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Abstract. This paper is concerned with the asymptotic behavior of the solution to
the following damped semilinear wave equation with critical exponent:

utt + ut − ∆u + f(x, u) = 0, (x, t) ∈ Ω × R
+ (0.1)

subject to the dissipative boundary condition

∂νu + u + ut = 0, t > 0, x ∈ Γ (0.2)

and the initial conditions

u|t=0 = u0(x), ut|t=0 = u1(x), x ∈ Ω, (0.3)

where Ω is a bounded domain in R
3 with smooth boundary Γ , ν is the outward normal

direction to the boundary, and f is analytic in u. In this paper convergence of the solution
to an equilibrium as time goes to infinity is proved. While these types of results are known
for the damped semilinear wave equation with interior dissipation and Dirichlet boundary
condition, this is, to our knowledge, the first result with dissipative boundary condition
and critical growth exponent.

1. Introduction. In this paper we consider the following damped semilinear wave
equation with critical exponent:

utt + ut − ∆u + f(x, u) = 0, (x, t) ∈ Ω × R
+ (1.1)
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168 HAO WU AND SONGMU ZHENG

subject to the dissipative boundary condition

∂νu + u + ut = 0, t > 0, x ∈ Γ (1.2)

and the initial conditions

u|t=0 = u0(x), ut|t=0 = u1(x), x ∈ Ω. (1.3)

In the above, Ω is a bounded domain in R
3 with smooth boundary Γ, ν is the outward

normal direction to the boundary, and f is a nonlinear function satisfying the following
assumptions.
(F1) f is analytic in u ∈ R, and f is C2 in x ∈ Ω̄. Furthermore,

|f ′′(·, s)| ≤ c(1 + |s|) ∀s ∈ R, x ∈ Ω̄.

Hereafter, we denote by f ′(x, u), f ′′(x, u) the first-order derivative and the second-order
derivative of f with respect to u, respectively.
(F2) For all x ∈ Ω̄,

lim inf
|s|→∞

f(·, s)
s

> −λ,

where λ > 0 is the best Sobolev constant in the following imbedding inequality:∫
Ω

|∇u|2dx +
∫

Γ

u2dS ≥ λ

∫
Ω

u2dx.

Notice that the assumption (F1) implies that f is allowed to grow cubically in u, i.e., the
growth exponent of f is critical in the case n = 3. The mechanical meaning of boundary
condition (1.2) simply implies that there is friction damping on the boundary Γ which is
linearly proportional to the velocity ut.

By Hm(Ω) we denote the Sobolev spaces Wm,2(Ω) with norm ‖ · ‖Hm , and we simply
denote the norm in L2(Ω) by ‖ · ‖, and especially we equip H1(Ω) with the norm

‖u‖H1(Ω) = (
∫

Ω

|∇u|2dx +
∫

Γ

u2dS)1/2.

We also introduce the space H ≡ H1(Ω)×L2(Ω), which is often referred to as the finite
energy space.

Denote
D = {(u, v)T ∈ H2(Ω) × H1(Ω) | ∂νu + u + v|Γ = 0}, (1.4)

which clearly is a closed subspace of H2(Ω) × H1(Ω).
The main result of this paper is stated as follows.

Theorem 1.1. Suppose that the assumptions (F1), (F2) are satisfied. Then for any
initial data (u0, u1)T ∈ D, problem (1.1)–(1.3) admits a unique global solution

(u, ut)T ∈ C([0, +∞);D) ∩ C1([0, +∞);H), utt ∈ C([0, +∞); L2(Ω)).

Moreover, (u(x, t), ut(x, t))T converges to an equilibrium (ψ(x), 0)T in the topology of H
as time goes to infinity, i.e.,

lim
t→+∞

(‖u(·, t) − ψ‖H1(Ω) + ‖ut‖) = 0. (1.5)
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CONVERGENCE TO EQUILIBRIUM 169

Here ψ(x) is an equilibrium to problem (1.1)–(1.3), i.e., ψ(x) is a classical solution to
the following nonlinear elliptic boundary value problem:{

−∆ψ + f(x, ψ) = 0, x ∈ Ω
∂νψ + ψ = 0, x ∈ Γ.

(1.6)

Before giving the detailed proof of Theorem 1.1, let us first recall some related results
in the literature.

The study of the asymptotic behavior of solutions to nonlinear dissipative evolution
equations has attracted a lot of interest of many mathematicians for a long period of
time. It can be divided into two categories: in the first category, it is concerned with the
asymptotic behavior of a global solution (or a single orbit) for any given initial datum,
i.e., whether the global solution will converge to an equilibrium as time goes to infinity;
in the second category, it is concerned with the asymptotic behavior of a family of global
solutions (or orbits) for initial data starting from any bounded set in a certain Sobolev
space, i.e., whether the family of global solutions will converge to a compact invariant
set, i.e., a global attractor. For the study of the second category, we refer to the three
books: [32] by Temam, [11] by Hale and [2] by Babin and Vishik. As far as the damped
semilinear wave equation is concerned, in the books [11] and [2], the exponent of the
nonlinear term f is allowed to be critical, i.e., for n = 3, the growth exponent of f in u

is allowed to be cubic. In this direction, we also refer to the paper [8] by Feireisl where
the interior damping is allowed to be nonlinear. In this direction, we also refer to a very
recent paper [3] by Ball on the results for the nonlinear term f being only continuous.
In that paper, comprehensive references for the damped semilinear wave equations are
also given. Notice that in all these papers, the solution always satisfies the Dirichlet
boundary condition.

More closely related with the problem we studied here, we refer to a recent paper [7] by
Chueshov, Eller and Lasiecka where the existence of a global attractor is proved for the
semilinear wave equations (1.1) without interior damping, but with nonlinear dissipative
boundary condition. More precisely, they proved that with certain dissipative boundary
conditions and nonlinear term f being allowed to have critical exponent, then there is a
global attractor which is compact in the finite energy space H ≡ H1(Ω)×L2(Ω) defined
previously. Moreover, when f is subcritical, then the global attractor is a closed bounded
set in D defined in (1.4).

We should notice that the study of two categories is closely related in the following
sense: if the number of solutions to the stationary problem (1.6) were finite or discrete,
then (1.5) would follow immediately from the result in [7] (see Corollary 5.4 in [7]).
However, for the higher space dimension case, whether the set of equilibria is finite or a
discrete set is an open problem, and in general it is not true (see, e.g., [26], [27], and the
related reference cited in [3]).

Concerning the study of the first category, in 1978, Matano [24] considered the initial
boundary value problems for the nonlinear parabolic equation in one space dimension
and proved that if the global solution is bounded for all time, then as time goes to infinity,
the solution must converge to an equilibrium. In other words, the ω-limit set consists
of a single point. We also refer to the paper [35] by Zelenyak in this direction. Since
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170 HAO WU AND SONGMU ZHENG

then, many attempts have been made to extend this result to higher space dimensions.
However, the situation in higher space dimensions is very different. Examples have been
given in [26], [27] showing that for a nonlinear parabolic equation with nonanalytic non-
linear term f , the corresponding initial Dirichlet boundary value problem has a bounded
solution whose ω-limit set is diffeomorphic to the unit circle S1. On the other hand,
various assumptions have been made in the literature to assure that any bounded global
solution will converge to an equilibrium. Among these attempts, Simon in [31] made a
major advance by proving that for semilinear parabolic problems if the nonlinear term
is analytic in an unknown function u, then convergence to an equilibrium holds. His
idea relies on a generalization of the Lojasiewicz inequality for analytic functions defined
in the finite-dimensional space R

m (see [22], [20], [21]). Since then, much work in this
direction has been done; see, e.g., [15], [28], [1], [14], [6], [9], [34], [19], [36] and the
references cited there for the results on nonlinear parabolic equations, where in [34] the
problem with dissipative boundary conditions is studied; see also a very recent paper [38]
by Zheng and Chipot for the nonlinear parabolic equations with nonlocal terms.

As far as applications of the Simon-Lojasiewicz approach to the damped semilinear
wave equations, the situation is more delicate mainly due to the following two reasons:

First, the semilinear wave equations are hyperbolic equations, and it turns out that
they do not have the smoothing property, as nonlinear parabolic equations do. The con-
dition of precompactness of solutions for damped semilinear wave equations is expected,
i.e., the solution can be divided into two parts with one part being uniformly convergent
to zero, and the other part of the solution being relatively compact. However, as Haraux
and Jendoubi pointed out in their paper [13], precompactness is nontrivial, which is not
always easy to check in practice.

Secondly, the application of the Simon-Lojasiewicz approach to the damped semilinear
wave equations is not as straightforward as for the single nonlinear parabolic equation,
due to the appearance of the term utt in the equation (1.1). It turns out that an auxiliary
functional, which varies from problem to problem, has to be introduced. We refer to the
paper [16] by Jendoubi for the first attempt in this direction in the literature. See also
[19], [36] for the similar situation for the study of nonlinear phase-field equations with
Neumann boundary conditions.

We refer to [16] by Jendoubi, [13] by Haraux and Jendoubi regarding the study of
convergence to equilibrium for the damped semilinear wave equation with nonlinear f

being analytic in u. In [16], although convergence to an equilibrium for the damped
semilinear equation follows from the unproved assumption (which is the exact wording
used in [13] by Haraux and Jendoubi) that {u, ut} is precompact in W 2,p(Ω)× W 1,p(Ω)
and f is analytic in u, the advantage of that paper is that with the previously mentioned
unproved assumption there is no further growth assumption on f . In the later paper [13],
aimed at removing that unproved assumption, they made the growth assumption on f

to obtain the convergence to equilibrium. Notice that (see Theorem 1.2, p. 97 in [13]),
the growth condition in their paper is subcritical when n = 3. We should also notice
that in all these papers, the solution always satisfies the Dirichlet boundary condition.

The new features of our problem (1.1)–(1.3) are the following. First, we treat the
dissipative boundary condition (1.2), which is important from a mechanical point of view,
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and it turns out that for the corresponding elliptic operator, it yields a nonhomogeneous
boundary condition. As a result, the Simon-Lojasiewicz type inequality we are going to
derive is naturally different from the one with the usual homogeneous Dirichlet boundary
condition. Another feature is that the growth assumption on f is critical, which implies
that one could not use the result by Webb [33] to obtain the precompactness. Finally,
we give a rigorous proof of precompactness (see Lemma 2.2 in Section 2). It turns out
that we have to overcome the corresponding mathematical difficulties due to these new
features, and to extend the usual Simon–Lojasiewicz inequality in our proof. Notice that
our result requires that the initial data be in D instead of H. This is natural because we
now treat the dissipative boundary condition.

This paper is organized as follows. In Section 2 we give a brief sketch of the proof for
the global existence of the solution. A key result in that section is to prove a uniform
a priori estimate of the solution (Lemma 2.2). Notice that this lemma has never been
given in the literature. In the paper [7] by Chueshov, Eller and Lasiecka, a similar result
was proved under the subcritical growth case (see Theorem 1.5 in that paper) and we
now treat the critical growth case. In Section 3 of this paper we derive the extended
Simon-Lojasiewicz inequality. In Section 4 we give the detailed proof of Theorem 1.1.

2. Global existence and uniqueness. For the sake of the reader, we first briefly
recall the related global existence and uniqueness results mainly based on the paper [7]
by Chueshov, Eller and Lasiecka. Let

1
2
‖(u, ut)T ‖2

H =
1
2

∫
Ω

|∇u|2dx +
1
2

∫
Γ

u2dS +
1
2

∫
Ω

u2
t dx (2.1)

and define the energy function as follows:

E(u(t), ut(t)) =
1
2
‖(u, ut)T ‖2

H +
∫

Ω

F (x, u(x, t))dx, (2.2)

where F (x, z) =
∫ z

0
f(x, s)ds.

In what follows we shall use classical nonlinear semigroup theory (see, e.g., [4], [5],
[29], [37]) to obtain the global existence, uniqueness and regularity of the solution to
problem (1.1)–(1.3).

Lemma 2.1. Suppose that the initial data satisfy (u0, u1)T ∈ H. Then there exists a
unique global mild solution u to problem (1.1)–(1.3) such that

(u, ut)T ∈ C([0, +∞);H), ∂νu ∈ L2
loc(Σ), ut ∈ L2

loc(Σ), ∂νu + u + ut = 0 on Γ,

(2.3)

E(u(t), ut(t)) +
∫ t

0

‖ut‖2dτ +
∫ t

0

‖ut‖2
L2(Γ)dτ = E(u(0), ut(0)), (2.4)

where Σ = [0, +∞)×Ω. Furthermore, if (u0, u1)T ∈ D, then there exists a unique global
classical solution u to problem (1.1)–(1.3) such that

(u, ut)T ∈ C([0, +∞);D) ∩ C1([0, +∞);H), utt ∈ C([0, +∞); L2(Ω)).
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172 HAO WU AND SONGMU ZHENG

Proof. Notice that in the paper [7] (see also [17], [18]) the authors have used nonlinear
semigroup theory to get the related result for a semilinear wave equation with critical
exponent and nonlinear dissipative boundary conditions. Although in their setting, there
is no interior damping term ut in equation (1.1), the proof is essentially the same. For
the sake of the completeness and convenience of the reader, we give the sketch of the
proof here. In what follows we adopt the notation used in [7].

First we introduce the Robin-Laplacian ∆R : L2(Ω) → L2(Ω). This is an unbounded
operator with the domain

D(∆R) = {u ∈ H2(Ω) | ∂νu + u|Γ = 0}. (2.5)

It is easy to see that this densely defined operator is injective and self-adjoint. Moreover,
it can be extended to a continuous operator ∆R : H1(Ω) → H1(Ω)′ by

(−∆Ru, v) =
∫

Ω

∇u · ∇vdx +
∫

Γ

uvdS

for all v ∈ H1(Ω).
Next we introduce the Robin map R : Hs(Γ) → Hs+(3/2)(Ω), which is defined as

follows:

Rp = q ⇔ ∆q = 0 in Ω, ∂νq + q = p on Γ. (2.6)

As mentioned in [7], using the elliptic theory in [23], one can show that R is continuous
for s ∈ R. The adjoint of the Robin map satisfies

R∗∆Rv = −v|Γ for all v ∈ H1(Ω).

Next we introduce a nonlinear operator A with the domain D(A) = D by setting

A

(
u

v

)
=

(
−v

−∆R(u + R(γv)) + v

)
, (2.7)

where γ is the trace operator. Then it is easy to verify (see [7]) that for all (u, v)T ∈ D,
u+R(γv) ∈ D(∆R). In a similar manner as in [7], one can then check that A is monotone
on H and the range of I + A is H. Thus A is a maximal monotone operator. Now we
can rewrite the original problem as an abstract first-order evolution equation

d

dt

(
u

ut

)
+ A

(
u

ut

)
+

(
0

f(x, u)

)
= 0. (2.8)

From the growth assumption (F1) on f(x, u) one can easily see that the operator
C(u, ut)T = (0, f(x, u))T is locally Lipschitz continuous from H to H. Hence, for
(u0, u1)T ∈ H there exists a unique local mild solution (u, ut)T ∈ C([0, tmax);H), and
for (u0, u1)T ∈ D there exists a unique local classical solution (u, ut)T on the interval
[0, tmax) (refer to [37], Theorem 2.5.4 and Theorem 2.5.5). Moreover, if tmax < ∞, we
must have lim

t→tmax

‖(u, ut)T ‖H = +∞.

From the standard energy identity

E(u(t), ut(t)) +
∫ t

0

∫
Γ

u2
t dS +

∫ t

0

∫
Ω

u2
t dx = E(u(0), ut(0)), (2.9)
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we know that the energy is nonincreasing. Following the similar steps in ([7], pp. 1912-
1913) we can easily prove that there exists a constant C1 depending on ‖(u(0), ut(0))T‖H
such that

E(u(0), ut(0)) ≤ C1 (2.10)

and also an estimate in the opposite direction

‖(u(t), ut(t))T ‖H ≤ C2 − C3, (2.11)

where C2 is a positive constant depending on E(u(t), ut(t)), and C3 is a positive constant
depending on f and Ω. Combining (2.9)–(2.11), we get

‖(u(t), ut(t))T ‖H ≤ C4 − C3, (2.12)

where C4 is a positive constant depending only on ‖(u(0), ut(0))T ‖H. This implies the
following a priori estimate:

‖(u, ut)T ‖H ≤ M for t ∈ (0, tmax),

where M depends only on the norm of initial data in H, the measure of Ω and the
nonlinear function f , and it does not depend on tmax. Thus, this yields that tmax = +∞
(refer to [37], Theorem 2.5.5). Therefore, (u, ut)T ∈ C([0, +∞);H) and the uniform
estimate

‖(u, ut)T ‖H ≤ M for t ≥ 0 (2.13)

holds. For (u0, u1)T ∈ D, since H is a Hilbert space, we deduce that the global mild solu-
tion is also a classical one (refer to [37], Theorem 2.5.4), i.e., (u, ut)T ∈ C([0, +∞);D)∩
C1([0, +∞);H). �
The following lemma plays an important role in the subsequent proof.

Lemma 2.2. For initial data (u0, u1)T ∈ D, we have the following uniform estimate of
the solution:

‖(u(t), ut(t))T ‖D ≤ C(‖(u0, u1)T ‖D) for t ≥ 0, (2.14)

where C(‖(u0, u1)T ‖D) denotes a positive constant depending only on ‖(u0, u1)T ‖D.

Proof. In the above lemma we have obtained the estimates

‖u‖H1(Ω) ≤ C, ‖ut‖ ≤ C ∀t ≥ 0, (2.15)

where C is a positive constant depending on ‖(u0, u1)T ‖H.
Let

v = ut;

then (v, vt)T ∈ C([0, +∞);H) and v satisfies⎧⎨
⎩

vtt − ∆v + vt + f ′(x, u)v = 0 t > 0, x ∈ Ω
∂νv + v + vt = 0, t > 0, x ∈ Γ
v|t=0 = u1, vt|t=0 = ∆u0 − u1 − f(x, u0).

(2.16)
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174 HAO WU AND SONGMU ZHENG

Multiplying (2.16) by vt and v respectively, integrating over Ω and using the boundary
condition, we obtain

d

dt

(
1
2

∫
Ω

v2
t dx +

1
2

∫
Ω

|∇v|2dx +
1
2

∫
Γ

v2dS +
1
2

∫
Ω

f ′(x, u)v2dx

)

+
∫

Γ

v2
t dS +

∫
Ω

v2
t dx

=
1
2

∫
Ω

f ′′(x, u)v3dx (2.17)

and
d

dt

(∫
Ω

vvtdx +
1
2

∫
Ω

v2dx +
1
2

∫
Γ

v2dS

)
−

∫
Ω

v2
t dx +

∫
Ω

|∇v|2dx

+
∫

Γ

v2dS +
∫

Ω

f ′(x, u)v2dx = 0. (2.18)

Multiplying (2.18) by 1
4 , then summing with (2.17), we get

d

dt

(
1
2

∫
Ω

v2
t dx +

1
2

∫
Ω

|∇v|2dx +
5
8

∫
Γ

v2dS +
1
8

∫
Ω

v2dx

+
1
4

∫
Ω

vvtdx +
1
2

∫
Ω

f ′(x, u)v2dx

)

+
3
4

∫
Ω

v2
t dx +

1
4

∫
Γ

v2dS +
∫

Γ

v2
t dS +

1
4

∫
Ω

|∇v|2dx +
1
4

∫
Ω

f ′(x, u)v2dx

=
1
2

∫
Ω

f ′′(x, u)v3dx. (2.19)

By the assumption (F2), Hölder’s inequality, the Sobolev imbedding theorem and (2.13),
we have∣∣∣∣

∫
Ω

f ′′(x, u)v3dx

∣∣∣∣ ≤ c

∫
Ω

(1+ |u|)|v3|dx ≤ C(1+‖u‖L6)‖v2‖L3‖v‖ ≤ C‖v‖2
H1‖v‖. (2.20)

By the well-known Gagliardo-Nirenberg inequality (e.g., refer to [37]), we have

‖v‖L3 ≤ C1‖∇v‖ 1
2 ‖v‖ 1

2 + C2‖v‖. (2.21)

From (F2), (2.13), (2.21) and Young’s inequality we can deduce that∣∣∣∣
∫

Ω

f ′(u)v2dx

∣∣∣∣ ≤ C

(∫
Ω

u2v2dx + ‖v‖2

)
≤ C

(
‖u‖2

L6‖v‖2
L3 + C

)
≤ ε1‖∇v‖2+C, (2.22)

where C is a positive constant depending only on ‖(u0, u1)‖H and ε1. Let

J(t) :=
1
2

∫
Ω

v2
t dx+

1
2

∫
Ω

|∇v|2dx+
5
8

∫
Γ

v2dS+
1
8

∫
Ω

v2dx+
1
4

∫
Ω

vvtdx+
∫

Ω

f ′(x, u)v2dx.

By the Cauchy-Schwarz inequality
∫
Ω

vvtdx ≤ 1
2‖v‖2 + 1

2‖vt‖2, (2.20) and (2.22) after
taking ε1 small, it is easy to see that

d

dt
J(t) + ηJ(t) ≤ C‖v‖J(t) + C(‖(u0, u1)T ‖H), (2.23)

where η > 0 is a certain positive constant.
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Since v = ut satisfies ∫ +∞

0

‖v‖2dt < +∞,

then we can see that∫ t

τ

‖v‖ds ≤
(∫ t

τ

‖v‖2ds

) 1
2

(t − τ )
1
2 ≤ C(t − τ )1/2, ∀ t > τ ≥ 0. (2.24)

Then it follows from a suitable version of the Gronwall inequality (see, for instance,
Lemma 2.2 in [10]) that

J(t) ≤ C(‖(u0, u1)T ‖D), t ≥ 0. (2.25)

Thus, we can deduce from (2.25), (2.22) and the Cauchy-Schwarz inequality
∫
Ω

vvtdx ≤
1
2‖v‖2 + 1

2‖vt‖2 that for t ≥ 0,

‖utt‖ = ‖vt‖ ≤ C(‖(u0, u1)T ‖D), ‖ut‖H1 = ‖v‖H1 ≤ C(‖(u0, u1)T ‖D). (2.26)

For u, we reconsider (1.1), (1.2) as an elliptic boundary value problem:{
∆u = utt + ut + f(x, u), x ∈ Ω
∂νu + u = −ut, x ∈ Γ.

(2.27)

By the regularity theory for elliptic problems we obtain

‖u‖H2(Ω) ≤ C(‖utt‖ + ‖ut‖ + ‖f(x, u)‖ + ‖ut‖
H

1
2 (Γ)

) ≤ C(‖(u0, u1)T ‖D). (2.28)

Thus, we can conclude that

‖u(t)‖H2(Ω) ≤ C, ‖ut(t)‖H1(Ω) ≤ C, ‖utt(t)‖ ≤ C, for t ≥ 0, (2.29)

where C is a constant that does not depend on t . �

3. Extended Simon-Lojasiewicz inequality. Let

E(u) =
1
2

∫
Ω

|∇u|2dx. +
1
2

∫
Γ

u2dS +
∫

Ω

F (x, u)dx. (3.1)

Lemma 3.1. Suppose that ψ ∈ H2(Ω) is a strong solution to problem (1.6). Then ψ is
a critical point of the functional E(u) in H1. Conversely, if ψ is a critical point of the
functional E(u) in H1, then ψ ∈ H2(Ω), and it is a strong solution to problem (1.6).

Proof. If ψ ∈ H2 satisfies (1.6), then for any v ∈ H1(Ω), it follows from (1.6) that∫
Ω

(−�ψ + f(x, ψ))vdx = 0. (3.2)

By integration by parts and the boundary condition in (1.6), we get∫
Ω

(∇ψ · ∇v + f(x, ψ)v)dx +
∫

Γ

ψvdS = 0, (3.3)

which, by a straightforward calculation, is just the following:

dE(ψ + εv)
dε

∣∣∣∣
ε=0

= 0. (3.4)
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Thus, ψ is a critical point of E(u). Conversely, if ψ is a critical point of E(u) in H1,
then (3.3) is satisfied. By the assumption (F1), f(x, ψ) ∈ L2(Ω). Thus, by the regularity
theory for the elliptic problem (1.6), ψ ∈ H2 and it is a strong solution. �

Remark 3.2. By the bootstrap argument, ψ is also a classical solution.
The following lemma claims that problem (1.6) admits at least a classical solution.

Lemma 3.3. The functional E(u) has at least a minimizer v ∈ H1(Ω) such that

E(v) = inf
u∈H1

E(u). (3.5)

In other words, problem (1.6) admits at least a classical solution.

Proof. As proved in [7], assumption (F2) implies that there exist δ > 0 and N =
N(δ) > 0 such that

F (x, s) ≥ −λ − δ

2
s2 for |s| ≥ N.

Let M be a positive constant such that f(x, z)/z +λ ≥ 2δ for |z| ≥ M and certain δ > 0.
Then we have

F (x, s) + λ
s2

2
=

∫ M

0

(
f(x, z)

z
+ λ)zdz +

∫ s

M

(
f(x, z)

z
+ λ)zdz

≥ C + 2δ(
s2

2
− M2

2
) ≥ δ

s2

2
(3.6)

for s2 ≥ δ−1(M2 − 2C). For negative s one can repeat the same computation with M

replaced by −M . Now we have∫
Ω

F (x, u)dx =
∫
|u|≤N

F (x, u)dx +
∫
|u|>N

F (x, u)dx ≥ −λ − δ

2

∫
Ω

u2dx + C(|Ω|, f),

(3.7)
where C(|Ω|, f) = |Ω| min

|s|≤N
F (x, s).

By the definition of λ in (F2) we can deduce that

E(u) ≥ 1
2

∫
Ω

|∇u|2dx +
1
2

∫
Γ

u2dS − λ − δ

2

∫
Ω

u2dx + C(|Ω|, f) ≥ δ

2

∫
Ω

u2dx + C(|Ω|, f),

(3.8)
i.e., E(u) is bounded from below. Therefore, there is a minimizing sequence un ∈ H1(Ω)
such that

E(un) → inf
u∈H1

E(u). (3.9)

Since E can be written in the form:

E(u) =
1
2
‖u‖2

H1 + F(u) (3.10)

with

F(u) =
∫

Ω

F (x, u)dx, (3.11)

it follows that un is bounded in H1. It turns out that there is a subsequence, still denoted
by un, such that un weakly converges to v in H1. Thus, v ∈ H1. We infer from the
Sobolev imbedding theorem (n = 3) that un strongly converges to v in L4. It turns
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out from the assumption (F1) that F(un) → F(v). Since ‖u‖2
H1 is weakly lower semi-

continuous, it follows from (3.9) that E(v) = inf
u∈H1

E(u). The proof is completed. �
Now for v ∈ C2, we consider the following linearized problem:{

L(v)h ≡ −∆h + f ′(x, v + ψ)h = 0 in Ω,

∂νh + h = 0 on Γ,
(3.12)

where ψ is a fixed critical point of E(u) and we write

u = v + ψ.

The domain of L(v) is

Dom(L(v)) = {h ∈ H2 | ∂νh + h |Γ= 0}. (3.13)

Lemma 3.4. L(v) is a self-adjoint operator on Dom(L(v)).

Proof. For any two functions w1, w2 ∈ Dom(L(v)), we have

(L(v)w1, w2)

=
∫

Ω

(−∆w1 + f ′(v + ψ)w1)w2dx

=
∫

Ω

(∇w1 · ∇w2 + f ′(v + ψ)w1w2)dx +
∫

Γ

w1w2dS

=
∫

Ω

(−∆w2 + f ′(v + ψ)w2)w1dx

= (w1, L(v)w2). (3.14)

Thus we can easily see that L(v) is a self-adjoint operator. �
Associated with L(v), we define the bilinear form a(w1, w2) on H1(Ω) as follows:

a(w1, w2) =
∫

Ω

(∇w1 · ∇w2 + f ′(v + ψ)w1w2)dx +
∫

Γ

w1w2dS. (3.15)

Then, the same as for the usual second-order elliptic operator, L(v) + λI with λ > 0
being sufficiently large is invertible and its inverse is compact in L2. It turns out from
the Fredholm theorem that Ker(L(v)) is finite-dimensional. It is well known that

Ran(L(v)) = (Ker(L∗(v)))⊥. (3.16)

Thus, we infer from Lemma 3.3 that

Ran(L(v)) = (Ker(L(v)))⊥ (3.17)

and

Ran(L(v)) ⊕ Ker(L(v)) = L2(Ω). (3.18)

Next we introduce two orthogonal projections ΠK and ΠR in L2(Ω); namely, ΠK is the
projection onto the kernel of L(0) while ΠR is the projection onto the range of L(0).
Then we have the following result.
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Lemma 3.5. For
L(0)w = fR

with fR ∈ ΠRL2(Ω), there exists a unique solution wR ∈ H2(Ω) ∩ ΠRL2(Ω) and the
following estimate holds:

‖wR ‖H2(Ω) ≤ C ‖fR ‖ . (3.19)

Proof. By the Fredholm alternative theory and the regularity theorem for the elliptic
operator, we have a function w ∈ Dom(L(0)) ∩ H2 such that L(0)w = fR. Moreover w

is unique if we require w ∈ (KerL(0))⊥, and (3.19) follows from the elliptic regularity
theory. �

Let L(v) : Dom(L(v)) → L2(Ω) be defined as follows:

L(v)w = ΠKw + L(v)w, (3.20)

where, as indicated previously, ΠK is the project operator from L2 onto Ker(L(0)). Then
it follows from Lemma 3.3 and Lemma 3.4 that L(0) is one-to-one and onto. Moreover,
its inverse L−1(0) is a linear bounded operator from L2(Ω) to H2(Ω).

Lemma 3.6. There exists a small positive constant β < 1 depending on ψ such that if
v ∈H2(Ω), ‖v‖H1≤ β, and g ∈ L2(Ω), then the problem{

L(v)w = g in Ω,

∂νw + w = 0 on Γ
(3.21)

has a unique solution w ∈ H2(Ω). Moreover, the following estimate holds:

‖w‖H2 ≤ C‖g‖. (3.22)

Proof. By Lemma 3.4, L(0) is invertible, and its inverse L−1(0) is a linear bounded
operator from L2(Ω) into H2(Ω). To see the solvability of (3.21), we rewrite (3.21) in
the form:

(L−1(0)(L(v) − L(0)) + I)w = L−1(0)g. (3.23)

By the definition, (L(v) − L(0))w = (f ′(x, v + ψ) − f ′(x, ψ))w. Since n = 3, we infer
from the Sobolev imbedding theorem and (F1) that for ‖v‖H1 ≤ β < 1,

‖(f ′(x, v + ψ) − f ′(x, ψ))w‖ = ‖f ′′(x, ψ + ζv)vw‖
≤ (C1‖v‖ + C2‖v‖2

L4)‖w‖L∞

≤ C‖v‖H1(Ω)‖w‖H2(Ω), (3.24)

where ζ ∈ (0, 1).
Therefore, it follows that when β is sufficiently small, L−1(0)(L(v) − L(0)) is a con-

traction from H2(Ω) into H2(Ω):

‖L−1(0)(L(v) − L(0))‖L(H2,H2) ≤
1
2
. (3.25)

By the contraction mapping theorem, (3.21) is uniquely solvable, which implies that when
‖v‖H1 ≤ β < 1, L(v) is invertible, and (3.22) holds. Thus, the lemma is proved. �
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We now prove the following generalized Simon-Lojasiewicz inequality, which extends
the original one by Simon [31] for the second-order nonlinear parabolic equation, and
also the one by Jendoubi [16] for the semilinear wave equation with Dirichlet boundary
condition. In [34], we have used a similar type of inequality to prove the convergence to
equilibrium for the Cahn-Hilliard equation with dynamic boundary conditions.

Lemma 3.7. Let ψ be a critical point of E(u). Then there exist constants θ ∈ (0, 1
2 ) and

β0 > 0 depending on ψ such that for ∀u ∈ H2(Ω), ‖ u − ψ ‖H2< β0 ≤ β, we have

‖ −∆u + f(x, u) ‖ + ‖ ∂νu + u ‖L2(Γ) ≥ | E(u) − E(ψ) |1−θ . (3.26)

Proof. As before, we denote u = v + ψ and let

M(v) = −∆(v + ψ) + f(x, v + ψ). (3.27)

Then M(v) maps v ∈ H2(Ω) into L2(Ω).
Let N be a nonlinear operator from H2(Ω) into L2(Ω) defined as follows:

N (v) = ΠKv + M(v). (3.28)

Hence, N (v) is holomorphic and its Fréchet derivative is L(v):

DN (v)h = L(v)h. (3.29)

Since L(v) is invertible for ‖v‖H1 ≤ β, by the abstract implicit function theorem (see, e.g.,
Nirenberg [25]), there exist neighborhoods of the origin W1(0) ⊂ H2(Ω) and W2(0) ⊂
L2(Ω), and a holomorphic inverse projection Ψ of N such that Ψ : W2(0) → W1(0) is a
one-to-one and onto mapping. Moreover,

N (Ψ(g)) = g ∀g ∈ W2(0), (3.30)

Ψ(N (v)) = v ∀v ∈ W1(0), (3.31)

and

‖ Ψ(g1) − Ψ(g2) ‖H2 ≤ C ‖ g1 − g2 ‖ ∀g1, g2 ∈ W2(0), (3.32)

‖ N (v1) −N (v2) ‖ ≤ C ‖ v1 − v2 ‖H2 ∀v1, v2 ∈ W1(0). (3.33)

It follows from N [Ψ(g)] = g that DN · DΨ = I. Therefore, DΨ(g) = L−1(Ψ(g)). We
infer from Lemma 3.5 that

‖ DΨ ‖L(L2,H2) ≤ C. (3.34)

Let φ1, ..., φm be the orthogonal unit vectors spanning KerL(0). Since Ψ is holomor-
phic, it turns out that

Γ(ξ) := E(Ψ(
m∑

i=1

ξiφi) + ψ) (3.35)

is analytic for small |ξ| such that ΠKv =
m∑

i=1

ξiφi ∈ W2(0).

In what follows we will show that for any v satisfying ΠKv =
m∑

i=1

ξiφi ∈ W2(0), we

have
| ∇Γ(ξ) | ≤ C(‖ M(v) ‖ + ‖ ∂νv + v ‖L2(Γ)). (3.36)
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Indeed, a straightforward calculation, using (3.35) and integration by parts, yields

∂Γ(ξ)
∂ξi

=
∫

Ω

M(Ψ(ΠKv))DΨ(ΠKv)φidx

+
∫

Γ

(∂νΨ(ΠKv) + Ψ(ΠKv))DΨ(ΠKv)φidS

:= I1 + I2. (3.37)

For the first part on the right-hand side of (3.37), we have

|I1| ≤ ‖ M(Ψ(ΠKv)) ‖ · ‖ DΨ(ΠKv)φi ‖
≤ C ‖ M(Ψ(ΠKv)) ‖
≤ C(‖ M(Ψ(ΠKv)) − M(v) ‖ + ‖ M(v) ‖). (3.38)

Recalling the definition of Ψ and noticing that v = Ψ(ΠKv + M(v)), and L(v) is a
continuous operator from H2(Ω) to L2(Ω), we have

‖ M(Ψ(ΠKv)) − M(v) ‖

≤ ‖
∫ 1

0

L(tv + (1 − t)Ψ(ΠKv))(Ψ(ΠKv + M(v)) − Ψ(ΠKv))dt ‖

≤ C ‖ Ψ(ΠKv + M(v)) − Ψ(ΠKv) ‖H2

= C ‖
∫ 1

0

DΨ(ΠKv + tM(v))M(v)dt ‖H2 . (3.39)

From Lemma 3.5, and ‖ DΨ ‖L(L2,H2) ≤ C we infer that

‖ M(Ψ(ΠKv)) − M(v) ‖ ≤ C ‖ M(v) ‖ . (3.40)

The combination of (3.38) with (3.40) yields

|I1| ≤ C ‖ M(v) ‖ (3.41)

and

‖ Ψ(ΠKv) − v ‖H2(Ω)=‖ Ψ(ΠKv) − Ψ(ΠKv + M(v)) ‖H2(Ω) ≤ C ‖ M(v) ‖ . (3.42)

Next for I2, using the trace theorem and applying (3.34), (3.42), we get

|I2| ≤ ‖ ∂νΨ(ΠKv) + Ψ(ΠKv) ‖L2(Γ) ‖DΨ(ΠKv)φi‖L2(Γ)

≤ C
(
‖ ∂ν(Ψ(ΠKv) − v) + (Ψ(ΠKv) − v) ‖L2(Γ) + ‖ ∂νv + v ‖L2(Γ)

)
≤ C(‖ ∂ν(Ψ(ΠKv) − v) ‖

H
1
2 (Γ)

+ ‖ Ψ(ΠKv) − v ‖
H

1
2 (Γ)

+ ‖ ∂νv + v ‖L2(Γ))

≤ C(‖ Ψ(ΠKv) − v ‖H2(Ω) + ‖ ∂νv + v ‖L2(Γ))

≤ C(‖ M(v) ‖ + ‖ ∂νv + v ‖L2(Γ)). (3.43)

The combination of (3.43) with (3.38) yields that for 1 ≤ i ≤ m,

| ∂Γ(ξ)
∂ξi

| ≤ C(‖ M(v) ‖ + ‖ ∂νv + v ‖L2(Γ)). (3.44)

It turns out that

| ∇Γ(ξ) |= (
m∑

i=1

| ∂Γ(ξ)
∂ξi

|2) 1
2 ≤ C(‖ M(v) ‖ + ‖ ∂νv + v ‖L2(Γ)). (3.45)
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We now proceed to estimate | E(Ψ(ΠKv) + ψ) − E(v + ψ) |. By the Newton-Leibniz
formula, we have

| E(Ψ(ΠKv) + ψ) − E(v + ψ) |

≤ |
∫ 1

0

∫
Ω

M(v + t(Ψ(ΠKv) − v))(Ψ(ΠKv) − v)dxdt|

+|
∫ 1

0

∫
Γ

[∂ν(v + t(Ψ(ΠKv) − v)) + (v + t(Ψ(ΠKv) − v))](Ψ(ΠKv) − v)dSdt|

:= I3 + I4. (3.46)

Using v = Ψ(M(v) + ΠKv) and referring to (3.40), for I3 we have

I3 ≤ max
0≤t≤1

‖ M(v + t(Ψ(ΠKv) − v)) ‖ · ‖ Ψ(ΠKv) − v ‖

≤ C ‖ M(v) ‖ ( max
0≤t≤1

‖ M(v + t(Ψ(ΠKv) − v)) − M(v) ‖ + ‖ M(v) ‖)

≤ C ‖ M(v) ‖ (C max
0≤t≤1

‖ v + t(Ψ(ΠKv) − v) − v ‖H2 + ‖ M(v) ‖)

≤ C ‖ M(v) ‖2 . (3.47)

By the Hölder inequality and the trace theorem, we have the following estimate for I4:

I4 ≤ max
0≤t≤1

(‖∂νv + v ‖L2(Γ) +t ‖ ∂ν(Ψ(ΠKv) − v) + (Ψ(ΠKv) − v) ‖L2(Γ))

× ‖ Ψ(ΠKv) − v ‖L2(Γ)

≤ C(‖ ∂νv + v ‖L2(Γ) + ‖ Ψ(ΠKv) − v ‖H2) ‖ Ψ(ΠKv) − v ‖H2 . (3.48)

The combination of (3.48) with (3.42) yields

I4 ≤ C(‖ ∂νv + v ‖L2(Γ) + ‖ M(v) ‖) ‖ M(v) ‖ . (3.49)

Finally, from (3.46)–(3.49) we deduce the following estimate on | E(Ψ(ΠKv) + ψ) −
E(v + ψ) |:

| E(Ψ(ΠKv) + ψ) − E(v + ψ) |
≤ C(‖ ∂νv + v ‖L2(Γ) + ‖ M(v) ‖) ‖ M(v) ‖
≤ C(‖ ∂νv + v ‖L2(Γ) + ‖ M(v) ‖)2. (3.50)

Since Γ(ξ) = E(Ψ(ΠKv) + ψ) : R
m → R is real analytic for small |ξ| and ∇Γ(0) = 0,

we have the following Lojasiewicz inequality on analytic functions defined on R
m (see

[20]–[22]): for |ξ| ≤ β1 ≤ β,

|∇Γ(ξ)| ≥ |Γ(ξ) − Γ(0)|1−θ′
, (3.51)
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where θ′ ∈ (0, 1
2 ). Thus from (3.45), (3.51) and (3.50) we infer that

C(‖ M(v) ‖ + ‖ ∂νv + v ‖L2(Γ))

≥ | ∇Γ(ξ) | ≥ |Γ(ξ) − Γ(0)|1−θ′

= | Γ(ξ) − E(v + ψ) + E(v + ψ) − Γ(0)|1−θ′

≥ 1
2
|E(v + ψ) − Γ(0)|1−θ′ − C1|Γ(ξ) − E(v + ψ)|1−θ′

≥ 1
2
|E(v + ψ) − Γ(0)|1−θ′

− C1(‖ ∂νv + v ‖L2(Γ) + ‖ M(v) ‖)2(1−θ′). (3.52)

Hence, we see

| E(v + ψ) − Γ(0)|1−θ′

≤ (‖ ∂νv + v ‖L2(Γ) + ‖ M(v) ‖)
×(2C + 2C1(‖ ∂νv + v ‖L2(Γ) + ‖ M(v) ‖)2(1−θ′)−1). (3.53)

Since 0 < θ′ < 1
2 , 2(1 − θ′) − 1 > 0, we can choose smaller β2 < β1 such that when

‖v‖H2(Ω) ≤ β2,

(‖ ∂νv + v ‖L2(Γ) + ‖ M(v) ‖)2(1−θ′)−1 ≤ 1. (3.54)

Then it follows from (3.53) that

| E(v + ψ) − Γ(0)|1−θ′ ≤ C(‖ ∂νv + v ‖L2(Γ) + ‖ M(v) ‖). (3.55)

Next we choose ε, 0 < ε < θ′ and β0 < β2 such that for ‖v‖H2< β0,

1
C

| E(v + ψ) − Γ(0)|−ε ≥ 1. (3.56)

Setting θ = θ′ − ε ∈ (0, 1
2 ), we finally have for ‖v‖H2< β0,

‖ ∂νv + v ‖L2(Γ) + ‖ M(v) ‖ ≥| E(v + ψ) − Γ(0)|1−θ =| E(u) − E(ψ)|1−θ. (3.57)

which is exactly (3.26). Thus, the lemma is proved. �
In order to prove our Theorem 1.1, we need the following modification of the previous

lemma in which we only need smallness of ‖u − ψ‖ in H1 norm, which is crucial for
hyperbolic equations.

Lemma 3.8. Let ψ be a critical point of E(u). Then there exist constants θ̃ ∈ (0, 1
2 ) and

β̃0 > 0 depending on ψ such that for ∀u ∈ H2(Ω), we have

‖ −∆u + f(x, u) ‖ +‖∂νu + u‖
H

1
2 (Γ)

≥ | E(u) − E(ψ) |1−θ (3.58)

provided ‖u − ψ‖H1(Ω) < β̃0.

Proof. We consider the following two cases:
(i) If ‖u−ψ‖H2(Ω) < β0, where β0 is the constant appearing in Lemma 3.6, then we have

‖ −∆u + f(x, u) ‖ + ‖ ∂νu + u ‖L2(Γ) ≥ | E(u) − E(ψ) |1−θ . (3.59)

Since ‖w‖
H

1
2 (Γ)

≥ ‖w‖L2(Γ), ∀w ∈ H1(Ω), it is easy to see that

‖ −∆u + f(x, u) ‖ + ‖ ∂νu + u ‖
H

1
2 (Γ)

≥ | E(u) − E(ψ) |1−θ . (3.60)
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(ii) If ‖u − ψ‖H2(Ω) ≥ β0, then for v = u − ψ, from the regularity theory for elliptic
problems we get

‖v‖H2 ≤ C(‖∆v‖ + ‖∂νv + v‖
H

1
2 (Γ)

), (3.61)

where C is a constant independent of v.
By H1(Ω) ↪→ L6(Ω) (n = 3), there exists β̃0 > 0 depending on ψ such that ∀u,

‖u − ψ‖H1(Ω) < β̃0,

‖f(x, u) − f(x, ψ)‖ <
β0

2C
(3.62)

and

|E(u) − E(ψ)|1−θ <
β0

2C
. (3.63)

Noticing that ψ satisfies (1.6), we deduce from (3.61), (3.62) and (3.63) that

‖ − ∆u + f(x, u)‖ + ‖∂νu + u‖
H

1
2 (Γ)

= ‖ − ∆v + f(x, u) − f(x, ψ)‖ + ‖∂νv + v‖
H

1
2 (Γ)

≥ (‖∆v‖ + ‖∂νv + v‖
H

1
2 (Γ)

) − ‖f(x, u) − f(x, ψ)‖

≥ 1
C
‖v‖H2 − ‖f(x, u) − f(x, ψ)‖

>
β0

2C
> |E(u) − E(ψ)|1−θ. (3.64)

Thus the lemma is proved. �

4. Proof of Theorem 1.1. The proof consists of several steps.
Step 1. The ω-limit set of (u0, u1)T ∈ H is defined as follows:

ω(u0, u1) = {(ψ(x), φ(x))T ∈H |
∃ tn → +∞ such that (u(x, tn), ut(x, tn))T → (ψ(x), φ(x))T in H}.

Then we have

Lemma 4.1. For any (u0, u1)T ∈ D, the ω-limit set of (u0, u1)T is a nonempty compact
connected subset in H. Furthermore,

(i) It is invariant under the nonlinear semigroup S(t) defined by the solution (u(x, t),
ut(x, t))T , i.e., S(t)ω(u0, u1) = ω(u0, u1) for all t ≥ 0.
(ii) E(u) is constant on ω(u0, u1). Moreover, ω(u0, u1) consists of equilibria.

Proof. For the proof one can refer to Theorem 5.2 in [7]. �
Thus it follows that every element in ω(u0, u1) has the form (ψ(x), 0)T , where ψ(x) is

a solution to problem (1.6), and

‖ut‖ → 0, as t → +∞. (4.1)

Step 2. After the previous preparations, we now proceed to finish the proof of Theorem
1.1, following a simple argument introduced in [15] in which the key observation is that
after a certain time t0, the solution u will fall into the small neighborhood of ψ and stay
there forever.
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As mentioned in the Introduction section, for the semilinear wave equation, there is a
term utt in the equation (1.1), being different from the parabolic equation. It turns out
that we cannot directly apply the extended Simon-Lojasiewicz inequality derived in the
previous section. Instead, we have to introduce an auxiliary function. Now let ε be a
small positive real number, and define

H(t) =
1
2

∫
Ω

u2
t dx+ E(u) + ε

∫
Ω

[−∆u + f(x, u)]utdx + ε

∫
Ω

|∇ut|2dx

+ε

∫
Ω

| − ∆u + f(x, u)|2dx + ε

∫
Ω

f ′(x, u)|ut|2dx +
3
2

ε‖ut‖2
L2(Γ). (4.2)

Then H(t) is well defined for all t ≥ 0 as a sequence of Lemma 2.2 and H(t) is bounded
from below. We have for t ≥ 0,

dH

dt
= −‖ut‖2 − ‖ut‖2

L2(Γ) + ε

∫
Ω

[−∆u + f(x, u)]tutdx + ε

∫
Ω

[−∆u + f(x, u)]uttdx

+2ε

∫
Ω

∇ut · ∇uttdx + 2ε

∫
Ω

[∆u − f(x, u)]t[∆u − f(x, u)]dx

+ε

∫
Ω

f ′′(x, u)|ut|2utdx + 2ε

∫
Ω

f ′(x, u)ututtdx + 3ε

∫
Γ

ututtdS

= −‖ut‖2 − ‖ut‖2
L2(Γ) − ε‖∇ut‖2 − ε

∫
Ω

f ′(x, u)u2
tdx − ε‖ − ∆u + f(x, u)‖2

+ε

∫
Ω

[∆u − f(x, u)]utdx − 2ε‖utt‖L2(Γ) + ε

∫
Ω

f ′′(x, u)|ut|2utdx

−ε‖ut‖2
L2(Γ). (4.3)

Using the Cauchy-Schwarz inequality for the term
∫
Ω
[∆u − f(x, u)]utdx we find that

dH

dt
≤

∫
Ω

[−1
2
− εf ′(x, u) + εf ′′(x, u)ut]|ut|2dx − ε

2
‖ − ∆u + f(x, u)‖2

−(1 + ε)‖ut‖2
L2(Γ) − ε‖∇ut‖2. (4.4)

We note that u ∈ H2(Ω) ↪→ L∞(Ω) (n = 3) and then by Lemma 2.2, f ′(x, u) and f ′′(x, u)
remain bounded. By the Gagliardo-Nirenberg inequality

‖ut‖3
L3 ≤ C1‖∇ut‖

3
2 ‖ut‖

3
2 + C2‖ut‖3.

Then we have∫
Ω

f ′′(x, u)u3
t dx ≤ C0‖ut‖3

L3 ≤ C0(ε1‖∇ut‖2 + C(ε1)‖ut‖6 + C2‖ut‖3). (4.5)

Taking ε1 small such that C0ε1 < 1
2 , and taking ε small such that |εf ′(x, u)| < 1

4 , we
can conclude from (4.1) and also the trace theorem that there exists C3 > 0, C̃3 > 0 and
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T1 > 0 such that for all t ≥ T1 > 0,

d

dt
H(t)

≤ −C3(‖ut‖2 + ‖ − ∆u + f(x, u)‖2 + ‖∇ut‖2 + ‖ut‖2
L2(Γ))

≤ −C3

4
(‖ut‖ + ‖ − ∆u + f(x, u)‖ + ‖∇ut‖ + ‖ut‖L2(Γ))2

≤ −C̃3(‖ut‖ + ‖ − ∆u + f(x, u)‖ + ‖∇ut‖ + ‖ut‖L2(Γ) + ‖ut‖
H

1
2 (Γ)

)2, (4.6)

i.e., H(t) is decreasing on [T1, +∞). It follows that as time goes to +∞, H(t) has a finite
limit. Since (ψ(x), 0)T ∈ ω(u0, u1), there is a sequence tn, tn → +∞ such that

u(x, tn) → ψ(x) (4.7)

in H1(Ω). It turns out that

E(tn) → E(ψ). (4.8)

It easily follows from Lemma 2.2, (4.1), (4.6), and (4.8) that for t ≥ T1, H(t) ≥ E(ψ)
and the equal sign holds if and only if for all t ≥ T1, u is independent of t and satisfies
the equation −∆u + f(x, u) = 0.

On the other hand, for θ being the constant appearing in Lemma 3.7, and for all
t ≥ T1,

− d

dt
[H(t) − E(ψ)]θ = −θ[H(t) − E(ψ)]θ−1 d

dt
H(t). (4.9)

By Hölder’s inequality, we get

[H(t) − E(ψ)]1−θ

≤ C4(|E(u) − E(ψ)|1−θ + ‖ut‖2(1−θ) + ‖ut‖2(1−θ)
L2(Γ) + ‖ − ∆u + f(x, u)‖2(1−θ)

+‖ − ∆u + f(x, u)‖1−θ‖ut‖1−θ + ‖∇ut‖2(1−θ)). (4.10)

By Young’s inequality we have

‖ − ∆u + f(x, u)‖1−θ‖ut‖1−θ ≤ ‖ − ∆u + f(x, u)‖ + ‖ut‖(1−θ)/θ. (4.11)

Thus

[H(t) − E(ψ)]1−θ

≤ C4(|E(u) − E(ψ)|1−θ + ‖ut‖2(1−θ) + ‖ut‖2(1−θ)
L2(Γ) + ‖ − ∆u + f(x, u)‖2(1−θ)

+‖ − ∆u + f(x, u)‖ + ‖ut‖(1−θ)/θ + ‖∇ut‖2(1−θ)). (4.12)

Since(1− θ)/θ > 1, 2(1− θ) > 1, it follows from Lemma 2.2 and (4.1) that for all t ≥ T1,

[H(t)−E(ψ)]1−θ ≤ C5(|E(u)−E(ψ)|1−θ +‖ut‖+‖ut‖L2(Γ) +‖−∆u+f(x, u)‖+‖∇ut‖).
(4.13)

We now consider all possibilities.
(1). If there is a t0 ≥ T1 such that at this time H(t) = E(ψ), then for all t > t0, as we
have proved previously, u is independent of t. Since u(x, tn) → ψ, then we are done.
(2). If there is t0 ≥ T1 such that for all t ≥ t0, v = u−ψ satisfies the condition of Lemma
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3.7, i.e., ‖v‖H1 < β̃0, then for θ ∈ (0, 1
2 ) appearing in Lemma 3.7, a combination of (4.6),

(4.9) with (4.13), and application of Lemma 3.7 yields

d

dt
[H(t)−E(ψ)]θ +

C̃3θ

C5
(‖ut‖+‖−∆u+ f(x, u)‖+‖∇ut‖+‖ut‖L2(Γ) +‖ut‖

H
1
2 (Γ)

) ≤ 0.

(4.14)
Integrating from t0 to t, we get

[H(t) − E(ψ)]θ

+
C̃3θ

C5

∫ t

t0

(‖ut‖ + ‖ − ∆u + f(x, u)‖ + ‖∇ut‖ + ‖ut‖L2(Γ) + ‖ut‖
H

1
2 (Γ)

)dτ

≤ [H(t0) − E(ψ)]θ < +∞. (4.15)

Since for t ≥ T1, H(t) − E(ψ) ≥ 0, we have∫ t

t0

‖ ut ‖ dτ < +∞, t ≥ t0. (4.16)

This simply implies that as t → +∞, u(t) converges in L2. It follows from Lemma 2.2
that u(t) is precompact in H1(Ω). Hence, from the uniqueness of the limit we can deduce
that

lim
t→∞

‖u(t) − ψ‖H1 = 0. (4.17)

(3). It follows from (4.1), (4.7) and Lemma 2.2 that for any σ > 0 with σ < β̃0, there
exists an integer N such that when n ≥ N ,

‖ u(·, tn) − ψ ‖ ≤ C‖u(·, tn) − ψ‖H1 <
σ

2
. (4.18)

On the other hand, we deduce from the fact that H(t) is decreasing in [T1, +∞) and it
has a finite limit as t → +∞ that when n ≥ N , for all t ≥ tn,

C5

C̃3θ

(
(H(tn) − E(ψ))θ − (H(t) − E(ψ))θ

)
<

σ

2
. (4.19)

Define
t̄n = sup{ t > tn | ‖ u(·, s) − ψ ‖H1(Ω)< β̃0, ∀s ∈ [tn, t]}. (4.20)

It follows from (4.18) and continuity of the orbit in H2(Ω) that t̄n > tn for all n ≥ N .
Then there are two possibilities:
(i). If there exists n0 ≥ N such that t̄n0 = +∞, then from the previous discussions in
(1), (2), we are done.
(ii) Otherwise, for all n ≥ N , we have tn < t̄n < +∞, and for all t ∈ [tn, t̄n], E(ψ) < H(t).
Then from (4.15) with t0 being replaced by tn, and t being replaced by t̄n we deduce
that ∫ t̄n

tn

‖ ut ‖ dτ ≤ C5

C̃3θ

(
(H(tn) − E(ψ))θ − (H(t̄n) − E(ψ))θ

)
<

σ

2
. (4.21)

Thus, it follows that

‖u(t̄n) − ψ‖ ≤ ‖u(tn) − ψ‖ +
∫ t̄n

tn

‖ut ‖ dτ < σ, (4.22)
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which implies that when n → +∞,

u(t̄n) → ψ in L2(Ω).

Since u(t) is precompact in H1(Ω), there exists a subsequence of {u(t̄n)}, still denoted
by {u(t̄n)}, converging to ψ in H1(Ω). Then we can deduce that when n is sufficiently
large,

‖u(t̄n) − ψ‖H1(Ω) < β̃0,

which contradicts the definition of t̄n that ‖u(·, t̄n) − ψ‖H1(Ω) = β̃0. Thus, the theorem
is proved.

Acknowledgment. We are grateful to professor M. Grasselli for calling our attention
to the paper [10] for the proof of Lemma 2.2.
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