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Abstract

This work deals with convergence theorems and bounds on the cost of several layout
measures for lattice graphs, random lattice graphs and sparse random geometric graphs.
For full square lattices, we give optimal layouts for the problems still open. Our conver-
gence theorems can be viewed as an analogue of the Beardwood, Halton and Hammersley
theorem for the Euclidian TSP on random points in the d-dimensional cube. As the
considered layout measures are non-subadditive, we use percolation theory to obtain our
results on random lattices and random geometric graphs. In particular, we deal with the
subcritical regimes on these class of graphs.

1 Introduction

Layout problems on graphs aim to find a linear ordering of the nodes of an input graph such
that a certain function is minimized. For the problems we consider below, finding an optimal
layout is NP-hard in general, and therefore it is natural to develop and analyze techniques
to obtain tight bounds on restricted instances. Graphs encoding circuits or grids are typical
instances of linear arrangement problems. We consider these instances as sparse graphs that
have clustering and geometric properties. For these classes of graphs, not much is known.
In this paper, we are concerned with lattice graphs, random instances of lattice graphs and
random geometric graphs. For most of the layout problems it is an open problem to find
exact or approximated polynomial time algorithms for lattice graphs different than the full
square lattice of side n and with n? points [9, 8, 7].

A graph is said to be a lattice graph if it is a node-induced subgraph of the infinite
lattice, that is, its vertex set is a subset of Z? and two vertices are connected whenever they

are at distance one. Percolation theory provides a framework to study lattice graphs in a
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probabilistic setting. We consider site percolation, where nodes from the infinite lattice are
selected with some probability p (selected nodes are called “open”). Let Cy be the set of all
open nodes connected by a path of open nodes to the origin. A basic question in percolation
theory is whether or not Cj can be infinite. Let 9(p) denote the probability that |Cy| = oo,
and set p. = inf{p : ¥(p) > 0}, the critical value of p. It is well-known that p. € (0.5,1) [6].
In this paper, we consider only subcritical limiting regimes p € (0, p.) in which all components
are almost surely finite. Results for supercritical regimes are derived in [4, 13]. In order to deal
with bounded graphs, we introduce the class of random lattice graphs with parameters m and
p denoted by L,,, that corresponds to the lattice graphs whose set of vertices are obtained
through the random selection of each element from {0, ..., m —1}2, chosen independently with
probability p.

A random geometric graph G(X,;ry,), with (r,) some chosen sequence of positive num-
bers, is defined by a set &, of n uniform and independently distributed points on [0, 1]? and
edges formed by joining any two different points at distance less or equal than r,. For an
infinite-volume analogue, let Py denote a homogeneous Poisson process on R? of intensity
A, and set Py o = Py U {0}. For n large, after appropriate scaling and centering at a ran-
domly chosen point of A),, the graph G(X),;r,) looks locally like G(P);1). We consider
a continuum site percolation process based on the Poisson process; let 5()\) be the proba-
bility that the added point at the origin lies in an infinite component of G(Py;1). Then
define the critical percolation A, as the infimum of {A > 0 : J(A) > 0}. It is well known [6]
that A. € (0,00). In this paper we shall deal with random geometric graphs satisfying the
condition lim,,_ m"g = ), for the subcritical regime \ < A..

Our layout problems are formally defined as follows. A layout ¢ on a graph G = (V, E)
is a one-to-one function ¢ : V — {1,...,n} with n = |V|. Given a graph G, a layout ¢ on G

and a number ¢ < n, let us define the sets:
L(i,p.G) ={u e V(G) : p(u) <1} and R(i, 0, G) ={u e V(G) : ¢(u) > i},
the measures:

0(i,p,G) = {uv € E(G) : u € L(i,p,G) ANv € R(i,p,G)},
(i, 0,G) ={u € L(i,p,G) : Fv e R(i,p,G) :uwv € E(G)},
Auv, o, G) = |p(u) — p(v)] where uwv € E(G),

and the problems:

e Minimum Linear Arrangement (MINLA): Given a graph G = (V, E), find
MINLA(G) = ming, >, - p AMuv, ¢, G) = min, 37", 0(i, 0, G).



e Minimum Cut Width (MINCuT): Given a graph G = (V| E), find

MINCUT(G) = min, max}_; (i, ¢, G).

e Vertex Separation (VERTSEP): Given a graph G = (V. E), find

MINVS(G) = ming, max}’_; 0(7, ¢, G).

e Minimum Sum Cut (MINSUMCUT): Given a graph G = (V, E), find
MINSC(G) = miny, >_1' 1 (4, ¢, G).

e Bisection (BISECTION): Given a graph G = (V, E), find
MINBIS(G) = miny, 0([n/2], ¢, G).

e Vertex Bisection (MINVERTBIS): Given a graph G = (V, E), find
MINVB(G) = min, 0(|n/2], ¢, G).

The defined problems have important applications in several different areas, see for
example [4]. With regard to their complexity, MINCUT and VERTSEP remain NP-complete
even when restricted to lattice graphs and geometric graphs [4]. For the remaining layout
problems the complexity on lattice graphs and geometric graphs is open.

In this paper, we first present optimal layouts for MINVS, MINVB, and MINSC on full
square lattices. Previously, the only known optimal layouts for these graphs were for MINCUT,
MINBIS and MINLA [7, 9, 8]. Results for the case of d-dimensional c-ary arrays (a generalization
of square lattices) on the BISECTION, MINCUT and MINLA problems are presented in [10].
On the other hand, [11] presents a dynamic programming algorithm to solve BISECTION
on lattice graphs without holes. Then, we consider general lattice graphs, and we present
upper bounds for several layout problems on any lattice graph. Afterwards, we move to a
randomized setting where we deal with random lattice and random geometric graphs. The
main result for these graphs can be viewed as an analogue of the celebrated Beardwood,
Halton and Hammersley theorem on the cost for the traveling salesman problem (TSP) on

random points distributed in [0, 1]%,

BHH Theorem [1]. Let X = {X;} be a sequence of independent and uniformly
distributed points in [0,1]?. Let MINTSP(n) denote the length of the optimal
solution of the T'SP among the first n points of X. Then, there exists a constant

B(d) such that MINTSP(n)/n(4=1/ converges to 5(d) almost surely as n — co.

A key property to prove BHH-like results is geometric subadditivity (see Chapter 3 of
[14]). This property does not hold for our layout problems, therefore we take a completely
different approach using percolation theory. Except for BISECTION and MINVERTBIS, one
property that all these problems share is monotonicity, that is, the optimal value on a sub-

graph is always less than or equal to the optimal value in the whole graph.
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Figure 1: Values of the vertex cut in the diagonal ordering ¢p.

2 Bounds for lattice graphs

We begin this section by characterizing the optimal layouts for some of the problems defined
in the previous section on square lattice graphs. Then we give some deterministic upper
bounds on the costs of the defined problems on finite subsets of the integer lattice Z2.

Each subset L of vertices in Z? is identified with a lattice graph, namely the maximal
subgraph of the 2-dimensional integer lattice with vertex set L. Let L, be the full n x n
square lattice graph. The next results concern the optimality of the diagonal ordering ¢p on
L,,. In this ordering, x = (z,y) precedes x' = (2, y’) whenever 2 +y < 2’ +4', and whenever
r+y=2a"+y and z < 2.

Let 1 < k < n? and x = (x,y) such that ¢p(x) = k. Define r € ZT as follows: If
z+y <n,thenr =xz+y—1, then we have r(r—1)/2 <k <r(r+1)/2 and é(k,pp, L) =r.
If x+y > n with z # n, then r = 2n — (z + y) + 1, and when = n then r = 2n — (z + y).
In this two last cases we have r(r —1)/2 < n? —k <r(r+1)/2 and §(k,op,L,) =7+ 1. In
particular, for all &, 6(k, ¢p, L,) < n. See Figure 1.

Proposition 1 (Vertex isoperimetric inequality). For any layout ¢ on L, and any k €

{1,...,n?}, we have 6(k, ¢, L) > §(k,op, Ly)-

Proof. Given ¢ and k, let A be the set L(k, ¢, L), and let 0, A be the number of boundary
elements of A, i.e. elements of A having neighbours in L, \A. Thus 0inA = 6(k, ¢, Ly).



Let A’ be the set in L, obtained by “pushing each vertical section of A down as far as
possible towards the z-axis”; more precisely, setting S;(A) = {j : (i,j) € A} fori € {1,...,n},
let

A" = Uieqn,npssiay20 {1 < {1, 1Si(A)]}-
Notice that |A’| = |A|, and it is not hard to check that 0;, A" < 9;,A.

Let A” be the set in L,, obtained by “pushing each horizontal section of A’ sideways
as far as possible towards the y-axis”, in an analogous manner to the construction of A’ from
A. Then |A"| = |A'] = |A], and 9;, A" < 0 A’ < OinA. Moreover, A" is a down-set, that is,
it has the property that for any x € A", all vertices of L, lying directly below or directly to
the left of x are in A”. Hence, without loss of generality, from now on we assume that A is
a down-set.

First suppose (1,n) ¢ A and (n,1) ¢ A. Choose the positive integer r so that r(r —
1)/2 <k <r(r+1)/2. Then there must be a point x = (z,y) € A with x+y > r+1. Choose
such a point x, having neighbours in L, \ A both to its right and above it. Then there is a
path of y or more boundary points of A from the bottom of the square to x, and another
path of 2 or more boundary points of A from the left of the square to x, and these paths do

not intersect each other except at x. Therefore
ko, Lp) =0pmA=y+zxz—1>r.

If r < n then we have 6(k,¢p,L,) = r < 0(k,p,Ly), while if » > n then we have
d(k,op,Ly) <n <d(k,p,Ly). Thus we get the inequality claimed.

Next suppose (1,n) € A and (n,1) € A. Choose the positive integer r so that r(r —
1)/2 < n? —k < r(r +1)/2. Then there must be a point x = (2,y) € L, \ A with (n + 1 —
x)+(n+1—y) >r+1, that is, t+y < 2n+1—r. Choose such a point x, having neighbours
in A both to its left and above it. Then there is a path of at least n —y 4+ 1 boundary points
of A from the top of the square to the point just to the left of x, and another path of at least
n —x + 1 boundary points of A from the right of the square to just below x, and these paths

do not intersect. Therefore
0(kyo,Lp) =0mA>2n—o—y+2>r+1.

If r < n then §(k,¢p,Ly) = r+1 < 6(k,,Ly,), while if » > n then §(k,pp,Ln) < n <
d(k, ¢, Ly). Thus in this case we have the inequality claimed.
Finally, consider the case when only one of the the corners (n,1) and (1,n) is in A. In

these cases we have 0i, A =n > 0(k, pp, Ly). O

The previous Proposition is a special case of Corollary 9 in [2], who in fact prove the

d-dimensional version for arbitrary d. We believe our proof for d = 2 is of interest by itself.



Theorem 1. For any n, ¢p is optimal for the VERTSEP, MINSUMCUT and MINVERTBIS
problems on (L;). Moreover, MINVS(L,) = MINVB(L,) = n and n 3MINsc(L,) — 2/3 as

n — Q.

Proof. The previous isoperimetric inequality yields the optimality of ¢p for the costs of
MINVS, MINSC and MINVB on L,. Also we get that MINVS(L,) = MINVB(L,) = n. To
compute the sum of the cuts for ¢p, consider for each point in the lattice the value of the
vertex cut produced by the diagonal ordering (see Figure 1), then arranging the sum by

points with the same vertex cut, we get

(n—1)

n n n
(L) = 30305+ 362+ 3 1= g+ o =
i=1 j=1 i=3 i=2
O
Lemma 1. For any lattice graph L with n vertices, and any m € {1,2,... ,n}, there is a

layout ¢ on L such that 8(m, ¢, L) < 23/2/n + 1.

Proof. We are looking for a subset S of L consisting of m vertices, such that there are at
most 23/2/n + 1 edges between S and L\S.

Let a > 0 be a constant, to be chosen later. For z € Z let S, ={y € Z : (z,y) € L}and
let V={x€Z:|Sy| > ay/n}. ForiecZ,let H; denote the half-space (—oo,i] x R. Set

ip =min{i € Z: |LN H;| > m}.
Consider the case igp ¢ V. Then define S to be a set of the form
§= LN (Hig—1 U {io} x (=00,7]))

with 7 chosen so that S has precisely m elements.

With this definition of S for iy ¢ V, the number of horizontal edges between S and
L\S is at most |S;, |, and hence is at most ay/n. There is at most one vertical edge between
S and L\S, so the number of edges from S to L\S is at most ay/n + 1 when ig ¢ V.

Now consider the other case ig € V. Let I = [i1, i2] be the largest integer interval which
includes ip and is contained in V. Theni; —1 ¢V, and ix +1 ¢ V. Also, as |V| < a 1/n,
i —i1 +1 < a”ly/n. We have

|LﬂHil_1| <m< |LﬂHl2|
For j € Z let T} = [i1,%2] x (=00, j]. Choose jy so that

|LN (Hiy 1 UTjo-1)| <m < [L0(Hiy 1 U T,



and let S be L N (Hj -1 UTjy—1 U ([i1, i3] x {jo})), with i3 € [i1,72] chosen so that S has
precisely m elements.

We estimate the number of edges between S and L\S for the case ig € V. Since
i1 —1¢V,and ia + 1 ¢ V, the number of horizontal edges between S and L\S is at most
2ay/n+1. Also, since 1o —i1+1 < ail\/ﬁ, the number of vertical edges between S and L\S is
at most «~1y/n. Combining these estimates we find that there are at most (2a+a~1)y/n+1
edges between S and L\S, whether or not ig € V.

The minimum value of 2o + o ! (achieved at a = 2-1/2) is 21/2. Setting o = 271/2 in

the above definition, we have the partition required. ]

Using Lemma 1, taking m = |n/2| and the fact that MINVB(L) < MINBIS(L), we get

the following result.

Theorem 2. For any lattice graph L with n vertices MINBIS(L) < 23/2,/n+41 and MINVB(L) <
23/2\/n + 1.

For the MINCUT problem the bound changes in the constant,
Theorem 3. For any lattice graph L with n vertices, MINCUT(L) < 14y/n.

Proof. First suppose we have n = 2™ for an integer m. The proof is based on recursive
bisection, with the cut size guaranteed by Lemma 1. Let f(m) denote the maximum MINCUT

cost of all lattice graphs with 2™ vertices; then f(m) satisfies the following recurrence:

fim) < 0 if m=0,
m
~123/22m2 £ 14 f(m—1)  otherwise.

Then, solving the recurrence, we get

<Y (@202 1) =422 + 1272 1) +m.
j=1

We can drop the assumption that n = 2™, by taking m so that n < 2™ < 2n, and adding
extra points until one has a set of size 2”*. By monotonicity this process does not reduce the

MINCUT cost, so

MINCUT(L) < 2%/2(2Y2 + 1)/n + (logy(n) + 1) — 4(2Y/2 + 1)
< 13.657y/n + logy(n) — 8.

But notice that for any z > 0 we have (log,(z) — 8)/y/x < 0.067; therefore the above bound
for MINCUT(L) is at most 14y/n for all n. O



As a consequence of the previous theorem, and the fact that for any graph G, MINLA(G) <
n MINCUT(G), MINSC(G) < nMINVS(G), and MINVS(G) < MINCUT(G), we can extend the pre-

vious result to the remaining problems.

Corollary 1. For any lattice graph L with n vertices, MINVS(L) < 14y/n, MINLA(L) <
14n+/n and MINSC(L) < 14n\/n.

In the case of the full square lattice graphs with side n, the above upper bounds are

within a constant of their optimal costs.

3 Convergence results for random lattice graphs

Let us describe some basic concepts of site percolation for the lattice L,, with vertex set
Vi = ([0,m) NZ)2. Given p € (0,1), site percolation with parameter p on Ly, is obtained by
taking a random set of open vertices of V,,, with each vertex being open with probability p
independently of the others. Let L,,, be the subgraph of L,, obtained by taking all edges
between open vertices. We say that L, is a random lattice graph. Denote Pr), and E, the
probability and expectation with respect to the described process of site percolation with
parameter p. By a cluster we mean the set of vertices in any connected component of L, ;.
Let Cy denote the cluster in Ly, that includes (0,0) (possibly the empty set) and let C,
denote the cluster in £,, , that includes the point .

A similar site percolation process can be generated analogously on the infinite lattice
with vertex set Z? and edges between nearest neighbors. In the same way we can extend Pr,
and E, to this infinite process. Let us denote by Cy the cluster including the origin for site
percolation on Z2. It may be the case that Cj is empty. Notice that we can view the random
lattice graph as generated by a site percolation process on Z? and taking the open vertices
nV,,.

In this section we consider random lattice graphs generated by subcritical limiting
regimes (p < p), in which all clusters in the infinite process are almost surely finite. We be-
gin by giving bounds for the MINCUT and VERTSEP problems on the subcritical percolation

process on the lattice L.

Theorem 4. Assume 0 < p < p,, there exists constants 0 < ¢; < ¢z such that

) MINVS(Ly, p)  MINCUT(L,, )
lim Pr |c < = < == <o =1.
m—+00 [ b= Viegm T Viogm =

Proof. Recall that for any graph G, MINVS(G) < MINCUT(G). The MINCUT of a disconnected
graph is the maximum of the MINCUTs of its connected components. Hence, for any positive

constant c2,

Pr |MINCUT(L,,,) > ca @} =Pr [Uggevm {MINCUT(@C) > cz\/@”



By the site percolation version of Equation 5.7 in [6], there exists &« > 0 such that Pr [|Cy| > n] <
e~ *". Therefore by Theorem 3

Pr [MINCUT(zm,p) > ¢p4/log m} <Pr [uxevm{|@| > (c2/14)% logm}

<m?exp(—afca/14)* logm).

Choosing cs > 14,/2/a we get Pr [MINCUT(L,,) > c2v/Togm] — 0.

To get a lower bound for MINVS(Ly,;), let 0 > 0 and let T1,...,Tj:y) be disjoint
lattice subsquares of L,,, each of side | (dlogm)'/?|, where j(m) = [m/[(0 logm)/?]]2. Set
v =log(1/p) so that p = e~7. Let A; be the event that all sites in T are open. Then

Pr[4j] = exp(—|(§ logm)!/?|?) = m .

Hence, Pr {ﬂf(:T)AZC] < (1 —m %)M < exp(—m7%j(m)), which tends to zero provided 4
is chosen so that y0 < 2. As MINVS(L,,) = m by Theorem 1, we get

U™ A, € {MINVS (L p) > (5 logm) 2},
Taking ¢; = v/ we obtain the lower bound. U

Notice that the above theorem only gives an order of magnitude result for the minimal
cost and we do not have a convergence result. The order of magnitude is ©(y/log m), which
contrasts with the supercritical case p > p., for which MINVS(L,, ;) and MINCUT(L,,,) are
©(m) [13].

In the next lemma we prove that for subcritical site percolation with parameter p, the
expected ratio of the MINLA(Cy) and |Cp| is finite. We also give a similar result for the
MINSUMCUT problem. To cover the case Cy = (), we use the convention 0/0 = 0, throughout

the remainder of the paper.

Lemma 2. For any p € (0,p.),

MINSC(Cy)

[MINLA(CO)
g |Col

ol ]E(O,oo) and Ep[

] € (0, 00).
Proof. Let Ry = min{n : Cy C [—n,n]?}; then by considering the lexicographic ordering

3 3

of vertices one sees that MINSC(L,,) < m® and MINLA(L,,) < m

monotonicity gives us that MINsc(Cp) < (2Rp + 1)3 and MINLA(Cp) < (2R + 1)3. The

, which together with
statement of the lemma follows from the fact that Pr,[Ry > n| decays exponentially in n
(again, see chapter 5 of [6]). O

We use this lemma to state one of our main results, namely that the value of MINLA on

random lattices, divided by m?, converges in probability to a constant. Recall (see for example



[3]), that if {X,} is a sequence of random variables and let X be a random variable, X,, con-
verges in probability to X (X, RN X) if, for every e > 0 we have lim, o Pr[| X, — X| > ¢ =
0.

Theorem 5. Assume 0 < p < p,, then as m — oo

m

MINLA(Ly, ) Pr [MINLA(CO)] MINSC(Ly,p) Pr [MINSC(C@)]
A Emep) b | ——m e b | —

? |Col 2 |Col
Proof. Recall C, is the cluster including « for £, ;. Consider L, as being embedded in a

site percolation process on the infinite lattice Z2, with clusters in this latter process denoted
Cz. Then,

MINLA(Lpp) o Z MINLA(C.
m Gl
EVm
g MINLA (C, 2 MINLA(C,,) _ MINLA(Cy)
I TR DY < ol o ) W
zEVm TEVm

Using Theorem VII.6.9 from [5] and the Kolmogorov zero-one law,

2 Z MINLA(C! E)Ep [MINLA(C@)]‘

xeVn |CU|

Writing OV, for the set of 2 € V;, with lattice neighbors in Z2\V,,, we get

MINLA MINLA MINLA
—2 Z - (Cm) < 2m72 Z - (Cm)
m™? Y MINLA(C))
yEVm

By the proof of Lemma 2, E,[MINLA(C))] is finite and does not depend on y. Hence the mean
of the above expression tends to zero. The result for MINLA then follows from (1), and the

proof for MINSC is just the same. O

4 Convergence results for random geometric graphs

Geometric graphs are defined as follows: Let d > 2 be an integer and let ||-|| be a norm on R?.
Given a set X C R?, and given r > 0, let G(X;r) denote the graph with vertex set X’ and such
that ,y € X form an edge if and only if [|[z—y|| < rand x # y. Let X1, Xs,... be independent
and uniformly distributed on [0, 1]?, and let &, be the point process { X1, Xo,... , X, }. The
continuum percolation probability 5(A) is the probability that the added point at the origin
lies in an infinite component of G(Py;1). Set A, = inf{\ > 0 : J(A) > 0}. We deal with

random geometric graphs satisfying the condition lim, ,o, nr? = A, for X in the subcritical

10



regime. Under the probability measure Pr) with corresponding expectation Ey, let Cy be
the component of G(P) o; 1) which includes the origin.
First we deal with the behaviour of the BISECTION problem. Let A, = inf{\ > 0 :

¥(A) > 1/2}; the subcritical regime for BISECTION is given by A < AL.

Theorem 6. Suppose lim,, o n7d = X\ € (0,\.). Then as n — oo,
MINBIS(G (X, 77)) 540 and MINVB(G (X3 70)) RN

Proof. We need to show that with high probability, there is a subset W of X,,, of cardinality
| 5], with no edges between W and X, \W. Recall that by hypothesis J(N) < 1/2.

For k € N, set 1, = Pry[|Cy| = k], and note 7, > 0. Let N, (k) denote the number of
points of G(X,,;7y,) lying in clusters of size k.

Let pr(x) denote the probability that when adding a point z to a set of n — 1 uniformly
distributed points, the new point will be in a cluster of size k. Then,

E[N, (k)] = n/ pr(z)dx.

[0,1]¢

For z not on the boundary of [0,1]¢, we have that pj(z) — 7, so by the dominated conver-
gence theorem, n 'E[N,, (k)] — 7. To look at the variance, notice that since N, (k)(N, (k) —
1) is twice the number of pairs of points both in clusters of size k, if we denote by py, (z,y)
the probability that when inserting points at « and y into a set of n — 2 uniform points they

will both be in a cluster of size k, then
EIN,((Nu(t) 1) =nln=1) [ [ py(a,y)dady.
[0,1]¢ Jo,1)4

For points # and y not on the boundary with = # y, we have that py(z,y) —
(m)?, hence using again the dominated convergence theorem E[(N,(k)/n)?] — w2. So

Var [N, (k)/n] — 0, and by Chebyshev’s inequality we can conclude
n N, (k) 25 . (2)

As1 =5, m = 9(\) < 1/2, we can choose ki such that > k<, Tk > 1/2. This inequality
together with (2) implies that with probability tending to 1 as n tends to infinity,

> Nalk) < |5
k>ky

and N, (k) are non-zero for k =1,2,... k.
We generate a subset W of &, as follows. First take the union of all clusters of size

greater than k1. Then add clusters of size kj until there are none left. Then add clusters of

11



size k1 — 1 until there are none left. Continue in this way. At some point, having just added

a set of size i, we will have a set of size |5 | —m with 0 < m <. If m = 0, stop. If m >0
then add a cluster of size m and stop. This gives a set W C A}, of size ||, with no edges
connecting W to X,,\W, as desired. O

Analogous results to those in the previous Theorem also hold for a percolation process
in the lattice with p < pl, defined in the same way as \.. Next we shall prove that in the
subcritical case, the expected values of MINLA and MINSC on the induced graph on Cj are
finite.

Proposition 2. Let A < A.. Then
E)[MINLA(C))] € (0,00) and E)[MINsc(Cp)] € (0, 00).

Proof. Recall that for any graph G with n nodes, MINLA(G) < n® and MINSC(G) < n3. Hence
to prove the statement it is enough to show that Ey[|Cy|?] < co. To show this, let B(r) be

the ball of radius r centered at the origin and let
Pro(B(r)) = [{z of Pxo |« € B(r)}|.

Then for any m > 0, the event {|Cy| > m'/3} is contained in the union of the events
{Pro(B(mYED) > m1/3) and {diam(Cy) > m!/ (6D}, therefore using Boole’s inequality we
get

Pr[|Co| > m'/?] < P[Py o(B(mY D)) > m!/?] + Pr[diam(Cp) > m*/ (6],

The first term in the right hand side is summable in m by standard estimates of the

Poisson distribution. The second term is summable in m by Lemma 2 in [12]. Hence

Z Pr[|Co|* > m] < oo

m>1

and the statement follows.

Next we prove a technical lemma that will be needed later.

Lemma 3. The functions A — E, [M} and A — E\ [M} are continuous in \

|Col |Col
on (0, A.).

Proof. We give the proof for the MINLA case, the proof for the MINSC is similar. Define
coupled versions of the Poisson process Py, A > 0, in the following standard way. Let P be

a Poisson process on R? x [0,00) of rate 1, and let P, consist of the projections onto the
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first d coordinates of the points of P N (R? x [0, A]). Using this coupling, write Cp()\) for the
component including the origin of C'(P, U {0};1).

Suppose (Ay) is a sequence with A\, — A € (0, \;). With this coupling, with probability
one it is the case that for all large enough n the components Cy(A,) and Cy(A) are identical.

Hence by the dominated convergence theorem,
E, [MINLA(Co(An))/|Co(An)[] = Ex[MINLA(Co(A))/[Co(M)]].
O

We give asymptotics for the MINLA and MINSC costs of the graphs G(Py N By,; 1), where
B, denotes the box [0,m)?, with m € N.

Proposition 3. Suppose A < A, and let G, = G(Px N Byp; 1). Then as m — oo,

MINLA(C)) MINSc(Cp)
|Co ] |Co ]

Proof. We sketch a proof for MINLA. For each point x of P\NB,,, let C, denote the component

of G, p(PyNByy; 1) that includes the point , and let C, denote the component of Gmp(Pri1)

MINLA (G,y,)
ma

MINSC(Gyy,)
ma

ProaE, [ and Pro\E, [

that includes the point z. By a similar argument to the proof of Theorem 5, it suffices to

prove that

MINLA(Cy)  MINLA(Cy)
.| ||

— 0. (3)

E)\ m_d Z

rEP\NBm

For I > 0, let 0;B,, be the set of points z € By, with ||z — y||oc < ! for some y ¢ B,,. The
quantity inside the sum in (3) is at most MINLA(C,) - (Cy # C,), where for any statment S,
(S) stands for 1 if S is true, 0 otherwise. Hence the random variable inside the expectation

in (3) is at most

m™? Z MINLA(C,) | + | m™¢ Z MINLA(C,) - (diam(Cy) > 1)
EP\NI; B 2€Bm\0 Bm
The expectation of the first term tends to zero, while the expectation of the second term equals
AE )\ [MINLA(C)(|Co| > 1)], which can be made arbitrarily small by the choice of I. Then (3)
follows. O

Theorem 7. Suppose lim,, o nré = X € (0, \;). Then, as n — oo

MINLA(Cp) ]

n IMINLA(G(Xp; 7)) —5 )y [
|Col
and

n~IMINSC(G (X5 7)) Prom, [7MINSC(CO)]

|Col

Moreover, both of the above limits are finite and strictly positive.
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Proof. Consider the graph G(X,,;r,) with nré — X\ € (0,\.). We couple X, to two Poisson

processes with a slightly higher or lower density of points, as follows: Take A\ < A < Ao < A,

-1
n

!

1, m! = |r>']. Let M, and M/ be Poisson variables with mean \;m?

and set m, = [r .

and Ao (m!,)? respectively, independent of {X7y,..., X,,}. Then, as n — oo
Pr[M,, > n] — 0, and Pr[M], < n] — 0.

Let us set mpX, = {m,X; : 1 <i <n}, P, ={m,X; : 1 <i < M}, and P}, =
{m! X; : 1 <i< M]}. Notice that P, is a Poisson processes on B,, with intensity \; and
P/, is a Poisson processes on By, with intensity As.

If M,, < n then G(Py;1) is a subgraph of G(m,X,;m,r,), which is isomorphic to
G(Xy; ). Similarly, if M) > n, then G(m] X,;m! r,) is a subgraph of G(P);1). By mono-
tonicity,

Pr [MINLA(G(Py; 1)) < MINLA(G(X57,)) < MINLA(G(P),;1))] — 1.

By Proposition 3,

MINLA(G(Pp; 1)) EU\lEAl MINLA(C)) 7
mg |Co
so that (G ) (Co)
MINLA(G(Pp;1)) pr (A1 MINLA (Cf
a3 e [
Similarly,

MINLA(G(P),; 1)) Pr, (%) N [MIN|LCA?(|CO)]‘
n 0

Taking A; T A and A2 | A and using Lemma 3,

MINLA(G(X;0)) P g [MINLA(C@)]
|Col

n

The proof for the convergence of MINSC is analogous. O

5 Conclusions

In this paper we have considered several layout problems for specific classes of sparse graphs:
lattice graphs, random lattice graphs and random geometric graphs. Table 1 summarizes the
results.

In the case of lattice graphs, our results are given for the 2-dimensional lattice; it remains
open to extend them to any dimension. The main result for random lattices is the conver-
gence in probability to a constant of the values of MINLA(Ly,,)/m? and MINSC(L,, ,)/m?.
Our results on the subcritical regime together with the results obtained for the supercritical
regime [13] make explicit a phase transition at p.. An open problem is to find good methods

for evaluating numerically the constants in Theorem 5 as functions of the open vertex density
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p, and the analogous constants in Theorem 7. Preliminary estimations for those constants
were given in [4]; the used method was a raw simulation of the percolation process on the
lattice and computation of lower bounds and upper bounds with heuristics.

In the last part of the paper, we have presented convergence theorems for MINLA
and MINSC on random geometric graphs in the subcritical regime. For the MINLA and
MiINSuMCUT problems on random geometric graphs, there is a phase transition at A = A.
Indeed, in [13] it is shown that if A > A\, then MINLA(G(X},;7y,)) and MINSC(G(X,,;7,)) are
O(n? V4. Our results show that the behaviour for A < ), is entirely different. For the
BISECTION and the MINVERTBIS problems, the phase transition occurs not at A. but at X\,
defined by

N =inf{\ > 0:0(\) > 1/2},

and the subcritical regime for MINBIS and MINVB is given by A < AL.
For the sake of clarity, we contented ourselves in this paper with demonstrating conver-
gence in probability; however, the convergence in our theorems actually holds in the stronger

sense of complete convergence which implies convergence almost surely (see [15]).
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