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Convergence Rates of Continuous-Time Stochastic ELS
Parameter Estimation

HAN-FU CHEN ANDJOHN B. MOORE

-4bsrracr—Discrete-time convergence rates for extended least squares

(ELS) algorithms are generalized to the continuous-time case. An

essential difference in the estimation is the appropriate prefiltering, while

in the theory, the existence of solutions of the stochastic equations is a

concern.

1. INTRODUCTION

Least squares (LS) estimation of continuous-time stochastic signal
models with additive “‘white” noise is considered in [1]-[3]. Ergodicity
assumptions are involved in the theory of [1]. In [2], [3] ergodicity is not
assumed and convergence rates are given. In [1] there is a conjecture that
corresponding convergence rates for extended least-squares algorithms in
the colored noise case cannot be obtained. Some of the foundations are
laid for such results in [2], [3]. In [4], ELS estimation is prescribed for
signal models with appropriate prefiltering, including possibly the
domination of certain noise signals by additive noise. Also, a weighting
coefficient selection scheme is built into the ELS estimation to improve
convergence properties and avoid finite escape times. The theory of [ l]-
[4] relies on Martingale convergence theorems.

Here, we generalize the work of [6] which gives rates of convergence
for the discrete-time stochastic colored noise case to the continuous-time
framework. A key ingredient is the prefiltering in the estimation, and for
the theory, a key issue is the possibility of the existence of finite escape
times on sample paths.

11, PROBLEM STATEMENT

Consider the dynamic system described by the following multivariable
\tochastic integral equation:

A(S)y, =B(S)u, +C(S)u, (2.1)

where A (S ), B(S ), and C(S ) are matrix polynomials In the Integral

operator S as

.4( S)=/+ A, S+. +Ap SP,Lf(S)=B, S+BZS2

+.+ BqS@, C(S)= I+ C, S+.. ,+ C,Sr.

Without loss of generality, C(S) can be “minimum phase” in that C(.S)

IS Ml rank in Re s > 0 with s the Laplace transform variable. For
subsequent theory, we Impose the stronger condition that

C(S) is smctly mmlmum phase, in that

C(s) is full rank in Re s>O. (2.2)

Note that .SX, = {~xi d~, SJX, = I& j~ XJ dh dr. Here u, satisfies

W(s)u, =w, (2.3)

where ( w,, F,) is a Wiener process, with F, a family of nondecreasing u-
algebras, and W(S ) = f + W’lS + + W,Sr such that

C(S) W-’ (S) – ~ I is strictly posit]ve real. (2.4)

[n [4], it is shown how such signal models can arise from plants, with
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the following transfer timction descrtptlon under zero mltial condmons

yp(5)=[,4p(s)] -’B~(5)u@(s) +[/t J’(s)] -’C’(S) WO(S)

where ,pf’ are the outputs, u f’ the Inputs. WPthe noise disturbances. Jnd

AP(~) BP(s), CO(S) are polynomials in s. ‘BYfi!terlng .P’$’, u; through

asymptotically stable filters with transfer function W’ ;(s -1) to ywld v,,
u, then the model for this system can be expressed ~nthe form (2. I)-(2 3)
Also in [4], it Mshown that by adding appropriate disturbances at the plant
output, the model has the form (.2.1)-(2.3) with (2.4) satisfied. Detatls we
not repeated here.

Let us consider the estimation of the parameters Al, B,, C, on the bmts
of past measurements, {Y,, u,; T s I}, where

u, is F, – measurable and locally bounded in L1. (That is

r
Ilukll’dr<m as. for all f< m.)

0

First, let us denote

OT=[– AI. .-AP B, . . . BQC, C,]

(C$:)T=[Y:SY: “ SP-ly~ U: . S“-’U: L’: ‘“ ~’-’:]:] (2.6)

so that the model (2, 1) can be written as

.V[=serb:+u,. (2. -)

The ELS based estimation of 0, yielding esrimates 0, involves [he
stochastic differential equation

dO,= P,c$,W(S)(dy, – e~d+dt) ‘, 0,, drb!trary

( )

~,= (’ *,* TdT+a-lf ‘ I = dtmensionofo, (~ $)
.()’

where

r...s~vrvr ~r..s~-lu,r ;r...sl;,rjrjO;=[Y,TSY, -!!

O,=,P, –S(6,70,). (2.9)

Notice the presence of W’(S) and that tr P,; 1 =
Assumption 1: The solution of (2.8) exists for almost all sample p~ths

u G Q up to an escape time. (2 l(l)
Let us define for each u

(2.11)

When u is finite, it denotes a finite escape time of the process 0,. With the
above definitions and assumption, we now clatm that with [1(<., the J-
dependent indicator funcuon which is umty for t < u and zero otherv Ise.
then

11/<,1~ ~, (2,12)

u IS d .Markov ttme [2.13)

.,

!0
II 1(, <,) P~d\117 dk<~ for all tintte ~. (2.14)

The result (2. 12) follows since

{1

.(
[[<0] : u :

1
6~Pv$\ dk<m C F,.

0

The result (2. 13) follows since [f < u] = [u s /]” where c denotes the
complement so that [f z a] G F,, or equivalently u is a Markov time [51.
The result (2. 14) follows from the property (2. I f). noting that ~~ S
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‘1/2 ~ (tr PO) P,, It now provesPp2PoPA _
following modified form of (2.8):

d,= [,, <., P,6 W(.s)(dy,– L9:IM
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convenient to consider the

r O,j arbitrary

(!

.,

P,=

)’

‘dr+a-ll11,<.164, a=dimensionof o,, (2.8)’
0

Remarks:

1) Should O, in (2.3)’ be independent of f),, then (2.1 [)-(2. 14) hold
and we could conclude that 0, exists for all t as the unique strong solution
of

0,=8. +
J
“’ l[k<.lP,@, W(s)(dyi – 8[0~ d~)r. (2.15)
0

Since here for C (,S ) # I, O, is O,dependent, (2.8) is highly nonlinear,
and we cannot conclude the same properties for 6, without a formidable
analysis of the nature of the nordinearities. Assumption (2. 10) in essence
is that d, of (2.8)’ exists for all f as the unique strong solution of (2. 15).

2) In the case C(S) = 1. the ‘“white” noise case, d, = o: is
independent of u,, J, and hence of O,. Moreover, under (2.5) from (2. 10),
~ = m and there is no finite escape ttme almost surely. Then f,(<ol s I
and (2.8) is a linear stochastic differential equation with a unique strong
solution for all f.

3) For the case W(S) = I, the condition (2.4) can only be satisfied
with C’(S) = 1 (in contrast to the discrete-time case). See also [2],

III. MAIN RESULTS

Lemma 3.1: Consider the plant (signal model) (2. 1)-(2.3) [or (2.6),
(2.7)1, under conditions (2.4), (2.5). Consider also the ELS estimation
scheme (2.8)-(2. 10). Then there are constants c > 0 and k, > 0 such that

.,

! [Y[g, – ~(g[g, +Y{.f,)l dk + k, z O for [<0 (3.1)
0

where, denoting f), = f? — 0,, ;, = u, — u,

&=~,r@, ! .v, =[c(s)– W(s)] i,+; sg,. (3.2)

Moreover, under condition (2.2). for some k~, kI, with & = 0? – d,

.,

! 11’w2dA s k, [’ llgkllza+kl.
0 “o

Proof: Simple manipulations yield for f < u

a’;,= – O‘~,df – g~r, or C(S) J,= – .Sg(

d&= F&, dt – Gg, dt

where ~-~ = [0 . . . Oli: . . . .S-’ of] and

[ 1F=diag O, ‘c’ –c; ““” 0–’” ,Gr=[O. ..OJ

Also,

f,= -[c(s)– Ji’(s)]c-’(s)g,++g,

[ 1
– W(s)c-’(s)–; f g,.—

.0]

Prooj: From (2.8)

det P, .’,,,= det P,-’ det (J+ll,. ,lP, o,6 /d/)

=det P, ‘(1+11, ,,g,l Pa. df)

so that

d (det P, ‘)
= [!,. ,lo/ Pc,d[

det P,-’

and the result (3.6) follows.
Lemma 3.3: Let the measurable process .Vf,be adapted to F, md detirw

T= sup
[ 1

i : q, 2 (’ 1(.tf*!l~dA<m
“o

Then for all v > 0, as t * T

J’Ml dw~=O[qj ‘ In’ ‘-~ (q, +e)] as.
,, (3.7)

Prooj As for u in (2. 13), Tis a Markov time and 1[,<~} ~ F,, Now

and recall that under (3.8), via Martingale convergence. [4]

lim x,=.y as. (310)
,-=

for some random variable x. Also. apply Ing the It6 formula [5]

(3.11)

(3.4)

(3.5)

<cu. (3.8)

(3.9)

Now

(3.3)

Now (3. l) follows from (3.5) and application of the strict pesitive real
condition (2.4). Also from (3.4) we see that ~, are the states of a linear
system with characteristic equation det C (s -1, = O, so that result (3.3)
follows under (2.2).

Lemma 3.2: With the definition of P, in (2.8)’ and u in (2.11),

J’IIA<.14J[81A dA= In (det P,-’)+ a In a (3.6)
0

=(.k’, -.Y)– ql,,n,,l,,(q+e)\l(.r,-.r)d[~’ln’-q(~l~l

as,

{

O(l) ds(-coltq,-m

- 0(I) as t -m otherw!se

The result (3.7) follows.
Theorem -7,1: For the signal modelcondltlons (2. 1)-(2.7) and ELS

estimation scheme (2.8) ‘–(2. 10). then as t+ u

(3 [h

=0 ( In Am,,(PV)-’

X.,,, (P!) ‘ - In A,n,,(P~)- ‘ )
as (3.12b)

where P: is given from (2.8)’ with *( replacing o,. Moreover, on the set

{
H, = w : Iim sup

In ~~,, P,-’

Am,.P,- ‘ < m
1

(3.1321)
(-r



[
H:= ~ : Ilm sup

In Am,, (P:)-’

A~,. (P~)-’–lrr An,., (P~)-’<m,,r 1

then there M almost surely no finite escape time (o = co),
Proof: 1) From (2.3). W(s)d;~ = W(S)(du, – dti,’

W’(S) dti~] so that from (2.8)’, (3.2), (3,4)

{ 1

T
di = – [i,. ,)P,@, ; ,g,dt +~, dt + dw,

Applying the It6 formula. then almost surely

d(tr ~~f’,-’~,)= -1(,..1{2 tr ~~o,
(

;g, dt+J, dt+dwl

)

T

-tr 8,T@,q5~8,dt– 4~P,4,dr}

= – 11,..l{2f:g,+ 2dw;g, - @; P,d+dr]

(3.13b)

r= dw, –

(3. 4)

where the inequality follows from apphcation of (3.1), under (2.4).
Integrating and reorganizing gives, with flu denoting min (t, o)

(3.15)

Now ~pplymg Lemma 3.3, as ( - u, the last integral is domitsated by the
~econd last mtegra~ so that the square bracketed form becomes negative if
~ llgd’dA = cYancfisof O(l)if -’,1 Ig, II’ d~ < CO.Noting this and

applying Lemma 3.2, as t ~ u (3. 1s) leads to

=O(l)+ln (det P,-l)a. s. (3.16)

Nowdet P;l z Am,, (P,-’ )(a)l-U ~ tr(P;’)a-aso that

lntr P,-l– ulna ~ lndet P,-l ~alntrf,-i, (3.17)

Noting that 11~,11~~ [Am,n P,- 1]- ‘ tr O~P,-’O,, then (3,16), (3.17) lead to
(3.12a),

Ii) From (3. [6). as f - u

,,

! llg,ll’d~=o(lntrf;’).
1)

Hence, by Lemma 3.1. as t+ u

j’~l,’d~=o(ln[rp;]). (3.18)
,)

Thus, we have as t-+u

=2tr

which means that as t ~ u

tr P,-’=O [tr (P?)

P~)-’+O(lntr P,-’)

‘], Am., P(-’=o[Am4, P:)-’]. (3.19)

Furrfrer, for any x E R“ with !l.@~ = 1, we know that for / < u

.,

! !l,rr@l:dA s 2 (( :Lrro,ll:d A+2 j“ ‘XT;,]: dA.
o ~,, ,1

Selecting x so that the tirs[ Integral on the right-hand ~lde N X~,n(P, ‘).

then the right-hand side is not less ~hwrAT,.(f:) “‘. Hence, k~r t < u md
~pplying (3. 18)

k,.,n(f~)-’ ~ 2 {A~,,(P, ‘)+ O[lrr ~,,,,, (P,)-’],

Thus, as [ ~ a and applying (3. 19)

h. (f’,)-’ Z O[(hn p~-’)-ln ~~., (P;)-’], (3.20)

Application of (3, 19), (3.20) in (3. 12a) gives the result (3. 12b).
iii) Now on the set H, of (3. 13), from (3. 12) 118,11does not diverge to

@. Consequently, the system generating ~, can be viewed as a linear time-
varying system with parameters f), d, which do not diverge to cm on H

Thus, under (,2.5) ~, can grow no faster than exponentially and there is
then no finite escape time on H.

Corollary. /: Consider the plant (signal model) (2.1) with C’(S ) = 1,
(2.3) with W(s) = 1, so that u, is a Wiener process (and trivially (2.2).
(2.4) are satisfied). Then o, = O? and on the least squares estimation of’ d

via (2.8), (2.9) under (2,5) (2. 10). there is almost surely no finite escape

time, so u = m and 1[,ZOI = [. Moreover. there is almost sure

convergence of the parameter estimates 6, given from (with P, = P,)

“e-o’’’=on::~:~)’)‘s’+= (3.21)

Proof: Since 6, = O! is derived from a linear time-!nvariant syswm

with parameters f), o; can grow no faster than exponerrually under (2.5),

and there is no tlnite escape time. The result (3,2 1) now follows from ~n

application of Theorem 3,1.

Remarks:

1) Under a plant \tabiiity assumpuon there ISno finite escape time for

d! and X~.,(P~) ‘ s 0(/). With u,, u, \ultab[y e~citing so that

&,n(P~)-’ z O(f), then (3.18). (3 21) become

llO– O!:~=O(l 1 in?) as [-m, (3.22)

2) The result of Lemma 3.3 is perhaps of independent interest to.any

ELS stochastic analysis.

Iv. CONCLUSION

Convergence (and divergence) rates t’or ELS estimation of a c[ass of

linear continuous-time stochastic signal models have been demonstrated.

Assuming the nonlinear stochastic chfferentlal equatmns involved have

solutions which exist up until {sample path dependent) finite escape umes.

conditions are derived which exclude the existence of tinite escape times.

The material of this note complements derivations of a compamon

paper which employ weighting coefficient selections to avoid finite escape

times. and gives global convergence rates for continuous-time ELS based

stochastic adaptive control [4].
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