized inverse of X. and ||a:„|| —> <» otherwise. Rates of convergence are given in
this case if further X^y £ 3C*(£2), where X* is the adjoint of 3C, and the Hilbert-Schmidt
kernel of X3C* satisfies certain smoothness conditions. In case (ii), if y £ (R(3C) © <R(X)X,
then xn —» Xty, and \\xn\\ —> °> otherwise. If further Xry £ 3C*3C(£2), then rates of con-
vergence are given in terms of the smoothness properties of the Hilbert-Schmidt kernel of
(XX*)2.

Some of these results are generalized to a class of linear operator equations on abstract
Hubert spaces.

1. Introduction. It is well known that the numerical solution of the integral
equation of the first kind

(1.1) 3Cx :=   /    K(-, t)x(t)dt = y
Jo

leads to certain difficulties which are not encountered in integral equations of the
second kind

(1.2) (/ - X3fC)x - y.

Considerable light can be shed on the problems (1.1) and (1.2) when viewed in the
context of linear operator theory. The operator 3C in (1.1) under mild conditions is
compact on £2[0, 1] into itself; hence, its range (R(3C) is always a nonclosed subspace
of £2[0, 1] (unless it is a degenerate operator, i.e., (R(3C) is finite dimensional). In
contrast, (R(7 — X3C) associated with (1.2) is always a closed subspace of £2[0, 1]
for any X. Consequently, the generalized inverse of X (and in particular the inverse
of X if it exists) is unbounded and densely defined, whereas the generalized inverse
of I — X3C is bounded and everywhere defined (see [5] or [6] for amplification of these
remarks if necessary). Also, since (R(3C) is only dense in 3l(3C*)x, the orthogonal
complement of the null space of 3C*, the Fredholm alternative theorem for (1.2) fails
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70 M.  Z.   NASHED  AND GRACE  WAHBA

to apply to (1.1) and one needs a condition (Picard's criterion [12]) under which an
element

y G VliX*)*- = GiiX)

belongs to (R(3C).
From the numerical and approximation aspects of (1.1) and (1.2), the preceding

operator-theoretic facts are reflected in the following ways.
Firstly, the problem (1.1) is ///-posed: The solution (or generalized inverse solution)

of (1.1) does not depend continuously on the data y in the £2-setting. This inherent
instability also carries over to the solution of the algebraic system arising from dis-
cretization of the integral equation, whenever one seeks greater accuracy. The
numerical manifestation of this instability and various approaches to approximate
numerical solutions of (1.1) have been described by many authors. We cite the recent
works of Hanson [3] and Strand [13], where the reader may backtrack the literature
on this subject from the bibliography cited therein; see also the comprehensive bib-
liography on integral equations prepared recently by Noble [8].

Secondly, iterative methods for the solution of (1.1) exhibit convergence patterns
which are markedly different from their counterpart for the solution of (1.2). Hellinger
and Toeplitz remarked in [4] that a method of solution of (1.1) by iteration is not
available. Since then several authors have analyzed the problem of convergence of
successive approximation for (1.1). See in particular the recent paper of Diaz and
Metcalf [2], the earlier work of Landweber, Fridman, and Bialy cited in [2] and
[6, pp. 344-345], and [5], [13]. The method of successive approximation (with a
parameter), steepest descent and conjugate gradient methods for least squares solutions
of (1.1), all exhibit slow convergence patterns (as 1/n); see [5], [6], and [11]. In contrast,
the rate of convergence of these methods to least squares solutions of (1.2) is at least
geometric (see [5], [6], [9]).

The purpose of this paper is to establish the convergence of approximation schemes
based on moment discretization to the least squares solution of minimal norm of (1.1)
(or to the minimal norm solution if y G fft(3C)), and to provide sharp convergence
rates under some mild smoothness assumptions on the function y and the kernel
Kis, t). Furthermore we show that if the minimal norm solution is smooth, then the
domain of X may be viewed as a reproducing kernel Hubert space (RKHS) and thus
we obtain pointwise convergence in this case.

In Section 2, we state some preliminaries about RKHS and recast Picard's criterion
in this setting. The main convergence results for integral equations of the first kind
are stated in Sections 3 and 4. Finally, in Section 5, some of these results are generalized
to a class of linear operator equations on Hubert space.

2. Picard's Criterion in Reproducing Kernel Spaces and the Generalized
Inverse of X. A Hubert space 3C of (real-valued) functions / on the interval T is
said to be a reproducing kernel Hubert space (RKHS) if all the evaluation functionals
£((/) = 10), / G 3C, for each fixed / G Tare continuous. Then, by Riesz's theorem for
each Z G T, there exists a unique element, call it Qt, in 3C such that

(2.1) Q, Q.) = fit),       f G 3C.
Let
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CONVERGENCE RATES OF LEAST SQUARES SOLUTIONS 71

(2.2) Qit,t'):= (Qt,Qt),       t, t' G T.
Note that Q,{t') = Q{t, t') by applying (2.1) to (2.2); for this reason, Q{t, t') is called
the reproducing kernel (RK). Let 3C0 denote the RKHS with RK Q and inner product
(-, -)0. Clearly, Q{t, t') is a nonnegative definite symmetric kernel. Conversely, by
the Aronszajn-Moore theorem (see [1]), every nonnegative definite symmetric function
Q on T X T determines a unique Hubert function space 3C0 for which Q is the repro-
ducing kernel. In an RKHS, the element representing a given bounded linear functional
<b can be expressed by means of the RK; more precisely, <pij) = (/, h)Q for all / G 3C«
where hit) = <KÔ<)> and similarly for a bounded linear operator L on KQ to 3C0:

iLf)it)= {Lf,Qt)Q = {f,L*Qt)Q-
Note that £2[0, 1] is not an RKHS. If Qit, t') is continuous on T X T (the only case
we will consider here), then 3C0 is a space of continuous functions. To see this, note
that

1/(0 - f0')\ = |0, Ö, - Qt.)Q\ Ú N/Ho lie, - Q,.\\0,
and

IIß, - Ö.'llS - Q0, 0 - 2Qit, t') + Qit', t').
One reason for using RKHS in approximation theory and numerical analysis is that
strong convergence in 3Cg implies pointwise convergence, viz.,

1/(0 - MOI = \{f - /». Q,)Q\ û\\f - fnWWQO, t).
For properties of RKHS see Aronszajn [1] and Shapiro [10].

For the purpose of this paper, we show that the range of a Hilbert-Schmidt
operator applied to £2(S) is an RKHS. We shall use (-, •) to denote inner product
in £2, reserving the notation (-, • )0 for inner product in RKHS, and omitting the
subscript when there is no confusion. The £2-norm is denoted by ||-||, whereas the
RKHS-norm is denoted by || • ||0.

Proposition 2.1. Let S, T be intervals, and let Git, s) be defined on T X S with
the property that, for each fixed t £7, Git, s) G £2(S). Consider the family of functions
f defined by

(2.3) fit) =   [ Git, s)pis) ds = : (C/>)(0
•'s

forp G £2(5). This collection off's is an RKHS 3CQ = 9[£2(S)] with RK

(2.4) Qit, t') =   [ Git,s)Git',s)ds
Js

where the inner product in 3C0 is given by

(2.5) (/i./2>o=   /  Pi{s)pAs) ds
Js

where pAs), i = 1, 2, is the element of minimal £AS)-norm which satisfies (2.3).
Proof. To see that 3C0 is a Hubert space with the given inner product, let V be

the smallest closed subspace in £2(5) containing the functions Git, ■ ), t G T. Then
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72 M. Z. NASHED AND GRACE WAHBA

for each / of the form (2.3), there is a unique p G V which satisfies (2.3), and this p is
that element of minimal £2(5)-norm for which (2.3) holds. This correspondence
between 3CÖ and V is linear and, in fact, is a metric isomorphism if we adopt the inner
product (2.5). To see that Q{t, t') is the RK, we must show that (/, Q, )0 = f{t), for
/ G 3C0, t G T, where Qt{t') = Q{t, t'). Let f{t) = is G{t, s)p{s) ds with/) G V. Note
that Qt{t) = S s Git, s)Git', s) ds. Letting /i = f,Pi = p. f2 = Q,., p2 = Git', •), we
get, using (2.5),

</i. h)o =   /  PAs)P2Ís) ds = (f, Q,.)Q
•>s

=   [ pis)Git', s) ds = fit')
•'S

so that g is the RK for 3C0.
Proposition 2.2.   Let Q{t, t') be a continuous reproducing kernel. Then

(a) Qit, t') = ¿2 KtAtKAt')
F-l

converges pointwise, where {A„}, \<by\ °-re the eigenvalues and orthonormalized eigen-
functions of Q, and ¿2 K3 = S S Q\t, O dt dt'.

(b) 3Ca = |/: ¿2if,<t>,)2/K < »},

where if A„ = 0, we must have (/, <f>,) = 0, and the inner product in 3C0 is given by

(1, s)q = ¿ f (/. <pMs, *.) = (0"I/2/. Ö_I/2g)
>-l  A,

/or /, g G 3C0.
Proof.   Part (a) is simply a restatement of Mercer's theorem (see for instance [12])

since Qit, t') is a nonnegative kernel.
To prove (b) note that iQ„ <by) - \r(f>At), and

¿ f (/- 0.XÖ., *.) =  ¿ (/, 0.)*,(O = 10)
r-l  A, ,_i

and thus (ß„ /)0 = /(0-
We now consider the integral equation

(2.6) (3Cx)(0 :=   f Kit, s)xis) ds = v(0,        t G T.
•'s

We assume that the functions k, := K{t, ■ ) G £ÁS)for t G T, and fc8* : = Ki-, s) G
£2{T) for î G S, and the kernel g(/, t') defined by

(2.7) Q(i, f') = (*,, kr) -   Í   AT«, s)^', j) *
•'s

is continuous on 7 X T. Then JrJs A:2(?, s) dt ds < », and the integral operator 3C
maps £2(5) into £2(r). It is well known that, for y G £2(r), the necessary and sufficient
condition that y G (R(3C) belongs to (R(5C) is that
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CONVERGENCE RATES OF LEAST SQUARES SOLUTIONS 73

(2.8) Í2(y,4>,f/K < »,»-i
where [\y] and {<b,\ are the eigenvalues and orthonormalized eigenfunctions of the
nonnegative definite symmetric Hilbert-Schmidt operator <2 = XX* with kernel
Q{t, t'). If <f>y is an eigenfunction with X, = 0, then we must have iy, <f>,) = 0 for
y G (R(JC). Condition (2.8) is often known as Picard's criterion. Equivalent mani-
festations of this criterion have been given recently by Diaz and Metcalf [2]. Now by
Proposition 1.1, (R(3C) is an RKHS and, in view of Proposition 2.2(b), condition
(2.8) is equivalent to

(2.9) y G 3CQ

where X0 is the RKHS with RK Qit, /') given by (2.7), and where the norm in 3Ca
is given by

IM I« = ¿Cy,*.)2A,..-i
It should be noted that the introduction of RHKS and the casting of Picard's

criterion (2.8) in the form (2.9) is not a mere formality. For one thing, (R(3C) is non-
closed in £2{T), unless (R(3C) is finite dimensional; whereas (R(3C) being an RKHS is
a closed subspace in the RKHS topology. The usefulness of RKHS in the context
of linear integral equations is highlighted when we consider approximate methods
in the next three sections; for then we are able to establish convergence and sharp
rates.

The approximations that we study will converge to the generalized inverse of X,
and, in case y G öt(3C), to the minimal norm solution of (2.6). We now describe the
generalized inverse for our setting. Suppose first that y G Gt{X). Then there exists a
unique element of minimal norm in £AS) which satisfies Xx = y. This element may
be obtained as follows. Let V be the closure of the span of {k, : t G T) in £2{S) and
Pr be the projection operator onto V. Note that 9l(3C) = V± since v G 9I(3C) if and
only if (p, kt) = 0, t G T. Thus if x is any element in £2{S) satisfying (2.6), Prx is the
unique solution of minimal norm. Denote Pvx by 3$y. The domain of ne* may be
extended to öt(3C) © (RiX)1 by defining X^y = Xfy0 where y = y0 + y„ y0 G &{X)
and y, G StiX)1. Thus x = X*y is the unique element in £2(S) of minimal £2-norm
for which \\y — 3Cx|| attains its infimum.

3. Convergence of Approximations to Minimal-Norm Solution of Xx = y.
We consider first the case when y G <R{X), but X is not necessarily one-to-one.
Suppose that XO ¡s known on the set Tn = {t¡, t2, ■ ■ ■ , tn] <Z Tand consider the set
of linear equations obtained by moment discretization on T„ of (2.6):

f   Kiti,s)xi
Jo

(3.1) /    Kit,, s)xis) ds = yitt),        i = 1, • • • , n.
Jo

We introduce the notation K{ = A^(í¡, •) = &,,(•), j>, = X'O and rewrite (3.1) in
the form

iK,,x) = v¡,        i = I, ■■■ , n.

Define the operator en : £2iS) -* Rn by
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74 M.  Z.  NASHED AND GRACE  WAHBA

6„X    =

iK„x)

and     Yn =

(3.2)

l(tf„,x)J
e„x = r„.

j»i

Lv»J

Since (ft(e„) is finite dimensional, the generalized inverse ej exists on R" and the set
of all least squares solutions of (3.2) is given by

Sn = el Yn © 31(C).

In particular, x„ = e„+F„ is the element of minimal £2(S)-norm which minimizes
||e„x — Yn\\Rn. We consider convergence of {xn} to JO for y G 3û(3Cf) = (RiX) ©
<R(3C)\

The solution x„ is given explicitly by

(3.3) x„(-) = {y,, y2, yZlQn{k,„kt„ ■•• ,*,„)',

where gn is the n X « matrix whose ijth element is given by g(i,, ?,) of (2.7) and the
prime denotes transpose. We shall assume that the set {kt : t G Tn\ is linearly
independent for every finite n. This is not a serious restriction, for if there exist con-
stants c„ ••• , c„, not all zero, for which ]$2%,Cikti = 0, then every y G (ft(JC)
would satisfy 2"-ic<Xr<) = 0- Linder this assumption, QZ becomes g„~'. Let

(3.4) supf inf   |f - r,|V

Note that if limn_„ A„ = 0, then \Jn Tn is dense in T. We now state the first converg-
ence theorem.

Theorem 3.1.   (a) IfQit, t') is continuous on T X T and if y G (ft(JC), then

(3.5) lim ||jc - SOU = 0,

where A„ is defined as in (3.4).
(b) //j £ (R(JC), JKty G JC*(£2(r)), or equivalently y G Û(£2(7,))> <*«<* Q0, 0

satisfies
(i) {dl/dt')Q{t, t') exists and is continuous onTX Tfor t ¿¿ t',l = 0,1,2, ■ ■ ■ , 2m,

idl/dt')Qit, t') exists and is continuous on T X Tfor I = 0, 1, 2, • • • , 2m — 2; and

(ii)
a2m-l ^2m-l

lim —2W3T ß(/, r')    and    lim —5^=1 G(í, f')
!/•!'  or ISC  Oí

ex/s/ and are bounded for all t' G T, then

(3.6) |xn - jcVII = oía:).
(c) If y does not coincide with some element y0 G (R(JC) on {J„ Tn, then ||x„|| —* °o.
Proo/. (a) Let g,(- ) be that function on T defined by g,(- ) = Q0, ' )• By proper-

ties of RKHS, we have g, G JC0 for all t G 77, and <g„ h)Q = A(0 for A G 5C0, / G T.
This shows that the set {g, : t G T} spans JCQ, and (g„ g«.)Q « Q{t, t'). Thus there
exists an isometric isomorphism between JC0 and V generated by the correspondence

(3.7) Q, JCfl V.
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CONVERGENCE RATES OF LEAST SQUARES SOLUTIONS 75

To see this, note that (Qt, Q,.)Q = Qit, f) = {kt, k,.) for /, t' G T. Further note
that Qt = Xkt so that JC+g, = k„ since k, G V, and y G 3C0 <~ x G V by the corre-
spondence (3.7) if and only if y = JCx, x = JO.

It follows that, for y G (R(3C),

(3.8) H*.- JCVII =  lb- Pr.>llo
where PTj is given by

(3.9) PTmy = Xxn = iy„ ■■■  , jOfiT1©,,, • • •  , £?,„)'

and is the projection (in JC0) of y onto the subspace spanned by {g, : í G Tn\. If g
is continuous and lim„^„ A„ = 0, then span jg, : / G LA P»î is dense in JC0; thus
limAn_„ ||y — PT.y\\o - 0> an(i usin8 0-8) it follows that (3.5) holds.

(b) For y G «(JC) and JO G JC*(£2(D), we may write VU y = X*p,y = XX* p
for some p G £2(7) and hence

(3.10) X0 =   f Q0,t')pit')dt'.
J y

For j> of the form (3.10), the proof of Theorem 1 of [14] applies directly to give

(3.11) \\y - Pr.y\\o « OiK).
Then (3.6) follows from (3.8) and (3.11).

To prove (c) we show that if limA„^0 ||x„|| is finite, then y must coincide with an
element of JC0 = (R(JC) for t G U-7=i Tn. From (3.3) and the fact <g„ Qt.)Q =
Qit, t') = {kt, k,,), we get

||xn||2 = (X'i), ••• , y{tZ))QZ\y{ti), ••• ,y{tn))'.

Denote JCx„ by wn. Then ||w„||Q = ||x„||. Note also that wn is the element of minimal
JC0-norm which satisfies wn{t) = y{t), t G Tn. Without loss of generality, we may
assume that Tn C Tn+m and thus PT»wn+m = w„. Then \\wn\\Q, n = 1, 2, • • ■ , is a
nondecreasing sequence, and ||w„+m — wa\\Z = ||wB+m||¿ — |¡w„||¿. Therefore, if
lim„_.„ 11 w„ I j 0 is finite, then \wn] is a Cauchy sequence in JC0 which has a limit w
in JCq. Now, strong convergence in JCQ implies pointwise convergence, so that we must
have X0 = w0) f°r t G Tn, n — I, 2, • • • . Since ||x„|| = ||w„||0, part (c) is proved.

The proof of Theorem 3.1 does not require S)(JC) = £2. (See Section 5, and [14].)
As an application of Theorem 3.1, we consider the case when u — JO is a continuously
differentiable function on [0, 1]. Without loss of generality, we may take «(0) = 0
(since

f   Kit, s)[uis) - a]ds = yit) - a f   Kit, s) ds
Jo Jo

and we may solve

Kit, s)«(i) ds = yiO
Jo

instead of the original equation).
We consider the problem: Find «„(s) to minimize fa [u'{s)]2 ds subject to w(0) = 0

and
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fJa
Kit, s)uis) ds = yit), t G Tn =   {/,, •• • , f„} C [0, 1].

We now show that this problem can be recast in the setting of RKHS and establish
convergence of {u„\ on the basis of Theorem 3.1.

Let SCR be the space of all absolutely continuous functions x with derivatives
in £2[0, 1], and x(0) = 0. The space JCB is an RKHS with inner product

(xi, x2)fi =   /   x',is)x'As) ds
Jo

and reproducing kernel

Ris, s') = min(s, s').

Let 77,(5) = il Kit, t')RAO dt. Then, for x G 3C«, we have

(3.12) (   Kit, s)xis)ds = (rh,x)R.
Jo

To show (3.12), we note that

n,{s) =   f   Kit, t') minis, t') dt'
Jo

=   /   t'Kit, t') dt' + s  [   Kit, t') dt'
Jo s

and id/ds)riAs) = j] Kit, u) du, which we shall denote by r,(s). Then

(vt,x)R =  J   — r)As)x'is) ds =   I    TAs)x'is)ds

=   /    Kit, s)xis) ds.
"0

Now, the element of minimal JCK-norm which satisfies {-nt, x)R = y{t), for / G Tn, is

«„(0 = iv.As), ■■■ , iJsM'Wd), • • • , yOn))'

where g„ is the « X « matrix whose <yth entry is given by

QiU, t,) = (r,,,, i,„) =   /    TlAs)TlAs)ds.
Jo

We assume that g(i, t') is continuous and that lim„^œ A„ = 0 (cf. (3.4)). Then, as in
Theorem 3.1. we have ||«„ — JOH/; -> 0 as /i ^ ■". and thus

^   His) - u'is)]2 ds^O.

Furthermore, we also get pomtwise convergence:

|w„(s) — w(i)| g  ||«„ — «||ß \\R,\\R =  \\u„ — u\\R Vs —► 0

since \\R.\\R = R{s, s) = s.
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4. Convergence to JC1"y for y = (ft(JC) © (R(JC)X. We consider now the case
y G öl(JC), and seek approximations to JO, the least squares solution of minimal
norm of (2.6). Note that JO is also the minimal norm solution of the equation

(4.1) JC*J£x = JC*y

for y G ©(JC1). Furthermore, it is easy to show that {X*XfX*y = JO on 3XJC+).
Let Q = X*X, and w = X*y. The Hilbert-Schmidt operator Q has the kernel

0(5, s') = ikf, kf.) =   [ Kit, s)Kit, s') dt.

Let x„ be the element of minimal £2(5')-norm which minimizes

E KQx){si) - wiSi)]2,
¿-i

where Sn = {s„ ■ ■ ■ , sn\ C S.
By our previous assumptions, the function q„ defined by q,{s>) = QO, s'), is in

£2{S) for each s G S. If we assume that the set |ç, : s G Sn} is linearly independent
for every finite n, then x„ is given by

(4.2) x„ = iw,, w2, •■ ■  , wn)PZ1{q,,, q,„ • ■ ■  , q,J',

where P„ is the « X « matrix with yth element given by Pis,, s¡),

Pis, s') = iq„ q,.) =   /   Qis, u)Qis', u) du
Js

and w, = iX*y){s,). Note that if x G span{çs :sGSnj and w = JC*JCx, then x = x„
Let

An := sup   inf   \s — s,|,
•es «i6s„

and let (P be the Hilbert-Schmidt operator with kernel P{s, s').
Theorem 4.1. (a) If P{s, s') is continuous on S X S and y G &(JC) © (R(JC)X,

and x„ is given by (4.2), then

(4.3) lim H*, - JOll = 0.
¿„-.0

ib) If y E (R(3C) © (RiX)"-, X^y G JC*JC(£2(5')), or equivalently w G (P(£2(S))
and Pis, s') satisfies (i) and (ii) of Theorem 3.1 for some m, then

(4.4) ||x„ - JOll = OiA:).

(c) If y € tfl(JC) © (RiX)1, then \\x„\\ -> œ as An -» 0.
Prao/. This is a restatement of Theorem 3.1 when g is replaced by P, y G 5Co

is replaced by w G JCP, where JCP is the RKHS of functions on S with reproducing
kernel P. Note that w = X*y is in the space JCP (which is the same as (R(JC* JC)) if
and only if y G ©(JC^.

5. Generalizations to Linear Operator Equations. We note that some of the
results of Sections 3 and 4 hold when £2(S) is replaced by a general Hubert space.
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Let X be an arbitrary Hubert space, with inner product ( •, • ).Y, let ft be a linear
operator mapping X into the real-valued functions on T with the property that

(5.1) l(Ox)(0| Ú Mt \\x\\x,        IE T,    x G X.
Then there exists a family {a, : t G T\ of elements in X with the property that

(Ctx)(0 = (at,x)x,        t G T,    xE X.

Let Qit, t') = (a„ a,. )x, t, t' G T. Then g is a nonnegative definite symmetric kernel
on T X T and by the same argument as before, it is easy to see that ft(X) = JC0, when
JCq is the RKHS with RK g. For y G JC0, let x„ be that element in X of minimal
norm which satisfies

(Oxn)(0 = X0>      / G Tn.

Then

Xr. = {y,, y2, ••• , yn)Qñl{at¡, a,,, • • • , atn)'

where we are assuming that the set {a, : t G Tn\ is linearly independent; and g„ is the
n X n matrix with ijth entry given by Qit,, t¡) = (ati, atl). Letting x = Gty be the
unique element of minimal Z-norm for which ftx = y, we easily see that Theorem 3.1
then holds with no change, except that (3.5) and (3.6) become, respectively,

lim ||x„ - con, = o,   ii*. - aVlU = oía:).

If X possesses an RK, then the norm convergence in X implies pointwise con-
vergence. For suitable choice of the RK, a large class of operators have the property
(5.1) including differential, integral, and integro-differential operators (see [14], [15]).

Suppose now that X and Y are Hubert spaces of real-valued functions on S and T,
respectively. Let ft be a linear operator on X into Y. Let ft+ be the generalized inverse
of ft defined on <R(ft) © (R(ft)1.

If ft* ftx has the property that

|(ft*ax)(i)| ̂  M, 11*11*,      5 G S,   x G x,
then there exists a family {q, : s G S] in X with the property

(ft*GX)(i) = {q„ x)x,       s G S,   x G X.

Let x„ be the element of minimal Z-norm which satisfies

(ft*ft*„)(5) = wis),       s = Sn,

where wis) = i&*y)is). Then x„ is given by

x„ = iw,, w2, •••  , wJP^iq,,, q,,, ■ ■ ■  , q,y

where P„ is the n X n matrix with ijth element given by P{Si, s¡), P{s, s') = (q„ q,. )x.
Theorem 4.1 then holds for this case with (4.3) and (4.4) replaced by

lim ||*„ - COlk - 0    and    ||*B - ftV||* = 0(0,
¿»-0

respectively.
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6. Practical Considerations. Some comments on part (c) of Theorem 3.1 are in
order. Both conceptually and practically, y can fail to be "in" (R(JC) in several ways.
The notion of a generalized inverse Xfy for y G Gt(JC) © (R{X)L was considered in
Section 4. In [7], the following situation is considered: It is assumed that y = Xx + £,
where x is in an RKHS JCB of real-valued functions on S, and £ G 3Cp, where XP is
an RKHS of real-valued functions on T which is not contained in JC0 ■ JC(JCB).
The "desired" solution x is taken as the (unique) solution to the minimization problem:
Find x G JCr to min /„(x) where

/,(*)=  |b- JC*||2P + 11*111,
where ||-||P, ||-||B are the norms in XP and 3CB and ||g||i>2 is interpreted as °° if
g (£ 3Cp- Approximations xn to x are found and convergence rates obtained for the
case (g + P\t, t') is a smooth kernel.

A practical case is the situation where

(6.1) yiU) = (JCx)(/,) + tit,),        i = 1, 2, • ■ • , n,

where {e(/i)}".! are realizations of some "noise" random variables {€(/<)}"-!• This
is an appropriate description if (JCxX*,) is measured with some experimental error.
Assume that £«(?<) = 0, i = 1, 2, • • • , n, £«(/<)<(*<) = 0, /; ^ t„ and £e2(r<) = <r2,
where E is mathematical expectation. In this case, as n becomes large, the vector
{yOi), y{t2), • • • , XO) begins to look less and less like the restriction of an element
of JCo. This model also describes roundoff error, if (JCxXí¿+i) — (JCxXO tends to be
larger than, say, 3<r, and if further the roundoff contribution to the overall error is
not negligible compared to the "projection error" given by (3.6). The situation (6.1)
is considered in [16]. In [16] it is assumed that x G 3C«, an RKHS of real-valued
functions on S, and the approximate solution xn,x is taken to be the solution to the
problem: Find x G JCB to min /„(n)(x) where

(6.2) JÏAx) = -¿2 iyOi) - ÍXx)íti))2 + X ||*||i,
n ,_i

where X is to be found.
X is chosen to minimize a bound on £||xnX — JC^H«. X depends on n, and o-2 as

well as (generally unknown) properties of g = JCx. If g is known to be very smooth,
<r2 is fixed, but X is allowed to vary appropriately, then convergence will obtain.
Rates are given. These results apply to the situation of Section 3 if we replace ||x||B
in (6.2) by ||x||. Then the solution x„, x to: Find x G £2 to min y„(n)(x) where

4*°(x) = - J2 (XO - (JCx)(/,))2 + X ||x||2
n ,_i

is

x„,x(") = (.Vi. ̂ 2, • • • , JV)(Ö„ + BX/)_1(*it, *,„ • • • , £,„).

The expected mean square error £||x„,x — X?g\\2 is of larger order than the error
of (3.6). We must interpret the present results to apply to the situation where the
contribution of roundoff and/or experimental errors are controlled so as to be small
compared to the contribution of the projection error.
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