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Abstract

In the efficient global optimization problem, we minimize an unknown function f , using as few ob-

servations f (x) as possible. It can be considered a continuum-armed-bandit problem, with noiseless

data, and simple regret. Expected-improvement algorithms are perhaps the most popular methods

for solving the problem; in this paper, we provide theoretical results on their asymptotic behaviour.

Implementing these algorithms requires a choice of Gaussian-process prior, which determines

an associated space of functions, its reproducing-kernel Hilbert space (RKHS). When the prior is

fixed, expected improvement is known to converge on the minimum of any function in its RKHS.

We provide convergence rates for this procedure, optimal for functions of low smoothness, and

describe a modified algorithm attaining optimal rates for smoother functions.

In practice, however, priors are typically estimated sequentially from the data. For standard

estimators, we show this procedure may never find the minimum of f . We then propose alternative

estimators, chosen to minimize the constants in the rate of convergence, and show these estimators

retain the convergence rates of a fixed prior.

Keywords: convergence rates, efficient global optimization, expected improvement, continuum-

armed bandit, Bayesian optimization

1. Introduction

Suppose we wish to minimize a continuous function f : X →R, where X is a compact subset of Rd .

Observing f (x) is costly (it may require a lengthy computer simulation or physical experiment), so

we wish to use as few observations as possible. We know little about the shape of f ; in particular

we will be unable to make assumptions of convexity or unimodality. We therefore need a global

optimization algorithm, one which attempts to find a global minimum.

Many standard global optimization algorithms exist, including genetic algorithms, multistart,

and simulated annealing (Pardalos and Romeijn, 2002), but these algorithms are designed for func-

tions that are cheap to evaluate. When f is expensive, we need an efficient algorithm, one which

will choose its observations to maximize the information gained.

We can consider this a continuum-armed-bandit problem (Srinivas et al., 2010, and references

therein), with noiseless data, and loss measured by the simple regret (Bubeck et al., 2009). At time

n, we choose a design point xn ∈ X , make an observation zn = f (xn), and then report a point x∗n
where we believe f (x∗n) will be low. Our goal is to find a strategy for choosing the xn and x∗n, in

terms of previous observations, so as to minimize f (x∗n).
We would like to find a strategy which can guarantee convergence: for functions f in some

smoothness class, f (x∗n) should tend to min f , preferably at some fast rate. The simplest method
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would be to fix a sequence of xn in advance, and set x∗n = argmin f̂n, for some approximation f̂n

to f . We will show that if f̂n converges in supremum norm at the optimal rate, then f (x∗n) also

converges at its optimal rate. However, while this strategy gives a good worst-case bound, on

average it is clearly a poor method of optimization: the design points xn are completely independent

of the observations zn.

We may therefore ask if there are more efficient methods, with better average-case performance,

that nevertheless provide good guarantees of convergence. The difficulty in designing such a method

lies in the trade-off between exploration and exploitation. If we exploit the data, observing in regions

where f is known to be low, we will be more likely to find the optimum quickly; however, unless

we explore every region of X , we may not find it at all (Macready and Wolpert, 1998).

Initial attempts at this problem include work on Lipschitz optimization (summarized in Hansen

et al., 1992) and the DIRECT algorithm (Jones et al., 1993), but perhaps the best-known strategy is

expected improvement. It is sometimes called Bayesian optimization, and first appeared in Močkus

(1974) as a Bayesian decision-theoretic solution to the problem. Contemporary computers were not

powerful enough to implement the technique in full, and it was later popularized by Jones et al.

(1998), who provided a computationally efficient implementation. More recently, it has also been

called a knowledge-gradient policy by Frazier et al. (2009). Many extensions and alterations have

been suggested by further authors; a good summary can be found in Brochu et al. (2010).

Expected improvement performs well in experiments (Osborne, 2010, §9.5), but little is known

about its theoretical properties. The behaviour of the algorithm depends crucially on the Gaussian

process prior π chosen for f . Each prior has an associated space of functions H , its reproducing-

kernel Hilbert space. H contains all functions X → R as smooth as a posterior mean of f , and is

the natural space in which to study questions of convergence.

Vazquez and Bect (2010) show that when π is a fixed Gaussian process prior of finite smooth-

ness, expected improvement converges on the minimum of any f ∈ H , and almost surely for f

drawn from π. Grunewalder et al. (2010) bound the convergence rate of a computationally infea-

sible version of expected improvement: for priors π of smoothness ν, they show convergence at a

rate O∗(n−(ν∧0.5)/d) on f drawn from π. We begin by bounding the convergence rate of the feasible

algorithm, and show convergence at a rate O∗(n−(ν∧1)/d) on all f ∈ H . We go on to show that a

modification of expected improvement converges at the near-optimal rate O∗(n−ν/d).

For practitioners, however, these results are somewhat misleading. In typical applications, the

prior is not held fixed, but depends on parameters estimated sequentially from the data. This process

ensures the choice of observations is invariant under translation and scaling of f , and is believed

to be more efficient (Jones et al., 1998, §2). It has a profound effect on convergence, however:

Locatelli (1997, §3.2) shows that, for a Brownian motion prior with estimated parameters, expected

improvement may not converge at all.

We extend this result to more general settings, showing that for standard priors with estimated

parameters, there exist smooth functions f on which expected improvement does not converge. We

then propose alternative estimates of the prior parameters, chosen to minimize the constants in the

convergence rate. We show that these estimators give an automatic choice of parameters, while

retaining the convergence rates of a fixed prior.

Table 1 summarizes the notation used in this paper. We say f : Rd → R is a bump function if

f is infinitely differentiable and of compact support, and f : Rd → C is Hermitian if f (x) = f (−x).
We use the Landau notation f = O(g) to denote limsup| f/g|< ∞, and f = o(g) to denote f/g → 0.

If g = O( f ), we say f = Ω(g), and if both f = O(g) and f = Ω(g), we say f = Θ(g). If further
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f/g → 1, we say f ∼ g. Finally, if f and g are random, and P(sup| f/g| ≤ M)→ 1 as M → ∞, we

say f = Op(g).

In Section 2, we briefly describe the expected-improvement algorithm, and detail our assump-

tions on the priors used. We state our main results in Section 3, and discuss implications for further

work in Section 4. Finally, we give proofs in Appendix A.

2. Expected Improvement

Suppose we wish to minimize an unknown function f , choosing design points xn and estimated

minima x∗n as in the introduction. If we pick a prior distribution π for f , representing our beliefs

about the unknown function, we can describe this problem in terms of decision theory. Let (Ω,F ,P)
be a probability space, equipped with a random process f having law π. A strategy u is a collection

of random variables (xn), (x
∗
n) taking values in X . Set zn := f (xn), and define the filtration Fn :

= σ(xi,zi : i ≤ n). The strategy u is valid if xn is conditionally independent of f given Fn−1, and

likewise x∗n given Fn. (Note that we allow random strategies, provided they do not depend on

unknown information about f .)

When taking probabilities and expectations we will write P
u
π and E

u
π, denoting the dependence

on both the prior π and strategy u. The average-case performance at some future time N is then

given by the expected loss,

E
u
π[ f (x

∗
N)−min f ],

and our goal, given π, is to choose the strategy u to minimize this quantity.

2.1 Bayesian Optimization

For N > 1 this problem is very computationally intensive (Osborne, 2010, §6.3), but we can solve

a simplified version of it. First, we restrict the choice of x∗n to the previous design points x1, . . . ,xn.

(In practice this is reasonable, as choosing an x∗n we have not observed can be unreliable.) Secondly,

rather than finding an optimal strategy for the problem, we derive the myopic strategy: the strategy

which is optimal if we always assume we will stop after the next observation. This strategy is sub-

optimal (Ginsbourger et al., 2008, §3.1), but performs well, and greatly simplifies the calculations

involved.

In this setting, given Fn, if we are to stop at time n we should choose x∗n := xi∗n , where i∗n :=
argmin1,...,n zi. (In the case of ties, we may pick any minimizing i∗n.) We then suffer a loss z∗n−min f ,

where z∗n := zi∗n . Were we to observe at xn+1 before stopping, the expected loss would be

E
u
π[z

∗
n+1 −min f | Fn],

so the myopic strategy should choose xn+1 to minimize this quantity. Equivalently, it should maxi-

mize the expected improvement over the current loss,

EIn(xn+1;π) := E
u
π[z

∗
n − z∗n+1 | Fn] = E

u
π[(z

∗
n − zn+1)

+ | Fn], (1)

where x+ = max(x,0).

So far, we have merely replaced one optimization problem with another. However, for suitable

priors, EIn can be evaluated cheaply, and thus maximized by standard techniques. The expected-

improvement algorithm is then given by choosing xn+1 to maximize (1).
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Section 1

f unknown function X → R to be minimized

X compact subset of Rd to minimize over

d number of dimensions to minimize over

xn points in X at which f is observed

zn observations zn = f (xn) of f

x∗n estimated minimum of f , given z1, . . . ,zn

Section 2.1

π prior distribution for f

u strategy for choosing xn, x∗n
Fn filtration Fn = σ(xi,zi : i ≤ n)
z∗n best observation z∗n = mini=1,...,n zi

EIn expected improvement given Fn

Section 2.2

µ, σ2 global mean and variance of Gaussian-process prior π
K underlying correlation kernel for π
Kθ correlation kernel for πwith length-scales θ

ν, α smoothness parameters of K

µ̂n, f̂n, s2
n, R̂2

n quantities describing posterior distribution of f given Fn

Section 2.3

EI(π) expected improvement strategy with fixed prior

σ̂2
n, θ̂n estimates of prior parameters σ2, θ
cn rate of decay of σ̂2

n

θL, θU bounds on θ̂n

EI(π̂) expected improvement strategy with estimated prior

Section 3.1

Hθ(S) reproducing-kernel Hilbert space of Kθ on S

Hs(D) Sobolev Hilbert space of order s on D

Section 3.2

Ln loss suffered over an RKHS ball after n steps

Section 3.3

EI(π̃) expected improvement strategy with robust estimated prior

Section 3.4

EI( · ,ε) ε-greedy expected improvement strategies

Table 1: Notation
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2.2 Gaussian Process Models

We still need to choose a prior π for f . Typically, we model f as a stationary Gaussian process: we

consider the values f (x) to be jointly Gaussian, with mean and covariance

Eπ[ f (x)] = µ, Covπ[ f (x), f (y)] = σ2Kθ(x− y). (2)

µ ∈R is the global mean of f ; we place a flat prior on µ, reflecting our uncertainty over the location

of f .

σ > 0 is the global scale of variation of f , and Kθ : Rd →R its correlation kernel, governing the

local properties of f . In the following, we will consider kernels

Kθ(t1, . . . , td) := K(t1/θ1, . . . , td/θd), (3)

for an underlying kernel K with K(0) = 1. (Note that we can always satisfy this condition by

suitably scaling K and σ.) The θi > 0 are the length-scales of the process: two values f (x) and f (y)
will be highly correlated if each xi − yi is small compared with θi. For now, we will assume the

parameters σ and θ are fixed in advance.

For (2) and (3) to define a consistent Gaussian process, K must be a symmetric positive-definite

function. We will also make the following assumptions.

Assumption 1. K is continuous and integrable.

K thus has Fourier transform

K̂(ξ) :=
∫
Rd

e−2πi〈x,ξ〉K(x)dx,

and by Bochner’s theorem, K̂ is non-negative and integrable.

Assumption 2. K̂ is isotropic and radially non-increasing.

In other words, K̂(x) = k̂(‖x‖) for a non-increasing function k̂ : [0,∞)→ [0,∞); as a consequence,

K is isotropic.

Assumption 3. As x → ∞, either:

(i) K̂(x) = Θ(‖x‖−2ν−d) for some ν > 0; or

(ii) K̂(x) = O(‖x‖−2ν−d) for all ν > 0 (we will then say that ν = ∞).

Note the condition ν > 0 is required for K̂ to be integrable.

Assumption 4. K is Ck, for k the largest integer less than 2ν, and at the origin, K has k-th order

Taylor approximation Pk satisfying

|K(x)−Pk(x)|= O
(
‖x‖2ν(− log‖x‖)2α

)

as x → 0, for some α ≥ 0.
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When α = 0, this is just the condition that K be 2ν-Hölder at the origin; when α > 0, we instead

require this condition up to a log factor.

The rate ν controls the smoothness of functions from the prior: almost surely, f has continuous

derivatives of any order k < ν (Adler and Taylor, 2007, §1.4.2). Popular kernels include the Matérn

class,

Kν(x) :=
21−ν

Γ(ν)

(√
2ν‖x‖

)ν
kν

(√
2ν‖x‖

)
, ν ∈ (0,∞),

where kν is a modified Bessel function of the second kind, and the Gaussian kernel,

K∞(x) := e−
1
2
‖x‖2

,

obtained in the limit ν → ∞ (Rasmussen and Williams, 2006, §4.2). Between them, these kernels

cover the full range of smoothness 0< ν ≤∞. Both kernels satisfy Assumptions 1–4 for the ν given;

α = 0 except for the Matérn kernel with ν ∈N, where α = 1
2

(Abramowitz and Stegun, 1965, §9.6).

Having chosen our prior distribution, we may now derive its posterior. We find

f (x) | z1, . . . ,zn ∼ N
(

f̂n(x;θ),σ2s2
n(x;θ)

)
,

where

µ̂n(θ) :=
1TV−1z

1TV−11
, (4)

f̂n(x;θ) := µ̂n + vTV−1(z− µ̂n1), (5)

and

s2
n(x;θ) := 1− vTV−1v+

(1−1TV−1v)2

1TV−11
, (6)

for z = (zi)
n
i=1, V = (Kθ(xi − x j))

n
i, j=1, and v = (Kθ(x− xi))

n
i=1 (Santner et al., 2003, §4.1.3). Equiv-

alently, these expressions are the best linear unbiased predictor of f (x) and its variance, as given in

Jones et al. (1998, §2). We will also need the reduced sum of squares,

R̂2
n(θ) := (z− µ̂n1)TV−1(z− µ̂n1). (7)

2.3 Expected Improvement Strategies

Under our assumptions on π, we may now derive an analytic form for (1), as in Jones et al. (1998,

§4.1). We obtain

EIn(xn+1;π) = ρ
(
z∗n − f̂n(xn+1;θ),σsn(xn+1;θ)

)
, (8)

where

ρ(y,s) :=

{
yΦ(y/s)+ sϕ(y/s), s > 0,

max(y,0), s = 0,
(9)

and Φ and ϕ are the standard normal distribution and density functions respectively.

For a prior π as above, expected improvement chooses xn+1 to maximize (8), but this does not

fully define the strategy. Firstly, we must describe how the strategy breaks ties, when more than one

x ∈ X maximizes EIn. In general, this will not affect the behaviour of the algorithm, so we allow

any choice of xn+1 maximizing (8).
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Secondly, we must say how to choose x1, as the above expressions are undefined when n = 0.

In fact, Jones et al. (1998, §4.2) find that expected improvement can be unreliable given few data

points, and recommend that several initial design points be chosen in a random quasi-uniform ar-

rangement. We will therefore assume that until some fixed time k, points x1, . . . ,xk are instead

chosen by some (potentially random) method independent of f . We thus obtain the following strat-

egy.

Definition 1. An EI(π) strategy chooses:

(i) initial design points x1, . . . ,xk independently of f ; and

(ii) further design points xn+1 (n ≥ k) from the maximizers of (8).

So far, we have not considered the choice of parameters σ and θ. While these can be fixed in

advance, doing so requires us to specify characteristic scales of the unknown function f , and causes

expected improvement to behave differently on a rescaling of the same function. We would prefer

an algorithm which could adapt automatically to the scale of f .

A natural approach is to take maximum likelihood estimates of the parameters, as recommended

by Jones et al. (1998, §2). Given θ, the MLE σ̂2
n = R̂2

n(θ)/n; for full generality, we will allow

any choice σ̂2
n = cnR̂2

n(θ), where cn = o(1/ logn). Estimates of θ, however, must be obtained by

numerical optimization. As θ can vary widely in scale, this optimization is best performed over

logθ; as the likelihood surface is typically multimodal, this requires the use of a global optimizer.

We must therefore place (implicit or explicit) bounds on the allowed values of logθ. We have thus

described the following strategy.

Definition 2. Let π̂n be a sequence of priors, with parameters σ̂n, θ̂n satisfying:

(i) σ̂2
n = cnR̂2

n(θ̂n) for constants cn > 0, cn = o(1/ logn); and

(ii) θL ≤ θ̂n ≤ θU for constants θL, θU ∈ R
d
+.

An EI(π̂) strategy satisfies Definition 1, replacing πwith π̂n in (8).

3. Convergence Rates

To discuss convergence, we must first choose a smoothness class for the unknown function f .

Each kernel Kθ is associated with a space of functions Hθ(X), its reproducing-kernel Hilbert space

(RKHS) or native space. Hθ(X) contains all functions X → R as smooth as a posterior mean of

f , and is the natural space to study convergence of expected-improvement algorithms, allowing a

tractable analysis of their asymptotic behaviour.

3.1 Reproducing-Kernel Hilbert Spaces

Given a symmetric positive-definite kernel K on R
d , set kx(t) = K(t − x). For S ⊆ R

d , let E(S) be

the space of functions S → R spanned by the kx, for x ∈ S. Furnish E(S) with the inner product

defined by

〈kx,ky〉 := K(x− y).
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The completion of E(S) under this inner product is the reproducing-kernel Hilbert space H (S) of K

on S. The members f ∈H (S) are abstract objects, but we can identify them with functions f : S→R

through the reproducing property,

f (x) = 〈 f ,kx〉,
which holds for all f ∈E(S). See Aronszajn (1950), Berlinet and Thomas-Agnan (2004), Wendland

(2005) and van der Vaart and van Zanten (2008).

We will find it convenient also to use an alternative characterization of H (S). We begin by

describing H (Rd) in terms of Fourier transforms. Let f̂ denote the Fourier transform of a function

f ∈ L2. The following result is stated in Parzen (1963, §2), and proved in Wendland (2005, §10.2);

we give a short proof in Appendix A.

Lemma 1. H (Rd) is the space of real continuous f ∈ L2(Rd) whose norm

‖ f‖2
H (Rd) :=

∫ | f̂ (ξ)|2

K̂(ξ)
dξ

is finite, taking 0/0 = 0.

We may now describe H (S) in terms of H (Rd).

Lemma 2 (Aronszajn, 1950, §1.5). H (S) is the space of functions f = g|S for some g ∈ H (Rd),
with norm

‖ f‖H (S) := inf
g|S= f

‖g‖H (Rd),

and there is a unique g minimizing this expression.

These spaces are in fact closely related to the Sobolev Hilbert spaces of functional analysis. Say

a domain D ⊆R
d is Lipschitz if its boundary is locally the graph of a Lipschitz function (see Tartar,

2007, §12, for a precise definition). For such a domain D, the Sobolev Hilbert space Hs(D) is the

space of functions f : D → R, given by the restriction of some g : Rd → R, whose norm

‖ f‖2
Hs(D) := inf

g|D= f

∫ |ĝ(ξ)|2

(1+‖ξ‖2)s/2
dξ

is finite. Thus, for the kernel K with Fourier transform K̂(ξ) = (1+‖ξ‖2)s/2, this is just the RKHS

H (D). More generally, if K satisfies our assumptions with ν < ∞, these spaces are equivalent in the

sense of normed spaces: they contain the same functions, and have norms ‖·‖1,‖·‖2 satisfying

C‖ f‖1 ≤ ‖ f‖2 ≤C′‖ f‖1,

for constants 0 <C ≤C′.

Lemma 3. Let Hθ(S) denote the RKHS of Kθ on S, and D ⊆ R
d be a Lipschitz domain.

(i) If ν < ∞, Hθ(D̄) is equivalent to the Sobolev Hilbert space Hν+d/2(D).

(ii) If ν = ∞, Hθ(D̄) is continuously embedded in Hs(D) for all s.

Thus if ν < ∞, and X is, say, a product of intervals ∏d
i=1[ai,bi], the RKHS Hθ(X) is equivalent

to the Sobolev Hilbert space Hν+d/2(∏d
i=1(ai,bi)), identifying each function in that space with its

unique continuous extension to X .
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3.2 Fixed Parameters

We are now ready to state our main results. Let X ⊂ R
d be compact with non-empty interior. For

a function f : X → R, let Pu
f and E

u
f denote probability and expectation when minimizing the fixed

function f with strategy u. (Note that while f is fixed, u may be random, so its performance is still

probabilistic in nature.) We define the loss suffered over the ball BR in Hθ(X) after n steps by a

strategy u,

Ln(u,Hθ(X),R) := sup
‖ f‖Hθ(X)≤R

E
u
f [ f (x

∗
n)−min f ].

We will say that u converges on the optimum at rate rn, if

Ln(u,Hθ(X),R) = O(rn)

for all R > 0. Note that we do not allow u to vary with R; the strategy must achieve this rate without

prior knowledge of ‖ f‖Hθ(X).

We begin by showing that the minimax rate of convergence is n−ν/d .

Theorem 1. If ν < ∞, then for any θ∈ R
d
+, R > 0,

inf
u

Ln(u,Hθ(X),R) = Θ(n−ν/d),

and this rate can be achieved by a strategy u not depending on R.

The upper bound is provided by a naive strategy as in the introduction: we fix a quasi-uniform

sequence xn in advance, and take x∗n to minimize a radial basis function interpolant of the data. As

remarked previously, however, this naive strategy is not very satisfying; in practice it will be outper-

formed by any good strategy varying with the data. We may thus ask whether more sophisticated

strategies, with better practical performance, can still provide good worst-case bounds.

One such strategy is the EI(π) strategy of Definition 1. We can show this strategy converges at

least at rate n−(ν∧1)/d , up to log factors.

Theorem 2. Let πbe a prior with length-scales θ∈ R
d
+. For any R > 0,

Ln(EI(π),Hθ(X),R) =

{
O(n−ν/d(logn)α), ν ≤ 1,

O(n−1/d), ν > 1.

For ν ≤ 1, these rates are near-optimal. For ν > 1, we are faced with a more difficult problem;

we discuss this in more detail in Section 3.4.

3.3 Estimated Parameters

First, we consider the effect of the prior parameters on EI(π). While the previous result gives a

convergence rate for any fixed choice of parameters, the constant in that rate will depend on the

parameters chosen; to choose well, we must somehow estimate these parameters from the data. The

EI(π̂) strategy, given by Definition 2, uses maximum likelihood estimates for this purpose. We can

show, however, that this may cause the strategy to never converge.
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x

f (x)

Figure 1: A counterexample from Theorem 3

Theorem 3. Suppose ν < ∞. Given θ ∈ R
d
+, R > 0, ε > 0, there exists f ∈ Hθ(X) satisfying

‖ f‖Hθ(X) ≤ R, and for some fixed δ> 0,

P
EI(π̂)
f

(
inf

n
f (x∗n)−min f ≥ δ

)
> 1− ε.

The counterexamples constructed in the proof of the theorem may be difficult to minimize, but

they are not badly-behaved (Figure 1). A good optimization strategy should be able to minimize

such functions, and we must ask why expected improvement fails.

We can understand the issue by considering the constant in Theorem 2. Define

τ(x) := xΦ(x)+ϕ(x).

From the proof of Theorem 2, the dominant term in the convergence rate has constant

C(R+σ)
τ(R/σ)

τ(−R/σ)
, (10)

for C > 0 not depending on R or σ. In Appendix A, we will prove the following result.

Corollary 1. R̂n(θ) is non-decreasing in n, and bounded above by ‖ f‖Hθ(X).

Hence for fixed θ, the estimate σ̂2
n = R̂2

n(θ)/n ≤ R2/n, and thus R/σ̂n ≥ n1/2. Inserting this choice

into (10) gives a constant growing exponentially in n, destroying our convergence rate.

To resolve the issue, we will instead try to pick σ to minimize (10). The term R+σ is increasing

in σ, and the term τ(R/σ)/τ(−R/σ) is decreasing in σ; we may balance the terms by taking σ = R.

The constant is then proportional to R, which we may minimize by taking R= ‖ f‖Hθ(X). In practice,

we will not know ‖ f‖Hθ(X) in advance, so we must estimate it from the data; from Corollary 1, a

convenient estimate is R̂n(θ).
Suppose, then, that we make some bounded estimate θ̂n of θ, and set σ̂2

n = R̂2
n(θ̂n). As Theorem 3

holds for any σ̂2
n of faster than logarithmic decay, such a choice is necessary to ensure convergence.
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(We may also choose θ to minimize (10); we might then pick θ̂n minimizing R̂n(θ)∏d
i=1 θ−ν/d

i , but

our assumptions on θ̂n are weak enough that we need not consider this further.)

If we believe our Gaussian-process model, this estimate σ̂n is certainly unusual. We should,

however, take care before placing too much faith in the model. The function in Figure 1 is a rea-

sonable function to optimize, but as a Gaussian process it is highly atypical: there are intervals on

which the function is constant, an event which in our model occurs with probability zero. If we

want our algorithm to succeed on more general classes of functions, we will need to choose our

parameter estimates appropriately.

To obtain good rates, we must add a further condition to our strategy. If z1 = · · ·= zn, EIn( · ; π̂n)
is identically zero, and all choices of xn+1 are equally valid. To ensure we fully explore f , we will

therefore require that when our strategy is applied to a constant function f (x) = c, it produces a

sequence xn dense in X . (This can be achieved, for example, by choosing xn+1 uniformly at random

from X when z1 = · · ·= zn.) We have thus described the following strategy.

Definition 3. An EI(π̃) strategy satisfies Definition 2, except:

(i) we instead set σ̂2
n = R̂2

n(θ̂n); and

(ii) we require the choice of xn+1 maximizing (8) to be such that, if f is constant, the design points

are almost surely dense in X.

We cannot now prove a convergence result uniform over balls in Hθ(X), as the rate of conver-

gence depends on the ratio R/R̂n, which is unbounded. (Indeed, any estimator of ‖ f‖Hθ(X) must

sometimes perform poorly: f can appear from the data to have arbitrarily small norm, while in

fact having a spike somewhere we have not yet observed.) We can, however, provide the same

convergence rates as in Theorem 2, in a slightly weaker sense.

Theorem 4. For any f ∈HθU (X), under P
EI(π̃)
f ,

f (x∗n)−min f =

{
Op(n

−ν/d(logn)α), ν ≤ 1,

Op(n
−1/d), ν > 1.

3.4 Near-Optimal Rates

So far, our rates have been near-optimal only for ν ≤ 1. To obtain good rates for ν > 1, standard

results on the performance of Gaussian-process interpolation (Narcowich et al., 2003, §6) then

require the design points xi to be quasi-uniform in a region of interest. It is unclear whether this

occurs naturally under expected improvement, but there are many ways we can modify the algorithm

to ensure it.

Perhaps the simplest, and most well-known, is an ε-greedy strategy (Sutton and Barto, 1998,

§2.2). In such a strategy, at each step with probability 1− ε we make a decision to maximize some

greedy criterion; with probability ε we make a decision completely at random. This random choice

ensures that the short-term nature of the greedy criterion does not overshadow our long-term goal.

The parameter ε controls the trade-off between global and local search: a good choice of ε will

be small enough to not interfere with the expected-improvement algorithm, but large enough to

prevent it from getting stuck in a local minimum. Sutton and Barto (1998, §2.2) consider the values

ε = 0.1 and ε = 0.01, but in practical work ε should of course be calibrated to a typical problem set.

We therefore define the following strategies.
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Definition 4. Let · denote π, π̂or π̃. For 0 < ε < 1, an EI( · ,ε) strategy:

(i) chooses initial design points x1, · · · ,xk independently of f ;

(ii) with probability 1− ε, chooses design point xn+1 (n ≥ k) as in EI( ·); or

(iii) with probability ε, chooses xn+1 (n ≥ k) uniformly at random from X.

We can show that these strategies achieve near-optimal rates of convergence for all ν < ∞.

Theorem 5. Let EI( · ,ε) be one of the strategies in Definition 4. If ν < ∞, then for any R > 0,

Ln(EI( · ,ε),HθU (X),R) = O((n/ logn)−ν/d(logn)α),

while if ν = ∞, the statement holds for all ν < ∞.

Note that unlike a typical ε-greedy algorithm, we do not rely on random choice to obtain global

convergence: as above, the EI(π) and EI(π̃) strategies are already globally convergent. Instead, we

use random choice simply to improve upon the worst-case rate. Note also that the result does not in

general hold when ε = 1; to obtain good rates, we must combine global search with inference about

f .

4. Conclusions

We have shown that expected improvement can converge near-optimally, but a naive implementation

may not converge at all. We thus echo Diaconis and Freedman (1986) in stating that, for infinite-

dimensional problems, Bayesian methods are not always guaranteed to find the right answer; such

guarantees can only be provided by considering the problem at hand.

We might ask, however, if our framework can also be improved. Our upper bounds on conver-

gence were established using naive algorithms, which in practice would prove inefficient. If a so-

phisticated algorithm fails where a naive one succeeds, then the sophisticated algorithm is certainly

at fault; we might, however, prefer methods of evaluation which do not consider naive algorithms

so successful.

Vazquez and Bect (2010) and Grunewalder et al. (2010) consider a more Bayesian formulation

of the problem, where the unknown function f is distributed according to the prior π, but this

approach can prove restrictive: as we saw in Section 3.3, placing too much faith in the prior may

exclude functions of interest. Further, Grunewalder et al. find the same issues are present also within

the Bayesian framework.

A more interesting approach is given by the continuum-armed-bandit problem (Srinivas et al.,

2010, and references therein). Here the goal is to minimize the cumulative regret,

Rn :=
n

∑
i=1

( f (xi)−min f ),

in general observing the function f under noise. Algorithms controlling the cumulative regret at rate

rn also solve the optimization problem, at rate rn/n (Bubeck et al., 2009, §3). The naive algorithms

above, however, have poor cumulative regret. We might, then, consider the cumulative regret to be

a better measure of performance, but this approach too has limitations. Firstly, the cumulative regret
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is necessarily increasing, so cannot establish rates of optimization faster than n−1. (This is not an

issue under noise, where typically rn = Ω(n1/2), see Kleinberg and Slivkins, 2010.) Secondly, if our

goal is optimization, then minimizing the regret, a cost we do not incur, may obscure the problem

at hand.

Bubeck et al. (2010) study this problem with the additional assumption that f has finitely many

minima, and is, say, quadratic in a neighbourhood of each. This assumption may suffice in practice,

and allows the authors to obtain impressive rates of convergence. For optimization, however, a

further weakness is that these rates hold only once the algorithm has found a basin of attraction;

they thus measure local, rather than global, performance. It may be that convergence rates alone are

not sufficient to capture the performance of a global optimization algorithm, and the time taken to

find a basin of attraction is more relevant. In any case, the choice of an appropriate framework to

measure performance in global optimization merits further study.

Finally, we should also ask how to choose the smoothness parameter ν (or the equivalent pa-

rameter in similar algorithms). Van der Vaart and van Zanten (2009) show that Bayesian Gaussian-

process models can, in some contexts, automatically adapt to the smoothness of an unknown func-

tion f . Their technique requires, however, that the estimated length-scales θ̂n to tend to 0, posing

both practical and theoretical challenges. The question of how best to optimize functions of un-

known smoothness remains open.
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Appendix A. Proofs

We now prove the results in Section 3.

A.1 Reproducing-Kernel Hilbert Spaces

Proof of Lemma 1. Let V be the space of functions described, and W be the closed real subspace of

Hermitian functions in L2(Rd , K̂−1). We will show f 7→ f̂ is an isomorphism V → W , so we may

equivalently work with W . Given f̂ ∈W , by Cauchy-Schwarz and Bochner’s theorem,

∫
| f̂ | ≤

(∫
K̂

)1/2(∫
| f̂ |2/K̂

)1/2

< ∞,

and as ‖K̂‖∞ ≤ ‖K‖1, ∫
| f̂ |2 ≤ ‖K̂‖∞

∫
| f̂ |2/K̂ < ∞,

so f̂ ∈ L1 ∩L2. f̂ is thus the Fourier transform of a real continuous f ∈ L2, satisfying the Fourier

inversion formula everywhere.
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f 7→ f̂ is hence an isomorphism V →W . It remains to show that V =H (Rd). W is complete, so

V is. Further, E(Rd)⊂V , and by Fourier inversion each f ∈V satisfies the reproducing property,

f (x) =
∫

e2πi〈x,ξ〉 f̂ (ξ)dξ =
∫

f̂ (ξ)k̂x(ξ)
K̂(ξ)

dξ = 〈 f ,kx〉,

so H (Rd) is a closed subspace of V . Given f ∈ H (Rd)⊥, f (x) = 〈 f ,kx〉 = 0 for all x, so f = 0.

Thus V =H (Rd).

Proof of Lemma 3. By Lemma 1, the norm on Hθ(R
d) is

‖ f‖2
Hθ(Rd) =

∫ | f̂ (ξ)|2

K̂θ(ξ)
dξ,

and Kθ has Fourier transform

K̂θ(ξ) =
K̂(ξ1/θ1, . . . ,ξd/θd)

∏d
i=1 θi

.

If ν < ∞, by assumption K̂(ξ) = k̂(‖ξ‖), for a finite non-increasing function k̂ satisfying k̂(‖ξ‖) =
Θ(‖ξ‖−2ν−d) as ξ → ∞. Hence

C(1+‖ξ‖2)−(ν+d/2) ≤ K̂θ(ξ)≤C′(1+‖ξ‖2)−(ν+d/2),

for constants C,C′ > 0, and we obtain that Hθ(R
d) is equivalent to the Sobolev space Hν+d/2(Rd).

From Lemma 2, Hθ(D) is given by the restriction of functions in Hθ(R
d); as D is Lipschitz, the

same is true of Hν+d/2. Hθ(D) is thus equivalent to Hν+d/2(D). Finally, functions in Hθ(D̄) are

continuous, so uniquely identified by their restriction to D, and

Hθ(D̄)≃Hθ(D)≃ Hν+d/2(D).

If ν = ∞, by a similar argument Hθ(D̄) is continuously embedded in all Hs(D).

From Lemma 1, we can derive results on the behaviour of ‖ f‖Hθ(S)
as θ varies. For small θ, we

obtain the following result.

Lemma 4. If f ∈Hθ(S), then f ∈Hθ′(S) for all 0 < θ′ ≤ θ, and

‖ f‖2
Hθ′ (S)

≤
(

d

∏
i=1

θi/θ′i

)
‖ f‖2

Hθ(S)
.

Proof. Let C = ∏d
i=1(θ′i/θi). As K̂ is isotropic and radially non-increasing,

K̂θ′(ξ) =CK̂θ((θ′1/θ1)ξ1, . . . ,(θ′d/θd)ξd)≥CK̂θ(ξ).

Given f ∈Hθ(S), let g ∈Hθ(R
d) be its minimum norm extension, as in Lemma 2. By Lemma 1,

‖ f‖2
Hθ′ (S)

≤ ‖g‖2
Hθ′ (R

d) =
∫ |ĝ|2

K̂θ′
≤

∫ |ĝ|2

CK̂θ
=C−1‖ f‖2

Hθ(S)
.
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Likewise, for large θ, we obtain the following.

Lemma 5. If ν < ∞, f ∈Hθ(S), then f ∈Htθ(S) for t ≥ 1, and

‖ f‖2
Htθ(S)

≤C′′t2ν‖ f‖2
Hθ(S)

,

for a C′′ > 0 depending only on K and θ.

Proof. As in the proof of Lemma 3, we have constants C,C′ > 0 such that

C(1+‖ξ‖2)−(ν+d/2) ≤ K̂θ(ξ)≤C′(1+‖ξ‖2)−(ν+d/2).

Thus for t ≥ 1,

K̂tθ(ξ) = tdK̂θ(tξ)≥Ctd(1+ t2‖ξ‖2)−(ν+d/2)

≥Ct−2ν(1+‖ξ‖2)−(ν+d/2)

≥CC′−1t−2νK̂θ(ξ),

and we may argue as in the previous lemma.

We can also describe the posterior distribution of f in terms of Hθ(S); as a consequence, we

may deduce Corollary 1.

Lemma 6. Suppose f (x) = µ+g(x), g ∈Hθ(S).

(i) f̂n(x;θ) = µ̂n + ĝn(x) solves the optimization problem

minimize ‖ĝ‖2
Hθ(S)

, subject to µ̂+ ĝ(xi) = zi, 1 ≤ i ≤ n,

with minimum value R̂2
n(θ).

(ii) The prediction error satisfies

| f (x)− f̂n(x;θ)| ≤ sn(x;θ)‖g‖Hθ(S)

with equality for some g ∈Hθ(S).

Proof.

(i) Let W = span(kx1
, . . . ,kxn

), and write ĝ = ĝ‖+ ĝ⊥ for ĝ‖ ∈W , ĝ⊥ ∈W⊥. ĝ⊥(xi) = 〈ĝ⊥,kxi
〉=

0, so ĝ⊥ affects the optimization only through ‖ĝ‖. The minimal ĝ thus has ĝ⊥ = 0, so

ĝ = ∑n
i=1 λikxi

. The problem then becomes

minimize λTVλ, subject to µ̂1+Vλ = z.

The solution is given by (4) and (5), with value (7).

(ii) By symmetry, the prediction error does not depend on µ, so we may take µ = 0. Then

f (x)− f̂n(x;θ) = g(x)− (µ̂n + ĝn(x)) = 〈g,en,x〉,
for en,x = kx −∑n

i=1 λikxi
, and

λ =
V−11

1TV−11
+

(
I − V−11

1TV−11
1T

)
V−1v.

Now, ‖en,x‖2
Hθ(S)

= s2
n(x;θ), as given by (6); this is a consequence of Loève’s isometry, but is

easily verified algebraically. The result then follows by Cauchy-Schwarz.
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A.2 Fixed Parameters

Proof of Theorem 1. We first establish the lower bound. Suppose we have 2n functions ψm with

disjoint supports. We will argue that, given n observations, we cannot distinguish between all the

ψm, and thus cannot accurately pick a minimum x∗n.

To begin with, assume X = [0,1]d . Let ψ : Rd → [0,1] be a C∞ function, supported inside X and

with minimum -1. By Lemma 3, ψ ∈ Hθ(R
d). Fix k ∈ N, and set n = (2k)d/2. For vectors m ∈

{0, . . . ,2k−1}d , construct functions ψm(x) =C(2k)−νψ(2kx−m), where C > 0 is to be determined.

ψm is given by a translation and scaling of ψ, so by Lemmas 1, 2 and 5, for some C′ > 0,

‖ψm‖Hθ(X) ≤ ‖ψm‖Hθ(Rd) =C(2k)−ν‖ψ‖H2kθ(Rd) ≤CC′‖ψ‖Hθ(Rd).

Set C = R/C′‖ψ‖Hθ(Rd), so that ‖ψm‖Hθ(X) ≤ R for all m and k.

Suppose f = 0, and let xn and x∗n be chosen by any valid strategy u. Set χ = {x1, . . . ,xn−1,x
∗
n−1},

and let Am be the event that ψm(x) = 0 for all x ∈ χ. There are n points in χ, and the 2n functions

ψm have disjoint support, so ∑m I(Am)≥ n. Thus

∑
m

P
u
0(Am) = E

u
0

[
∑
m

I(Am)

]
≥ n,

and we have some fixed m, depending only on u, for which P
u
0(Am)≥ 1

2
. On the event Am,

ψm(x
∗
n−1)−minψm =C(2k)−ν,

but on that event, u cannot distinguish between 0 and ψm before time n, so

C−1(2k)ν
E

u
ψm
[ f (x∗n−1)−min f ]≥ P

u
ψm
(Am) = P

u
0(Am)≥ 1

2
.

As the minimax loss is non-increasing in n, for (2(k−1))d/2 ≤ n < (2k)d/2 we conclude

inf
u

Ln(u,Hθ(X),R)≥ inf
u

L(2k)d/2−1(u,Hθ(X),R)

≥ inf
u

sup
m

E
u
ψm

[
f
(

x∗(2k)d/2−1

)
−min f

]

≥ 1
2
C(2k)−ν = Ω(n−ν/d).

For general X having non-empty interior, we can find a hypercube S = x0 +[0,ε]d ⊆ X , with ε > 0.

We may then proceed as above, picking functions ψm supported inside S.

For the upper bound, consider a strategy u choosing a fixed sequence xn, independent of the

zn. Fit a radial basis function interpolant f̂n to the data, and pick x∗n to minimize f̂n. Then if x∗

minimizes f ,

f (x∗n)− f (x∗)≤ f (x∗n)− f̂n(x
∗
n)+ f̂n(x

∗)− f (x∗)

≤ 2‖ f̂n − f‖∞,

so the loss is bounded by the error in f̂n.

From results in Narcowich et al. (2003, §6) and Wendland (2005, §11.5), for suitable radial

basis functions the error is uniformly bounded by

sup
‖ f‖Hθ(X)≤R

‖ f̂n − f‖∞ = O(h−ν
n ),
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where the mesh norm

hn := sup
x∈X

n

min
i=1

‖x− xi‖.

(For ν 6∈ N, this result is given by Narcowich et al. for the radial basis function Kν, which is ν-

Hölder at 0 by Abramowitz and Stegun, 1965, §9.6; for ν ∈ N, the result is given by Wendland for

thin-plate splines.) As X is bounded, we may choose the xn so that hn = O(n−1/d), giving

Ln(u,Hθ(X),R) = O(n−ν/d).

To prove Theorem 2, we first show that some observations zn will be well-predicted by past

data.

Lemma 7. Set

β :=

{
α, ν ≤ 1,

0, ν > 1.

Given θ∈R
d
+, there is a constant C′ > 0 depending only on X, K and θ which satisfies the following.

For any k ∈ N, and sequences xn ∈ X, θn ≥ θ, the inequality

sn(xn+1;θn)≥C′k−(ν∧1)/d(logk)β

holds for at most k distinct n.

Proof. We first show that the posterior variance s2
n is bounded by the distance to the nearest design

point. Let πn denote the prior with variance σ2 = 1, and length-scales θn. Then for any i ≤ n, as

f̂n(x;θn) = Eπn
[ f (x) | Fn],

s2
n(x;θn) = Eπn

[( f (x)− f̂n(x;θn))
2 | Fn]

= Eπn
[( f (x)− f (xi))

2 − ( f (xi)− f̂n(x;θn))
2 | Fn]

≤ Eπn
[( f (x)− f (xi))

2 | Fn]

= 2(1−Kθn
(x− xi)).

If ν ≤ 1
2
, then by assumption

|K(x)−K(0)|= O
(
‖x‖2ν(− log‖x‖)2α

)

as x → 0. If ν > 1
2
, then K is differentiable, so as K is symmetric, ∇ K(0) = 0. If further ν ≤ 1, then

|K(x)−K(0)|= |K(x)−K(0)− x · ∇ K(0)|= O
(
‖x‖2ν(− log‖x‖)2α

)
.

Similarly, if ν > 1, then K is C2, so

|K(x)−K(0)|= |K(x)−K(0)− x · ∇ K(0)|= O(‖x‖2).

We may thus conclude

|1−K(x)|= |K(x)−K(0)|= O
(
‖x‖2(ν∧1)(− log‖x‖)2β

)
,
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and

s2
n(x;θn)≤C2‖x− xi‖2(ν∧1)(− log‖x− xi‖)2β,

for a constant C > 0 depending only on X , K and θ.

We next show that most design points xn+1 are close to a previous xi. X is bounded, so can be

covered by k balls of radius O(k−1/d). If xn+1 lies in a ball containing some earlier point xi, i ≤ n,

then we may conclude

s2
n(xn+1;θn)≤C′2k−2(ν∧1)/d(logk)2β,

for a constant C′ > 0 depending only on X , K and θ. Hence as there are k balls, at most k points

xn+1 can satisfy

sn(xn+1;θn)≥C′k−(ν∧1)/d(logk)β.

Next, we provide bounds on the expected improvement when f lies in the RKHS.

Lemma 8. Let ‖ f‖Hθ(X) ≤ R. For x ∈ X, n ∈ N, set I = ( f (x∗n)− f (x))+, and s = sn(x;θ). Then for

τ(x) := xΦ(x)+φ(x),

we have

max

(
I −Rs,

τ(−R/σ)
τ(R/σ)

I

)
≤ EIn(x;π)≤ I +(R+σ)s.

Proof. If s = 0, then by Lemma 6, f̂n(x;θ) = f (x), so EIn(x;π) = I, and the result is trivial. Suppose

s > 0, and set t = ( f (x∗n)− f (x))/s, u = ( f (x∗n)− f̂n(x;θ))/s. From (8) and (9),

EIn(x;π) = σsτ(u/σ),

and by Lemma 6, |u− t| ≤ R. As τ′(z) = Φ(z) ∈ [0,1], τ is non-decreasing, and τ(z) ≤ 1+ z for

z ≥ 0. Hence

EIn(x;π)≤ σsτ
(

t++R

σ

)
≤ σs

(
t++R

σ
+1

)
= I +(R+σ)s.

If I = 0, then as EI is the expectation of a non-negative quantity, EI ≥ 0, and the lower bounds

are trivial. Suppose I > 0. Then as EI ≥ 0, τ(z)≥ 0 for all z, and τ(z) = z+ τ(−z)≥ z. Thus

EIn(x;π)≥ σsτ
(

t −R

σ

)
≥ σs

(
t −R

σ

)
= I −Rs.

Also, as τ is increasing,

EIn(x;π)≥ στ
(−R

σ

)
s.

Combining these bounds, and eliminating s, we obtain

EIn(x;π)≥ στ(−R/σ)
R+στ(−R/σ)

I =
τ(−R/σ)
τ(R/σ)

I.

We may now prove the theorem. We will use the above bounds to show that there must be times

nk when the expected improvement is low, and thus f (x∗nk
) is close to min f .
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Proof of Theorem 2. From Lemma 7 there exists C > 0, depending on X , K and θ, such that for any

sequence xn ∈ X and k ∈ N, the inequality

sn(xn+1;θ)>Ck−(ν∧1)/d(logk)β

holds at most k times. Furthermore, z∗n − z∗n+1 ≥ 0, and for ‖ f‖Hθ(X) ≤ R,

∑
n

z∗n − z∗n+1 ≤ z∗1 −min f ≤ 2‖ f‖∞ ≤ 2R,

so z∗n − z∗n+1 > 2Rk−1 at most k times. Since z∗n − f (xn+1)≤ z∗n − z∗n+1, we have also z∗n − f (xn+1)>

2Rk−1 at most k times. Thus there is a time nk, k≤ nk ≤ 3k, for which snk
(xnk+1;θ)≤Ck−(ν∧1)/d(logk)β

and z∗nk
− f (xnk+1)≤ 2Rk−1.

Let f have minimum z∗ at x∗. For k large, xnk+1 will have been chosen by expected improvement

(rather than being an initial design point, chosen at random). Then as z∗n is non-increasing in n, for

3k ≤ n < 3(k+1) we have by Lemma 8,

z∗n − z∗ ≤ z∗nk
− z∗

≤ τ(R/σ)
τ(−R/σ)

EInk
(x∗;π)

≤ τ(R/σ)
τ(−R/σ)

EInk
(xnk+1;π)

≤ τ(R/σ)
τ(−R/σ)

(
2Rk−1 +C(R+σ)k−(ν∧1)/d(logk)β

)
.

This bound is uniform in f with ‖ f‖Hθ(X) ≤ R, so we obtain

Ln(EI(π),Hθ(X),R) = O(n−(ν∧1)/d(logn)β).

A.3 Estimated Parameters

To prove Theorem 3, we first establish lower bounds on the posterior variance.

Lemma 9. Given θL,θU ∈ R
d
+, pick sequences xn ∈ X, θL ≤ θn ≤ θU . Then for open S ⊂ X,

sup
x∈S

sn(x;θn) = Ω(n−ν/d),

uniformly in the sequences xn, θn.

Proof. S is open, so contains a hypercube T . For k ∈ N, let n = 1
2
(2k)d , and construct 2n functions

ψm on T with ‖ψm‖HθU (X) ≤ 1, as in the proof of Theorem 1. Let C2 = ∏d
i=1(θU

i /θL
i ); then by

Lemma 4, ‖ψm‖Hθn (X) ≤C.

Given n design points x1, . . . ,xn, there must be some ψm such that ψm(xi) = 0, 1 ≤ i ≤ n. By

Lemma 6, the posterior mean of ψm given these observations is the zero function. Thus for x ∈ T

minimizing ψm,

sn(x;θn)≥C−1sn(x;θn)‖ψm‖Hθn (X) ≥C−1|ψm(x)−0|= Ω(k−ν).

As sn(x;θ) is non-increasing in n, for 1
2
(2(k−1))d < n ≤ 1

2
(2k)d we obtain

sup
x∈S

sn(x;θn)≥ sup
x∈S

s 1
2
(2k)d (x;θn) = Ω(k−ν) = Ω(n−ν/d).
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Next, we bound the expected improvement when prior parameters are estimated by maximum

likelihood.

Lemma 10. Let ‖ f‖HθU (X) ≤ R, xn,yn ∈ X. Set In(x) = z∗n − f (x), sn(x) = sn(x; θ̂n), and tn(x) =

In(x)/sn(x). Suppose:

(i) for some i < j, zi 6= z j;

(ii) for some Tn →−∞, tn(xn+1)≤ Tn whenever sn(xn+1)> 0;

(iii) In(yn+1)≥ 0; and

(iv) for some C > 0, sn(yn+1)≥ e−C/cn .

Then for π̂n as in Definition 2, eventually EIn(xn+1; π̂n)< EIn(yn+1; π̂n). If the conditions hold on a

subsequence, so does the conclusion.

Proof. Let R̂2
n(θ) be given by (7), and set R̂2

n = R̂2
n(θ̂n). For n ≥ j, R̂2

n > 0, and by Lemma 4 and

Corollary 1,

R̂2
n ≤ ‖ f‖2

Hθ̂n
(X) ≤ S2 = R2

d

∏
i=1

(θU
i /θL

i ).

Thus 0 < σ̂2
n ≤ S2cn. Then if sn(x)> 0, for some |un(x)− tn(x)| ≤ S,

EIn(x; π̂n) = σ̂nsn(x)τ(un(x)/σ̂n),

as in the proof of Lemma 8.

If sn(xn+1) = 0, then xn+1 ∈ {x1, . . . ,xn}, so

EIn(xn+1; π̂n) = 0 < EIn(yn+1; π̂n).

When sn(xn+1)> 0, as τ is increasing we may upper bound EIn(xn+1; π̂n) using un(xn+1)≤ Tn +S,

and lower bound EIn(yn+1; π̂n) using un(yn+1)≥−S. Since sn(xn+1)≤ 1, and τ(x) = Θ(x−2e−x2/2)
as x →−∞ (Abramowitz and Stegun, 1965, §7.1),

EIn(xn+1; π̂n)

EIn(yn+1; π̂n)
≤ τ((Tn +S)/σ̂n)

e−C/cnτ(−S/σ̂n)

= O
(
(Tn +S)−2eC/cn−(T 2

n +2STn)/2σ̂2
n

)

= O
(
(Tn +S)−2e−(T 2

n +2STn−2CS2)/2S2cn

)

= o(1).

If the conditions hold on a subsequence, we may similarly argue along that subsequence.

Finally, we will require the following technical lemma.

Lemma 11. Let x1, . . . ,xn be random variables taking values in R
d . Given open S ⊆R

d , there exist

open U ⊆ S for which P(
⋃n

i=1{xi ∈U}) is arbitrarily small.
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Proof. Given ε > 0, fix m ≥ n/ε, and pick disjoint open sets U1, . . . ,Um ⊂ S. Then

m

∑
j=1

E[#{xi ∈U j}]≤ E[#{xi ∈ R
d}] = n,

so there exists U j with

P

(⋃
i

{xi ∈U j}
)

≤ E[#{xi ∈U j}]≤ n/m ≤ ε.

We may now prove the theorem. We will construct a function f on which the EI(π̂) strategy

never observes within a region W . We may then construct a function g, agreeing with f except on

W , but having different minimum. As the strategy cannot distinguish between f and g, it cannot

successfully find the minimum of both.

Proof of Theorem 3. Let the EI(π̂) strategy choose initial design points x1, . . . ,xk, independently of

f . Given ε > 0, by Lemma 11 there exists open U0 ⊆ X for which P
EI(π̂)(x1, . . . ,xk ∈ U0) ≤ ε; we

may choose U0 so that V0 =X \U0 has non-empty interior. Pick open U1 such that V1 = Ū1 ⊂U0, and

set f to be a C∞ function, 0 on V0, 1 on V1, and everywhere non-negative. By Lemma 1, f ∈HθU (X).
We work conditional on the event A, having probability at least 1− ε, that z∗k = 0, and thus

z∗n = 0 for all n ≥ k. Suppose xn ∈ V1 infinitely often, so the zn are not all equal. By Lemma 7,

sn(xn+1; θ̂n)→ 0, so on a subsequence with xn+1 ∈V1, we have

tn = (z∗n − f (xn+1))/sn(xn+1; θ̂n) =−sn(xn+1; θ̂n)
−1 →−∞

whenever sn(xn+1; θ̂n) > 0. However, by Lemma 9, there are points yn ∈ V0 with z∗n − f (yn+1) =
0, and sn(yn+1; θ̂n) = Ω(n−ν/d). Hence by Lemma 10, EIn(xn+1; π̂n) < EIn(yn+1; π̂n) for some n,

contradicting the definition of xn+1.

Hence, on A, there is a random variable T taking values in N, for which n > T =⇒ xn 6∈ V1.

Hence there exists a constant t ∈ N for which the event B = A∩{T ≤ t} has P
EI(π̂)
f -probability at

least 1−2ε. By Lemma 11, we thus have an open set W ⊂V1 for which the event

C = B∩{xn 6∈W : n ∈ N}= B∩{xn 6∈W : n ≤ t}

has P
EI(π̂)
f -probability at least 1−3ε.

Construct a smooth function g by adding to f a C∞ function which is 0 outside W , and has

minimum −2. Then ming =−1, but on the event C, EI(π̂) cannot distinguish between f and g, and

g(x∗n)≥ 0. Thus for δ= 1,

P
EI(π̂)
g

(
inf

n
g(x∗n)−ming ≥ δ

)
≥ P

EI(π̂)
g (C) = P

EI(π̂)
f (C)≥ 1−3ε.

As the behaviour of EI(π̂) is invariant under rescaling, we may scale g to have norm ‖g‖Hθ(X) ≤ R,

and the above remains true for some δ> 0.

Proof of Theorem 4. As in the proof of Theorem 2, we will show there are times nk when the ex-

pected improvement is small, so f (xnk
) must be close to the minimum. First, however, we must

control the estimated parameters σ̂2
n, θ̂n.
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If the zn are all equal, then by assumption the xn are dense in X , so f is constant, and the result

is trivial. Suppose the zn are not all equal, and let T be a random variable satisfying zT 6= zi for

some i < T . Set U = infθL≤θ≤θU R̂T (θ). R̂T (θ) is a continuous positive function, so U > 0. Let

S2 = R2 ∏d
i=1(θU

i /θL
i ). By Lemma 4, ‖ f‖Hθ̂n

(X) ≤ S, so by Corollary 1, for n ≥ T ,

U ≤ R̂T (θ̂n)≤ σ̂n ≤ ‖ f‖Hθ̂n
(X) ≤ S.

As in the proof of Theorem 2, we have a constant C > 0, and some nk, k ≤ nk ≤ 3k, for which

z∗nk
− f (xnk+1) ≤ 2Rk−1 and snk

(xnk+1; θ̂nk
) ≤ Ck−α(logk)β. Then for k ≥ T , 3k ≤ n < 3(k + 1),

arguing as in Theorem 2 we obtain

z∗n − z∗ ≤ z∗nk
− z∗

≤ τ(S/σ̂nk
)

τ(−S/σ̂nk
)

(
2Rk−1 +C(S+ σ̂nk

)k−(ν∧1)/d(logk)β
)

≤ τ(S/U)

τ(−S/U)

(
2Rk−1 +2CSk−(ν∧1)/d(logk)β

)
.

We thus have a random variable C′ satisfying z∗n − z∗ ≤C′n−(ν∧1)/d(logn)β for all n, and the result

follows.

A.4 Near-Optimal Rates

To prove Theorem 5, we first show that the points chosen at random will be quasi-uniform in X .

Lemma 12. Let xn be i.i.d. random variables, distributed uniformly over X, and define their mesh

norm,

hn := sup
x∈X

n

min
i=1

‖x− xi‖.

For any γ> 0, there exists C > 0 such that

P(hn >C(n/ logn)−1/d) = O(n−γ).

Proof. We will partition X into n regions of size O(n−1/d), and show that with high probability we

will place an xi in each one. Then every point x will be close to an xi, and the mesh norm will be

small.

Suppose X = [0,1]d , fix k ∈ N, and divide X into n = kd sub-cubes Xm = 1
k
(m+ [0,1]d), for

m ∈ {0, . . . ,k−1}d . Let Im be the indicator function of the event

{xi 6∈ Xm : 1 ≤ i ≤ ⌊γn logn⌋},

and define

µn = E

[
∑
m

Im

]
= nE[I0] = n(1−1/n)⌊γn logn⌋ ∼ ne−γlogn = n−(γ−1).

For n large, µn ≤ 1, so by the generalized Chernoff bound of Panconesi and Srinivasan (1997, §3.1),

P

(
∑
m

Im ≥ 1

)
≤
(

e(µ
−1
n −1)

µ
−µ−1

n
n

)µn

≤ eµn ∼ en−(γ−1).

2900



CONVERGENCE RATES OF EFFICIENT GLOBAL OPTIMIZATION

On the event ∑m Im < 1, Im = 0 for all m. For any x ∈ X , we then have x ∈ Xm for some m, and

x j ∈ Xm for some 1 ≤ j ≤ ⌊γn logn⌋. Thus

⌊γn logn⌋
min
i=1

‖x− xi‖ ≤ ‖x− x j‖ ≤
√

dk−1.

As this bound is uniform in x, we obtain h⌊γn logn⌋ ≤
√

dk−1. Thus for n = kd ,

P(h⌊γn logn⌋ >
√

dk−1) = O(k−d(γ−1)),

and as hn is non-increasing in n, this bound holds also for kd ≤ n < (k + 1)d . By a change of

variables, we then obtain

P(hn >C(n/γlogn)−1/d) = O((n/γlogn)−(γ−1)),

and the result follows by choosing γ large. For general X , as X is bounded it can be partitioned into

n regions of measure Θ(n−1/d), so we may argue similarly.

We may now prove the theorem. We will show that the points xn must be quasi-uniform in X , so

posterior variances must be small. Then, as in the proofs of Theorems 2 and 4, we have times when

the expected improvement is small, so f (x∗n) is close to min f .

Proof of Theorem 5. First suppose ν < ∞. Let the EI( · ,ε) choose k initial design points indepen-

dent of f , and suppose n ≥ 2k. Let An be the event that ⌊ ε
4
n⌋ of the points xk+1, . . . ,xn are chosen

uniformly at random, so by a Chernoff bound,

P
EI( · ,ε)(Ac

n)≤ e−εn/16.

Let Bn be the event that one of the points xn+1, . . . ,x2n is chosen by expected improvement, so

P
EI( · ,ε)(Bc

n) = εn.

Finally, let Cn be the event that An and Bn occur, and further the mesh norm hn ≤C(n/ logn)−1/d , for

the constant C from Lemma 12. Set rn = (n/ logn)−ν/d(logn)α . Then by Lemma 12, since Cn ⊂ An,

P
EI( · ,ε)
f (Cc

n)≤C′rn,

for a constant C′ > 0 not depending on f .

Let EI( · ,ε) have prior πn at time n, with (fixed or estimated) parameters σn, θn. Suppose

‖ f‖HθU (X) ≤ R, and set S2 = R2 ∏d
i=1(θU

i /θL
i ), so by Lemma 4, ‖ f‖Hθn (X) ≤ S. If α = 0, then by

Narcowich et al. (2003, §6),

sup
x∈X

sn(x;θ) = O(M(θ)hν
n)

uniformly in θ, for M(θ) a continuous function of θ. Hence on the event Cn,

sup
x∈X

sn(x;θn)≤ sup
x∈X

sup
θL≤θ≤θU

sn(x;θ)≤C′′rn,

for a constant C′′ > 0 depending only on X , K, C, θL and θU . If α > 0, the same result holds by a

similar argument.
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On the event Cn, we have some xm chosen by expected improvement, n < m ≤ 2n. Let f have

minimum z∗ at x∗. Then by Lemma 8,

z∗m−1 − z∗ ≤ EIm−1(x
∗; ·)+C′′Srm−1

≤ EIm−1(xm; ·)+C′′Srm−1

≤ ( f (xm−1)− f (xm))
++C′′(2S+σm−1)rm−1

≤ z∗m−1 − z∗m +C′′Trn,

for a constant T > 0. (Under EI(π,ε), we have T = 2S+σ; otherwise σm−1 ≤ S by Corollary 1, so

T = 3S.) Thus, rearranging,

z∗2n − z∗ ≤ z∗m − z∗ ≤C′′Trn.

On the event Cc
n, we have z∗2n − z∗ ≤ 2‖ f‖∞ ≤ 2R, so

E
EI( · ,ε)
f [z∗2n+1 − z∗]≤ E

EI( · ,ε)
f [z∗2n − z∗]

≤ 2RP
EI( · ,ε)
f (Cc

n)+C′′Trn

≤ (2C′R+C′′T )rn.

As this bound is uniform in f with ‖ f‖HθU (X) ≤ R, the result follows. If instead ν = ∞, the above

argument holds for any ν < ∞.
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Jonas Močkus. On Bayesian methods for seeking the extremum. In Proc. IFIP Technical Confer-

ence, pages 400–404, Novosibirsk, Russia, 1974.

Francis J. Narcowich, Joseph D. Ward, and Holger Wendland. Refined error estimates for radial

basis function interpolation. Constr. Approx., 19(4):541–564, 2003.

Michael Osborne. Bayesian Gaussian processes for sequential prediction, optimisation and quadra-

ture. DPhil thesis, University of Oxford, Oxford, UK, 2010.

Alessandro Panconesi and Aravind Srinivasan. Randomized distributed edge coloring via an exten-

sion of the Chernoff-Hoeffding bounds. SIAM J. Comput., 26(2):350–368, 1997.

Panos M. Pardalos and H. Edwin Romeijn, editors. Handbook of Global Optimization, Volume

2. Nonconvex Optimization and its Applications. Kluwer Academic Publishers, Dordrecht, the

Netherlands, 2002.

Emanuel Parzen. Probability density functionals and reproducing kernel Hilbert spaces. In Proc.

Symposium on Time Series Analysis, pages 155–169, Providence, Rhode Island, 1963.

Carl E. Rasmussen and Christopher K. I. Williams. Gaussian Processes for Machine Learning.

MIT Press, Cambridge, Massachusetts, 2006.

2903



BULL

Thomas J. Santner, Brian J. Williams, and William I. Notz. The Design and Analysis of Computer

Experiments. Springer Series in Statistics. Springer, New York, 2003.

Niranjan Srinivas, Andreas Krause, Sham M. Kakade, and Matthias Seeger. Gaussian process op-

timization in the bandit setting: no regret and experimental design. In Proc. 27th International

Conference on Machine Learning (ICML ’10), Haifa, Israel, 2010.

Richard S. Sutton and Andrew G. Barto. Reinforcement Learning: an Introduction. MIT Press,

Cambridge, Massachusetts, 1998.

Luc Tartar. An Introduction to Sobolev Spaces and Interpolation Spaces, volume 3 of Lecture Notes

of the Unione Matematica Italiana. Springer, New York, 2007.

Aad W. van der Vaart and J. Harry van Zanten. Reproducing kernel Hilbert spaces of Gaussian

priors. In Pushing the Limits of Contemporary Statistics: Contributions in Honor of Jayanta K.

Ghosh, volume 3 of Institute of Mathematical Statistics Collections, pages 200–222. Institute of

Mathematical Statistics, Beachwood, Ohio, 2008.

Aad W. van der Vaart and J. Harry van Zanten. Adaptive Bayesian estimation using a Gaussian

random field with inverse gamma bandwidth. Ann. Statist., 37(5B):2655–2675, 2009.

Emmanuel Vazquez and Julien Bect. Convergence properties of the expected improvement algo-

rithm with fixed mean and covariance functions. J. Statist. Plann. Inference, 140(11):3088–3095,

2010.

Holger Wendland. Scattered Data Approximation. Cambridge Monographs on Applied and Com-

putational Mathematics. Cambridge University Press, Cambridge, UK, 2005.

2904


