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CONVERGENCE THEOREMS FOR TOPOLOGICAL
GROUP VALUED MEASURES ON EFFECT ALGEBRAS

FRANCISCO GARCIA MAZARIO

In this paper we study the validity of several convergence theorems for measures
defined on an effect algebra and taking values in a Hausdorff commutative topolog-
ical group. We establish the Brooks-Jewett theorem and the Nikodym convergence
theorem, giving as a corollary a result, due to Aarnes, about the convergence of a
sequence of normal linear functionals on a von Neumann algebra. We prove two
new convergence theorems concerning completely additive and r-smooth measures,
and we obtain also a convergence theorem for regular measures.

1. INTRODUCTION

In classical measure theory the so-called convergence theorems play an important
role. These theorems (such as Brooks-Jewett, Nikodym convergence, Vitali-Hahn-Saks
or Nikodym boundedness theorems) state, roughly speaking, that the setwise limit of a
sequence of measures having a certain property (to be s-bounded, countably additive
or A-continuous, for example) also has the same property.

We can say that the "classical" versions of such theorems consist of considering
scalar measures defined on a a -complete Boolean algebra (see [11, Chapter III]). More
general versions for measures with values in Banach spaces or topological groups were
known twenty years ago (see [10], [32] or [45]). It is well known that convergence
theorems need not hold for non a -complete Boolean algebras, but they are true for
measures defined on certain classes of Boolean algebras that are not a -complete (see [10]
or [42]). In 1984, Freniche [18] gave a condition for a Boolean algebra (the subsequential
interpolation property) under which they are valid (see also [33]). But the results about
this subject are not completely settled, and it is possible to find very recent papers in
this direction (see [26] or [47]).

On the other hand, motivated by the mathematical foundations of quantum me-
chanics, so-called non-commutative measure theory has seen important developments.
This theory consists in replacing Boolean algebras by other structures (sometimes called
quantum logics) such as orthomodular posets, orthoalgebras or, more recently, D-posets
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(introduced by Kopka and Chovanec in 1994 [30]) or effect algebras (Foulis and Ben-
net. 1994 [16]). These structures are more general than Boolean algebras and, at the
same time, extend the properties of the set of all closed subspaces of a Hilbert space
(see Example 2.7 below). We have chosen effect algebras because they are a natural
generalisation of Boolean algebras and orthoalgebras. Historically, it may be consid-
ered that non-commutative measure theory was born in 1957, with the publication of
a theorem of Gleason [19], probably one of most important mathematical theorems
of this century. The first result about convergence theorems in this setting is due to
Aarnes [1] and dates from 1966. But, in the last ten years, the number of mathematical
works related to that theory has greatly expanded. Among such works there are several
extensions of classical convergence theorems (see [24], [37] or [38]), including gener-
alisations for topological group valued measures (see [4] or [37]) and several versions
for non a -complete quantum logics satisfying a condition similar to the subsequential
interpolation property defined by Freniche in Boolean algebras (see [3] or [24]).

In this paper, we extend some of these results in two ways. First, we consider
measures defined on effect algebras, instead of orthomodular posets or orthoalgebras.
Moreover, instead of a "sequence of sequences" method, we apply a previous result
about a "net of sequences". Later, as a consequence, we obtain, among other things, a
convergence theorem for completely additive measures and another one for r-smooth
measures. These theorems were unknown, even in the classical case. We want to
emphasise that completely additive measures are very important in the setting of non-
commutative theory; in fact, the statement of the Gleason theorem for non separable
Hilbert spaces makes use of such measures (see [6] or [36]). Also r-smooth measures
are important in measure theory. Their relationship with regular measures appears, for
example, in the study of topological measures or in the classical Alexandroff decompo-
sition theorem [2] (see also [40]).

The paper is organised as follows: in Section 2 we give the definition and basic prop-
erties of effect algebras, making a detailed study of orthogonality, and ending with a
collection of interesting examples. Section 3 is devoted to the study of measures defined
on effect algebras with values in a topological group. Mainly, we deal with s-bounded
measures, getting several results, in particular Lemma 3.4, which are very important
in the proof of subsequent theorems. Section 4 contains the main results of this paper,
namely the Brooks-Jewett theorem, the Nikodym convergence theorem (including a ver-
sion for completely additive measures), a convergence theorem for r-smooth measures
and another one about regular measures. Finally, in Section 5 we include some remarks
about the results obtained in preceding sections and about Nikodym boundedness and
Vitali-Hahn-Saks theorems.
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2. E F F E C T ALGEBRAS

Let L be a set with two special elements 0, 1. Let 1 b e a subset of L x L, and
let ffi :_L—> I b e a binary operation. We say that the algebraic system (L, -L,ffi,0,1)
is an effect algebra if the following axioms hold:

(i) (Commutative Law) If a,b € L and a ±b, then 6 1 a and a © 6 = 6 ©a .
(ii) (Associative Law) If a,b,c € L, a ± b and (a © 6) ± c, then b L c.

a ± (b ffi c) and (a © 6) © c = a ffi (b © c).
(iii) (Orthocomplementation Law) For every a & L there exists a unique b £ L

such that a J. 6 and a ffi 6 = 1.
(iv) (Zero-Unit Law) If a € L and 1 l a , then a = 0.

Let L = (L, -L, ffi, 0,1) be an effect algebra. If a, b € L and a i d we say that o
and b are orthogonal. If a ffi 6 = 1 we say that b is the orthocomplement of a, and we
write b = a'. Clearly 1' = 0, (a')' = a, a ± 0 and a ffi 0 = a for all a € L. We say
that a ^ b if there exists c £ L such that a A. c and a ffi c = b. It is easy to prove that
^ is a partial ordering on L (that is, ^ is reflexive, antisymmetric and transitive) such
that 0 < a < 1, a O <=*> b' ^ a' and a ^ b' <=> a ±b for a,b€ L.

If a ^ 6, the element c £ L such that c L a and a©c = b is unique, and it satisfies
the condition c— (a ffi 6')'. It will be denoted by c= bQa.

Additional properties of effect algebras can be found in the following lemma. For
the proof, we refer to [16].

LEMMA 2 . 1 . Let L be an effect algebra. Then, for all o ,6 ,c € L, we have

(i) If a < b, then bea ^ b and b Q (b 0 a) = a.
(ii) If a ^ b ̂  c, tiien c 9 6 < c 9 a and (c9 a) 9 (c© b) = bQa.
(iii) If a < 6, then 6 9 a = 0 ^=> a = 6 and 6 9 a = b •<=> a = 0.
(iv) If a < b ̂  c', then a (Be ̂  6 ffi c.
(v) a ± 6 and a ffi 6 ̂  c -<=> 6 ̂  c and a ^ cQb.
(vi) If a ± 6 , then affi&= (6'9 a)'.

Let .F = {a; : 1 ^ i ^ n} be a finite subset of L. If ai ± 02, (ai ©02) -L 03,
. . . and (ai ffi • • • © an_i) J. an, we say that F is orthogonal and we define © F =
ai ffi • • • © an = (a\ ffi • • • © an_i) © an (by the commutative and associative laws, this
sum does not depend of any permutation of elements). Now, if A is an arbitrary subset
of L and T(A) is the family of all finite subsets of A, we say that A is orthogonal if
F is orthogonal for every F € T(A). If A is orthogonal, we define ®vl = V { © ^ :

F € ^ ( J 4 ) } , supposed that the supremum exists in (L, «C), and it is called the ffi-sum
of A. If A is an orthogonal subset of L and B C A, obviously B is orthogonal too.
If, moreover, there exist 0 , 4 and 0 5 , then 0 5 ^ 0>1 . The following lemma
contains more properties of orthogonal sets in an effect algebra.
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LEMMA 2 . 2 . Let L be an effect algebra and let (aj) i 6 / be an orthogonal subset

of L.

(i) If I is finite and J Cl, then ( © <n) ± ( © en) and
Ki£J ' Vt6/\J '

i€l tgj iel\J

(ii) If J C I and there exist a = © a*, 6 = © a* and c = © a j , then

6 _L c and a = b®c.
(iii) If there exists © a* for all M C I and {Hj : j € J} is a partition of

i€M

I, then A = \ © at : j € J> is an orthogonal subset of L, there exists

©4 and ©A= ©a<.

(iv) If (Fj)-€J is a family of finite and pairwise disjoint subsets of I, then the

set \ © di : j € J \ is orthogonal in L.

(v) If bi £ L and bi ̂  a* for all i £ I, then (&i)i6/ is an orthogonal subset
of L.

PROOF: (i) See [16, Theorem 4.2].

(ii) Let Fi € T{J) and F2 € T{I\J). Take F = Fx UF2. By (i), ( © a*) ±
/ \ / \ / ^ \ / \ 6 F l

( © at) , and I © a,) © I © OJ) = I © aA ^ a. Lemma 2.1 (v) implies that
S e F 2

 y Vt€F! y VtSF2
 J \£F '

( © at) ̂  a© f © at) for all Fi € ̂ "(7), so that 6 ̂  a9 ( © aiV By Lemma 2.1,
\ 6 F ! y Vi6F2 ' \ gF 2

 y

Oj ^ a Q b for all F 2 € ^"(7 \ J ) . Hence c < a 0 6 , so 6_Lc and b(Bc ̂ . a.
i6F2

Conversely, if F € ̂ "(7), take Fx = F n J and F2 = F \ J. By (i) and Lemma 2.1
(iv) we have

( ) (

t6F tgF! igF2

for all F e T(I). Then a^b®c.

(iii) Let 6j = © a{ for all j € J , and let F € F(J) • A slight refinement of the

argument used in the proof of statement (ii) shows that {bj : j € F} is an orthogonal
subset of I, and © b} ̂  a = © at for all F € T{ J).

F /
Now, assume that © b3 ̂  c for all F € ^ ( J ) . Take Fi € T{I). Then there

exists F e ^(J) such that Fi c (J 77̂ . So © ai ̂  ©{aj : i e U ̂ i } - But,
j€F i6Fj L F 1
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by (ii), ®{a{ : i € \J H,} = 0 bj. Hence 0 at ^ c for every Fi € T{I). Thus
1 j€F ' j€F i6Fj

a=®a.i^c. It follows that a = \/{ 0 h''• F € P(J)} a n d therefore a = 0 6.,.
iei (j&F ' j€J

(iv) is an immediate consequence of first statement of (iii).

The proof of statement (v) is straightforward. D

A complete effect algebra is an effect algebra such that there exists 0 > t for all
orthogonal subsets A of L. If 0 ^ 4 exists for all countable orthogonal subsets A of
L, we say that the effect algebra L is a -complete. We say that an effect algebra L is
quasi- a -complete if for every infinite countable orthogonal subset A of L there exists an
infinite subset M of A such that there exists 0 N for all subsets N of M. Obviously
every complete effect algebra is a -complete, and every a -complete effect algebra is
quasi- a -complete.

It is not difficult to prove that an effect algebra L is a -complete if and only if there
oo

exists the supremum \J a,i in (L, ^ ) for all sequence (ai)i6j*j in L such that a* ^ ai+i,
t = i

EXAMPLE 2.3. A difference poset (or D-poset) (see [30]) is a partially ordered set (L, ^)
with a greatest element 1 and a partial binary operation 0 , called a difference, such
that b Q a is defined if and only i f a ^ f i (a, b € L), and satisfying the properties (i)
and (ii) of Lemma 2.1. Hence, if (L, ±, ©, 0,1) is an effect algebra, then (L, ^ , 0 ,1) is
a D-poset. Conversely, if (L, ^ , Q, 1) is a D-poset and we define 0 = 1 0 1 , a' = 1 0 a,
a _L b 4=> a ^ b' and a © b = (b' Q a)' for a ± b, it can be proved (see [16]) that
(L, -L, ffi, 0,1) is an effect algebra. Therefore, D-posets and effect algebras are the same
thing.

EXAMPLE 2.4. Orthoalgebras are important examples of effect algebras. The definition
and basic properties of orthoalgebras can be found in [17] or [39]. An effect algebra L
is an orthoalgebra if and only if a € L and a ^ 1 © a imply a = 0 (see [13] or [16]).
Clearly, each complete orthoalgebra (see [39]) (that is, orthosummable orthoalgebra by
Habil [23]) is a complete effect algebra, and all a -orthoalgebra (see Feldman and Wilce
[15] or Habil [23]) is a <r-complete effect algebra.

EXAMPLE 2.5. Orthomodular posets are also special examples of effect algebras. In
particular orthomodular lattices (and, more particularly, Boolean algebras) can be con-
sidered as effect algebras. If (L, JL,©,0,1) is an effect algebra and ' is the orthocom-
plementation on L. then (L, _L, ', 0,1) is an orthomodular poset if and only if {a, b, c}
is an orthogonal subset of L whenever a,b,c € L are such that a ± b, b ± c and a ±c
(see [16]). The (cr-)orthocomplete orthomodular posets (in particular the (cr-)complete
orthomodular lattices, and so the (cr-)complete Boolean algebras) are relevant examples
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of (cr-)complete effect algebras too. For more information about orthomodular posets,
orthomodular lattices and Boolean algebras we refer to [29] or [41].

EXAMPLE 2.6. Let H = (H, (•, •)) be a Hilbert space. An operator (that is, continuous
linear operator) x on H is said to be an effect if it is self-adjoint (that is, x* = x,
where x* is the adjoint operator of x, given by the formula (x*ip,tp) = ((p,xtp) for
all f, ip € H) and 0 ^ x ^ 1, where 1 is the identity operator on H. If L = £(H)
is the set of all effects on H, and we define, for x, y e L, x X y <=» x + y ^ 1,
and x (B y = x + y if x ± y, then (L, 1, ©, 0,1) is an effect algebra which is not an
orthoalgebra (see [13] or [20]). £{H) can be considered as the standard effect algebra.
It plays an important role for unsharp measurements of quantum mechanics.

EXAMPLE 2.7. Let H — (H, (•,•)) be a Hilbert space over the field I or C and
let B(H) be the set of all bounded (that is, continuous) linear operators from H. An
element x € B(H) is called a projection if x is self-adjoint and idempotent. If P[B(H))
is the set of all projections of B(H) and we define x\ X x2 <=> xix2 = x2xx = 0 and
xi © x2 = £i + x2 for xi X x 2 , then (L, 1 , ©, 0,1) is a complete effect algebra, which
is also a complete orthomodular lattice, but not a Boolean algebra if dimension of H
is bigger or equal than 2.

Let L(H) be the set of all closed subspaces of H. Define M\ ± M2 if Mi n M 2 =
{0} and Mi ®M2 = f\{M e L(H) : M D Mx UM2}. Then (L(H),±,®,{0},H) is
a complete effect algebra, which is also a complete orthomodular lattice, and the map
x —> x(H) from P(B(i?)) to L(H) is a bijection that preserves order, orthogonality
and ©-sum (see [7]). So P(B(H)) and L(H) are isomorphic quantum logics.

This example consists of the quantum logic par excellence, and it can be considered
a cornerstone in the mathematical foundations of quantum mechanics (see [35]).

EXAMPLE 2.8. Let H = (H, {•, •)) be a Hilbert space over C. A von Neumann algebra
on if is a self-adjoint subalgebra A of B(H) such that A = (A1)', where M' = {x €
B(H) : ax = xa for all a € M) for a subset M of B(H). If A is a von Neumann
algebra on H and P(A) = AnP(B(H)), then P{A) with the partial relation X and
the binary operation © defined in above example is a complete effect algebra, which is
also a complete orthomodular lattice. See [28] or [44] for more details concerning von
Neumann algebras.

EXAMPLE 2.9. Let (G, +,0, ^) be a partially ordered commutative group, and let
u e G be such that 0 ^ u and 0 ^ u. Take L — {x € G : 0 ^ x ^ u]. For
x,y € L, let us define x X y <=> a; + y € X, and x©j/ = x + y if i 1 y. Then
(L, X,ffi,0,u) is an effect algebra and it is called an interval effect algebra (see [16])
which it is not, in general, an orthoalgebra. For instance, if G — K with the usual
ordering and u = 1, then ([0,1], X, ©, 0, l) is an effect algebra but not an orthoalgebra
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because 1 / 2 ^ 1 9 1/2 and 1/2 ^ 0 (see Example 2.4).

For more details concerning effect algebras we refer to [16]. Other interesting
examples on effect algebras, as well as quantum logics in general, can be found in [14,
20, 22, 25, 30].

3. GROUP-VALUED MEASURES ON EFFECT ALGEBRAS

For the remainder of this paper, L — (L, JL,(B,O,1) will be an effect algebra and
G = (G, +, 0, T) will be a Hausdorff topological commutative group (see Higgins [27]).
Let M{G) denote the set of all neighbourhoods of 0 in G. It is well known that (G, r ) is
a regular topological space and so the closed neighbourhoods of 0 form a base of M(G)
(see [27]). The definitions of convergence and the Cauchy condition of a sequence or
a net in a topological group are standard. By convergence of a series in a topological
group we refer, as usual, to convergence of the sequence of partial sums.

A G -valued measure on L is an element n € GL such that /x(a @b) = /x(a) + /x(6)
for all pairs of elements a,b € L with a ± b. Every G-valued measure on L is finitely
additive, that is, n(a.i © • • • © an) = n(a,i) + •• • + fJ.(an) whenever { a i , . . . , a n } is an
orthogonal finite subset of L. The set of all G-valued measures on L will be denoted
by a(L,G). If /z € a(L,G), then /x(0) = 0 and /z(o') = /x(l) - /z(a) for all a e L.
Moreover if fi € GL, then fi € &{L, G) if and only if n(b Qa) — /z(6) - fj.(a) for all
a, 6 € L with a ^ b.

Let /x € a ( i , G). We say that fi is s -bounded if for every orthogonal sequence
(ttn)ngN in L, (M(an))n6N converges to 0 in the topology of G. We say that n is
a-additive if for every orthogonal sequence (a n ) n G N in L such that a — @an exists

oo n€N
in L, the series £ Man) converges to n(a). The subsets of a.(L,G) containing all G-

n=l

valued cr-additive or s-bounded measures on L will be denoted by ca(L, G) or sa(L, G)
respectively.

LEMMA 3 . 1 . If L is quasi a -complete and fj, € ca(L, G), then /j. € sa,(L, G).

PROOF: Suppose the contrary. Then there exist an orthogonal sequence (a n ) n e N

in L, a neighbourhood U € N(G) and an infinite subset M of N such that fj,(an) $. U
for all n 6 M. By the quasi a -completeness of L, there exists an infinite subset N of M
for which there exists a = ® an . Since n is countably additive, the series ^Z vian)

converges to n(a)• Then the sequence (Kan))n€N converges to 0, a contradiction. D

Let us note that the inclusion ca(L, G) C sa(L, G) is not true if L is an arbitrary
effect algebra (see [10] for a counterexample). The converse inclusion is also false, even
if Z, is a complete effect algebra, as we can see from the following example.

EXAMPLE 3.2. Let H be an infinite-dimensional separable Hilbert space and let {<pn :
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n € N} be an orthonormal basis of H. Let LIM be a Banach limit on l°° (see [43])
and let fi : P(B(H)) -> R defined by the formula: /x(e) = LIM(eipn,<pn). Clearly,
fj. is an R-valued measure on the complete effect algebra P(B(H)). Let pn be the
projection onto the subspace spanned by (pn. Then (pn)n6N is an orthogonal sequence
in P(B(H)) such that /x(pn) = 0 for all n € N. Moreover, 1 = <£pn. But /x(l) = 1 ^ 0 .
Therefore, fi is not cr-additive. On the other hand, if (e n ) n € N is an orthogonal sequence

n
in L and e = 0 e n , then £] Me») ^ A*(e) for all n. Hence the series of non-negative

nera »=i
oo

real numbers J2 M(en) 1S convergent, and so the sequence (M(en))neN converges to 0.
n=l

Therefore, fi is s-bounded.
It is possible to give different definitions of s-bounded measures. Thanks to the

following lemma, several of these definitions are equivalent:
LEMMA 3 . 3 . A measure fi € a(L, G) is s-bounded if and only if for every or-

thogonal family (<ii)i€I and every V € N{G) there exists a finite subset FQ <Z I such
that

ei) : F € T(I\F0),ei ^ a< Vi € F\ C V.

PROOF: Obviously, the condition implies the s-boundedness of \i. Suppose that \i
is s-bounded and the condition is false. Then we can find an orthogonal family (a.i)ieI

in L (not finite) and V e M(G) such that for all Fo € T{I) there exist F € T{I \ Fo)
and {e< : i € F), with e< ^ Oj for i 6 F and X) Kei) i v •

i€F

Starting with Fo = 0, we take a sequence of disjoint sets Fi,F2,... , and elements
ej with ei ^ at for i € Fk and A; € N, such that Yl /x(ei) ^ V' for all A; e N. Since

i€Fk

(a»)ie/ is orthogonal and e< ^ a j , by Lemma 2.1 (v), the set {ej : i € U{Ffc : A; € N}}
is orthogonal in L. Let 6/t = ®{e« : * € Ffc} for k € N. Then, by Lemma 2.1 (iv),
(6fc)fceN is an orthogonal sequence in L such that

for any /c € N. This contradicts the s-boundedness of /x. D

COROLLARY 3 . 4 . For \i € &(L, G) the following conditions are equivalent:

(i) fi is s-bounded.

(ii) fi is strongly additive, that is, for every orthogonal sequence (an)n6fn in
oo

L, the series ^Z Man) satisfies the Cauchy condition.
n=l
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(iii) For every orthogonal sequence ( a n ) n 6 N in L and every V € M{G) there
exists no € N such that {/i(e) : e ̂  aj,i ̂  no} C V.

(iv) For every orthogonal family (di)iei in L and every V € M(G) there
exists Fo € T(I) such that /z(ai) € V for all i £ I\F0.

(v) For every orthogonal family (<ii)ieI in L and every V € Af(G) there
exists Fo 6 F(I) such that £ (i(a.i) € V for all F € T(I \ Fo).

i&F

(vi) For every orthogonal family (o.i)i€i in L and every V € M{G) there
exists FQ e T{I) such that {fj,(e) : e ̂  ai:i e I\F0} CV.

PROOF: It is immediate to prove that each of the conditions (ii) to (vi) implies the
s-boundedness of fj,, and, conversely, they are implied by the condition of the previous
lemma. D

The following lemma will be used in the proof of the Brooks-Jewett theorem and
other main results included in the next section:

LEMMA 3 . 5 . Let L be a quasi-a -complete effect algebra and.let {fj.n '• n € N} c
sa(L, G). If (Mn(a))neN is a Cauchy sequence for all a € L and (a.)i€/ is an orthogonal

family in L, then the net ( J2 l*n(.ai)) JS Cauchy uniformly in n € N.

PROOF: Suppose the contrary. Then we can take an orthogonal family (a,i)i€I in
L and U € 7V(G) such that for all Fo e T(I) the set

(3.1)

for some n € N.
First, we can see that (3.1) will be valid for an infinite number of n € N. In fact,

if | l > n ( a i ) : F € T{I\Fo)\ C U for n € N \ {m,.. . ,nk), since //„, , . . .,/!„ €

sa(L,G), there exist sets Ft,...,Fk € T(I) such that {^^n.(a*) : F € T(l \ F,)} c
li6F '

U for j = l...k. Putting H = Fo U Fi U • • • U Fk it follows that { £ fJ.n(a.i) : F 6
. li€F

?{I \ H) | C U for all n € N, which contradicts (3.1).
So, we have proved that for every Fo € T{I) and every no € N there exist F e

T{1 \ Fo) and n > no such that £] /^n(oi) ^ ^ • Let us fix a symmetric neighbourhood

V € yV(G) such that C/ D V + V + V + V (= 4V).
Take Fo - F^ = 0 and n0 = 0. There exist m > 0 and Fx € F{I) satisfying that
A«ni(at) ^ t/- Since fj.ni is s-bounded, by Corollary 3.4, there exists F[ €

i€F,
which we can consider Fj D Fi(= î i UFQ), such that 5Z Mn^Ot) € V for each .F €

t6F
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f(I\F{). But (fJ.n( © aA ) is a Cauchy sequence. Then there exists n'x > n\
\ v i € F i yyn6N

such that J2 (Pn(ai) ~ ^m(o.i)) € V for every n, r7O n'x and every F C F i .

Now, from n'x and F[, it is possible to find F2 € T{I \ F{) and n2 > n\ such
that 5Z Atn2(

at) ^ t/- Following the construction, it is easy to prove, by induction, the
i€F2

existence of a sequence (Ffc)fc£N of pairwise disjoint finite subsets of I and an increasing

sequence ("fc)fcgN satisfying the properties:

(3.2) £ > „ > < ) ££/. £ MnJaOeV

and

(3.3) E ( ^ » K ) - Mm(ai)) € V for all n ,m ^ nfc and F C ( J F, .

Put r}k = nnk — fJ-nk_1 for & ̂  2. Then TJ^ € sa(.L,G) for all k and the sequence
(i]k(a))k N converges to 0 for each a € L. Moreover, by (3.2),

(3.4) J2 Vk(ai) = E (»nk{di) - Hn^idi)) = E «̂fc(a«) ~ E ^k-i(oi) i 3V.

Let 6fc = ® aj for all k € N. By Lemma 2.2 (iv), (6fc)fc6N is an orthogonal
i£Fk

sequence in L. By the quasi- a -completeness of L, we can take a subsequence (fcfcn)nem
such that there exists © bkn for every subset M of N. Let us place the sequence

(&fcn)nepj as a double sequence, namely (kjOjjgN1 Then for every Z € N there exists
di = ® 6j/ in L and, by Lemma 2.2 (iii), (rfj)(eN is an orthogonal sequence in L.

Since 77^ is s-bounded, using Corollary 3.4, it is possible to find l\ € N such that

77fc,(e) € V whenever e ^ di and I ^ l\. Reordering, if necessary, we can consider

the sequence (bj^)-^ as a subsequence (bj) of (bfcn)ngN- Let r\ be the least

kn e N such that 6fcn € {6j : j € N}, that is, 6 n = b{. If we consider now (6j)

as a double sequence, with a reasoning as above, we can find a subsequence (t?) . of

(6j) and r2 > rx such that r/ri(e) € V whenever e ^ © 6^. Now put bT2 = b\.

In this way we get, for every k 6 N, an orthogonal sequence (&£) in L and ?> € N

such that brk = 6 j , (fc£) is a subsequence of (6*"1) .> 2 and 7/rj.(e) € V whenever

e < © 6?+ 1 • But © br. ^ © b)+l for all Jfe € N. Then r)rk ( © br) e V. We have
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also that Vrk(brk) $ 3K by (3.4) and Vrk(®br) € V by (3.3). On the other hand,

from Lemma 2.2, it follows that

Then TjrA ® brk) £ V for every k 6 N. A contradiction, because (?7rj.(a))fc N

converges to 0 for every a € L. D

4. MAIN RESULTS

We are in position to obtain the main results of this paper. Let us start with a
non-commutative version of the Brooks-Jewett theorem.

Throughout this section we assume that L is a quasi- a -complete effect algebra.

Let M be a subset of sa(L, G). We say that M is uniformly s -bounded if for every
orthogonal sequence (a n ) n 6 N in L and every V € M{G) there exists n0 € N such that
{n(an) : n ^ no,n € M} C K. In the same natural way may be defined the uniform

countable additivity.

The following theorem generalises the original result of Brooks and Jewett [5] as
well as [46, Theorem 4.1] and, essentially, a theorem of [38].

THEOREM 4 . 1 . (Brooks-Jewett Theorem.) Let {fin : n 6 N} c s&(L,G). If,
for every a e L, (Mn(a))neN is a Cauchy sequence in G, then {nn : n € N} is
uniformly s-bounded. Moreover, if (Mn(a))ngN converges to (J,(CL) for all a 6 L, then
/j.es&(L,G).

PROOF: Let (ai) ieN be an orthogonal sequence in L. Putting / — N in Lemma 3.5
oo

it follows that the series ^Z Mn(at) ^s Cauchy uniformly in n € N. So lim nn{ai) = 0

uniformly in n € N and {/xn : n € N} is uniformly s -bounded. Now, suppose that
lim nn(a) — fj.(a) for every a € L, and let V be a closed neighbourhood of M(G).

n—too

Then there exists io £ N such that {fin(a,i) : i ^ io,n £ N} C V. Then {n(a.i) : i ^

io}c V and fi is s-bounded. D
In the setting of non-commutative measures the study of completely additive mea-

sures is very important.

If M C a(L, G), we say that M is uniformly completely additive if for every
orthogonal family (a,i)i€I in L such that a = @a,i exists in L and every V €Af(G),

there exists Fo € T(I) such that n(a) - J2 n{a.i) € V for every F e T(I) with
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F D Fo and every \x € M . If /x G a(L,G) and {//} is uniformly completely additive,
we say that n is completely additive and we write p € cca(L, G). It is clear that
cca(L, G) C ca(Z-, G), and, in general, the inclusion is strict.

For completely additive measures we can give the following result:

THEOREM 4 . 2 . Let {/xn : n € N} C cca(L,G). If (Mn(a))n6N is a Cauchy
sequence in G for all a e L, then {/in : n € N} is uniformly completely additive.
Moreover, if (Mn(a))ngN converges to /x(a) for all a 6 L, then /̂  € cca(L,G).

PROOF: Let (o,i)i€l be an orthogonal family such that there exists a = 0 a j in

L, and let £/ € A/"(G). Take V € Af(G) such that V + V CU. By Lemma 3.5, there
exists Fo £ T{I) such that 52 Mnfai) € V for every F € J"(7 \ Fo) and every n € N.

Let us fix J e ^"(1) such that J D F o and n € N. Since /xn is completely additive,
there is Fn e J"(7) such that nn(a) - Y, Vn(ai) € V for all F D Fn. Then

which shows that {/xn : n e N} is uniformly completely additive.

The second statement of theorem can be proved as in Theorem 4.1. D

The last result can be considered as a generalisation of classical Nikodym con-
vergence theorem (called also Vitali-Hahn-Saks-Nikodym theorem). Indeed, if we take
I = N in the proof of Theorem 4.2, we get the following corollary, which contains,
among others, [8, Theorem 4], [4, Corollary 3.8], [3, (6.4)] and [24, Theorem 4.10].

COROLLARY 4 . 3 . (Nikodym Convergence Theorem.) Let {/xn : n e N} C
ca(L, G). If (^n(a))n e N is a Cauchy sequence in G for all a € L, then {fj.n : n € N} is
uniformly countably additive. Moreover, if (M"(a))n6N converges to fj.(o) for all a G L,
then \i e ca(L, G).

As a consequence of Theorem 4.2, it is possible to generalise the Vitali-Hahn-
Saks theorem for von Neumann algebras due to Aarnes [1]. At the same time, in the
next corollary we shall extend similar results contained in [9] and [31]. Let A be a
von Neumann algebra and let P{A) be the set of all projections of A (see Example
2.8). Let (p be a homomorphism from A into G. We shall say that p is normal if
f\ol.s € cca(P(.4),G) (see [28, Theorem 7.1.121).

COROLLARY 4 . 4 . (Nikodym Convergence Theorem.) Let {tpn : n e N} be
a sequence of normal homomorphisms from a von Neumann algebra A into G, and
assume that the sequence {fn(p))neK converges to <p(p) for every projection p £ P(A).
Then <p is a normal homomorphism from A into G.
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It is possible to obtain a new convergence theorem for r-smooth measures. Let
M c a,(L,G). We say that M is uniformly T-smooth if for every filtering downwards
set D C L such that f\D = 0 and every V € M{G) there exists a0 € D such that
n(a) € V whenever a € D with a ^ a0 and n € M. A measure /it € a(L,G) is
r-smooth if the set {/i} is uniformly r-smooth.

LEMMA 4 . 5 . If /x € &(L,G) is r-smooth, then [i is completely additive.

PROOF: Let (ai)ieI be an orthogonal family in L such that a = ® a,i exists in
• 6/

L and let V <E M{G). For F 6 .F(7) we write dF = a © ( 0 aA . By Lemma 2.1 (ii),

the family {dp : F € ^"(Z)} is filtering downwards. Let b e L such that b ^ d^ for all

F e T(I). Then b^a and, by Lemma 2.1, a © dF = 0 a* ^ a 0 6 for all F € ^ (7) .

So a ^ o 9 b and 6 = 0. Then we have proved that f\{dp • F 6 F{I)} = 0. Since n is
r-smooth, there exists Fo e T{I) such that n{dF) € V for all F D Fo. It follows that
^{a) ~ S Ml0*) € V for all F D Fo. Therefore n is completely additive. D

The following convergence theorem for r-smooth measures was unknown, even in

the setting of classical measures denned on a -complete Boolean algebras.

THEOREM 4 . 6 . Let (nn)n^ be a sequence of r-smooth measures from L into

G. If (Mn(a))n6N is a Cauchy sequence in G for all a S L, then {/xn : n S N} is

uniformly r -smooth. Moreover, if (/xn(a)) N converges to fj.(a) for all a S L, then /x

is T-smooth.

PROOF: Suppose that {fin : n e N} is not uniformly r-smooth. Then there exists
a filtering downwards subset D of L with / \ D = 0 and £/ € A/"(G) such that for each
a € D there is b e D, b < a, with /xn(6) ^ £/ for some n € N. It is easy to verify that
the set {n € N : (J.n{b) £ U] is not finite. Then, for every a € D and n & N there are
m > n and b £ D, b ^ a, such that /in(6) ^ U.

Let V € M{G) such that F + V C U. Starting with nx = 0 and ax € £> arbitrary,
let a2 ^ ai and n-i > ni such that fin2(a,2) $ U. Since fj.n2 is r-smooth, it is possible
to find &2 € -D, 62 ^ 0,2, such that /^n2 (a) € V for all a € D with a ^ 62 • Take
113 > 712 and 03 € £>, 03 ^ &2i such that /xn3(a3) ^ U. Following in this way, we
get a sequence (flfc)fc6N of elements of D and a sequence (njt)fc6N in N satisfying:
Vnk(ak) $ U, Mnfc(afc+i) 6 V, afc+i < ofc and nfc+i > nfc for all k € N.

Let dfc = ajt 0 afc+i. By Lemma 2.1 (ii) and (v) it follows that d\ A. di and
d\@di = a.iQa,3. A simple reasoning by induction shows that {rfi,... , dn} is orthogonal
and di ffi • • • © dn = a\ 0 an+\ for all n 6 N. Then (<ifc)fc6N is an orthogonal sequence
in L such that fink(dk) £ V for all fc & N. But by Lemma 4.5, each measure /in

is completely additive and, by Lemma 3.1, s-bounded. Applying the Brooks-Jewett
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Theorem 4.1, it follows that {fin : n 6 N} is uniformly s-bounded. This contradicts
the fact that fink(dk) & V for all k € N. So, the proof of first part of theorem is
complete.

The proof of second statement is standard. D

REMARK 4.7. It is usual to say that (j. € a(L,G) is order continuous if (M(an))n6N

converges to 0 for all decreasing sequence (an)n6N m ^ s u c n t n a t A a « — 0- With
a proof similar to that of Lemma 4.5 it can be proved that /x is order continuous if
and only if fj, is countably additive (see [8, Proposition 2]). Therefore, the Nikodym
convergence theorem (Corollary 4.3) can be also obtained as a consequence of Theorem
4.6.

Now, we shall give a convergence theorem for regular measures. But, firstly, we
need some preliminary definitions.

We say that an element a € L is principal if p, q € L, p J_ q and p,q ^ a imply
p® q ^ a. We say that a 6 L is central if a and a' are principal and for all p € L
there exist q,r € L such that <? ̂  a, r ^ a' and q © r = p. The set of all central
elements of L is called the centre of L, and it is denoted by C(L). Greechie, Foulis
and Pulmannova [21, Theorem 5.4] have shown that the centre C(L) is a sub-effect
algebra of L and, as an effect algebra in its own right, C(L) forms a Boolean algebra.
Furthermore, if a, b £ C(L), there exists the supremum a V b in C(L), which is also
the supremum of a and b as calculated in L. As a consequence, if a, b € £(!/) and
o ± 6, then a V 6 is principal. So, a © 6 ^ a V b, which implies that a V b = a © 6.

For more information about principal and central elements in an effect algebra we
refer to [21].

A paving in I, is a subset K of L such that 0 S K and the supremum a V 6 exists
in L and belongs to K for all a,b£ K.

Let A" be a paving in L and let M C a(L,G). We say that M is uniformly
K -regular if for every U € N(G) and every a € L there exists b € K, b ^ a, such
that j*(c) 6 £/ whenever c € L with c ^ a G d and /i e M . A measure \i € a(L, G) is
K -regular if the set {/x} is uniformly .K" -regular.

THEOREM 4 . 8 . Let K be a paving in L such that K c G(L), and iet (/xn)neN

be a sequence of K-regular and s-bounded measures from L into G. If (/xn(o))
is a Cauchy sequence in G for all a € L, then {fj.n : n € N} is uniformly K-regular.
Moreover, if (^r»(a))neN converges to n(a) for all a 6 L, then \s. is K-regular.

P R O O F : Suppose that {/in : n € N} is not uniformly it"-regular. Then there exists
U € M{G) and a0 € L such that for all b e K, b ^ a0,

(4.1) {/xn(c):c<o0e6} £1 /
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for some n € N. We shall show that, for each 6 $C ao, (4.1) is satisfied for an infinite
number of n € N. If this is not true, there exist bo £ K, bo ^ ao, and no S N such
that {nn(c) • c ^a0Ob} cU for all n > n0 . Since fii,n2,... , Mn0

 a r e if-regular,
there are b\, b2, • • • , bno € K such that bj < a0 and {HJ(C) : c ^ a0 Q bj} C U for

"0
j = 1, . . . ,n 0 . Since K C C(L) and K is a paving in L, there exists 6 = V bj in L

i=o
and b e K. Clearly 6 ^ a0. Take c € L such that c ^ a o 9 i . Then c < ao © fy for all
j € {0 ,1 , . . . , no}, which implies that Hn(c) € U for all n € N, a contradiction.

Therefore, for every b € K, b ^ ao, and every n0 € N, there exist c £ i , c < aoGfc,
and n > no such that Hn{c) £ U.

Now, we consider V € M{G) such that V + V C U. Take 60 £ # , &o ^ ao,
and n0 = 0. Then there exist n\ > 0 and ci ^ a0 0 bo such that ^n i (c i ) ^ [/.
Since ^ is K -regular, there exists b\ € K, &i ^ c\, such that / ^ ( c ) € T̂  for all
c^ CiQbi. In particular, /in i(ci) - nni(bi) € V" and so, /J.ni(h) $ V. Taking bx € K
and ni € N, there exist n2 > ni and c2 ^ a o 0 6i such that /zn2(c2) ^ f/. Following in
this way, we can find sequences (&fc)fc6N in K and (n*)fceN in N such that rik+i > nk,
bk+i ^ a0 9 (6i V b2 V • • • V bk) and /infc (bk) $ V for all k € N.

By the construction of bk, and using that K C C(L), we get that b\ ± b2,
hi V b2 - bx © b2, 63 ± (61 © 62), • • • > 61 V b2 V • • • V bk = 61 © b2 © • • • © bk and
bk+i -L (bi © 62 © • • • © &fc) • Then, (6fc)fc6N is an orthogonal sequence in L such that
Vnk{bk) £ V for all fcgN. Therefore, {/in : n 6 N} is not uniformly s-bounded, which
contradicts the Brooks-Jewett Theorem 4.1. D

REMARKS 4.9.

(1) An analog of the last theorem can be proved where it is supposed that L
is an orthoalgebra and K is a paving in L, not necessarily contained in
C(L).

(2) Note that if L is a Boolean algebra, then C(L) = L and the condition
K C C(L) is trivially satisfied.

(3) It is not usual to find, in the literature, a convergence theorem for regular
measures. In [32] there is one, which is generalised by our Theorem 4.8.

5. CONCLUDING REMARKS

In the preceding section we have obtained a number of convergence theorems for
measures defined on effect algebras. If the effect algebra L is an orthoalgebra (see
Example 2.4), then every orthogonal sequence is contained in a Boolean subalgebra of
L (see [23]). As a consequence, in order to proof a convergence theorem for measures
defined on orthoalgebras, or orthomodular posets, or lattices, it is possible to use the
classical results for measures on Boolean algebras (see [3], [4] or [24]). However, this
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method is not valid if L is not an orthoalgebra. For instance, if we consider the effect
algebra L = ([0,1], _L, ©, 0, l) of Example 2.9 and A = {0,1/4,1/2} c [0,1], then A is
an orthogonal subset of [0,1], but there is no Boolean subalgebra of L containing A
because 1/4 ± 1/4 in L and this is not possible in a Boolean algebra. This argument
shows that the effect algebra L does not verify the property WSIP defined by Habil [24].
But L is complete. Hence the property WSIP, as denned in [24], is not weaker than
completeness, a -completeness or quasi- a -completeness in the setting of effect algebras.

Therefore we have proved our convergence theorems by using, not the classical
results, but similar technics, when possible, to those used to prove the classical results.
The proof of Lemma 3.5, which is the key lemma for the main results given in Section
4, follows basically the ideas of Landers and Rogge [32], adapted to our context: an
arbitrary orthogonal set and a sequence of non-commutative measures defined on a
quasi- a -complete effect algebra. Later, from the Brooks-Jewett theorem, we deduced
several results by the following argument: a sequence of measures which are completely
additive (respectively r -smooth, K -regular) and uniformly s -bounded necessarily is
uniformly completely additive (respectively r-smooth, K-regular).

There are still two classical convergence theorems that do not appear in the above
section: Nikodym boundedness and Vitali-Hahn-Saks theorems. The first one concerns
bounded measures. But, if we bear in mind that there are different ways of defining
boundedness for a topological group (see [37] or [46]) and that we are working with
non-commutative measures, it turns out that this theorem fails in a certain context (see
[4] or [24] for a counterexample), while holding under other conditions, as we can see
in [34] or [37].

Finally, we consider the Vitali-Hahn-Saks theorem, that is, the convergence the-
orem for A-continuous measures. We wish to point out that it is easy to find recent
results about this theorem for classical measures (see [26] or [47]), while there are very
few related works in the setting of non-commutative theory. This happens because the
theorem fails, even in the special case of real measures defined on a complete ortho-
modular lattice, as d'Andrea, de Lucia and Morales have shown in [4] (see also [12]).
They construct measures / j n ,A£ a(L(R2),K) (see Example 2.7) such that every fxn

is A-continuous, lim nn(a) = 0 for all a € L(R2) and {/in : n 6 N} is not uniformly
A-continuous. It is easy to see that these measures are uniformly s-bounded, uniformly
countably (and completely) additive and uniformly T-smooth. This example also shows
that a set of A-continuous and uniformly s-bounded measures need not to be uniformly
A-continuous. Thus, a result like [33, Lemma 4.3] or [45, Theorem 2.1] is not true for
non-commutative measures.

On the other hand, Dvurecenskij asserts in [12] that if ^in,A : L(H) —> R are
completely additive measures and if is a Hilbert space with dimension bigger or equal
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than 3, then the Vitali-Hahn-Saks theorem holds, even if we change L(H) by P(A),
being A a von Neumann algebra without direct summand of type I2 (see [44]).

We can notice that these conditions are exactly those under which the Gleason
theorem is valid (see [6] or [36]). From this connection between both theorems, we can
ask if the Vitali-Hahn-Saks theorem holds for measures defined on P(A) and taking its
values in a Banach space or even in a topological group. But the proof of that result
will be based undoubtedly on the Gleason theorem and this is not the subject of this
paper.
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