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1. INTRODUCTION

As the users population accessing Internet services grows in size and dispersion,
it is necessary to improve performance and scalability by deploying multiple, dis-
tributed server sites. Distributing services has the benefit reducing access latency,
and improving service scalability by distributing the load among several sites. One
important issue in such a scenario is how the user chooses the appropriate server.
Similar problem occurs in the context of routing where the user has to select one of
a few parallel links. For instance, many enterprise networks are connected to mul-
tiple Internet service providers (ISPs) for redundant connectivity, and backbones
often have multiple parallel trunks. Users are likely to behave “selfishly” in such
cases, that is each user makes decisions so as to optimize its own performance,
without coordination with the other users. Basically, each user would like to either
maximize the resources allocated to it or, alternatively, minimize its cost. Load
balancing and other resource allocation problems are prime candidates for such a
“selfish” behavior.

A natural framework to analyze this class of problems is that of non-cooperative
games, and an appropriate solution concept is that of Nash equilibrium [Nash 1951].
Users’ strategy is at a Nash equilibrium if no user can gain by unilaterally deviating
from its own policy. An interesting class of non-cooperative games, which is related
to load balancing, is congestion games [Rosenthal 1973] and its equivalent model
of potential games [Monderer and Shapley 1996]. In a potential game there is
a potential function which maps the current state to a real number (in the load
balancing scenario a state would include assignment of jobs to machines). We now
consider deviations of a single player (job) and compare the change in the deviating
player’s utility (load) to the change in the potential function. In an exact potential
game the changes are identical. In a weighted potential game the changes are
related by a factor that depends only on the player. In an ordinal potential game
the changes are in the same direction, while in a generalized potential game an
increase in a player’s utility implies an increase in the potential function (but not
vice versa). Almost by definition, every potential game has a pure (deterministic)
equilibrium, and by iteratively performing improvements of the player we can reach
such an equilibrium. In this paper we focus on the load balancing problem and relate
them to potential games. Although our model is a simplification of the internet
model, it still captures several aspects of it and can represent simpler networks as
pointed out in [Koutsoupias and Papadimitriou 1999; Mavronicolas and Spirakis
2001; Papadimitriou 2001; Czumaj and Vocking 2002].

Traditionally in computer science research has been focused on finding a global
optimum. With the emerging interest in computational issues in game theory, the
coordination ratio [Koutsoupias and Papadimitriou 1999; Papadimitriou 2001] has
received considerable attention in load balancing [Koutsoupias and Papadimitriou
1999; Mavronicolas and Spirakis 2001; Czumaj and Vocking 2002] and in other
problems such as routing and facility location [Czumaj et al. 2002; Fotakis et al.
2002; Roughgarden and Tardos 2002; Fotakis et al. 2004; Awerbuch et al. 2005].
The coordination ratio is the ratio between the worst possible Nash equilibrium
(the one with maximum social cost) and the social optimum (an optimal solution
with the minimal social cost). One motivation is to show that the gap between a
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Nash equilibrium and the optimal solution is in some cases not significant, thus a
good performance can be achieved even without a centralized control.

In this work we are concerned with the time it takes for the system to converge
to a Nash equilibrium, rather than the quality of the resulting allocation. The
question of convergence to a Nash equilibrium has received significant attention
in the Game Theory literature (see [Fudenberg and Levine 1998]). Our approach
is different from most of that line of research in a few crucial aspects. First, we
are interested in quantitative bounds, rather than showing a convergence in the
limit. Second, we consider games with many players (jobs) and actions (machines)
and study their asymptotic behavior. Third, we limit ourselves in this work to a
subclass of games that arises from load balancing, for which there always exists a
pure Nash equilibrium, and thus we can allow ourselves to study only deterministic
policies.

Our Model. This paper deals with load balancing (see, [Azar 1998]). Jobs
(players) are allowed to select a machine to minimize their own cost. The cost
that a job observes from the use of a machine is determined by the load on that
machine. We consider weighted load functions, where each job has a corresponding
weight and the load on a machine is sum of the weights of the jobs running on
it. Until a Nash equilibrium is reached, at least one job can benefit from changing
its machine. In our model, similarly to the Elementary Stepwise System (ESWS)
(see [Orda et al. 1993]), at every time step only one job is allowed to move, and a
centralized controller decides which job would move in the current time step. This
model measures both the sequential complexity of reaching pure Nash equilibrium,
and the complexity of distributed algorithms converging to Nash equilibrium in
which only one movement is allowed at each time step.

In our notation a strategy is the algorithm used by the centralized controller
for selecting which of the competing jobs would move. Due to the selfish nature
of jobs, we assume that when a job migrates its observed load is strictly reduced,
which we refer to as an improvement policy. We also consider the well known case
of best reply policy, where each job moves to a machine in which its observed load
is minimal.

Our Results. We assume that there are n jobs and m machines. Let K be the
number of different weights, W be the sum of the weights of all the jobs, and wmax

be the maximum weight assigned to any job (we normalize the minimal weight to
1).

For the general case of unrelated machines we show that the system always con-
verges to a Nash equilibrium. We do it by introducing an order between the different
configurations and showing that when a job migrates we move to a “lower” config-
uration in the order. This shows that this case is a generalized ordinal potential
game. This implies that we never reach the same configuration twice, and therefore
bounding the number of configurations bounds the convergence time. Bounding
the number of configurations by min{[O( n

Km +1)]Km, mn} derives a general upper
bound. Using a potential base argument we derive a bound of O(4W ) for integer
weights, where W is the worse case sum of the weights of the jobs. For the spe-
cific strategy that first selects jobs from the most loaded machine we can show an
improved bound of O(mW + 4W/m+wmax).

ACM Transactions on Computational Logic, Vol. 2, No. 3, 09 2001.
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In the simple case of identical machines and unrestricted assignments, we show
that if the controller moves the minimum weight job, the convergence may take an
exponential number of steps. Specifically, the number of steps is at least,

( n
K )K

2(K!)
≥

( n

K2

)K

for K = m − 1. In contrast, we show that if the controller moves the maximum
weight job, and the jobs follow the best reply policy, a Nash equilibrium is reached in
at most n steps. This shows the importance of selecting of the “right” scheduling
strategy. We also show that selecting the minimal weight job is “almost” the
worst case for identical machines, by demonstrating that any strategy converges
in ( n

K + 1)K time steps. We also show that any strategy converges in O(W + n)
steps for integer weights. For the Random and FIFO strategies we derive an O(n2)
bound on their convergence time.

For restricted assignment and related machines we show that it is a weighted
potential game, and in the case that all the jobs have the same weight it is an exact
potential game. For this setting we bound by O

(
W 2S2

max/ε
)

the convergence time
to ε-Nash, where no job can benefit more than ε from unilaterally migrating to
another machine and Smax is the maximal speed. Using the strategy that schedules
first jobs from the most loaded machine we can derive an improved convergence
bound. Note that in our setting there always exists an εmin such that for any
ε < εmin we have that any ε-Nash equilibrium is a Nash equilibrium. For example,
in the case of identical machine with integer weights we have εmin = 1.

For K integer weights, we are able to derive an interesting connection between
W and K, for the case of identical and related machines. We show that for any
set V of K integer weights there is an equivalent set V ′ of K integer weights such
that the maximum weight in V ′ is at most O(K(cSmaxn)4K) for some positive
constant c. The equivalence guarantees that the relative cost of different machines
is maintained in all configurations. (In addition, we never need to compute V ′,
and it is only used in the convergence analysis.) The equivalence implies that
W = O(Kn(cSmaxn)4K). Thus, all bounds that depend on W can depend on
O(Kn(cSmaxn)4K).

Related Work. Milchtaich [1996] describes a class of non-cooperative games,
which is related to load balancing. (In order to make the relations between the
models clearer we use the load balancing terminology to describe his work.) The
jobs (players) share a common set of machines (strategies). The cost of a job when
selecting a particular machine depends only on the total number of jobs mapped
to that machine (implicitly, all the weights are identical). However, each job has
a different cost function for each machine, this is in contrast to the load balancing
model where the cost of all the jobs that map to the same machine is identical.
He shows that these games always possess at least one pure (deterministic) Nash
equilibrium and there exists a best reply improvement strategy that converges in
polynomial time. However, for the weighted version of these games there are cases
where a pure Nash equilibrium does not exist. In contrast, we show that any
improvement policy converges to a pure Nash equilibrium in the load balancing
setting.

Our model is related to the makespan minimization problem since job moves can
ACM Transactions on Computational Logic, Vol. 2, No. 3, 09 2001.
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be viewed as a sequence of local improvements. The analysis of the approximation
ratio of the local optima obtained by iterative improvement appears in [Brucker
et al. 1996; 1997; Schuurman and Vredeveld 2001]. The approximation ratio of a
jump (one job moves at a time) iterative improvement has been studied in [Finn
and Horowitz 1979]. In [Brucker et al. 1997] it was shown that for two identical
machines this heuristic requires at most n2 iterations, which immediately translates
to an n2 upper bound for two identical machines with general weight setting in our
model. In [Schuurman and Vredeveld 2001] they observe that the improvement
strategy that moves the maximum weight job converges in n steps.

Goldberg [2004] studied a randomized model in which each user can select a
random delay over continuous time. The continuous time implies that only one
user tries to reroute at each specific time. In that model rerouting succeeds only
if the user lowers its load. The work shows a simple randomized algorithm in
which the expected number of rerouting attempts, until convergence to a Nash
equilibrium, is polynomial in the number of links m and users n.

Mirrokni and Vetta [2004] studied a model in which only one user is allowed to
move in each time step, but the main interest was not in the equilibrium point
but on the social value after a short best response path and therefore they were
interested in the convergence time to an approximate solution and to exact solution
as we are.

A Nashification algorithm is an algorithm which changes the system state from an
arbitrary state to Nash equilibrium without increasing the social cost. In [Feldmann
et al. 2003] a Nashification algorithm in a Load balancing setting was considered.
They studied the time it takes for a specific scheduler to Nashify a non Nash
equilibrium state. They also provide an example where there can exists a sequence
of an exponential number of selfish improvements with respect to the the number
of machines to reach Nash equilibrium. (This last result is similar to Theorem 5.5
in this paper and was derived independently at the same time.)

Some interesting related learning models are stochastic fictitious play [Fudenberg
and Levine 1998], graphical games [Littman et al. 2002], and large population games
[Kearns and Mansour 2002]. Uniqueness of Nash equilibrium in communication
networks with selfish users has been investigated in [Orda et al. 1993]. An analysis
of the convergence to a Nash equilibrium in the limit appears in [Altman et al.
2001; Boulogne et al. 2002].

Following the proceeding version of this work, the work of [Even-Dar and Mansour
2005] studies also the convergence rate in load balancing scenario. The major
difference there is that they consider a model without centralized unit and the
model they consider is simpler, only related machines and mainly unweighed jobs.
A logarithmic bound on the convergence time is derived there.

Paper organization: The rest of the paper is organized as follows. In Section
2 we present our model. The analysis of unrelated, related and identical machines
appears in Section 3, Section 4 and Section 5, respectively. We conclude with
Section 6. The Appendices contain the proofs.

ACM Transactions on Computational Logic, Vol. 2, No. 3, 09 2001.
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2. MODEL DESCRIPTION

In our load balancing scenario there are m parallel machines and n independent
jobs. Each job selects exactly one machine.

Machines Model. We consider identical, related and unrelated machines. We
denote by Si the speed of machine Mi. Let Smin and Smax denote the minimal and
maximal speed, respectively. WLOG, we assume that Smin = 1. For identical and
unrelated machines we have Si = 1 for 1 ≤ i ≤ m.

Jobs Model. We consider both restricted and unrestricted assignments of jobs
to machines. In the unrestricted assignment case each job can select any machine
while in the restricted assignment case each job J can only select a machine from
a pre-defined subset of machines denoted by R(J).

For a job J , we denote by wi(J) > 0 the weight of J on machine Mi (where
i ∈ R(J)) and by M(J, t) the index of the machine on which J runs at time t.1 When
considering identical machines, each job J has a weight w(J) = wi(J). We denote
by W the maximal total weight of the jobs, that is W =

∑n
i=1 maxj∈R(Ji){wj(Ji)}

and by wmax = maxi maxj∈R(Ji){wj(Ji)} the maximum weight of a job.
We consider the following weight settings: General weight setting – the weights

may be arbitrary positive real numbers. Discrete weight setting – there are K
different weights 1 = w1 ≤ . . . ≤ wK = wmax. Integer weight setting – the weights
are positive integers.

Load Model. We denote by Bi(t) the set of jobs on machine Mi at time t. The
load of a machine Mi at time t is the sum of the weights of the jobs that chose
Mi, that is Li(t) =

∑
J∈Bi(t)

w(J), and its normalized load is Ti(t) = Li(t)/Si. We
also define Lmax(t) = maxi{Li(t)} and Tmax(t) = maxi{Ti(t)}. The cost of job J
at time t is the normalized load on the machine M(J, t), i.e., TM(J,t)(t). We define
the marginal load with respect to a job to be the load in the system when this job
is removed.

System Model. The system state consists of the current assignment of the
jobs to the machines. The system starts in an arbitrary state and each job has a
full knowledge of the system state. A job wishes to migrate to another machine,
if and only if, after the migration its cost is strictly reduced. Before migrating
between machines, a job needs to receive a grant from the centralized controller.
The controller has no influence on the selection of the target machine by a migrating
job, it just gives the job a permission to migrate. The above is known in the
literature as an Elementary Stepwise System (ESWS) (see [Boulogne et al. 2002;
Orda et al. 1993]). Essentially, the controller serves as a critical section control.
The execution is modeled as a sequence of steps and in each step one job changes
its machine. Notice that if all jobs are allowed to move simultaneously, the system
might oscillate and never reach a stable system state. This is evident in a simple
example where there are two machines and in each time step all jobs behave selfishly
and migrate to the least loaded machine.

Let A(t) be the set of jobs that may decrease the experienced load at time t
by migrating to another machine. When a migrating job selects a machine which

1We do not consider mixed strategies, namely, every job J at time t is mapped to a unique machine
M(J, t).
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minimizes its cost (after the migration), we call it a best-reply policy. Otherwise,
we call it a improvement policy.

The system is said to reach a pure (or deterministic) Nash equilibrium if no
job can benefit from unilaterally migrating to another machine. (Note that by
definition, the only stable system states are Nash equilibria.) The system is said
to reach an ε-Nash equilibrium if no job can benefit more than ε from unilaterally
migrating to another machine. We study the number of time steps it takes to reach
a Nash equilibrium (or ε-Nash equilibrium) for different strategies of ESWS job
scheduling.

Scheduling Strategies: We define a few natural strategies for the centralized
controller. The input at time t is always a set of jobs A(t) and the output is a job
J ∈ A(t) which would migrate at time t. The specific strategies that we consider
are:

Random:. Selects J ∈ A(t) with probability 1/|A(t)|.
Max Weight Job:. Selects J ∈ A(t) such that w(J) = maxJ ′∈A(T ){w(J ′)}.
Min Weight Job:. Selects J ∈ A(t) such that w(J) = minJ′∈A(T ){w(J ′)}.
FIFO:. One can view this policy as using a queue, where new jobs that would

like to migrate enter the end of the queue, and the job at the head of the queue
is selected to migrate. (Note that jobs in the queue might change their status and
would not like to migrate, in which case they leave the queue.) More formally, let
E(J) be the smallest time t′ such that J ∈ A(t′′) for every t′′ ∈ [t′, t]. FIFO selects
J ∈ A(t) such that E(J) = minJ′∈A(T ){E(J ′)}.

Max Load Machine:. Selects J ∈ A(t) such that TM(J,t) is maximal.

Potential Games: Monderer and Shapley [1996] defined few classes of potential
games. Common to the various classes of potential games is a potential function
P that maps a game state (system state in our notation) into the Reals. We give
here the definition of the different classes of potential games using our notations,
where the players are the jobs, their utility function is their load and their actions
are selecting a machine. Let st be the system state at time t and P be the potential
function.

Exact potential game. when a job migrates from Mi to Mj at time t then the
following holds: Tj(t + 1)− Ti(t) = P (st+1)− P (st).

Weighted potential game. when job J migrates from Mi to Mj at time t then the
following holds: Tj(t + 1)− Ti(t) = c(J)(P (st+1)− P (st)), for some constant c(J)
which depends only on the job J .

Ordinal potential game. when a job migrates from Mi to Mj at time t then the
following holds: Tj(t + 1)− Ti(t) < 0 ⇐⇒ P (st+1)− P (st) < 0.

Generalized ordinal potential game. when a job migrates from Mi to Mj at time
t then the following holds: Tj(t + 1)− Ti(t) < 0 =⇒ P (st+1)− P (st) < 0.

The difference between a generalized ordinal potential game and an ordinal poten-
tial game is in the case that the normalized load of the migrating job does not
change, i.e., Tj(t + 1) = Ti(t). An ordinal potential requires that in such a case
we have P (st+1) = P (st), while for a generalized ordinal potential this is not a
requirement, and any relationship can hold between P (st+1) and P (st). For all
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classes of potential games, it is easy to observe that any improvement policy would
converge to a pure equilibrium, since the potential function is bounded.

3. UNRELATED MACHINES

In this section we consider the unrelated machines case with the restricted assign-
ment. We show that this case is a generalized ordinal potential game.

To show convergence we use a lexicographic order similar to the one used by
Fotakis et al. [2002]. We define a sorted lexicographic order of the vectors describing
the machine loads as follows. Consider the sorted vector of the machine loads. One
vector is called “larger” than another if its first (after the common beginning of the
two vectors) load component is larger than the corresponding load component of
the second vector. Formally, given two load vectors `1 and `2, let s1 = sort(`1) and
s2 = sort(`2) where sort() returns a vector in the sorted order. We define `1 Â `2 if
s1 Â s2 using a lexicographic ordering, i.e., s1[i] = s2[i] for i < k and s1[k] > s2[k].

We demonstrate that the sorted lexicographic order of the load vector always
decreases when a job migrates. We first observe that only two machine are influ-
enced by the migration of the job J at time t, Mi = M(J, t), where job J was
before the migration and Mj = M(J, t + 1), the machine J migrated to. Further-
more Li(t) > Lj(t + 1), otherwise job J would not have migrated. Also note that
Li(t) > Li(t + 1) since job J has left Mi. Let L = max{Li(t + 1), Lj(t + 1)}. Since
L < Li(t) one can show that the new machine loads vector is smaller in the sorted
lexicographic order than the old machine loads vector. This is summarized in the
following claim.

Claim 3.1. The sorted lexicographic order of the machine loads vector decreases
when a job migrates.

We can use the lexicographic order to define a potential function (since it defines
a complete order between system states). Therefore we establish the following.

Corollary 3.2. Load balancing of jobs with unrelated machines is a generalized
ordinal potential game.

Note that in the general model, a job that migrates without changing its load
might change the system state and therefore the potential function is not an ordinal
potential function.

General Weights. In the general case, the number of different system con-
figurations is at most mn, which derives the following corollary. Using the above
argument, any improvement policy converges to a Nash equilibrium, and gives us
an upper bound on the convergence time equal to the number different sorted ma-
chine loads vectors (which is trivially bounded by the number of different system
configurations).

Corollary 3.3. For any ESWS strategy with an improvement policy, the sys-
tem of multiple unrelated machines with restricted assignment reaches a Nash equi-
librium in at most mn steps.

Discrete Weights. For the discrete weight setting, the number of different
weights is K. Let ni be the number of jobs with weight wi. The number of different
configurations of jobs with weight wi is bounded by

(
m+ni

m

)
. Multiplying the number
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of configurations for the different weights bounds the number of different system
configurations. Since, by definition,

∑K
i=1 ni = n, we can derive the following.

Corollary 3.4. For any ESWS strategy with an improvement policy, the sys-
tem of multiple unrelated machines with restricted assignment under the discrete
weight setting reaches a Nash equilibrium in at most

K∏

i=1

(
m + ni

m

)
≤ (c

n

Km
+ c)Km,

steps for some constant c > 0.

Integer Weights. To bound the convergence time for the integer weight set-
ting, we introduce a generalized ordinal potential function and demonstrate that
it decreases when a job migrates. We define the potential of the system at time
t, as Pun(t) =

∑m
i=1 4Li(t). After job J migrates from Mi to Mj then we have

that Li(t) − 1 ≥ Lj(t + 1), since J migrated. Also, since we have integer weights,
Li(t + 1) ≤ Li(t)− 1. Therefore, the reduction in the potential is at least,

Pun(t)− Pun(t + 1) = 4Li(t) + 4Lj(t) − [4Li(t+1) + 4Lj(t+1)] ≥ 4Li(t)/2 ≥ 2. (1)

This establishes that Pun is a generalized ordinal potential function.

Theorem 3.5. For the system of multiple unrelated machines under the integer
weight setting, the function Pun(t) =

∑m
i=1 4Li(t) is a generalized ordinal potential

function.

Since in the initial configuration we have that Pun(0) ≤ 4W and when we termi-
nate we have Pun(T ) ≥ m, we derive the following theorem.

Theorem 3.6. For any ESWS strategy with an improvement policy, the system
of multiple machines under the integer weight setting reaches a Nash equilibrium in
4W /2 steps.

Next we show that this bound can be reduced to O(mW + m4W/m+wmax) when
using the Max Load Machine strategy.

Theorem 3.7. For Max Load Machine strategy with an improvement policy,
the system of multiple machines under the integer weight setting reaches a Nash
equilibrium in at most 4mW + m4W/m+wmax/2 steps.

Proof. We divide the schedule into two phases with respect to the maximum
load among the machines. The first phase continues until Lmax(t) ≤ W/m+wmax,
and then the second phase starts. Note that in a second phase all jobs on the
most loaded machine might want to stay on it. At the start of the second phase,
at time T , the potential is at most m4Lmax(T ) ≤ m4W/m+wmax . By (1), at every
step the potential drops by at least two, therefore the duration of the second phase
is bounded by m4W/m+wmax/2. Thus, it remains to bound the duration of the
first phase, namely T . At any time t < T we have Lmax(t) > W/m + wmax. Since
Lmin(t) ≤ W/m, every job in the maximal loaded machine can benefit by migrating
to the least loaded machine. The Max Load Machine strategy will choose one of
those jobs. By (1), the decrease in the potential is at least 4Lmax(t)/2 ≥ Pun(t)/2m.

ACM Transactions on Computational Logic, Vol. 2, No. 3, 09 2001.
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Therefore, after T steps we have Pun(T ) ≤ Pun(0)(1−1/2m)T . Since Pun(0) ≤ 4W

and Pun(T ) ≥ 1, it follows that T ≤ 4mW , which establishes the theorem.

4. RELATED MACHINES

In this section we consider related machines. We show for this case that there is
a weighted potential function, where the factor of job J is simply its weight w(J).
(Most of the proofs of this section are deferred to Appendix A.)

We first consider restricted assignments and assume that all jobs follow an im-
provement policy. We first define the potential of the system as follows:

P rl(t) =
m∑

i=1

(Li(t))2

Si
+

n∑

j=1

w2
j

SM(j,t)
=

m∑

i=1

Si(Ti(t))2 +
n∑

j=1

w2
j

SM(j,t)

The following lemma shows that the game is a weighted potential game. Since
the factor of job J , c(J), is identical to twice its weight w(J), if all the jobs have
unit weight then the game is an exact potential game (with potential function∑m

i=1
(Li(t))

2

2Si
+

∑n
j=1

w2
j

2SM(j,t)
).

Lemma 4.1. When a job of size w migrates from machine i to machine j at time
t then P rl(t + 1)− P rl(t) = 2w(Tj(t + 1)− Ti(t)) < 0.

We now like to bound the drop in the potential in each step. Clearly, if we are
interested in ε-Nash equilibrium, then the drop is at least 2wε > ε. Considering a
Nash equilibrium, for integer weights and speeds then the drop is at least (Smax)−2.
Since the initial potential is bounded by W 2, we can derive the following Theorem.

Theorem 4.2. For any ESWS strategy with an improvement policy, the system
of multiple related machines with restricted assignment reaches an ε-Nash equilib-
rium in at most O(W 2/ε) steps, and reaches a Nash equilibrium, assuming both
integer weights and speeds, in at most O(W 2S2

max) steps.

For unrestricted assignment, by forcing to move the job from the most loaded
machine we can improve the bound as follows.

Theorem 4.3. For Max Load Machine strategy with best reply policy, the system
of multiple related machines with restricted assignment reaches an ε-Nash equilib-
rium in at most

O

(
W

√
mSmax +

nw2
max

ε

)

steps.

Discrete Weights. We show that for any K integer weights there is an equiv-
alent model in which wmax is bounded by O(K(Smaxn)4K), and therefore W =
O(Kn(Smaxn)4K). This allows us to translate the results using W to the discrete
weight model by replacing W by O(Kn(Smaxn)4K). (We do not need to calculate
the equivalent weights, since they are only used for the convergence time analysis.)
We first define what we mean by an equivalent set of weights.

Definition 4.4. Two discrete set of weights w1, . . . , wK and α1, . . . , αK are equiv-
alent if for any two assignments, n1, . . . , nK and `1, . . . , `K , where

∑K
i=1 ni ≤ n and
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∑K
i=1 `i ≤ n, we have

∑K
i=1 niwi >

∑K
i=1 `iwi if and only if

∑K
i=1 niαi >

∑K
i=1 `iαi,

and
∑K

i=1 niwi =
∑K

i=1 `iwi if and only if
∑K

i=1 niαi =
∑K

i=1 `iαi.

Intuitively, the above definition implies that as long as we use only comparisons,
we can replace w1, . . . , wK by α1, . . . , αK . Most important for us is that we can use
in the potential the α’s rather than the w’s. From the definition of an equivalent
set of weights we can derive the following. Any strategy based on comparisons of
job weights and machine loads and an improvement policy based on comparisons of
machine loads (e.g., best reply) would produce the same sequence of job migrations
starting from any initial configuration.

The following theorem, which is proven using linear integer programming tech-
niques, bounds the size of the equivalent weights. (The linear program and the
proof can be found in Appendix C.)

Theorem 4.5. For any discrete set of integer weights w1, . . . , wK there exist an
equivalent set of integer weights α1, . . . , αK such that for every i αi ≤ K(cSmaxn)4K

for some constant c > 0.

Unit Weight Jobs. We show that for unit weight jobs, there exists a strategy
that converges in mn steps. The unit weight jobs is a special case of [Milchtaich
1996] with a symmetric cost function, and an upper bound of O(mn2) on the con-
vergence time of a specific strategy was derived. We follow the proof of [Milchtaich
1996] and obtain a better bound in our model. (The proof is in Appendix A.)

Theorem 4.6. There exists an ESWS strategy such that the system of multiple
related machines with restricted assignment reaches a Nash equilibrium in at most
mn steps in the case of unit weight jobs.

The next theorem presents a lower bound of Ω(mn) on the convergence time of
some ESWS strategy (different from that of Theorem 4.6).

Theorem 4.7. There exists an ESWS strategy with an improvement policy such
that for the system of multiple related machines with unrestricted assignment, there
exists a system configuration that requires at least Ω(mn) steps to reach a Nash
equilibrium in the case of unit weight jobs.

5. IDENTICAL MACHINES

In this section we show improved upper bounds that apply to identical machines
with unrestricted assignment. We also show a lower bound for K weights which
is exponential in K. The lower bound is presented for the Min Weight Job policy.
Clearly, this lower bound also implies a lower bound in all the other models. (Most
of the proofs of this section are deferred to Appendix B). First we derive some
general properties. The next observation states the minimal load cannot decrease.

Observation 5.1. For a system of multiple identical machines with unrestricted
assignment, at every time step the minimal load among the machines either remains
the same or increases.

Now we show that when a job moves to a new machine, this machine still remains
a minimal marginal load machine for all jobs at that machine which have greater
weight.
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Observation 5.2. For a system of multiple identical machines with unrestricted
assignment, if job J has migrated to its best response machine Mi at time t then
Mi is a minimal marginal load machine with regard to any job J ′ ∈ Bi(t) such that
w(J ′) ≥ w(J).

Next we show that once a job has migrated to a new machine, it will not leave
it unless a larger job arrives.

Claim 5.3. For a system of multiple identical machines with unrestricted assign-
ment, suppose that job J has migrated to its best response machine M at time t.
If J ∈ A(t′) for t′ > t then another job J ′ such that w(J ′) > w(J) migrated to
machine M at time t′′, and t < t′′ ≤ t′.

Proof. Since M was the best response machine for J it implies that M is the
minimal marginal load machine at time t with respect to J . By observation 5.1,
the minimal load never decreases. Thus, the only reason that J wishes to migrate
from machine M is that another job(s) migrated to machine M . By Observation
5.2 arrival of a smaller or equal weight job maintains M as the minimal marginal
load machine with respect to J . Therefore, it must be the case that at least one
job of weight greater than that of J migrated to M between t + 1 and t′.

Next we present an upper bound on the convergence time of Max Weight Job
strategy. (A similar claim (without proof) appears in [Schuurman and Vredeveld
2001].)

Theorem 5.4. For the Max Weight Job strategy with best response policy, the
system of multiple identical machines with unrestricted assignment reaches a Nash
equilibrium in at most n steps.

Proof. By Claim 5.3, once the job has migrated to a new machine, it will not
leave it unless a larger job arrives. Since under the Max Weight Job strategy
only smaller jobs can arrive in the subsequent time steps, it implies that each job
stabilizes after the first migration, and the theorem follows.

Now we present a lower bound for the Min Weight Job strategy.

Theorem 5.5. For Min Weight Job strategy with best response policy, there
exists a system configuration that requires at least ( n

K )K/(2(K!)) ≥ (n/K2)K steps
to the system of multiple identical machines with unrestricted assignment to reach
a Nash equilibrium, where K = m− 1.

We also present a lower bound of n2/4 on the convergence time of Min Weight
Job and FIFO strategies for the case of two machines.

Theorem 5.6. For the Min Weight Job and FIFO strategies with best response
policy, there exists a system configuration that requires at least n2/4 steps to the
system of two identical machines with unrestricted assignment to reach a Nash
equilibrium.

Proof. Consider the following scenario. There are n/2 classes of jobs C1, . . . , Cn
2

and each class contains exactly 2 jobs and has weight wi = 3i−1. Notice that a job
in Ci has weight wi = 3i−1, which equals to the total weight of all the jobs in the
first i− 1 classes plus 1.
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Initially, all jobs are located at the same machine. We divide the schedule into
phases. Let Ci

j denotes all jobs from classes Cj , . . . , Ci. A k-phase is defined as
follows. Initially, all jobs from classes Ck

1 are located at one machine. During the
phase these jobs, except one job from Ck, migrate to the other machine. Thus, the
duration of a k-phase is 2k − 1. It is easy to see that the schedule consists of the
phases n/2, . . . , 1 for Min Weight Job strategy. One can observe that FIFO can
generate the same schedule, if ties are broken using minimal weight.

The following theorem shows a tight upped bound of Θ(n2) on the convergence
time of FIFO strategy.

Theorem 5.7. For FIFO strategy with best response policy, the system of mul-
tiple identical machines with unrestricted assignment reaches a Nash equilibrium in
at most n(n + 1)/2 steps.

Similarly to FIFO, we bound the expected convergence time of Random strategy
by O(n2).

Theorem 5.8. For Random strategy with best response policy, the system of
multiple identical machines with unrestricted assignment reaches a Nash equilibrium
in expected time of at most n(n + 1)/2 steps.

Discrete Weights. For the discrete weight case, we demonstrate an upper
bound of O((n/K + 1)K) on the convergence time of any ESWS strategy, showing
that the bound of Theorem 5.5 for the Min Weight Job is not far from the worst
convergence time.

Theorem 5.9. For any ESWS strategy with best response policy, the system of
multiple identical machines with unrestricted assignment reaches a Nash equilibrium
in O((n/K + 1)K) steps.

Integer Weights. For the integer weight case, we show that the convergence
time of any ESWS strategy is proportional to the sum of weights.

Theorem 5.10. For any ESWS strategy with best response policy, the system of
multiple identical machines with unrestricted assignment reaches a Nash equilibrium
in W + n steps.

Unit Weight Jobs. For the unit weight jobs, we present a lower bound on the
convergence time of a specific strategy.

Theorem 5.11. There exists an ESWS strategy with the improvement policy for
which the worst case number of steps to the system of multiple identical machines
with unrestricted assignment and unit weight jobs to reach a Nash equilibrium is at
least Ω(min{mn, n log n log m

log log n}) steps.

6. CONCLUDING REMARKS

In this paper we have studied the online load balancing problem that involves
selfish jobs (users). We have focused on the number of steps required to reach
a Nash equilibrium and established the convergence time for different strategies.
While some strategies provably converge in polynomial time, for the others the
convergence time might require an exponential number steps.
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In the real world, the convergence time is of high importance, since even if the
system starts operation at a Nash equilibrium, the users may join or leave dynam-
ically. Thus, when designing distributed control algorithms, the convergence time
should be taken into account.
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A. PROOFS FROM SECTION 4

Proof Lemma 4.1. Let ∆(P rl) = P rl(t + 1)− P rl(t).

∆(P rl) =
(Lj(t + 1))2

Sj
+

(Li(t + 1))2

Si
+

w2

Sj
− (Li(t))2

Si
− (Lj(t))2

Sj
− w2

Si

=
(Lj(t) + w)2

Sj
+

(Li(t)− w)2

Si
+

w2

Sj
− (Li(t))2

Si
− (Lj(t))2

Sj
− w2

Si

=
(Lj(t))2 + 2wLj(t) + w2

Sj
+

(Li(t))2 − 2wLi(t) + w2

Si
+

w2

Sj

− (Li(t))2

Si
− (Lj(t))2

Sj
− w2

Si

= 2w

(
Lj(t) + w

Sj
− Li(t)

Si

)
= 2w

(
Lj(t + 1)

Sj
− Li(t)

Si

)

= 2w (Tj(t + 1)− Ti(t))

Proof Theorem 4.3. Let P rl(t) = P rl
1 (t)+P rl

2 (t), where , P rl
1 (t) =

∑m
i=1

(Li(t))
2

Si

and P rl
2 (t) =

∑n
j=1

w2
j

SM(j,t)
. Let T = W∑m

i=1
Si

. We can rewrite the potential function

as follows,

P rl
1 (t) =

m∑

i=1

(Li(t))2

Si
=

m∑

i=1

(Ti(t))2Si

=
m∑

i=1

(Ti(t)− T + T )2Si

=
m∑

i=1

SiT
2 +

m∑

i=1

Si(Ti(t)− T )2 + 2T

m∑

i=1

Si(Ti(t)− T )

=
m∑

i=1

SiT
2 +

m∑

i=1

Si(Ti(t)− T )2,

where we used the fact that
∑

SiTi(t) =
∑

Li(t) = W =
∑

SiT . The first term,∑n
i=1 SiT

2 is constant and therefore can be ignored. We can rewrite the potential
as:

P rl(t) =
m∑

i=1

Si(Ti(t)− T )2 +
n∑

j=1

w2
j

SM(j,t)

and redefine P rl
1 (t) =

∑m
i=1 Si(Ti(t) − T )2. By Lemma 4.1 when a job of size w

migrates from machine i to machine j at time t then ∆(P rl) = P rl(t)−P rl(t+1) =
2w(Ti(t)− Tj(t + 1)). We also define δ(t) = max{Tmax(t)− T, T − Tmin(t)}.

We divide the run of the algorithm to two phases. The first phase ends when
either δ(t) < 2wmax or P rl

1 (t) < 4mw2
max and then the second phase starts. At time

t in the first phase we have P rl
1 (t) =

∑
i(Ti(t)−T )2Si ≤ mδ(t)2Smax, which implies
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that
√

P rl
1 (t)

mSmax
≤ δ(t). Since ∆(P rl) = 2w(Ti(t)−Tj(t+1)) ≥ 2w(δ(t)−wmax) ≥ δ(t)

we can obtain the following recurrence

P rl
1 (t + 1) ≤ P rl

1 (t)−
√

P rl
1 (t)

mSmax
.

Let t0 = 1 and let ti be the first time t at which P rl
1 (t) ≤ P rl

1 (t0)/2i. Since
P rl

1 (t) ≥ P rl
1 (ti−1)/2 for t ∈ [ti−1, ti], we have that, ti ≤ ti−1+

√
mSmaxP rl

1 (ti−1)/2.
When P rl

1 (t) < 4mw2
max we clearly finished the first phase. This implies that the

duration of the first phase is bounded by,

t` ≤
∑̀

i=1

√
mSmaxP rl

1 (t0)/2i = O(
√

mSmaxP rl
1 (t0))

where ` = log P rl
1 (t0) ≤ log W 2Smax.

At the start of the second phase, at time τ , we bound the potential as follows.
Clearly, P rl

2 (τ) ≤ nw2
max. Since we ended the first phase either P rl

1 (τ) is bounded
by 4mw2

max, or δ(τ) < 2wmax, which implies that P rl
1 (τ) is bounded by 4mw2

max.
This implies that

P rl(τ) = O(mw2
max + nw2

max).

Since we can assume that n ≥ m, we obtain that

P rl(τ) = O(nw2
max).

Since we are interested in ε-Nash, the minimal improvement is at least ε, and we
derive a P rl(τ)/ε bound on the second phase.

Proof Theorem 4.6. We first give the definition of a push out and pull in
paths as defined in [Milchtaich 1996].

Definition A.1. A Push out path is a triplet (s,MM, JJ) where s is a sys-
tem state, MM = Mi0 , Mi1 ,Mi2 , . . . , MiN and JJ = Ji1 , Ji2 , . . . , JiN where the
sequence of migration, starting at state s, and following it at step k having job
Jik

migrate to machine Mik
from machine Mik−1 is a legal execution of an ESWS.

Similarly, a Pull in path is a triplet (s,MM, JJ) where s is a system state,
MM = Mi1 ,Mi2 , . . . , MiN

,MiN+1 and JJ = Ji1 , Ji2 , . . . , JiN
where the sequence

of migration, starting at state s, and following it at step k having job Jik
migrate

from machine Mik
to machine Mik+1 is a legal execution of an ESWS.

In contrast to the result in [Milchtaich 1996] we can bound the pull in path by
m steps as well rather than nm, since the payoff is symmetric. The algorithm we
consider is found in Algorithm 1.

Lemma A.2. Each iteration of the loop (A - C) terminates after at most m
steps.

Proof. A is a single step. Since both in the pull in path and in the push out
path no machine is repeated twice, we obtain the following, B is a push out path
through U1 thus it has at most |U1| steps. C is a pull in path in U2 and thus it has
at most |U2| steps. Since |U1|+ |U2|+ 1 ≤ m we conclude the Lemma.
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while A(t) 6= ∅ do
A Choose J ∈ A(t). Let M be the machine with job J , U1 be the set of

machines with load smaller than that of M , and U2 be the complement of
U1;

B Let J migrate to machine M ′ ∈ U1 and continue with a push out path.
(Namely, if some job J ′ now wants to migrate from M ′, add it to the push
out path, and continue.);

C If there exists a job I ∈ U2 that wants to migrate from M ′ to M , let it and
follow a pull in path. (Namely, if some job I ′ now wants to migrate to M ′,
add it to the pull in path, and continue.);

end
Algorithm 1: Push out - Pull in Algorithm

It still remains to show that in two times t < t̃ in which we are at start of an
iteration, we have that A(t̃) ⊂ A(t). We prove for any two consecutive times, t and
t′ where t′ < t, in which at start of an iteration we have that A(t′) ⊂ A(t). We
note that after performing steps A - C the load is changed only in two machines,
the last machines in the pull in and the push out paths. Since in the rest of the
machines the load remained unchanged, a job on them became unstable only if it
wants to migrate to the last machine in the pull in path, but this is not possible.

Proof Theorem 4.7. Let Si = 1 + i/n. The initial configuration has n unit
weight jobs on M1. Note that the only Nash equilibrium assigns n/m jobs on each
machine. Now consider the strategy that each time takes a job from M1 and moves
it through all the machines to the that with the least number of jobs. The number
of steps

∑n/m
i=1

∑m
j=1(m− j) = Ω(nm).

B. PROOFS FROM SECTION 5

Proof Theorem 5.5. Consider the following scenario. There are m− 1 classes
of jobs C1, . . . , Cm−1 and each class contains l = n/(m − 1) jobs. The weights of
the jobs are defined recursively: all jobs in class C1 have weight 1 and all jobs in a
higher class have weight larger than the total weight of all the jobs in the first i− 1
classes, i.e. wk = l

∑k−1
i=1 wi + 1. (For example we can set wk = `k(k − 1)! + k.)

Initially, all jobs of class Ci (i = 1, . . . ,m − 1) are located at machine Mi+1. We
show that for Min Weight Job strategy it takes at least lm−1/(2((m − 1)!)) steps
to converge. Notice that fixing a job selection strategy, the improvement policy to
be the best response and the initial configuration, determine uniquely the entire
schedule.

We start with a few useful notations. We denote by Ci
j all the classes Cj , . . . , Ci.

Similarly, M i
j denotes the machines Mj , . . . ,Mi.

We divide the schedule into phases. A k-phase is defined as follows. Initially,
all the jobs from classes Ck

1 are located at a machine M ′ and there is a set S of k
machines (not including M ′) participating in the phase that contain equal number
of jobs from any class higher than Ck and this number is less than or equal to the
number of jobs of the corresponding class located on any machine not in S. During
the phase all but l/(k + 1) jobs from Ck are balanced between the machines in S.
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We will demonstrate that the duration of a phase grows exponentially with k. First
we need the following definition and observation.

Definition B.1. For a set of machines S we define by MINi(S) the subset of
machines in S that contain the minimal number of jobs from Ci.

Observation B.2. Suppose that at time t a job from Ck is selected by Min Weight
Job strategy. Let Cr be a class in {Ck−1

1 } and let J be a job from Cr. It must be
the case that M(J, t) ∈ MINr+1(MINr+2(. . . (MINm−1({Mm

1 })))).
The observation follows from the fact that no job from Cr wishes to change its

machine and the weight of any job in a high class is greater than the total weight
of all the jobs in the lower classes. Now we give a lower bound on the duration of
a k-phase.

Lemma B.3. The duration of a k-phase is at least lk/(2(k!)).

Proof. The proof is by induction on the phase index.
Induction hypothesis. The duration of a k-phase is at least lk/(2(k!)).
Basis (k = 1). Let us consider 1-phase. Half of the jobs from C1 migrate to
another machine. Thus, the induction hypothesis trivially holds.
Step. Suppose that the induction hypothesis holds for all phases with index k′

such that k′ < k and let us prove that it is also satisfied for a k-phase. After k − 1
migrations of jobs from Ck, all jobs form the lower classes are concentrated at the
same machine, since only one machine does not contain a job from class Ck, and
by Observation B.2 it implies that the best response is unique.

Thus, every k’th moving job from Ck would initiate a (k − 1)-phase. Hence, the
number of (k − 1)-phases initiated by the jobs from Ck is l/k. By the induction
hypothesis the duration of each (k−1)-phase is at least lk−1/(2((k−1)!)). Therefore,
the duration of a k-phase is at least

l

k
· lk−1

2((k − 1)!)
=

lk

2(k!)
.

It is easy to see that every (m − 1)’th moving job from Cm−1 generates a new
(m−2)-phase. The duration of the convergence period follows by Lemma B.3 after
substituting m− 1 instead of k.

Proof Theorem 5.7. We define a round to be a maximal sequence of jobs that
migrate in which no job is repeated twice. Consider a round R and let J be the
maximum weight job that wishes to migrate at the beginning of R. There exists a
time t during round R in which job J either was selected by FIFO and migrated or
become stable. According to Claim 5.3, J will not migrate in any of the consequent
rounds. Therefore, the duration of k’th round is at most n− k + 1. Thus, the total
convergence time is bounded by n(n + 1)/2.

Proof Theorem 5.8. We define round to be the sequence of jobs that migrate
until the maximum weight job, that wants to migrate, migrates. Consider a round
R and let J be the maximum weight job that wishes to migrate at the beginning
of R. According to Claim 5.3, J will not migrate in any of the consequent rounds.
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Therefore, there are at most n− k + 1 jobs that want to migrate in the k’th round
and using Random strategy its expected time is at most n − k + 1. Thus, the
expected convergence time is bounded by n(n + 1)/2.

Proof Theorem 5.9. Suppose that we have K classes of jobs C1, . . . , CK with
weights w1 < . . . < wK . Notice that each job from K’th class moves at most once
while the number of migrations of a job in a lower class is bounded by the number
of job migrations in all the higher classes plus one.

Hence, the number of moves of a job is defined by the following recursion: f(i) =∑K
j=i+1(f(j) · |Cj |) + 1, where f(i) is the maximal number of moves of a job from

class Ci. Notice that f(K) = 1. We argue that f(i) =
∏K

j=i+1(|Cj |+ 1) for i < K:

f(i) =
K∑

j=i+1

(f(j) · |Cj |) + 1

= f(i + 1) · |Ci+1|+
K∑

j=i+2

(f(j) · |Cj |) + 1

= f(i + 1) · |Ci+1|+ f(i + 1) = f(i + 1)(|Ci+1|+ 1),

then we can continue recursively with f(i + 1) and so forth. Thus, the total
number of job moves is bounded by

∑K−1
i=1

(
|Ci|

∏K
j=i+1(|Cj |+ 1)

)
+ |CK |. Us-

ing Lagrange multipliers we obtain that this expression is maximized when |Ci| =
n/K for all 1 ≤ i ≤ K since

∑K
i=1 |Ci| = n. This derives an upper bound of∑K−1

i=1 ( n
K

∏K
j=i+1(n/K + 1)) + n/K = O((n/K + 1)K−1n/K) = O((n/K + 1)K).

Proof Theorem 5.10. By Claim 5.3, once the job has switched to a new ma-
chine, it will not leave it unless a larger job arrives. Thus, all but one move of a job
results from migrations of jobs with greater weight to its machine. Observe that
when a job J moves to a machine M it can force other jobs with the total weight
of at most w(J)− 1 to migrate from M . Otherwise, some job would leave a mini-
mal marginal load machine. Then these jobs, in their turn, may cause migrations
of other jobs on their destination machines. We claim that the total number of
recursive migrations due to J is bounded by w(J)− 1. Let us define the push-out
potential of the set of migrating jobs S, PO(S) =

∑
J∈S(w(J) − 1). Initially, S

consists of one job J and PO(S) = w(J)− 1. Then when a job J ′ ∈ S migrates we
remove it from S and add jobs on its target machine that would move due to J ′,
but their total weight is less by at least least one than J ′ weight, thus PO decreases
by at least one. Hence, the total number of migrations resulting from moves of all
jobs is bounded by W and the theorem follows.

Proof Theorem 5.11. The initial configuration is as follows: n identical jobs
on machine 1 none on the other machines. First we show for m ≤ log(n) a strategy
which requires at least (m−1)n

2 steps to reach Nash equilibrium. The strategy works
as follows. First it moves n/2 jobs to machine M2. Now recursively, considering
machines M2 to m we have m − 1 machines and n/2 jobs (on machine 2). After
balancing the n/2 jobs on machines Mm

2 we reconsider machine 1. Now every
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machine has at least n/(2(m−1)) jobs. Therefore we can continue recursively with
m machines and n/2− n/(2(m− 1)) jobs.

We let f(n,m) be the number of steps in which the algorithm reaches Nash
equilibrium. Then we have f(n,m) = n

2 + f(n/2,m− 1) + f(n
2 − n

2(m−1) , m). Next

we prove by induction that that f(n,m) ≥ (m−1)n
2 . For the basis we have that

f(k, 1) = 0 and since we have that m ≤ ln(n) this is suffice for the basis. We
assume that the induction holds for k′ ≤ k, l′ ≤ l and prove for (l, k).

f(l, k) =
l

2
+ f(

l

2
, k − 1) + f(

l

2
− l

2(k − 1)
, k)

=
l

2
+

l
2 (k − 2)

2
+

( l
2 − l

2(k−1) )(k − 1)

2

=
l

2
+

lk

4
− l

2
+

lk

4
− l

4
− l

4

=
lk

2
− l

2
=

l(k − 1)
2

For the case where m > log(n). We consider the case where the strategy first
balances the jobs on machines M

log(n)
1 , requiring Ω(n log n) steps. Latter we con-

sider log n independent problems, each has m log n machines and n/ log n jobs,
all starting on one machine. Each such level would require requiring Ω(n log n)
steps. There are log m/ log log n such levels, therefore we have a lower bound of
Ω(n log(n) log m

log log n ).

C. EQUIVALENT WEIGHTS

We first describe the intuition of Theorem 4.5. The idea of equivalent weights is
that rather of considering the exact load of each assignment, we are only interested
in their relative load. Namely, we are only interested in comparing the load on
two different machines. From definition 4.4 an equivalent set of weights is a set of
weights, which keeps the relative order between every pair of assignments. Our aim
is to write an linear integer program that will describe the constraints that for any
two possible assignments the comparison between the loads is maintained and to
use the fact that integer linear programming is NP.

Proof Theorem 4.5. The proof is done by using the fact the integer linear
programming is in NP.

Theorem C.1. [Hopcroft and Ullman 1979] Let Ax ≥ b, be an integer linear
programming such that A is an m×n matrix of integers, b is a column of n integers.
Then there exists a solution x such that ‖x‖∞ ≤ `(cα)4`, where α is the magnitude
of the largest element of A and b, ` = min{n,m}, and c ≥ 1

Since the proof can be found in the literature, we provide only the main technical
lemma required for our setting and its proof here.

Lemma C.2. If B is a square submatrix of A, then |det(B)| ≤ (cα)`, where c is
some constant larger than one and ` = min{n,m}

Proof. Let B be a square submatrix of size k. If k is greater than `, then the
determinant is 0. Otherwise, the determinant is a sum of k! term each is a product
ACM Transactions on Computational Logic, Vol. 2, No. 3, 09 2001.
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of k elements. Now using the fact that k ≤ ` and each element is bounded by α we
obtain the lemma.

Now we are ready to prove our theorem. Definition 4.4 defines equivalent set
of weights. Let {w1, . . . , wK} be a set of K integer weights. We consider all
possible assignments (of up to n) jobs from K different integer weights to a single
machine. We can encode an assignment by (n1, . . . , nK), where

∑K
i=1 ni ≤ n,

and the load on a machine is L =
∑K

i=1 wini. The integer program for identical
machines is defined as follows. Let x1, . . . , xK be the unknown (new) weights.
For every two possible assignments ~α = (α1, . . . , αK) and ~β = (β1, . . . , βK), such
that

∑K
i=1 αi ≤ n and

∑K
i=1 βi ≤ n, we generate an inequality in the integer

linear program. The inequality compares
∑K

i=1 αixi and
∑K

i=1 βixi. To decide the
result of the comparison we compare

∑K
i=1 αiwi to

∑K
i=1 βiwi. If they are equal

we add the equation
∑K

i=1(αi − βi)xi = 0 . If
∑K

i=1 αixi >
∑K

i=1 βixi we add∑K
i=1(αi − βi)xi > 0. Otherwise, we add

∑K
i=1(αi − βi)xi < 0. In addition, we

require that the weights are positive, namely, for every i we have an inequality
xi > 0.

For the related machines we need to take into account their speeds as well. (We
assume that the speeds are integers.) Rather than generating an inequality for
each pair of assignments, we generate an inequality for each pair of assignments
and machines. For instance, if the assignments are ~α and ~β and the machines are
M1 and M2 we compare

∑K
i=1 S2αiwi to

∑K
i=1 S1βiwi. The generated inequality

would depend, as before, on the output of the comparison.
Let A be the matrix that represent the inequalities. For identical machines the

sum of the absolute entries in each row is bounded by O(n), and for related machines
by O(nSmax). Together with Theorem C.1, we conclude the proof.
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