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CONVERGENCE THEOREMS FOR THE H1-INTEGRAL

I. J. L. Garces and P. Y. Lee

Abstract. We present two convergence theorems for the H1-integral.

The Henstock integral is now relatively well-known. An attempt has been
made by Garces, Lee, and Zhao [2] to define the Henstock integral as the
Moore-Smith limit of Riemann sums. The resulting integral is the so-called
H1-integral. It has the property that a function f is Henstock integrable on
[a, b] if and only if there is an H1-integrable function g such that f(x) = g(x)
almost everywhere in [a, b]. Every integral has a corresponding convergence
theorem. For example, the Denjoy integral has the controlled convergence the-
orem, whereas the Perron integral has the generalized dominated convergence
theorem. Corresponding to the Henstock integral, which is equivalent to both
the integrals of Denjoy and Perron, is the equi-integrability theorem with the
strong Lusin condition. It is the purpose of the current paper to present two
(well-known) convergence theorems that hold for the H1-integral. We assume
that the reader is familiar with the definition of the Henstock integral [5].

A division D of [a, b] is a finite set of interval-point pairs ([u, v], ξ) such
that the intervals [u, v] are non-overlapping, [a, b] = ∪[u, v], and ξ ∈ [u, v]. If
δ(x) > 0 for x ∈ [a, b], then a division D = {([u, v], ξ)} is said to be δ-fine if
ξ ∈ [u, v] ⊂ (ξ − δ(ξ), ξ + δ(ξ)) for each ([u, v], ξ) ∈ D. A function f is said
to be Henstock integrable to a real number A on [a, b] if for every ε > 0 there
exists a positive function δ on [a, b] such that for every δ-fine division D, we
have

|(D)
∑

f(ξ)(v − u)−A| < ε.

Let D be the family of all δ-fine divisions of [a, b] for some given δ(x) > 0,
x ∈ [a, b]. For D1, D2 ∈ D, we write D2 ≥ D1 if for every ([s, t], η) ∈ D2 there
exists ([u, v], ξ) ∈ D1 such that [s, t] ⊂ [u, v], and {ξ : ([u, v], ξ) ∈ D1} ⊂ {η :
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([s, t], η) ∈ D2}. Then (D,≥) is a directed set. A function f is H1-integrable
to a real number A on [a, b] if A is the Moore-Smith limit [1] of the Riemann
sums using the directed set (D,≥); that is, there exists a positive function δ
on [a, b] such that for every ε > 0 there exists a δ-fine division D0 such that
for every δ-fine division D ≥ D0 of [a, b], we have

|(D)
∑

f(ξ)(v − u)−A| < ε.

Here, A is the H1-integral of f on [a, b]. Some examples of H1-integrable
functions were considered in [2]. It is easy to see that every H1-integrable
function on [a, b] is Henstock integrable there and the two integrals are equal.
Note that the Cauchy Criterion and the Saks-Henstock Lemma [5] also hold
for the H1-integral. For convenience, we say that f is H1-integrable on a set
X ⊂ [a, b] if fXX is H1-integrable on [a, b], where XX denotes the characteristic
function of X on [a, b].

Let a function F be defined on [a, b] and X ⊂ [a, b]. Then F is said to be
AC∗(X) if for every ε > 0 there exists η > 0 such that for any partial division
D = {([u, v], ξ)} with u or v ∈ X, we have

(D)
∑

|v − u| < η implies (D)
∑

|F (u, v)| < ε,

where F (u, v) = F (v)−F (u). On the other hand, a sequence {Fn} of functions
defined on [a, b] is said to be UAC∗(X) if, in the definition of AC∗(X) above,
η > 0 is independent of n. Further, {Fn} is UACG∗ on [a, b] if [a, b] = ∪Xi

such that {Fn} is UAC∗(Xi) for each i. We can assume that Xi is closed for
each i.

Our proof of the first convergence theorem we want to establish is based
on the following three lemmas, in which Lemma 1 is easy.

Lemma 1. Let {fn} be a sequence of H1-integrable functions on [a, b], with
{Fn} the sequence of primitives of {fn}. If {fn} converges uniformly on [a, b],
then {Fn} is UACG∗ on [a, b].

Lemma 2. Let X ⊂ [a, b] be closed. If f is H1-integrable on [a, b] and its
primitive F is AC∗(X), then f is H1-integrable on X.

Proof. Since f is H1-integrable on [a, b], by the Cauchy Criterion, there
exists δ(x) > 0 such that given ε > 0 there exists a δ-fine division D0 of [a, b]
such that for any δ-fine divisions D, D′ ≥ D0 of [a, b], we have

|(D)
∑

f(ξ)(v − u)− (D′)
∑

f(ξ)(v − u)| < ε.
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Since F is AC∗(X), there exists η > 0 such that for any partial division
D = {([u, v], ξ)} of [a, b] with u or v ∈ X,

(D)
∑

|v − u| < η implies (D)
∑

|F (u, v)| < ε.

Also, there exists a finite union E of closed intervals such that E ⊃ X and
|E−X| < η. We can assume that a subset of D0 forms a division of E, and we
can modify δ(x) > 0 such that if ξ ∈ E −X, then (ξ− δ(ξ), ξ + δ(ξ))∩X = ∅.

Now, let D be any δ-fine division of E. Then there are only two kinds of
intervals in D: those that do not intersect X and those that do. The latter
form a finite cover of X, and the union of the former consists of intervals
pairwise disjoint, each of which , denoted by [u, v] again, can be expressed as
a difference of two intervals, namely, [w, v]−[w, u) or [u,w]−(v, w] with w ∈ X
such that (D)

∑
[u,v]∩X=∅ |w − u| < η and (D)

∑
[u,v]∩X=∅ |w − v| < η. Thus,

|(D)
∑

ξ∈E−X F (u,w)| < ε and |(D)
∑

ξ∈E−X F (w, v)| < ε. Consequently,
|(D)

∑
ξ∈E−X F (u, v)| < 2ε. Meanwhile, by the Saks-Henstock Lemma, for

any partial division D ≥ D0 of [a, b], we have

|(D)
∑

ξ∈E−X

{f(ξ)(v − u)− F (u, v)}| < ε.

Hence, |(D)
∑

ξ∈E−X(v − u)| < η implies

|(D)
∑

ξ∈E−X

f(ξ)(v − u)| < |(D)
∑

ξ∈E−X

{f(ξ)(v − u)− F (u, v)}|

+ |(D)
∑

ξ∈E−X

F (u, v)|

< 3ε.

For any δ-fine divisions D1, D2 ≥ D0, let D∗
1 and D∗

2 be the respective subsets
of D1 and D2 which form divisions of E. Further, let D3 = D1 −D∗

1. Then
D = D3 ∪D∗

1 and D′ = D3 ∪D∗
2 are δ-fine divisions of [a, b] with D, D′ ≥ D0.

Therefore,

|(D1)
∑

ξ∈X

f(ξ)(v − u)− (D2)
∑

ξ∈X

f(ξ)(v − u)|

≤ |(D)
∑

f(ξ)(v − u)− (D′)
∑

f(ξ)(v − u)|

+|(D∗
1)

∑

ξ∈E−X

f(ξ)(v − u)|+ |(D∗
2)

∑

ξ∈E−X

f(ξ)(v − u)|

< 7ε.
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By the Cauchy Criterion again, the above sequence of inequalities implies that
f is H1-integrable on X.

Lemma 3 [2]. Let f be H1-integrable on a closed set X1 ⊂ [a, b] using δ1,
and on another closed set X2 ⊂ [a, b], with f(x) = 0 for x 6∈ X1 ∪X2. If the
primitive F of f on [a, b] is absolutely continuous there, then f is H1-integrable
on X1 ∪X2 using δ, where δ(x) = δ1(x) when x ∈ X1.

We now present the uniform convergence theorem.

Theorem 4 [Uniform Convergence Theorem]. Let {fn} be a sequence of
H1-integrable functions on [a, b]. If {fn} converges uniformly to some function
f on [a, b], then f is H1-integrable on [a, b] and

∫
f = lim

∫
fn.

Proof. We may assume that f is Henstock integrable on [a, b]. Let {Fn} be
the sequence of primitives of {fn}. By Lemma 1, {Fn} is UACG∗ on [a, b], that
is, there exists a sequence {Xi} of closed subsets of [a, b] such that [a, b] = ∪Xi

such that {Fn} is UAC∗(Xi) for each i. In particular, Fn is AC∗(Xi) for each
n and for each i. Hence, by Lemma 2, each fn is H1-integrable on Xi for all i.

It follows from the UACG∗ property (see [5, Theorem 9.8]) that for every
i there exists an integer n(i) ≥ i such that for any partial division D of [a, b]
with u or v ∈ Xi, we have

|(D)
∑

{Fn(i)(u, v)− F (u, v)}| < 1
2i

,

where F is the Henstock primitive of f on [a, b].
Since fn(i) is H1-integrable on Xi (and, therefore, Henstock integrable

there), by the Saks-Henstock Lemma, there exists δn(i)(x) > 0 such that for
any δn(i)-fine division D of [a, b], we have

(D)
∑

ξ∈Xi

|fn(i)(ξ)(v − u)− Fn(i)(u, v)| < 1
2i

for all i.
Let Y1 = X1 and Yi = Xi − (X1 ∪ X2 ∪ · · · ∪ Xi−1) for i = 2, 3, . . . .

Put δ(x) = δn(i)(x) if x ∈ Yi. We may modify δn(i), if necessary, such that
(x− δn(i)(x), x + δn(i)(x)) ∩Xi = ∅ for x 6∈ Xi.

Given ε > 0, there exists a positive integer N = n(i0) such that

∞∑

i=i0+1

1
2i

< ε and |fn(ξ)− f(ξ)| < ε

b− a
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for all n ≥ N and for all ξ ∈ [a, b]. Further, by Lemma 3, there exists a δ-fine
division DN of [a, b] such that for any δ-fine division D ≥ DN of [a, b], we have

|(D)
∑

ξ∈Xi0

{fN (ξ)(v − u)− FN (u, v)}| < ε.

Write n(ξ) = n(i0) when ξ ∈ Xi0 and n(ξ) = n(i) when n(i) > N = n(i0).
Thus,

|(D)
∑

{f(ξ)(v − u)− F (u, v)}| ≤ |(D)
∑

{f(ξ)(v − u)− fn(ξ)(ξ)(v − u)}|
+|(D)

∑
{Fn(ξ)(u, v)− F (u, v)}|

+|(D)
∑

{fn(ξ)(ξ)(v − u)− Fn(ξ)(u, v)}|
< 4ε.

Hence, f is H1-integrable on [a, b].

We now consider the H1-integral version of equi-integrability [4, 6] or uni-
formly Henstock integrable [3].

Let {fn} be a sequence of H1-integrable functions on [a, b]. We say that
{fn} is equi-H1-integrable on [a, b] if there exists δ(x) > 0 such that for each
ε > 0 there exists a δ-fine division D0 of [a, b] such that for any δ-fine division
D ≥ D0 of [a, b], we have

|(D)
∑

fn(ξ)(v − u)− Fn(a, b)| < ε

for all n, where Fn is the primitive of fn on [a, b].

Lemma 5. Let {fn} be a sequence of H1-integrable functions on [a, b] with
Fn as the primitive of fn on [a, b] such that {fn} converges pointwise to a
function f on [a, b]. If {fn} is equi-H1-integrable on [a, b], then {Fn(a, b)} is
a Cauchy sequence.

Proof. By definition, there exist δ(x) > 0 and a δ-fine division Dm of [a, b]
such that for all δ-fine divisions D ≥ Dm of [a, b], we have

|(D)
∑

fn(ξ)(v − u)− Fn(a, b)| < 1
2m

for all n. Given an ε > 0, choose an integer M > 0 such that 1/2M < ε and

|(DM )
∑

fn(ξ)(v − u)− (DM )
∑

fm(ξ)(v − u)| < ε
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for all n,m ≥ M , where DM is a δ-fine division of [a, b]. Then, for n,m ≥ M ,

|Fn(a, b)− Fm(a, b)| ≤ |Fn(a, b)− (DM )
∑

fn(ξ)(v − u)|
+ |(DM )

∑
fn(ξ)(v − u)− (DM )

∑
fm(ξ)(v − u)|

+ |(DM )
∑

fm(ξ)(v − u)− Fm(a, b)|
< 3ε.

Hence, {Fn(a, b)} is a Cauchy sequence.

Theorem 6. If the conditions of Lemma 5 are satisfied, then f is H1-
integrable on [a, b] and

∫
f = lim

∫
fn.

Proof. By definition, there exists δ(x) > 0 such that for every ε > 0 there
exists a δ-fine division D0 on [a, b] such that for any δ-fine division D ≥ D0 of
[a, b], we have

|(D)
∑

fn(ξ)(v − u)− Fn(u, v)| < ε

for all n. By Lemma 5, there exists an integer N > 0 such that

|Fn(a, b)− F (a, b)| < ε

for all n ≥ N , where F (a, b) is the limit of {Fn(a, b)}. Let D be any δ-fine
division of [a, b] with D ≥ D0. Then there exists an integer k ≥ N such that

|(D)
∑

f(ξ)(v − u)− (D)
∑

fk(ξ)(v − u)| < ε

since D is finite and fn → f pointwise. Hence,

|(D)
∑

f(ξ)(v − u)− F (a, b)| ≤ |(D)
∑

f(ξ)(v − u)− (D)
∑

fk(ξ)(v − u)|
+ |(D)

∑
fk(ξ)(v − u)− Fk(a, b)|

+ |Fk(a, b)− F (a, b)|
< 3ε.

Thus, f is H1-integrable to F (a, b) on [a, b].

It should be noted that uniform convergence (Theorem 4) will also follow
as a consequence of equi-H1-integrability (Theorem 6), but the proof is as
lengthy as the direct one given for Theorem 4.

So far, no other convergence theorems have been established for this rel-
atively new integral. After a quite long battle for a proof of the uniform
convergence theorem, the authors are still optimistic that the other known
convergence theorems for other integrals will also hold for the H1-integral.
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